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Problem 1 (Nonlinearities and weak convergence, 2+2 points + 2 extra credit*).
The aim of the exercise is to show that the weak convergence of a sequence fn ⇀ f in L2

does not imply a(fn) ⇀ a(f) for any nonlinear, real-valued function a.

a) (Weak convergence of highly-oscillating functions) Let u : R→ R be a 1-periodic func-
tion in L∞(R), and define un(x) := u(nx) for n ∈ N. Show that, as n→∞,

un ⇀m =

∫
(0,1)

u(x) dx weakly in L2(A), for every open, bounded set A ⊂ R.

Hint: by considering the functions U(x) =
∫ x

0 (u(t) −m) dt, Un(x) = U(nx), and inte-
grating by parts, show that limn→∞

∫
R(un(x)−m)ϕ(x) dx = 0 for every ϕ ∈ C1

c (R).

b) Let a : R → R be a continuous function such that a(fn) ⇀ a(f) weakly in L2(0, 1)
whenever fn ⇀ f weakly in L2(0, 1). Prove that a is affine:

a(z) = αz + β ,

for some constants α, β.
Hint: use the result in part a) to prove that for every z1, z2 ∈ R and λ ∈ (0, 1) we have
a(λz1 + (1− λ)z2) = λa(z1) + (1− λ)a(z2).

c*) (Bonus) Find a continuous function f : R → R such that for every p ∈ R there is a
sequence un ∈ L∞(0, 1) such that un ⇀ 0 and f(un) ⇀ p weakly in L2(0, 1).

Problem 2 (Method of subsolutions and supersolutions, 4 points).
Let Ω ⊂ Rn be open, bounded and connected with smooth boundary, and let h : R → R
satisfy the following assumptions:

a) h is Lipschitz continuous and bounded, h(0) = 0;

b) h is differentiable at the origin with h′(0) > λ1, where λ1 is the first eigenvalue of −∆
in Ω (with Dirichlet boundary conditions).

Use the sub-supersolution method to prove the existence of a weak solution u ∈ H1
0 (Ω) to

−∆u = h(u) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω.

Hint: use the fact that the first eigenfunction of the Laplacian, that is the function u1 ∈ H1
0 (Ω)

solving −∆u1 = λ1u1 in Ω, is bounded and strictly positive in Ω.

Please turn over.



Problem 3 (Schauder’s fixed point theorem - second version, 4 points).
The goal of this exercise is to prove the following version of Schauder’s fixed point theorem:

Theorem (Schauder). Let X be a Banach space. Let F : X → X satisfy the
following assumptions:

a) F is continuous;

b) F is compact;

c) there is a convex, bounded and closed set B ⊂ X such that F (B) ⊂ B.

Then F has a fixed point in B.

To prove the theorem, argue as follows:

a) Show that, if A ⊂ X is relatively compact (that is, its closure A is compact), then the
convex hull of A is relatively compact.

Hint: you can use the following property: in a complete metric space, a subset A is
relatively compact if and only if for every ε > 0 there is a finite number of points
x1, . . . , xk ∈ A such that A ⊂

⋃k
i=1B(xi, ε).

b) Use part a) to find a compact, convex set K ⊂ X such that F (K) ⊂ K, and invoke
Schauder’s fixed point theorem.

Problem 4 (An application of Schauder’s fixed point theorem, 4 points).
Let Ω ⊂ Rn be open and bounded, f ∈ L2(Ω), and let a : R→ R be continuous and such that
α1 ≤ a(s) ≤ α2 for every s ∈ R, where 0 < α1 < α2 <∞. Use the formulation of Schauder’s
fixed point theorem in Problem 3 to show that there exists a weak solution u ∈ H1

0 (Ω) to the
boundary value problem {

−div
(
a(u)∇u

)
= f in Ω,

u = 0 on ∂Ω,

that is, ∫
Ω
a(u)∇u · ∇ϕdx =

∫
Ω
fϕdx for every ϕ ∈ H1

0 (Ω).

Total: 16 points, extra credit 2 points
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