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Problem 1 (Nonlinearities and weak convergence, 2+2 points + 2 extra credit™®).
The aim of the exercise is to show that the weak convergence of a sequence f, — f in L?
does not imply a(f,) — a(f) for any nonlinear, real-valued function a.

a) (Weak convergence of highly-oscillating functions) Let v : R — R be a 1-periodic func-

tion in L*>°(R), and define u,(z) := u(nx) for n € N. Show that, as n — oo,

Up =M = u(x) dz weakly in L?(A), for every open, bounded set A C R.
(0,1)

Hint: by considering the functions U(z) = [’ (u(t) —m)dt, Uy(x) = U(nz), and inte-
grating by parts, show that lim, e [p(un(x) — m)p(z)dz = 0 for every ¢ € CL(R).

b) Let @ : R — R be a continuous function such that a(f,) — a(f) weakly in L?(0,1)
whenever f, — f weakly in L?(0,1). Prove that a is affine:

a(z) =az+ 3,

for some constants «, f.
Hint: use the result in part a) to prove that for every z1,z9 € R and X € (0,1) we have
a(Az1 + (1 — N)z2) = Aa(z1) + (1 — N)a(za).

c*) (Bonus) Find a continuous function f : R — R such that for every p € R there is a

sequence u, € L>(0,1) such that u, — 0 and f(u,) — p weakly in L?(0,1).

Problem 2 (Method of subsolutions and supersolutions, 4 points).
Let 2 C R™ be open, bounded and connected with smooth boundary, and let h : R — R
satisfy the following assumptions:

a) h is Lipschitz continuous and bounded, h(0) = 0;

b) h is differentiable at the origin with A'(0) > A, where A; is the first eigenvalue of —A
in ©Q (with Dirichlet boundary conditions).

Use the sub-supersolution method to prove the existence of a weak solution u € H} () to

—Au = h(u) in Q,
u=0 on 0f2,
u>0 in €.

Hint: use the fact that the first eigenfunction of the Laplacian, that is the function uy; € H}(S2)
solving —Aui; = A\uq in Q, is bounded and strictly positive in €.

Please turn over.



Problem 3 (Schauder’s fixed point theorem - second version, 4 points).
The goal of this exercise is to prove the following version of Schauder’s fixed point theorem:

Theorem (Schauder). Let X be a Banach space. Let F' : X — X satisfy the
following assumptions:

a) F is continuous;
b) F is compact;
c) there is a convex, bounded and closed set B C X such that F(B) C B.

Then F has a fized point in B.
To prove the theorem, argue as follows:

a) Show that, if A C X is relatively compact (that is, its closure A is compact), then the
convex hull of A is relatively compact.
Hint: you can use the following property: in a complete metric space, a subset A is

relatively compact if and only if for every € > 0 there is a finite number of points
T1,...,xr € A such that A C Ule B(xz;,¢).

b) Use part a) to find a compact, convex set K C X such that F(K) C K, and invoke
Schauder’s fixed point theorem.

Problem 4 (An application of Schauder’s fixed point theorem, 4 points).

Let Q C R™ be open and bounded, f € L%(€), and let a : R — R be continuous and such that
a1 < as) < ag for every s € R, where 0 < a1 < aig < 00. Use the formulation of Schauder’s
fixed point theorem in Problem [3[to show that there exists a weak solution u € H}(£2) to the
boundary value problem

—div(a(u)Vu) = f inQ,
u=20 on 0f),

that is,
/ a(u)Vu-Vedr = / fodx for every p € H}(Q).
Q Q

Total: 16 points, extra credit 2 points



