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Brownian motion: The central object in stochastic analysis

The Brownian motion on R starting in x ∈ R is a continuous path
Markov process with

Px

{
Bt ≤ z

}
:= 1√

2πt

∫ z

−∞
dy e−

(y−x)2

2t , z ∈ R, t ≥ 0.

Scaling Property. Assume that B := (Bt)t≥0 is a Brownian motion
starting in 0 . Define for all n ∈ N the process B̃ := (B̃t)t≥0 given by

B̃t :=
1√
n
Bnt.

Then B̃ := (B̃t)t≥0 is also a standard Brownian motion starting in 0 .
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Central limit theorem

Let X1 , X2 , ... be independent, identically distributed {−1, 1} -valued
random variables with P{Xn = ±1} = 1

2 . Then for all z ∈ R , t ≥ 0 ,

P
{

1√
n

⌊nt⌋∑
i=1

Xi ≤ z
}
−→
n→∞

1√
2πt

∫ z

−∞
dy e−

y2

2t = P0

{
Bt ≤ z

}
.

Equivalently, for all bounded and continuous functions f : R → R ,
t ≥ 0 ,

E
[
f
(

1√
n

⌊nt⌋∑
i=1

Xi

)]
−→
n→∞

E0

[
f
(
Bt

)]
.

This convergence is referred to as weak convergence and abbreviated
by =⇒

n→∞
, i.e., we write

1√
n

∑⌊nt⌋

i=1
Xi =⇒

n→∞
Bt.
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Functional central limit theorem
Denote by D([0,∞)) the space of cadlag-functions (continuous from
the right + limits from the left) equipped with the Skorokhod-topology
(extending uniform convergence on compacta for continuous fcts).

The random trajectories of the random walks (
∑⌊t⌋

i=1 Xi)t≥0 and
Brownian motion (Bt)t≥0 are elements of D([0,∞)) , a.s.

Functional CLT. (
1√
n

⌊nt⌋∑
i=1

Xi

)
t≥0

=⇒
n→∞

(Bt)t≥0.

Once more this means that all bounded and continuous functionals
(and even more) f : D([0,∞)) → R converge.

Example. We can conclude from the functional CLT that

P
{

1√
n

max
k=1,...,n

k∑
i=1

Xi ≥ z
}
−→
n→∞

P0

{
max
s∈[0,1]

Bs ≥ z
}
=

√
2√
π

∫ ∞

z

dy e−
y2

2 .
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Shared properties of random walk and Brownian motion

The random walk (St)t≥0 where St :=
∑⌊t⌋

i=1 Xi and the Brownian
motion B := (Bt)t≥0 share the following properties:

• Strong Markov property. Both are strong Markov processes.

• Skip-free. Their random trajectories “do not jump over points”.

• On natural scale. They are both on “natural scale”.

Let for a stochastic process X with values in E ⊆ R ,
τz := inf

{
t ≥ 0 : Xt = z

}
. We say that X is on natural scale iff

for all x, y, z ∈ E with y < x < z and τy ∧ τz < ∞ ,

Px

{
τy < τz

}
= z−x

z−y = r(x,z)
r(y,z) ,

where here r(·, ·) denotes the Euclidian distance.
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Stone’s PhD

Charles Stone (1963), Limit theorems for random walks, birth and death processes, and diffusion processes, Illinois

Journal of Mathematics

‘‘As defined here, classes of Markov processes have in common that the basic state

space is a subset of the reals, and the random trajectories do not jump over points in the state

space. ... In the discrete-time setting, any such process has a discrete state space

and is a random walk. In the continuous-time setting, if the state space is an

interval, the path functions are continuous ...; if the state space is discrete, the

process is a birth and death process.’’

Any such process X on “natural scale” shares the following
occupation time formula: for all x < z ,

Ex

[ ∫ τz

0

ds f(Xs)
]
= 2

∫
ν(dy) f(y)

(
z ∧ y − x ∨ y

)
.

The measure ν is referred to as speed measure.
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Stone’s invariance principle

Charles Stone (1963), Limit theorems for random walks, birth and death processes, and diffusion processes, Illinois

Journal of Mathematics

‘‘As defined here, classes of Markov processes have in common that the basic state

space is a subset of the reals, and the random trajectories do not jump over points in the state

space. ... In the discrete-time setting, any such process has a discrete state space

and is a random walk. In the continuous-time setting, if the state space is an

interval, the path functions are continuous ...; if the state space is discrete, the

process is a birth and death process.

We include both possibilities by allowing the state space to be any closed subset of the reals.
These processes are all very similar in their analytic and probabilistic structure.

When put in their “natural scale”, they are determined by a speed measure ν(dx)...

It is fairly obvious that in some sense the processes depend continuously on ν(dx). ...’’
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Example: Recovering the functional CLT from Stone

The continuous time random walk is such a Markov process on Z
whose speed measure equals the counting measure q :=

∑
z∈Z δz ;

and after Brownian rescaling (rescaling edge length by a factor 1√
n

and speeding up time by a factor n)

νn := 1√
n
· q
(√

n ·
)
.

On the other hand the Brownian motion is such a process whose
speed measure equals the Lebesgue measure.

According to Stone. As “in some sense” (νn)n∈N converges to the
Lebesgue measure, the suitably rescaled random walk converges in
path space to standard Brownian motion.
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Another example which falls in Stone’s class

Let σ : R → R be “smooth enough” such that the following SDE has
a unique strong solution:

dXt = σ
(
Xt

)
dBt, X0 = x0 ∈ R.

Then X := (Xt)t≥0 is a skip-free, strong Markov process on natural
scale. Its speed measure equals

ν(dx) = σ−2(x)dx.
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The main goal

Generalize Stone’s invariance principle from skip-free strong Markov
processes on natural scale on R (equipped with Euclidian metric) to
skip-free strong Markov processes on natural scale on TREES, e.g.,

• discrete trees,

• so-called R-trees,

• R with a metric different from the Euclidian,

• and many more, e.g. Tq := {±qn; n ∈ Z} ∪ {0}. with the
Euclidian metric.
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Outline of the talk

1. Metric measure trees (T, r, ν)

2. Speed-ν motion on (T, r)

3. Gromov-weak convergence of metric measure trees

4. Invariance principle

5. Main steps in the proof

6. Related work and examples
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Metric measure trees
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Pointed metric spaces

A pointed metric space (X, r, ρ) consists of

• a metric space (X, r) and

• a distinguished point ρ ∈ X , called root.
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Rooted metric trees

A rooted metric tree (T, r, ρ) is a pointed metric space (T, r, ρ) which
is 0-hyperbolic, i.e., for all x1, x2, x3, x4 ∈ T ,

r(x1, x2) + r(x3, x4)

≤ max
{
r(x1, x3) + r(x2, x4), r(x1, x4) + r(x2, x3)

}
,

and for all x1, x2, x3 ∈ T , there is a point c(x1, x2, x3) ∈ T such that
for all i ̸= j ∈ {1, 2, 3} ,

r
(
xi, c(x1, x2, x3)

)
+ r

(
xj , c(x1, x2, x3)

)
= r(xi, xj).

x1

c(x1, x2, x3)

x2x3
�� @@
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Intervals = Arcs

x1

c(x1, x2, x3)

x2x3
�� @@

As usual, we define intervals/arcs by

[a, b] :=
{
v ∈ T : r(a, v) + r(v, b) = r(a, b)

}
,

and analogously (a, b) := [a, b] \ {a, b} , [a, b) := [a, b] \ {b} and
(a, b] := [a, b] \ {a}
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Rooted R-trees

An rooted R -tree (T, r, ρ) is a rooted metric tree (T, r, ρ) which is in
addition path-connected.
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Prominent example: Rooted R-tree “below” an excursion

φ ∈ C([0, 1]) , φ
∣∣
{0,1} ≡ 0 , φ

∣∣
(0,1)

> 0

pseudo-metric on [0, 1] . rφ(s, t) := φ(s) + φ(t)− 2 · infu∈[s,t] φ(u).

10

φ

�
��AA�

��AA�
��AAA�

�
��AA��AAA��A

AA��A
A
AA

Fact. T
∣∣
φ
= [0, 1]/≡φ

is a compact real tree with root 0 .

Example. CRT = “below” 2· Brownian excursion;

Lèvy trees “via” excursions of Lèvy processes
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Rooted compact metric (finite) measure trees

A rooted compact metric (finite) measure tree (T, r, ρ, ν) consists of

• a rooted compact metric tree (T, r, ρ) and

• a finite measure ν on (T,B(T )) of full support.
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Prominent example: Rooted metric measure tree “below” an excursion

φ ∈ C([0, 1]) , φ
∣∣
{0,1} ≡ 0 , φ

∣∣
(0,1)

> 0

pseudo-metric on [0, 1] . rφ(s, t) := φ(s) + φ(t)− 2 · infu∈[s,t] φ(u).

10

φ
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Fact. The R-tree T
∣∣
φ
= [0, 1]/≡φ

can be turned into a metric measure
tree if additionally equipped with the image measure of the Lebesgue
measure on [0, 1] under the map which sends x ∈ [0, 1] into the tree
T
∣∣
φ
= [0, 1]/≡φ

.
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Variable speed RM and BM via
the same Dirichlet form
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Variable speed random walk on graph trees with edge lengths

Assume we are given graph trees T = (V,E) with edge lengths
{we; e ∈ E} . Moreover, we are given jump rates {γv; v ∈ V } .

The variable speed random walk associated with
(T, {we; e ∈ E}, {γv; v ∈ V }) is a V -valued Markov chain in
continuous time which has the following dynamics: given the MC is
currently in v ∈ V ,

• it waits an exponential time with mean γ−1
v until it jumps away.

• at the jump time, it pick the neighboring vertex v′ ∼ v with a
probability I N V E R S E L Y proportional to w{v,v′} as its next
position.
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Variable speed random walk on graph trees with edge lengths
One to one correspondence between graph trees with edge lengths
and jump rates with metric measure spaces, i.e.,

(T = (V,E), {we; e ∈ E}, {γv; v ∈ V }) ⇔ (V, r, ν).

• Associate V with the metric and a measure

r(v, v′) :=
∑

e∈v 7→v′
we, ∀v, v′ ∈ V,

ν(A) := 1
2 ·

∑
v∈A

γ−1
v

∑
v′∼v

r−1(v, v′), ∀A ⊆ V.

• Conversely, the speed-ν random walk on (V, r) is a V -valued
Markov chain with jumps from v 7→ v′ ∼ v at rate 1

2ν({v})r(v,v′) .

Metatheorem. The Markov chains (Xn)n∈N converge weakly on path

space provided that the underlying metric measure spaces

(V n, rn, νn)n∈N “converge”.
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Example: Simple RW on Z

For each n ∈ N , put

Tn :≡ Z, rn
(
v, v ± 1

)
:= 1√

n
, νn({v}) := 1√

n
, ∀v ∈ Z.

The νn -speed random walk on (Tn, rn) is the SRW on Z with edge
length re-scaled by 1√

n
and speeded up (in each vertex v ) by a factor

of
γn(v) :=

1
2νn({v})

∑
v′=v±1

r−1
n (v, v′) = 1

2 ·
√
n · 2

√
n = n.
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Dirichlet form heuristics

For the construction of our processes on general rooted metric
measure trees, (T, r, ρ, ν) , we will rely on Dirichlet forms.

The Dirichlet form of the previous Markov chain is given through its
generator A acting on bounded functions, i.e.,

E(f, g) := −
(
Af, g

)
ν

= −
∑
v∈T

ν({v}) 1
2ν({v})

∑
v′∼v

1
r(v,v′)

(
f(v

′
) − f(v)

)
g(v)

= 1
2

∑
v∈T

1
2

∑
v′∼v

1
r(v,v′)

(
f(v

′
) − f(v)

)(
g(v

′
) − g(v)

)
= 1

2

∑
v∈T

1
2

∑
v′∼v

r(v, v
′
)
f(v′)−f(v)

r(v,v′)
g(v′)−g(v)

r(v,v′)

≈ 1
2

∫
dλ∇f∇g.

Our strategy. Define universal length measure and gradient.
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The (universal) length measure

Athreya, Löhr & W., Invariance principle for variable speed random walks on trees, ArXiv:math.PR/1404.6290.

(T, r, ρ) rooted metric tree, T ′ ⊂ T countably dense

T o :=
∪

a,b∈T ′
(a, b)
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b

λ({a}) = r(a, b)

λ({b}) = r(ρ, b)

Then ∃! σ -finite Borel measure λ = λ(T,r,ρ) s.t.

• λ((ρ, a]) = r(ρ, a) .

• λ(T \ T o) = 0

Notice. λ depends on the choice of the root ρ .
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Absolute continuity

We say f ∈ C(T ) is absolutely continuous iff ∀ ε > 0 and ∀ S ⊆ T

∃ δ = δ(ε, S) , such that for arcs all [x1, y1], ..., [xn, yn] ∈ S with∑n
i=1 r(xi, yi) < δ ,

∑n−1
i=1

∣∣f(xi)− f(yi)
∣∣ < ε .

A :=
{
f ∈ C(T ) : f absolutely continuous

}
.

Notice. If (T, r) is a discrete tree then each bounded function is
absolutely continuous.
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The (universal) gradient

Athreya, Löhr & W., Invariance principle for variable speed random walks on trees, ArXiv:math.PR/1404.6290.

Proposition. (Athreya, Löhr & W.) For all f ∈ A , there exists a
(unique up to λ(T,r,ρ) -zero sets) g ∈ L1(λ(T,r,ρ)) such that for all
x, y ∈ T ,

f(y)− f(x) =

∫ y

x

λ(T,r,ρ)(dz) g(z)

:= −
∫
(ρ,x]

λ(T,r,ρ)(dz) g(z) +

∫
[ρ,y]

λ(T,r,ρ)(dz) g(z).

We refer to g as the gradient and write ∇f = g .
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The (universal) Dirichlet form

Siva Athreya, Michael Eckhoff & Anita Winter (2013), Brownian motion on R -trees, Transaction of AMS

Let (T, r, ρ, ν) be a rooted compact metric (finite) measure tree. Put

E(f, g) := 1
2

∫
dλ(T,r,ρ)∇f∇g,

and
D(E) :=

{
f ∈ L2(ν) ∩ A : ∇f ∈ L2(λ(T,r,ρ))

}
.

Proposition. (AEW2013; Athreya, Löhr & W.) The bilinear form

(E ,D(E)) is a regular Dirichlet form and there is a strong Markov

process (Xx)x∈T associated with (E ,D(E)) .
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Speed-ν motion on (T, r)

Siva Athreya, Michael Eckhoff & Anita Winter (2013), Brownian motion on R -trees, Transaction of AMS

We want to refer to this strong Markov process X = (Xt)t≥0 whose
Dirichlet form is (E ,D(E)) as speed-ν motion on (T, r) .

Particular cases.

• If (T, r) is discrete, then the speed-ν motion on (T, r) is the
speed-ν random walk on (T, r) .

• If (T, r) is an R-tree, then the speed-ν motion on (T, r) is the
ν -Brownian motion on (T, r) which was constructed in
[AEW2013].
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Occupation time formula

Siva Athreya, Michael Eckhoff & Anita Winter (2013), Brownian motion on R -trees, Transaction of AMS

First hitting time of x .

τz := inf
{
t ≥ 0 : Xt = z

}

Proposition. (AEW 2013 & Athreya, Löhr & W.) If (T, r) is compact,
then for all x, z ∈ T , and for all bounded f : T → R ,

Ex

[ ∫ τz

0

f(Xt)dt
]
= 2

∫
T

f(y) · r
(
z, c(x, z, y)

)
ν(dy).
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Convergence of metric measure
trees
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Be careful with excursions and uniform topology ...

... as notion of convergence of trees

There is a tradition to encode trees via excursions, and to consider excursions a elements of the space of

continuous functions equipped with the uniform topology on compacta.
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φ and φ̃ encode the same tree
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Weak convergence of finite measures

Given a metric space (E, d) .

We say that a sequence of finite measure νn converges weakly
towards the finite measure ν if and only of for all bounded and
continuous functions f : E → R ,∫

E

νn(dy) f(y)−→
n→∞

∫
E

ν(dy) f(y).

In that case we write νn =⇒
n→∞

ν .

Notice that if νn =⇒
n→∞

ν , then in particular the total masses converge.
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Gromov-weak topology

We call two pointed compact metric measure spaces (X, r, ρ, ν) and
(X ′, r′, ρ′, ν′) equivalent iff there is a isometry φ : X → X ′ with
φ(ρ) = ρ′ and ν ◦ φ−1 = ν′ .

Let
M := the space of all equivalence classes

.Let X := (X, r, ρ, ν) , X 1 := (X1, r1, ρ1, ν) , X 2 := (X2, r2, ρ2, ν) , ... be
in M . We say that (X n)n∈N converges to X in pointed Gromov-weak
topology if and only if there exists a metric space (E, dE , ρE) and
isometries φ : X → E with φ(ρ) = ρE , φ1 : X1 → E with
φ1(ρ1) = ρE , φ2 : X2 → E with φ2(ρ2) = ρE , ... such that

νn ◦ φ−1
n =⇒

n→∞
ν ◦ φ−1.
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Gromov-weak versus convergence of the supports

Example. Let X n be represented by(
{1, 2}, rn(1, 2) ≡ 1, ρn :≡ 1, 1

nδ1 +
(
1− 1

n

)
δ2

)

.........
.........

.........
.........

.........
.........

.........
.........

.........

.........
.........
.........
.........
.........
.........
.........
.........
.........

−→
n→∞ •◦ • 11

n 1− 1
n

Obviously, X n −→
n→∞

X := ({1, 2}, ρ = 1, δ2) Gromov-weakly. However,
the supports do not converge.

How can we characterize convergence of supports?
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Hausdorff distance

Let (X, r) be a compact metric space.

Hausdorff-distance. For A1, A2 ⊆closed X ,

dH(A1, A2) := inf{ε > 0 : A1 ⊆ Aε
2 and A2 ⊆ Aε

1},

where Aε is the ε-neighborhood of A .
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Gromov-Hausdorff-weak convergence

Romain Abraham, Jean-Francois Delmas & Patrick Hoscheit, A note on the Gromov-Hausdorff-Prohorov distance

between (locally) compact metric measure spaces, EJP 2013

Let X := (X, r, ρ, ν) , X 1 := (X1, r1, ρ1, ν) , X 2 := (X2, r2, ρ2, ν) , ... be
in M . We say that (X n)n∈N converges to X in pointed
Gromov-Hausdorff-weak topology if and only if there exists a metric
space (E, dE , ρE) and isometries φ : X → E with φ(ρ) = ρE ,
φ1 : X1 → E with φ1(ρ1) = ρE , φ2 : X2 → E with φ2(ρ2) = ρE , ...
such that

νn ◦ φ−1
n =⇒

n→∞
ν ◦ φ−1 AND dH

(
φn(Xn), φ(X)

)
−→
n→∞

0.
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The global lower-mass bound property

Athreya, Löhr & W., The gap between Gromov-vague and Gromov-Hausdorff-vague topology, in preparation..

For a compact pointed mm-space X = (X, r, ρ, ν) and δ > 0 , let

mδ(X ) := inf
{
ν(B̄(x, δ)) : x ∈ supp(ν)

}
> 0.

We say that a family Γ ⊆ M satisfies the global lower-mass bound
property iff for all δ > 0 ,

inf
X ∈Γ

mδ(X ) > 0.

Proposition. (Athreya, Löhr & W.) Let X = (X, r, ρ, ν) and
X n = (Xn, rn, ρn, νn) , n ∈ N , be such that (X n)n∈N → X pointed
Gromov-weakly. Then the following are equivalent.

1. (X n)n∈N satisfies the uniform global lower mass-bound property.

2. (supp(νn))n∈N → supp(ν) in Gromov-Hausdorff topology.
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A perturbation result

Athreya, Löhr & W., The gap between Gromov-vague and Gromov-Hausdorff-vague topology, in preparation..

Proposition. Consider X = (X, r, ρ, µ) , X 1 = (X1, r1, ρ1, µ1) ,
X 1 = (X2, r2, ρ2, µ2) , ... in M , and finite measures µ′

n on Xn ,
n ∈ N . Assume that X n −→

n→∞
X Gromov-weakly, and

dPr

(
µn, µ

′
n

)
−→
n→∞

0 and dH
(
supp(µn), supp(µ

′
n)
)
−→
n→∞

0.

Then (Xn, rn, ρn, µ
′
n) also converges Gromov-Hausdorff-weakly to X .
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The gluing map is continuous

φ ∈ C([0, 1]) , φ
∣∣
{0,1} ≡ 0 , φ

∣∣
(0,1)

> 0

pseudo-metric on [0, 1] . rφ(s, t) := φ(s) + φ(t)− 2 · infu∈[s,t] φ(u).
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Löhr, Equivalence of Gromov-Prohorov- and Gromov’s 2λ -metric on the space of metric measure spaces, (2013)

Proposition. The map which sends an excursion to the R-tree
T
∣∣
φ
= [0, 1]/≡φ

equipped with the image measure of the Lebesgue
measure on [0, 1] under the map which sends x ∈ [0, 1] into the tree
T
∣∣
φ
= [0, 1]/≡φ

is continuous with respect to the
Gromov-Hausdorff-weak topology.

Invariance principle for variable speed random walks on trees



A typical application of the perturbation result

Given a discrete tree (T, r, ρ) with edge length equal to 1 , consider

• Uniform on skeleton. λ̄ the normalized length measure.

• Degree measure. ν({x}) := deg(x)
2 , x ∈ T .

Fix a sequence (an) ↓ 0 , and assume that there is a limit tree X

such that
(Tn, a

−1
n rn, ρn, λ

(Tn,a
−1
n rn,ρn))−→

n→∞
X ,

Gromov-Hausdorff-weakly. Then as dPr

(
λ̄(Tn,a

−1
n rn,ρn), ν

)
≤ an, we

might conclude that also

(Tn, a
−1
n rn, ρn, ν

(Tn,rn)
n )−→

n→∞
X ,

Gromov-Hausdorff-weakly.

Notice that the measure read off the contour is uniform on the skeleton.
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The invariance principle
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Heading towards path-wise convergence

Problem. The speed-νn motions are taking values in different spaces
(Tn, rn) .

Notion of convergence in path space. For every n ∈ N ∪ {∞} , let Xn

be a càdlàg process with values in a metric space Tn . We say that
(Xn)n∈N converges to X in path space if there exists a metric space
E and isometric embeddings ϕn : Tn → E , n ∈ N ∪ {∞} , such that
(ϕn ◦Xn)n∈N converges to ϕ∞ ◦X in Skorohod path space.
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The invariance principle

Athreya, Löhr & W., Invariance principle for variable speed random walks on trees, ArXiv:math.PR/1404.6290.

Theorem. (Athreya, Löhr & W.)

Assume that for all n ∈ N , (Tn, rn, ρn, νn) is a rooted compact metric
measure tree. Let (T, r, ρ, ν) be a rooted compact metric measure
tree. Assume that the sequence

((Tn, rn, ρn, νn))n∈N converges to (T, r, ρ, ν) pointed
Gromov-Hausdorff-weakly.

Let Xn be the speed-νn motion on (Tn, rn)n∈N started in ρn , and
X the speed-ν motion on (T, r) starting in ρ . Then Xn converges
weakly in path-space to X .
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What if the global lower mass-bound property fails?

Let rn be the Euclidian distance on [0, 1] .

• Consider the MC Xn with values in Tn ≡ {0, 1} which jump
from 0 to 1 at unit rate 1 ( νn({0}) := 1

2 ) but from 1 to 0 at
rate n ( νn({1}) := 1

2n ↓ 0 ). As n → ∞ we will mostly see the
process in 0 while at a countable number of times it is in 1 .
Thus Xn does not convergence in path-space (to the constant
path) but all finite dimensional distributions do.

• Let Tn := [0, 1] and νn := n−1
2n (δ0 + δ1) +

1
nλ[0,1] . Then

(Tn, νn)−→
n→∞

({0, 1}, 1
2 (δ0 + δ1)) Gromov-weakly. As Xn is sticky

Brownian motion and has continuous paths, while X does not;
we don’t have convergence in path space but all finite
dimensional distributions converge.
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What if the lower mass-bound property fails?

Athreya, Löhr & W., Invariance principle for variable speed random walks on trees, ArXiv:math.PR/1404.6290.

Theorem. (Athreya, Löhr & W.)

Assume that for all n ∈ N , (Tn, rn, ρn, νn) is a rooted compact metric
measure tree. Let (T, r, ρ, ν) be a rooted compact metric measure
tree. Assume that the sequence

((Tn, rn, ρn, νn))n∈N converges to (T, r, ρ, ν) pointed Gromov-weakly.

Let Xn be the speed-νn motion on (Tn, rn)n∈N started in ρn , and
X the speed-ν motion on (T, r) starting in ρ . Then the finite
dimensional distributions of Xn converge to those of X .
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From compact to locally compact, complete metric measure spaces

The invariance principle can be stated also for locally compact,
complete trees provided that we

• assume the speed measure to be finite on bounded sets

• replace the Gromov-weak topology by the Gromov-vague
topology

• replace the global lower mass-bound property by a local lower
mass-bound property

• be careful when the potential limit motion hits the boundary as
limit points loose their Markov property the moment they hit the
boundary
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Main steps in the proof
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From the PhD thesis of David Aldous

David Aldous (1989), Stopping times and tightness II, Annals of Probability

‘‘One may draw a loose distinction between two methods of proving weak convergence

results for stochastic processes. The classical method ... starts by proving

f.d.d.-convergence and then verifies a tightness condition. The modern approach ...

starts with a characterization of the limit process, then shows the characterization is

asymptotically true for the approximating processes, and then argues this must imply

weak convergence. One result which is sometimes useful in the modern approach is the

following. Let Xn be R-valued processes. Regard Xn as a random element of the

usual function space equipped with Skorokhod-topology. Let τn denote a natural

stopping time for Xn . Then the condition for all δn → 0 and all uniformly bounded

(τn),

X
n
τn+δn

− X
n
τn

→ 0 in probability

implies tightness of the sequence (Xn)n∈N .
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Steps in the proof: a short summary

1. Simplifying. Any compact measure tree can be approximated by
discrete trees. Thus we may assume w.l.o.g. that the
approximating speed-νn motions on (Tn, rn) are in fact
continuum time random walks on discrete trees.

2. Existence of limit processes is ensured once we can show that

it becomes unlikely that the walks have moved more than a
certain distance in a sufficiently small amount of time, uniformly

in n ∈ N and in the initial points.

3. Identify the limit. Verifying that any limit point satisfies the

• strong Markov property (equi-continuity in initial state;
coupling)

• occupation time formula (semi-continuities of hitting times)
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Tightness

Corollary of Aldous’s criterion. Let (E, r) be a compact metric
space. For n ∈ N , let Tn ⊆ E and (Xn) a cadlag strong Markov
process on Tn . Then (Xn)n∈N is tight provided that for every R > 0 ,

lim
t→0

lim
n→∞

sup
x∈Tn

Px

{
r(x,Xn

t ) > R
}
= 0.

Athreya, Löhr & W., Invariance principle for variable speed random walks on trees, ArXiv:math.PR/1404.6290.

Lemma. (Athreya, Löhr & W.) Let (T, r, ν) be a discrete measure
tree, x ∈ T , and X the speed-ν random walk on (T, r) started in x .
Then for every ε > 0 , 0 < δ < ε and t < (ε− δ)ν(B(ρ, δ)) ,

P
{

sup
s∈[0,t]

r(Xs, x) > 2ε
}
≤ 2degε(T )

(
1− ε−δ

ε+δ exp
(
− 2t

εν(B(x,δ)

))
,

degε(T ) is the maximal number of edges which start inside a ball B(x, ε) and end outside the ball B(x, 2ε) .
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The strong Markov property of the limit: Strategy

Denote by Pn
x the law of Xn started in x ∈ Tn . Assume the limiting

tree is compact, and let {P̃x; x ∈ T} a limit point. Denote by
S̃ = (S̃t)t≥0 the operator which sends f ∈ C(T ) to

S̃tf(x) := Ẽx[f(Xt)].

We need to show that S̃ is a semi-group using the semi-group
property Sn corresponding to Xn .

The main tool will be to verify equi-continuity of {Sn; n ∈ N} .
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Equi-continuity

Athreya, Löhr & W., Invariance principle for variable speed random walks on trees, ArXiv:math.PR/1404.6290.

Proposition. (Athreya, Löhr & W.) Let Xn be the speed-νn random
walk on (Tn, rn) . If (Tn, rn, νn) converges Gromov-weakly to a
compact (T, r, ν) and the global lower mass-bound property holds,
then the family of functions

Pn : Tn → M1(DE([0,∞))), x 7→ Lx(X
n),

is uniformly equicontinuous, where DE([0,∞)) is equipped with the
Skorohod metric and M1(DE([0,∞))) with the Prohorov metric.
Idea behind proof. Fix ε > 0 . We have to find δ = δ(ε) > 0 (independent of n ) such that dPr(Pnx , Pny ) < ε

whenever dE(x, y) ≤ δ .

• Let run Xn,x and Xn,y until τy(X
n,x) , and put X

n,x
τy(Xn,x)+· := X

n,y
· .

• To estimate the Skorohod distance between paths, use the “time deformation”
λ(t) := t + (τy(X

n,x) ∧ εt) which is of dilatation dil(λ) ≤ ε , and X
n,x
t = X

n,y
λ(t)

for all

t ≥ 1
ε
τy(X

n,x) .

• Pnx
{
τy(X

n,x) > c
}

≤ c−1E[τy(Xn,x)] < 2 · c−1δ · νn(Tn) , whenever dE(x, y) < δ .
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Characterization Markov processes via occupation times

Athreya, Löhr & W., Invariance principle for variable speed random walks on trees, ArXiv:math.PR/1404.6290.

General abstract non-sense.

Assume that (T, r) is a compact metric (finite) measure tree, and that
we are given two T -valued strong Markov processes X and Y such
that for all x, y ∈ T ,

Ex

[ ∫ τy

0

f(Xt)dt
]
= Ex

[ ∫ τy

0

f(Yt)dt
]
< ∞.

Then the laws of X and Y agree.
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The occupation time formula holds also for the limit

Lemma. Let E be a Polish space and DE([0,∞)) the corresponding
Skorohod space. For a subset A ⊆ E , define

σA : DE([0,∞)) → R+ ∪ {∞}, w 7→ inf
{
t ∈ R+ : w(t) ∈ A

}
FA : DE([0,∞)) → R+, w 7→

∫ σA(w)

0

ds f
(
ws

)
Every continuous path is a lower semi-continuity point of FA

whenever A is closed, and an upper semi-continuity point of FA

whenever A is open.

We apply the latter by making use of

• F{z} ≥ FB(z,ε) but F{z} = supε>0 FB̄(z,ε) .

• Starting in x , on trees there is a unique point at which we enter
the balls B̄(z, ε) .
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Related work and examples
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Brownian motion on disconnected sets

Shankar Bhamidi, Steve Evans, Ron Peled, and Peter Ralph (2008), Brownian motion on disconnected sets, basic

hypergeometric functions, and some continued fractions of Ramanujan

• Equip R with the Euclidian distance.

• Put Tq := {±qk; k ∈ Z} ∪ {0} ⊆ R .

• Obviously {Tq; q > 1} is dense in R and length measure is
boundedly finite.

• Consequently, {(Tq, 0, λ
Tq ); q > 1} converges

Gromov-Hausdorff-vaguely to (R, 0, λ) .

• Thus the speed-λTq motion on Tq converges in path space towards
standard BM as q ↓ 1 .
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Croydon: Random Walks on Galton-Watson trees

The GW-process models a population, in which individuals
independently at constant rate 1 either die or split into 2 individuals.
It is known that the population gets extinct in finite time.

David Aldous (1993), The continuum random tree III, Annals of probability

Let Tn denote the corresponding family tree conditioned on total
population size n . Then 1√

n
Tn =⇒

n→∞
T for a continuum tree T .

David Croydon (2008), Convergence of simple random walks on random discrete trees to Brownian motion on the

continuum random tree, Annales de lı́nstitut Henri Poincaré (B)

Consider Xn = (Xn
t )t≥0 the SRW which jumps at constant rate 1 to

each of the neighboring vertices in Tn with equal probability. Then
there exists a strong Markov process B = (Bt)t≥0 with continuous
paths such that (

1√
n
X

n
3
2 t

)
t≥0

=⇒
n→∞

(
Bt

)
t≥0

.
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Croydon: Simple RW on Galton-Watson trees

For each n ∈ N , let Tn be the GW-tree conditioned on total population
size n and put

Tn := Tn rn(v, v
′) := 1√

n
, νn({v}) := deg(v)

2n , v, v′ ∈ Tn; v ∼ v′.

The νn -speed random walk on (Tn, rn) is the SRW on Tn with edge
length re-scaled by 1√

n
and speeded up (in each vertex v ) by a factor

of

γn(v) =
1

2νn({v})

∑
v′∼v

r−1
n (v, v′) = 1

2 · 2n
deg(v) · deg(v)

√
n = n

3
2 .
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Croydon’s homogeneous invariance principle

David Croydon (2010), Scaling limits for simple random walks on random ordered graph trees, Advances in Applied

Probability

‘‘Consider a family of random ordered graph trees (Tn)n∈N , where Tn has n

vertices. It has previously been established that if the associated search-depth

processes converge to the normalised Brownian excursion when re-scaled

appropriately, then the simple random walks on the graph trees have the Brownian

motion on the continuum random tree as their scaling limit. ... this result is

extended to demonstrate the existence of a diffusion scaling limit whenever the

volume measure on the limiting real tree is non-atomic, supported on the leaves of the limiting tree, and satisfies

a polynomial lower bound for the volume of balls.’’

Note that in contrast to Croydon’s invariance principle we allow for
inhomogenous, and even state-dependent rescaling.
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Random walks on size-biased Galton Watson trees

Harry Kesten (1986), Subdiffusive behavior of random walk on a random cluster, Poincare

Let TKesten be the GW-tree conditioned to never die out, and X the
discrete time nearest neighbor random walk on TKesten . Consider the
re-scaled height process

Zn
t := n− 1

3 · r
(
ρ,X⌊nt⌋

)
.

Kesten showed that under the annealed law the family {Z(n); n ∈ N}
converges weakly in path space to a non-trivial diffusion (Zt)t≥0 .

Barlow and Kumagai showed that under the quenched law the family
{Z(n); n ∈ N} is NOT tight (=does not have limit points) for almost all
realizations TKesten of TKesten .
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RW on size-biased GW-trees; The annealed regime
Harry Kesten (1986), Subdiffusive behavior of random walk on a random cluster, Poincare

Let TKesten be the GW-tree conditioned to never die out, and put for
each realization TKesten ,

Tn := TKesten rn(v, v
′) := 1

n
1
3
, νn({v}) := deg(v)

2n
2
3
, v, v′ ∈ Tn; v ∼ v′.

The νn -speed random walk on (Tn, rn) is the SRW on Tn with edge
length re-scaled by 1

n
1
3

and speeded up by a factor of

γn(v) =
1

2νn({v})

∑
v′∼v

r−1
n (v, v′) = 1

2 · 2n
2
3

deg(v) · deg(v)n
1
3 ≡ n.

As it is known that there is a limit measure R-tree (T, r, ν) such that
(Tn, rn, νn) =⇒

n→∞
(T, r, ν) . That is, for a.a. realizations of (Tn, rn, νn) and

(T, r, ν) the speed-νn random walk on (Tn, rn) converges in path space
to the ν -speed Brownian motion on (T, r) . Moreover, as ν -speed
Brownian motion on (T, r) is recurrent, so is (Zt := r(ρ,Xt))t≥0 .

•
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RW on size-biased GW-trees; The quenched regime

Martin Barlow and Takashi Kumagai (2006), Random walk on the incipient infinite cluster on trees

Barlow and Kumagai show that for each typical realization TKesten of
the GW-tree conditioned to never die out,

lim inf
n→∞

νn
(
B(ρ,R)

)
= 0, and lim sup

n→∞
νn

(
B(ρ,R)

)
= ∞,

and thus that the sequence {νn; n ∈ N} does NOT have vague limit
points.

Consequently, the assumptions on our invariance principle FAIL for
almost all realizations of TKesten . For a quenched statement to hold
you need to rather work with a state-dependent rescaling.
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Many thanks
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