Preprints

[15] Fabian Rupp, Christian Scharrer, and Manuel Schlierf
Gradient flow dynamics for cell membranes in the Canham-Helfrich model
arXiv:2408.07493

[14] Ulrich Menne and Christian Scharrer
A priori bounds for geodesic diameter. Part III.
A Sobolev-Poincaré inequality and applications to a variety of geometric variational problems
arXiv:1709.05504

[13] Christian Scharrer
Properties of surfaces with spontaneous curvature
arXiv:2310.19935

[12] Marius Müller, Fabian Rupp, and Christian Scharrer
Short closed geodesics and the Willmore energy
arXiv:2304.01809

[11] Ulrich Menne and Christian Scharrer
A priori bounds for geodesic diameter. Part II. 
Fine connectedness properties of varifolds
arXiv:2209.05955

Publications

[10] Christian Scharrer and Alexander West
On the minimization of the Willmore energy under a constraint on total mean curvature and area
Arch. Ration. Mech. Anal. (2025)
DOI:10.1007/s00205-025-02087-y

[9] Fabian Rupp and Christian Scharrer
Global regularity of integral 2-varifolds with square integrable mean curvature
J. Math. Pures Appl. (to appear)
arXiv:2404.12136

[8] Ulrich Menne and Christian Scharrer
A priori bounds for geodesic diameter. Part I. 
Integral chains with coefficients in a complete normed commutative group
Rev. Mat. Iberoam. (2024)
DOI:10.4171/RMI/1487

[7] Marco Flaim and Christian Scharrer
Diameter estimates for surfaces in conformally flat spaces
Manuscripta Math. (2024)
DOI:10.1007/s00229-024-01539-1

[6] Fabian Rupp and Christian Scharrer 
Li-Yau inequalities for the Helfrich functional and applications
Calc. Var. Partial Differential Equations (2023)
DOI:10.1007/s00526-022-02381-7

[5] Christian Scharrer
Embedded Delaunay tori and their Willmore energy 
Nonlinear Anal. (2022)
DOI:10.1016/j.na.2022.113010

[4] Christian Scharrer 
Some geometric inequalities for varifolds on Riemannian manifolds based on monotonicity identities
Ann. Global Anal. Geom. (2022) 
DOI:10.1007/s10455-021-09822-0

[3] Andrea Mondino and Christian Scharrer
A strict inequality for the minimisation of the Willmore functional under isoperimetric constraint 
Adv. Calc. Var. (2021)
DOI:10.1515/acv-2021-0002

[2] Andrea Mondino and Christian Scharrer 
Existence and Regularity of Spheres Minimising the Canham-Helfrich Energy 
Arch. Ration. Mech. Anal. (2020)
DOI:10.1007/s00205-020-01497-4

[1] Ulrich Menne and Christian Scharrer 
An isoperimetric inequality for diffused surfaces 
Kodai Math. J. (2018)
DOI:10.2996/kmj/1521424824

Theses

[T2] On the minimisation of bending energies related to the Willmore functional under constraints on area and volume
PhD thesis supervised by Andrea Mondino, University of Warwick, 2021 
Examiners: Tristan Rivière and Peter Topping
ISNI:0000000507419653

[T1] Relating diameter and mean curvature for varifolds 
MSc thesis supervised by Ulrich Menne, University of Potsdam, 2016
URN:nbn:de:kobv:517-opus4-97013

Lecture notes

[L2] Real analysis
University of Bonn, winter term 2024/2025

[L1] Geometric inequalities
University of Bonn, winter term 2022/2023

Seminar notes

[S1] Geometric analysis 
Univeristy of Bonn, summer term 2024

 

Wird geladen