Research
Research interests
Calculus of variations and nonlinear partial differential equations, in particular problems in energy-driven pattern formation:
- Micromagnetics
- Nonlocal isoperimetric problems
- Microstructures in shape memory alloys
- Curvature-driven evolution equations
Publications
- "The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions"
S. Hensel, J. Fischer, T. Laux and T. M. Simon - "Quantitative aspects of the rigidity of branching microstructures in shape memory alloys via H-measures"
T. M. Simon
(submitted). - "Rigidity of branching microstructures in shape memory alloys"
T. M. Simon
(submitted). - "A quantitative description of skyrmions in ultrathin ferromagnetic films and rigidity of degree ±1 harmonic maps from from R² to S²"
A. Bernand-Mantel, C. B. Muratov and T. M. Simon
Arch. Ration. Mech. Anal. 239, 219-299 (2021) - "Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies"
J. Fischer, T. Laux and T. M. Simon
SIAM J. Math. Anal. 52, 6222-6233 (2020) - "Unraveling the role of dipolar vs. Dzyaloshinskii-Moriya interaction in stabilizing compact magnetic skyrmions"
A. Bernand-Mantel, C. B. Muratov and T. M. Simon
Phys. Rev. B. 101, 045416 (2020) - "A nonlocal isoperimetric problem with dipolar repulsion"
C. B. Muratov and T. M. Simon
Comm. Math. Phys. 372, 1059–1115 (2019). - "Convergence of the Allen-Cahn equation to multi-phase mean curvature flow"
T. Laux and T. M. Simon
Comm. Pure Appl. Math. 71, 1597-1647 (2018). - "Maximum palinstrophy amplification in the two-dimensional Navier-Stokes equations"
D. Ayala, C. R. Doering and T. M. Simon
J. Fluid Mech. 837, 839-857 (2018).