Research interests of Illia Karabash
- Applied Analysis, Applied Optimization, Applied Probability
- Spectral Optimization, Structural Optimization, Stochastic Optimization
- Wave Equations, Photonics, Resonances, Homogenization
- Point Processes of Random Eigenvalues
- Statistical Problem of Hidden Periodicities, Random Fourier Series
- Optimal Control, Hamilton–Jacobi–Bellman Equations
- Nonselfadjoint/Nonlinear Eigenvalue Problems
- Multiparameter Bifurcation/Perturbation Theory, Liquid Film Equations
- Parabolic Equations of forward-backward/degenerate types
- Delay Equations
Main papers
- I.M. Karabash, Random acoustic boundary conditions and Weyl's law for Laplace-Beltrami operators on non-smooth boundaries, preprint arXiv:2410.15150, 2024. https://doi.org/10.48550/arXiv.2410.15150
- I.M. Karabash, M-dissipative generalized impedance boundary conditions, discrete spectra, and pointwise multipliers between fractional Sobolev spaces, preprint arXiv:2502.00493, 2025. https://doi.org/10.48550/arXiv.2502.00493
- M. Eller, I.M. Karabash, Homogenization and nonselfadjoint spectral optimization for dissipative Maxwell eigenproblems, Calculus of Variations and Partial Differential Equations 64(3), 2025. https://doi.org/10.1007/s00526-024-02908-0 (see also preprint)
- I.M. Karabash, C. Lienstromberg, J.J.L. Velázquez, Multi-parameter Hopf bifurcations of rimming flows, Journal of Differential Equations, 2025. https://doi.org/10.1016/j.jde.2025.02.053 (see also preprint)
- M. Eller, I.M. Karabash, M-dissipative boundary conditions and boundary tuples for Maxwell operators, J. Differential Equations 325 (2022), 82–118. doi.org/10.1016/j.jde.2022.04.006 (see also preprint).
- S. Albeverio, I.M. Karabash, Asymptotics of random resonances generated by a point process of delta-interactions, In: Albeverio S., Balslev A., Weder R. (eds.) “Schrödinger Operators, Spectral Analysis and Number Theory. In Memory of Erik Balslev”, pp. 7--26, Springer, 2021. doi.org/10.1007/978-3-030-68490-7_2 (see also preprint).
- M. Eller, I.M. Karabash, Euler-Lagrange equations for full topology optimization of the Q-factor in leaky cavities,In: Proceedings of the International Conference ``Days on Diffraction 2021'', St. Petersburg, pp. 29-35, IEEE Xplore, IEEE, 2021. doi.org/10.1109/DD52349.2021.9598789 (see also preprint).
- I.M. Karabash, H. Koch, I.V. Verbytskyi, Pareto optimization of resonances and minimum-time control, Journal de Mathématiques Pures et Appliquées 136 (2020), 313-355. doi.org/10.1016/j.matpur.2020.02.005 (see also preprint).
- S. Albeverio, I.M. Karabash, Generic asymptotics of resonance counting function for Schrödinger point interactions. In: Kurasov P., Laptev A., Naboko S., Simon B. (eds.), ``Analysis as a Tool in Mathematical Physics: in Memory of Boris Pavlov'', Oper. Theory Adv. Appl., Vol. 276, pp. 80-93, Birkhäuser, Cham, 2020. doi.org/10.1007/978-3-030-31531-3_8 (see also preprint).
- S. Albeverio, I.M. Karabash, On the multilevel internal structure of the asymptotic distribution of resonances, J. Differential Equations 267 (2019), 6171-6197. doi.org/10.1016/j.jde.2019.06.020 (see also preprint).
- I.M. Karabash, J. Prestin, Recovery of periodicities hidden in heavy-tailed noise, Math. Nachr. 291 (2018), pp. 86-102. doi.org/10.1002/mana.201600361 (see also preprint).
- I.M. Karabash, O.M. Logachova, I.V. Verbytskyi, Nonlinear bang-bang eigenproblems and optimization of resonances in layered cavities, Integral Equations Operator Theory 88 (2017). doi.org/10.1007/s00020-017-2368-8 (see also preprint).
- I.M. Karabash, Pareto optimal structures producing resonances of minimal decay under L^1-type constraints, J. Differential Equations 257 (2014). doi.org/10.1016/j.jde.2014.04.002 (see also preprint).
- I. Karabash, Optimization of quasi-normal eigenvalues for 1-D wave equations in inhomogeneous media; description of optimal structures, Asymptotic Analysis 81 (2013). doi.org/10.3233/ASY-2012-1128 (see also preprint).
- E. Braverman, I. Karabash, Structured stability radii and exponential stability tests for Volterra difference systems, Comput. Math. Appl. 66 (2013).
- I. Karabash, Optimization of quasi-normal eigenvalues for Krein-Nudelman strings, Integral Equations Operator Theory 75 (2013).
- E. Braverman, I. Karabash, Bohl-Perron-type stability theorems for linear difference equations with infinite delay. J. Difference Equ. Appl. 18 (2012), no. 5.
- P. Binding, P.J. Browne, I. Karabash, Sturm-Liouville problems for the p-Laplacian on a half-line. Proc. Edinb. Math. Soc. (2) 53 (2010), no. 2.
- I. Karabash, A. Kostenko, M. Malamud, The similarity problem for J-nonnegative Sturm-Liouville operators, J. Differential Equations 246 (2009).
- M. Chugunova, I. Karabash, S.G. Pyatkov, On the nature of ill-posedness of the forward-backward heat equation, Integral Equations Operator Theory 65 (2009).
- I. Karabash, C. Trunk, Spectral properties of singular Sturm-Liouville operators with indefinite weight sgn x, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 3, 483–503.
- I. Karabash, A. Kostenko, Indefinite Sturm-Liouville operators with the singular critical point zero, Proc. Roy. Soc. Edinburgh 138A (2008).
- I. Karabash, M. Malamud, Indefinite Sturm-Liouville operators (sgn x)(-d^2/dx^2 +q) with finite-zone potentials, Oper. Matrices 1 (2007).
- I. Karabash, S. Khassi, On the similarity between a J-selfadjoint Sturm-Liouville operator with operator potential and a selfadjoint operator, Math. Notes 78 (2005), no.3-4.
- I. Karabash, J-selfadjoint ordinary differential operators similar to selfadjoint operators, Methods Funct. Anal. Topology 6 (2000), no.2.