Prof. M. Disertori, Dr. Rojas-Molina

 The seminar will take place on  Tuesdays 10-12Room N 0.008

 

 

Program 

  • October  24         "Introduction to spectral theory for unbounded operators
  • November 7        "Helffer-Sjöstrand representation I"
  • November 14      "Combes-Thomas estimate"
  • November 21      "Helffer-Sjöstrand representation II"
  • December 5        "An application: decay of correlations"
  • December 12      "Another application: homogeneization Part I"
  • December 19      "Another application: homogeneization Part II"

 

 

Bibliography

 

     

     

     

    Description. A large number of problems in mathematical and theoretical physics can be reformulated in terms of a generalized Schrödinger equation of the form

                                                             i∂t ψ = Lψ,

    where L = DRD + V, D is a first oder differential operator, R is a fixed matrix V a multiplication operator. Prominent examples include the standard Schrödinger equation and classical wave equation (like acoustic and Maxwell). A major problem is the study of the corresponding operator kernel δxL-1δy , or more generally of δxf(L)δy where f is a bounded continuous function.

    In this seminar we will learn some fundamental tools to study these problems, namely Combes-Thomas estimate and Helffer-Sjöstrand representation. We will then see two applications.

    (a) Study correlations for gradient type measures of the form

                                                           dμ(φ) = dφΛ e−F(∇φ)

    where φ : Λ → H, with Λ ⊂⊂ Z d , H is a real or complex finite dimensional Hilbert space,  F is C2 and convex, and Λ → Zd

    (b) Prove decay estimates of the form |δxf (L)δy | ≤ g(|x − y|), where g(u)→0 as u→∞.

     

    Prerequisites. Functional analysis and Introduction to PDE. Some basic knowledge in statistical mechanics may be useful but is not necessary.

     

     

     

     

    Wird geladen