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Abstract. We consider the symmetric exclusion process with jumps
given by a symmetric, translation invariant, transition probability p(·).
The process is put in contact with stochastic reservoirs whose strength is
tuned by a parameter θ ∈ IR. Depending on the value of the parameter
θ and the range of the transition probability p(·) we obtain the hydro-
dynamical behavior of the system. The type of hydrodynamic equation
depends on whether the underlying probability p(·) has finite or infinite
variance and the type of boundary condition depends on the strength
of the stochastic reservoirs, that is, it depends on the value of θ. More
precisely, when p(·) has finite variance we obtain either a reaction or
reaction-diffusion equation with Dirichlet boundary conditions or the
heat equation with different types of boundary conditions (of Dirich-
let, Robin or Neumann type). When p(·) has infinite variance we obtain
a fractional reaction-diffusion equation given by the regional fractional
laplacian with Dirichlet boundary conditions but for a particular strength
of the reservoirs.

Keywords: symmetric exclusion, stochastic reservoirs, heat equation,
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1 Introduction

These notes have been written based on material of the articles [1], [2] and [3]
which was presented on a mini-course that the author gave while visiting Institut
Henri Poincaré in Paris in May 2017 for the trimester ”Stochastic dynamics out
of equilibrium” that held from the 3rd of April to the 7th of July. The slides and
the videos of the mini-course can be seen in
https://indico.math.cnrs.fr/event/844/page/5.

The content of the notes is to explain how to derive partial differential equa-
tions with different types of boundary conditions from varied underlying micro-
scopic stochastic dynamics [20, 15]. In the next coming sections we consider a
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macroscopic space, namely, the interval [0, 1] and we discretize it according to a
scaling parameter N giving rise to N intervals of size 1

N . To each q ∈ [0, 1] be-

longing to the interval [ iN ,
i+1
N ) we associate to it the point i

N and in the discrete
set of points {1, ..., i, ..., N−1} we will define a microscopic dynamics of exclusion
type which is Markovian. The discrete set of points {1, ..., i, ..., N − 1} will be
called the bulk and to it we will add two extra points x = 0 and x = N which will
act as reservoirs. The exclusion dynamics [19] ensures that there is at most one
particle per site in the bulk and the Markovian dynamics comes from the fact
that each particle waits for rings of random clocks exponentially distributed and
independent, after which the particle jumps from a site x in the bulk to another
site y in the bulk according to a probability transition rate p : ZZ×ZZ → [0, 1], or
the particle leaves the system through one of the reservoirs. The reservoirs will
be regulated by a parameter which has the role of slowing or fasting the bound-
ary dynamics. More precisely, particles can be injected in the bulk from the site
x = 0 (resp. x = N) to the site y at rate ακN−θp(y) (resp. βκN−θp(N−y)) and
can be removed from the bulk at the site y to the site x = 0 (resp. x = N) at
rate (1− α)κN−θp(y) (resp. (1− β)κN−θp(N − y)). Above, α, β ∈ [0, 1], θ ∈ IR
and κ > 0.

The goal in these notes is to derive the partial differential equations which
describe the space-time evolution of the density of particles in the system. The
type of these equations will depend on the finiteness of the variance of the under-
lying transition probability p(·) and the type of boundary conditions will depend
on the strength of the boundary dynamics, namely, the range of the parameter
θ. We note that in [10–13] similar models have been considered evolving on the
full line, that is, without the presence of stochastic reservoirs.

The goal is to analyse which type of equation and which type of boundary
conditions we can get and what is their dependence on the strength of the reser-
voirs. For that purpose, we split these notes into two main sections to distinguish
the case in which jumps are nearest-neighbor or not. Therefore in Section 2, we
consider the dynamics described above but with p : ZZ × ZZ → [0, 1] which sat-
isfies p(x, y) = p(y − x) = 0 if |x − y| > 1, p(0) = 0 so that p(1) = p(−1) = 1

2 .
This means that in the bulk particles can jump to one of their nearest-neighbors
and particles can be injected/removed in the bulk/from the bulk through the
sites x = 1 or x = N − 1. For these models we will derive the heat equation
with three different types of boundary conditions: non-homogenenous Dirichlet
boundary conditions when the reservoirs are fast (which corresponds to θ < 1)
and Neumann boundary conditions when the reservoirs are slow (which corre-
sponds to θ > 1). Linking the aforementioned two types of boundary conditions,
for a particular strength of the boundary dynamics (which corresponds to θ = 1),
we will derive the heat equation with a type of linear Robin boundary conditions.

In Section 3, we will consider the dynamics described above, but allowing
long jumps given by a transition probability p : ZZ × ZZ → [0, 1] such that
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p(x, y) = p(y − x), which is symmetric, namely p(y − x) = p(x − y), and we
will distinguish two cases: the first one where p(·) has finite variance and then
the case where p(·) has infinite variance. In the first case, we will obtain an
extension of the results of the model with only nearest-neighbor jumps, that
is we will derive the heat equation with the three types of boundary condi-
tions mentioned above but for a certain choice of the transition probability two
new regimes appear when the reservoirs are fast, namely, a reaction-diffusion
equation and a reaction equation, both endowed with non-homogeneous Dirich-
let boundary conditions. In the case where p(·) has infinite variance and for a
particular strength of the reservoirs (which corresponds to θ = 0), we will de-
rive a collection of fractional reaction-diffusion equations with non-homogeneous
Dirichlet boundary conditions. For the interested reader we note that when p(·)
has infinite variance and when the strength of the reservoirs is slow (which cor-
responds to θ > 0), we cannot say anything about the equation nor its boundary
conditions. In [2] a similar model has been studied and some conjectures have
been presented in the case where the reservoirs are slow. We believe that the
same conjecture should be true for this model, but we leave this for a future
problem to look at. We also note that it would be very interesting to consider
other types of boundary dynamics or even more general type of bulk dynamics
than the exclusion in order to obtain other partial differential equations with
various boundary conditions.

These notes are organized as follows: in Section 2 we derive the hydrody-
namic limit for the symmetric exclusion in contact with stochastic reservoirs
but only allowing jumps to nearest-neighbors and in Section 3 we derive the
hydrodynamics in the case where the system exhibits long jumps.

More precisely, in Sections 2.1, 2.2 and 2.3 we present the dynamics of the
model; in Section 2.4 we present its stationary measures; in Section 2.5 we analyse
the empirical profile and the two point correlation function; in Section 2.6 we
present the hydrodynamic equations and the notion of their weak solutions; in
Section 2.7 we state the hydrodynamic limit; in Section 2.8 we give an heuristic
argument to deduce the weak formulation of the solutions by means of auxiliary
martingales associated to the process; in Section 2.9 we prove tightness of the
process of empirical measures; in Section 2.10 we characterize the limit point of
the tight sequence and in Section 2.11 we prove the hydrostatic limit, which is
the hydrodynamic limit starting from the invariant measure of the system.

In Section 3 we analyse the hydrodynamics for the symmetric exclusion with
long jumps given by a transition probability which is symmetric. In Section 3.1
we describe the model; in Section 3.2 we present the case in which the underlying
transition probability has finite variance and in Section 3.3 we analyse the case
in which the transition probability has infinite variance.

In the Appendix we present some of the technical results that are needed
along the proofs regarding the derivation of the weak solution of the correspond-
ing hydrodynamic equations.
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2 Symmetric simple exclusion in contact with reservoirs

2.1 The model

In this section we describe the collection of models that we are going to consider
in these notes. First we start by fixing the notation which fits all the models
and then we particularize our choice of the parameters in such a way that we
treat each model, with its special features, separately. For that purpose, let N
be a scaling parameter, which will be taken to infinity later on and denote by
ΛN = {1, ..., N − 1} the discrete set of points to which we call the bulk.

The exclusion process in contact with stochastic reservoirs is a Markov pro-
cess, denoted by {ηt : t ≥ 0}, which has state space ΩN := {0, 1}ΛN . The
configurations of the state space ΩN are denoted by η, so that for x ∈ ΛN ,
η(x) = 0 means that the site x is vacant while η(x) = 1 means that the site x is
occupied. For an illustration of the dynamics let us first take N = 5 so that the
bulk is the discrete set of points {1, 2, 3, 4}:

1 2 3 4

Now, to describe a possible initial configuration we can do the following. Toss
a coin, if we get head we put a particle at the site 1 and if we get a tail we leave
it empty. Repeat this for each site of the discrete set Λ5 and suppose that we
get at the end to the configuration η0 = (0, 1, 0, 0) which can be represented as:

1 2 3 4

Now, we start to particularize our choice for the dynamics. We are going
to add one reservoir at each end point of the bulk. This means that in our
construction, we add the points x = 0 and x = N to the bulk. Going back to
the picture above, this means that we have now the set {0, 1, 2, 3, 4, 5} where
particles can be placed, but the sites x = 0 and x = 5 will act as reservoirs.

0 1 2 3 4 5

Note that the bulk stays unchanged, the role of the boundary points {0, N}
is to allow particles to get in and out of the bulk. So, for example, in the initial
configuration given above, now we have the sites x = 0 and x = N occupied,
representing the fact that in x = 0 and x = N there are particles that can enter
to the bulk and that can be removed from the bulk.

0 1 2 3 4 5
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Now we describe the time between jumps. For that purpose, for each pair of
sites (x, y) we associate a Poisson process of intensity p(x, y) = p(y − x). The
Poisson processes associated to different bonds are independent. Note that the
bonds in the bulk are not oriented. In the first dynamics that we are describing,
we consider p(y−x) = 0 if |x−y| > 1, p(1) = p(−1) = 1

2 so that jumps can only
occur to a nearest-neighbor position and for that reason the exclusion process
coins the name simple exclusion process. At the boundary points we associate two
Poisson processes to each bond containing a boundary point. More precisely, to
the bond {0, 1} (resp. {1, 0}) we associate a Poisson process of intensity ακN−θ

(resp. (1−α)κN−θ) and to the bond {N −1, N} (resp. {N,N −1}) we associate
a Poisson process of intensity (1 − β)κN−θ (resp. βκN−θ). Above we fix the
parameters α, β ∈ [0, 1], θ ∈ IR and κ > 0. The role of the parameter θ is to
regulate the slowness/fastness of the reservoirs. If θ > 0 and θ increases then the
reservoirs are slower and if θ < 0 and θ decreases then the reservoirs are faster.

We remark that another interpretation of the previous dynamics at the
boundary could be given as follows. Particles can either be created or annihilated
at the sites x = 1 and x = N − 1 according to the following rates:

- at site x = 1: - at site x = N − 1:
• creation rate ακN−θ, • creation rate βκN−θ,
• annihilation rate (1− α)κN−θ, • annihilation rate (1− β)κN−θ.

Note that in any case, the exclusion rule has to be respected. At most one
particle is allowed at each site of the bulk (recall that the state space is {0, 1}ΛN )
so that particles can only be created (resp. removed) at the sites x = 1 or
x = N − 1 if the corresponding site is empty (resp. occupied), otherwise nothing
happens. Before we proceed let us see an illustration of a possible realization of
the Poisson processes as given in the figure below.
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In the figure at the left hand side
we represent by ”×” each mark of
a possible realization of the Poisson
processes associated to the bonds.
At the left hand side we put an
arrow going down which is repre-
senting the evolution of time and
each sign ”−” means that a clock
has rung according to some Poisson
clock, so that at the corresponding
time, a jump from a particle might
have occurred.

We note that in this figure we
did not distinguish the marks of the
Poisson processes associated to the
oriented bonds at the boundary be-
cause we believe that it is simpler to
analyse the dynamics at the bound-
ary by allowing particles to get in or
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get out according to the Poisson marks but also taking into account the exclusion
rule.

In order to give an example, let us see now all the configurations that we
obtain starting the dynamics from the configuration η0 = (0, 1, 0, 0) represented
above and the realization of the Poisson processes given in the previous figure.

η0

η1

η2

η3

η4

η5

η6

η7

η8

η9

η10

η11

η12

η13

η14

η15

η16

η17

η18

η19

η20

Fig. 1. Possible configurations starting
from (0, 1, 0, 0)

By abuse of notation, in the figure at
the left hand side, we numbered the con-
figurations that we obtained by the num-
ber of the marks of the Poisson processes
(which in the example are equal to 20)
just to make the presentation simple. We
note that the configurations are indexed
by time t which is continuous and not
discrete. Note that the difference between
η0 = (0, 1, 0, 0) and η1 = (0, 0, 1, 0) is only
at two sites (this is always the case when
we compare two configurations which dif-
fer by a jump of a particle in the bulk,
a jump in the bulk affects the occupation
variables at two sites) and η1 is obtained
from η0 by shifting the particle at the site
2 in η0 to the site 3. This is a consequence
of the fact that the first mark of the Pois-
son process that occurs is associated to
the bond {2, 3} and that in η0 there is a
particle at the site 2. The next mark we
see is associated to the bond {4, 5} and
since in η1 = (0, 0, 1, 0) there is no parti-
cle at the site x = 4, a particle is injected
in the bulk at the site 4, giving rise to
η2 = (0, 0, 1, 1) and so on. Note that the
boundary dynamics only changes the con-
figuration at one site.

We also note that the ring of a clock
does not imply that the configuration of
the system has changed. In the example
above η3 = η4 = (0, 0, 1, 0) since the cor-
responding Poisson mark is associated to

the bond {1, 2} and since both sites x = 1 and x = 2 are empty, nothing happens
and particles wait a new ring of a clock.

The first dynamics that we are going to consider in these notes, and which
is described in this section is completely characterized by now, but we note
that in Section 3 we are going to generalize the previous dynamics by allowing
particles to give long jumps according to some probability transition rate p :
ZZ × ZZ → [0, 1] such that p(x, y) = p(y − x) and which is symmetric, that is
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p(y − x) = p(x − y). In the latter dynamics, there is only one reservoir at each
end point of the bulk but particles can be injected from them to any site of the
bulk or they can be removed from any site of the bulk to one of the reservoirs.
We will distinguish two cases: when p(·) has finite variance and when p(·) has
infinite variance.

2.2 Illustration of the dynamics

In this section we draw some pictures to illustrate more easily the dynamics that
we defined in the previous subsection. The particles at the bulk are coloured in
gray and the particles at the two reservoirs are coloured in blue. We also added
the clocks only at the bonds where there are particles but we note that the clocks
are present in all bonds of the form {x, x + 1}. Whenever there is a ring of a
clock we see some red lines on top of the corresponding clock and the jump rates
are indicated above the corresponding jumps which are represented by arrows.

In the first picture below, we take N = 11 and the initial configuration is
η0 = (0, 0, 1, 0, 0, 1, 0, 0, 1, 0). Note that this initial configuration changes only if
one of the clocks associated to bonds containing the sites x = 3, 6, 9 rings (which
makes the corresponding particle to displace one position to the left or right of
it) or if the clocks at the boundary sites x = 0 (resp. x = 11) ring (which makes
a particle get into the system at the site x = 1 (resp. x = 10).

κβ/Nθ

κ(1− β)/Nθ

κ(1− α)/Nθ

κα/Nθ

1
2

1
2

Suppose that the first clock to ring is associated to the bond {6, 7}. Since there
is a particle at the site x = 6 it jumps to the site x = 7 with rate 1/2. See the
figure below.

κβ/Nθ

κ(1− β)/Nθ

κ(1− α)/Nθ

κα/Nθ
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Now let us suppose that the next clock to ring is associated to the oriented
bond {0, 1}.

κβ/Nθ

κ(1− β)/Nθ

κ(1− α)/Nθ

κα/Nθ

Since there is no particle at the site x = 1, a particle is injected into the
system at the site x = 1 with rate ακN−θ. See the figure below.

κβ/Nθ

κ(1− β)/Nθ

κ(1− α)/Nθ

κα/Nθ

Finally let us suppose that the next clock to ring is associated to the oriented
bond {N,N − 1}.

κβ/Nθ

κ(1− β)/Nθ

κ(1− α)/Nθ

κα/Nθ

Since there is no particle at the site x = N − 1, a particle is injected into the
system at the site x = N − 1 with rate βκN−θ. See the figure below.
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κβ/Nθ

κ(1− β)/Nθ

κ(1− α)/Nθ

κα/Nθ

We note that the bulk dynamics conserves the total number of particles in the
bulk, but the boundary dynamics destroys this quantity since it injects/removes
particles in/from the bulk.

2.3 Infinitesimal generator

The dynamics described above is Markovian and can be completely characterized
by mean of its infinitesimal generator, see [17, 18]. The Markov process {ηt : t ≥
0} whose dynamics we have just defined has infinitesimal generator denoted by
LN which is expressed as

LN = LN,0 + LN,b, (1)

where LN,0 and LN,b are given on functions f : ΩN → IR by

(LN,0f)(η) =

N−2∑
x=1

1

2

(
f(ηx,x+1)− f(η)

)
,

LN,b = L1
N,b + LN−1

N,b , (2)

where for x ∈ {1, N − 1}

(LxN,bf)(η) =
κ

Nθ
cx(η, r(x))

(
f(ηx)− f(η)

)
,

r(1) = α and r(N − 1) = β,

(ηx,y)(z) =


η(z), z 6= x, y,

η(y), z = x,

η(x), z = y

, (ηx)(z) =

{
η(z), z 6= x,

1− η(x), z = x,
(3)

and for x ∈ {1, N − 1}

cx(η; r(x)) :=
1

2
[η(x) (1− r(x)) + (1− η(x))r(x)] . (4)

Note that the generator above splits into the sum of the generator LN,0
(which is related to the jumps in the bulk) and LN,b (which is related to the
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jumps from the boundary or from the reservoirs). We will refer to the first one
as the exchange dynamics and the latter one as the flip dynamics, because in
LN,0 we exchange the occupation variables η(x) and η(x+1) and in LxN,b we flip
the value of the occupation variable at η(x).

We consider the Markov process speeded up in the time scale Θ(N) and we
note that the process {ηtΘ(N) : t ≥ 0} has infinitesimal generator given by

Θ(N)LN . To see this relation, let L̃N be the generator of the process {ηtΘ(N) :
t ≥ 0}. By definition, for f : ΩN → IR, we have that

L̃Nf = lim
s→0

S̃sf − f
s

, (5)

where S̃s := SsΘ(N) is the semigroup associated to L̃N and Ss is the semigroup
associated to LN . Then,

Θ(N)LNf = lim
t→0

Θ(N)
Stf − f

t
= lim
s→0

Θ(N)
SsΘ(N)f − f
sΘ(N)

= L̃Nf, (6)

from where we conclude that L̃N := Θ(N)LN .
We note that ηtθ(N) depends on α, β, θ and κ but we will omit these indexes

in order to simplify notation. Fix T > 0 and θ ∈ IR. Let µN be a probability
measure in ΩN . We denote by IPµN the probability measure in the Skorohod
space D([0, T ], ΩN ) induced by the Markov process {ηtΘ(N) : t ≥ 0} and the
initial probability measure µN and we denote by EIPµN

the expectation with
respect to IPµN .

Our goal in these notes is to analyse the impact of changing the strength of
the reservoirs (by changing the value of θ) on the macroscopic behavior of the
system. More precisely, we want to obtain the hydrodynamic equations of the
process which will have different boundary conditions depending on the range
of the parameter θ which rules the strength of the reservoirs. Before proceeding,
in the next subsection we analyse the invariant measures for this model.

2.4 Stationary measures

For ρ ∈ (0, 1) we denote by νNρ the Bernoulli product measure in ΩN with density
ρ, that is, for x ∈ ΛN :

νNρ {η : η(x) = 1} = ρ. (7)

According to this measure the occupation variables {η(x)}x∈ΛN are independent
and for each x ∈ ΛN the random variable η(x) has Bernoulli distribution of
parameter ρ. When we restrict the parameters α and β such that α = β = ρ,
then these measures are invariant for the dynamics described above. In fact, a
stronger result is true, see the next lemma where we prove that these measures
are reversible.

Lemma 1. For α = β = ρ the Bernoulli product measures νNρ are reversible.
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Proof. Fix two functions f, g : ΩN → IR. To prove the lemma, we need to show
that ∫

ΩN

g(η)LNf(η)dνNρ =

∫
ΩN

f(η)LNg(η)dνNρ . (8)

Let us start with the exchange dynamics given by LN,0. In this case we need to
check that∑
x∈ΛN

∫
ΩN

g(η)(f(ηx,x+1)− f(η))dνNρ =
∑
x∈ΛN

∫
ΩN

f(η)(g(ηx,x+1)− g(η))dνNρ .

For that purpose note that, for fixed x ∈ ΛN and performing a change of variables
ξ = ηx,x+1, we have that∫

ΩN

g(η)f(ηx,x+1)dνNρ =
∑
η∈ΩN

g(η)f(ηx,x+1)νNρ (η)

=
∑
ξ∈ΩN

g(ξx,x+1)f(ξ)
νNρ (ξx,x+1)

νNρ (ξ)
νNρ (ξ).

Now note that
νNρ (ξ) =

∏
x∈ΛN

ρξ(x)(1− ρ)1−ξ(x)

so that

– if ξ(x) = 1 and ξ(x+ 1) = 0, denoting by ξ̃ the configuration ξ removing its
values at x and x+1 so that ξ = (ξ̃, ξ(x), ξ(x+1)), then νNρ (ξ) = νNρ (ξ̃)ρ(1−ρ)

and νNρ (ξx,x+1) = νNρ (ξ̃)(1− ρ)ρ, so that

νNρ (ξx,x+1)

νNρ (ξ)
= 1. (9)

– if ξ(x) = 0 and ξ(x+ 1) = 1, then νNρ (ξ) = νNρ (ξ̃)(1− ρ)ρ and νNρ (ξx,x+1) =

νNρ (ξ̃)ρ(1− ρ), so that (9) is also true.

Therefore, we obtain that∫
ΩN

g(η)f(ηx,x+1)dνNρ =
∑
ξ∈ΩN

g(ξx,x+1)f(ξ)νNρ (ξ) =

∫
ΩN

g(ηx,x+1)f(η)dνNρ ,

which proves (8) for LN,0. For the flip dynamics given by LN,b we note, for the
left boundary, that∫

ΩN

g(η)c1(η, α)f(η1)dνNρ

=
∑
η∈ΩN

g(η)(1− η(1))αf(η1)νNρ (η) +
∑
η∈ΩN

g(η)(1− α)f(η1)νNρ (η).
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By the change of variables ξ = η1, the previous expression can be written as

∑
ξ∈ΩN

f(ξ)
{
g(ξ1)ξ(1)α

νNρ (ξ1)

νNρ (ξ)
+ g(ξ1)(1− ξ(1))(1− α)

νNρ (ξ1)

νNρ (ξ)

}
νNρ (ξ).

A simple computation shows that if ξ(1) = 1, then
νNρ (ξ1)

νNρ (ξ)
= 1−ρ

ρ so that the

previous expression can be written as

κ

Nθ

∑
ξ∈ΩN

f(ξ)
{
g(ξ1)ξ(1)α

1− ρ
ρ

+ g(ξ1)(1− ξ(1))(1− α)
ρ

1− ρ

}
νNρ (ξ),

from where we get, for α = ρ, that∫
ΩN

g(η)c1(η, α)f(η1)dνNρ =

∫
ΩN

g(η1)c1(η1, ρ)f(η)dνNρ .

The same computation can be done if ξ(1) = 0, from where we conclude. We
can repeat the same computation for the right boundary and this proves (8) for
LN,b. This ends the proof of the lemma. ut

When α 6= β, the Bernoulli product measures are not reversible nor invariant.
A simple way to check the non-invariance is to argue as follows. Suppose that
the measures νNρ are invariant. Then we know that for any function f : ΩN → IR
we have that ∫

ΩN

LNf(η)dνNρ = 0. (10)

But for f(η) = η(1), a simple computation shows that LN,0f(η) = 1
2 (η(2)−η(1))

and LN,bf(η) = κ
2Nθ

[α− η(1)], so that∫
ΩN

LNf(η)dνNρ =
κ

2Nθ
(α− ρ)

and this equals to 0 iff α = ρ. Analogously, repeating the same computations as
above for f(η) = η(N−1), we would conclude (10) iff β = ρ. But this contradicts
the fact that α 6= β.

When α 6= β, since we have a finite state irreducible Markov process, then
there exists a unique stationary measure that we denote by µss. A way to get
information about this measure is to use the matrix ansatz method introduced
in [6, 7]. The idea behind the method is the following. Let

fN−1(η(1), · · · , η(N − 1))

denote the weight of the configuration η := (η(1), · · · , η(N − 1)) with respect to
the stationary measure µss and let us suppose that

fN−1(η(1), η(2), · · · , η(N − 1)) = wTXη(1)Xη(2) · · ·Xη(N−1)v,
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where

Xη(x) = η(x)D + (1− η(x))E,

and D,E are matrices (which in general do not commute) and the vectors
wT ,v are present in order to convert the matrix product into a scalar. In
the figure below we take N = 6 and we present a possible configuration η =
(0, 1, 0, 1, 1) whose corresponding weight is given by fN−1(η) = wTEDEDDv.
Let P (η(1), η(2), · · · , η(N − 1)) be the normalized weight of the configuration

↓
wT

↓
E

↓
D

↓
E

↓
D

↓
D

↓
v

η := (η(1), · · · , η(N−1)) with respect to the stationary state µss, which is given
by

P (η(1), η(2), · · · , η(N − 1)) =
fN−1(η(1), η(2), · · · , η(N − 1))

ZN−1
,

where ZN−1 is the sum of the weights of the 2N−1 possible configurations in
ΩN :

ZN−1 =
∑

η(1)∈{0,1}

· · ·
∑

η(N−1)∈{0,1}

fN−1(η(1), η(2), · · · , η(N − 1)).

From the definition of fN−1, we have that

P (η(1), η(2), · · · , η(N − 1)) =
wTXη(1)Xη(2) · · ·Xη(N−1)v

ZN−1
,

and the normalization can be written as

ZN−1 =
∑

η(1)∈{1,0}

· · ·
∑

η(N−1)∈{1,0}

wTXη(1)Xη(2) · · ·Xη(N−1)v

=
∑

η(1)∈{1,0}

· · ·
∑

η(N−2)∈{1,0}

wTXη(1)Xη(2) · · ·Xη(N−2)(D + E)v

= · · · = wT (D + E)N−1v.

(11)

Let us now impose conditions on the matrices D and E. For that purpose, let
C = D+E. The expectation of the occupation variable at the site x, with respect
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to the stationary state µss, is given by

ρNss(x) =

∫
ΩN

η(x)dµss

=

∑
η(1)∈{1,0} · · ·

∑
η(N−1)∈{1,0} η(x)fN−1(η(1), · · · , η(N − 1))

ZN−1

=
1

ZN−1

∑
η(1)∈{1,0}

· · ·
∑

η(N−1)∈{1,0}

[
wT

x−1∏
j=1

Xη(j)D

N−1∏
j=x+1

Xη(j)v
]

=
wTCx−1DCN−1−xv

wTCN−1v
.

(12)

The function ρNss(·) is called the stationary empirical density profile since it is the
average with respect to the stationary measure µss, otherwise we refer to it as the
empirical density profile. Note that above the sum does not contain the factor
η(x) ∈ {1, 0} since the expectation is non-zero iff η(x) = 1. We can also compute
the expectation of the product of two point occupation variables at the sites x
and y, with respect to the stationary state µss, that is, for 1 ≤ x < y ≤ N − 1,
we have that∫

ΩN

η(x)η(y)dµss =

=

∑
η(1)∈{0,1} · · ·

∑
η(N−1)∈{0,1} η(x)η(y)fN−1(η(1), · · · , η(N − 1))

ZN−1

=
wTCx−1DCy−x−1DCN−1−yv

wTCN−1v
.

Therefore, the two point correlation function, with respect to the stationary
state µss, is given on 1 ≤ x < y ≤ N − 1 by

ϕNss(x, y) :=

∫
ΩN

(η(x)− ρNss(x))(η(y)− ρNss(y))dµss

=
wTCx−1DCy−x−1DCN−1−yv

wTCN−1v

− wTCx−1DCN−1−xv

wTCN−1v
.
wTCy−1DCN−1−yv

wTCN−1v
.

(13)

A simple computation (see [5]) shows that for the dynamics that we are consider-
ing in this section, the matrices D,E and the vectors wT ,v satisfy the following
relations:

DE − ED = D + E = C,

wT

[
κα

2Nθ
E − κ(1− α)

2Nθ
D

]
= wT ,[

κ(1− β)

2Nθ
D − κβ

2Nθ
E

]
v = v.

(14)
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We note that the equations above also show that

C(D + I) = (D + E)(D + I) = DD +D + ED + E,

and that C(D+I) = DD+DE = DC. Analogously we have that CD = (D−I)C.
Using (11), we obtain that ZN−1 is given by

ZN−1 =
1

(α− β)N−1

Γ (2Nθ +N − 1)

Γ (2Nθ)
,

where Γ (·) denotes the Gamma function. For the details on these computations
we refer the interested reader to [5]. Now, in (12), by writing DCN−1−x =
DCCN−2−x and using the fact that C(D + I) = DC we obtain

ρNss(x) =
wTCx−1C(D + I)CN−2−xv

ZN−1
=

wTCxDCN−2−xv

ZN−1
+

wTCN−2v

ZN−1
.

Repeating the procedure above and using the explicit expression for ZN−1 given
above, we obtain a simple expression for ρNss(x) given by

ρNss(x) = β + (N − x)
α− β

2Nθ +N − 2
+ (Nθ − 1)

α− β
2Nθ +N − 2

. (15)

In fact last identity can be rewritten as

ρNss(x) =
κ(β − α)x

2Nθ +N − 2
+ α+

κ(β − α)x

2Nθ +N − 2

(Nθ

κ
− 1
)
.

Analogously, from a simple, but long computation (see [5]), we have that∫
ΩN

η(x)η(y)dµss = βρNss(x) + (N − y +Nθ − 1)
α− β

2Nθ +N − 2
ρN−1
ss (x),

and from (15), we obtain∫
ΩN

η(x)η(y)dµss = β

[
β(x+Nθ − 1) + α(N − x+Nθ − 1)

2Nθ +N − 2

]
+

(N − y +Nθ − 1)(α− β)

2Nθ +N − 2

[
β(x+Nθ − 1) + α(N − x+Nθ − 2)

2Nθ +N − 3

]
.

Putting together last expresssions and doing simple, but long, computations we
conclude that

ϕNss(x, y) = − (α− β)2(x+Nθ − 1)(N − y +Nθ − 1)

(2Nθ +N − 2)2(2Nθ +N − 3)
. (16)

From the previous identity it follows that

max
x<y
|ϕNss(x, y)| =

O
(
Nθ

N2

)
, θ < 1,

O
(

1
Nθ

)
, θ ≥ 1,

→N→∞ 0. (17)

This means that as the size of the bulk tens to infinity, the two point correlation
function vanishes. In the next subsection we analyse the empirical profile and
the two point correlation function for more general initial measures.
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2.5 Empirical profile and correlations

Before stating the hydrodynamic limit result we explain here how to have a
guess on the form of the hydrodynamic equations by using the empirical profile,
which was defined above in the case of the measure µss. Now we generalize its
definition. For a measure µN in ΩN and for each x ∈ ΛN we denote by ρNt (x)
the empirical profile at the site x, given by

ρNt (x) = EIPµN
[ηtN2(x)] .

We extend this definition to the boundary by setting

ρNt (0) = α and ρNt (N) = β , for all t ≥ 0 .

Note that since µss is a stationary measure the stationary empirical profile ρNss(·)
does not depend on time, but now since µN is a general measure the empirical
profile ρNt (·) depends on time. From Kolmogorov’s backward equation we know
that ρNt (·) is a solution of

∂tρ
N
t (x) = EIPµN

[LNηtN2(x)].

A simple computation shows that

LNη(x) = jx−1,x(η)− jx,x+1(η)

where for x ∈ ΛN , the quantity jx,x+1(η) denotes the microscopic current at the
bond {x, x+ 1}, which is given by the difference between the jump rate from x
to x+1 and the jump rate from x+1 to x. Note that for x = 0 (resp. x = N−1)
jx,x+1 is equal to the creation rate minus the annihilation rate at the site x = 1
(resp. x = N − 1). Therefore

j0,1(η) =
κ

2Nθ
(α− η(1)),

jx,x+1(η) =
1

2
(η(x)− η(x+ 1)),∀x ∈ {1, ..., N − 2}

jN−1,N (η) =
κ

2Nθ
(η(N − 1)− β).

(18)

A simple computation shows that ρNt (·) is a solution of the equation∂tρ
N
t (x) =

(
N2BθNρNt

)
(x) , x ∈ ΛN , t ≥ 0 ,

ρNt (0) = α , t ≥ 0,
ρNt (N) = β , t ≥ 0,

(19)

where the operator BθN acts on functions f : ΛN ∪ {0, N} → IR as
N2(BθNf)(x) = 1

2∆Nf(x) , for x ∈ {2, ..., N − 2},
N2(BθNf)(1) = N2

2 (f(2)− f(1)) + κN2

2Nθ
(f(0)− f(1)),

N2(BθNf)(N − 1) = N2

2 (f(N − 2)− f(N − 1)) + κN2

2Nθ
(f(N)− f(N − 1)).
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Above ∆Nf denotes the discrete Laplacian of f(·) which is given on x ∈ ΛN by

∆Nf(x) = f(x+ 1) + f(x− 1)− 2f(x). (20)

Note that for θ = 0 the operator BθN is basically the discrete laplacian but when
θ 6= 0 we see some distortion at the boundary due to the mechanism of creation
and annihilation.

A simple computation shows that the stationary solution of (19) is given by

ρNss(x) = EIPµss
[ηtN2(x)] = aNx+ bN

where the coefficients aN and bN are equal to

aN =
κ(β − α)

2Nθ + κ(N − 2)
and bN = aN

(Nθ

κ
− 1
)

+ α.

From this we get that

lim
N→∞

max
x∈ΛN

∣∣ρNss(x)− ρ̄( xN )
∣∣ = 0, (21)

where for q ∈ (0, 1)

ρ̄(q) =


(β − α)q + α ; θ < 1,
κ(β−α)

2+κ q + α+ β−α
2+κ ; θ = 1,

β+α
2 ; θ > 1.

(22)

Note that ρ̄(·) will be a stationary solution of the hydrodynamic equation that
we are looking for. See Figure 3 for a representation of ρ̄(·).

Now we obtain information about the two point correlation function. Let

VN = {(x, y) ∈ {0, ..., N}2 : 0 < x < y < N},

and its boundary

∂VN = {(x, y) ∈ {0, ..., N}2 : x = 0 or y = N}.

See Figure 2.
For x < y ∈ VN , let ϕNt (x, y) denote the two point correlation function

between the occupation sites at x < y ∈ VN which is defined by

ϕNt (x, y) = EIPµN
[(ηtN2(x)− ρNt (x))(ηtN2(y)− ρNt (y))]. (23)

Doing some simple, but long, computations we see that ϕNt is a solution of
∂tϕ

N
t (x, y) = n2AθNϕnt (x, y) + gNt (x, y), for (x, y) ∈ VN , t > 0,

ϕNt (x, y) = 0, for (x, y) ∈ ∂VN , t > 0,

ϕN0 (x, y) = EµN [η0(x)η0(y)]− ρN0 (x)ρN0 (y), for (x, y) ∈ VN ∪ ∂VN ,
(24)
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x

y

0 1 2 N − 1

1

2

N − 1

N

Fig. 2. The set VN and its boundary ∂VN

where AθN is the linear operator that acts on functions f : VN ∪ ∂VN → IR as

(AθNf)(u) =
∑
v∈VN

cθN (u, v)
[
f(v)− f(u)

]
,

with

cθN (u, v) =


1, if ‖u− v‖ = 1 and u, v ∈ VN ,
N−θ, if ‖u− v‖ = 1 and u ∈ VN , v ∈ ∂VN ,
0, otherwise,

for θ ≥ 0. Note that AθN is the generator of a random walk in VN ∪ ∂VN with
jump rates given by cθN (u, v), which is absorbed at ∂VN . Above ‖ · ‖ denotes the
supremum norm,

gNt (x, y) = −(∇+
Nρ

N
t (x))2δy=x+1

and
∇+
Nρ

N
t (x) = N(ρNt (x+ 1)− ρNt (x)). (25)

In this case, contrarily to the empirical profile, is is quite complicated to obtain
an expression for the stationary solution of (24). Nevertheless, we note that
a simple, but long, computation shows that the solution obtained in (16), in
the case where the starting measure is the stationary state µss, is in fact the
stationary solution of (24). We also observe that in [9] it was obtained the
following bound on the case θ = 1 for a general initial measure µN . There it was
proved that there exists a constant C > 0 such that

sup
t≥0

max
(x,y)∈VN

|ϕNt (x, y)| ≤ C

N
, (26)

but we note that the bounds on the other regimes of θ are still open, apart the
case θ = 0 where the bound above is given by C/N2, see [16].



Hydrodynamics for symmetric exclusion 19

2.6 Hydrodynamic equations

From now on up to the rest of these notes we fix a finite time horizon [0, T ].
We denote by 〈·, ·〉µ the inner product in L2([0, 1]) with respect to a measure µ
defined in [0, 1] and ‖ · ‖L2(µ) is the corresponding norm. We note that when µ
is the Lebesgue measure we write 〈·, ·〉 and ‖ · ‖L2 for the corresponding norm.

We denote by Cm,n([0, T ]× [0, 1]) the set of functions defined on [0, T ]× [0, 1]
that are m times differentiable on the first variable and n times differentiable
on the second variable. For a function G := G(s, q) ∈ Cm,n([0, T ] × [0, 1]) we
denote by ∂sG its derivative with respect to the time variable s and and by ∂qG
its derivative with respect to the space variable q. For simplicity of notation we
set ∆G := ∂2

qG. We will also make use of the set Cm,nc ([0, T ]× [0, 1]) of functions
G ∈ Cm,n([0, T ]× [0, 1]) such that for any time s the function Gs has a compact
support included in (0, 1) and we denote by Cmc (0, 1) (resp. C∞c (0, 1)) the set of
all m continuously differentiable (resp. smooth) real-valued functions defined on
(0, 1) with compact support. The supremum norm is denoted by ‖ · ‖∞. Finally,
Cm,n0 ([0, T ]× [0, 1]) is the set of functions G ∈ Cm,n([0, T ]× [0, 1]) such that for
any time s the function Gs vanishes at the boundary, that is, Gs(0) = Gs(1) = 0.

Now we want to define the space where the solutions of the hydrodynamic
equations will live on, namely the Sobolev space H1 on [0, 1]. For that purpose,
we define the semi inner-product 〈·, ·〉1 on the set C∞([0, 1]) by

〈G,H〉1 =

∫ 1

0

(∂qG)(q) (∂qH)(q) dq, (27)

for G,H ∈ C∞([0, 1]) and the corresponding semi-norm is denoted by ‖ · ‖1.

Definition 1. The Sobolev space H1 on [0, 1] is the Hilbert space defined as the
completion of C∞([0, 1]) for the norm

‖ · ‖2H1 := ‖ · ‖2L2 + ‖ · ‖21.

Its elements elements coincide a.e. with continuous functions.

The space L2(0, T ;H1) is the set of measurable functions f : [0, T ] → H1

such that ∫ T

0

‖fs‖2H1ds <∞.

We can now give the definition of the weak solutions of the hydrodynamic
equations that will be derived for the symmetric simple exclusion process in con-
tact with stochastic reservoirs. We start by giving the notion of a weak solution
to the heat equation with Dirichlet boundary conditions which will be the notion
that we will derive in the regime θ ∈ [0, 1). In what follows g : [0, 1]→ [0, 1] is a
measurable function and it is the initial condition of all the partial differential
equations that we define below, that is ρ0(q) = g(q), for all q ∈ (0, 1).
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Definition 2. We say that ρ : [0, T ] × [0, 1] → [0, 1] is a weak solution of the
heat equation with Dirichlet boundary conditions{

∂tρt(q) = 1
2∆ρt(q), (t, q) ∈ [0, T ]× (0, 1),

ρt(0) = α, ρt(1) = β, t ∈ [0, T ],
(28)

starting from a measurable function g : [0, 1]→ [0, 1], if the following two condi-
tions hold:

1. ρ ∈ L2(0, T ;H1);

2. ρ satisfies the weak formulation:

FDir :=

∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
(1

2
∆+ ∂s

)
Gs(q) dq ds

+

∫ t

0

{β
2
∂qGs(1)− α

2
∂qGs(0)

}
ds = 0,

(29)

for all t ∈ [0, T ] and any function G ∈ C1,2
0 ([0, T ]× [0, 1]).

In the regime θ < 0 we will make use of another notion of weak solution to
the heat equation with Dirichlet boundary conditions which uses as input for
test functions elements in the set C1,2

c ([0, T ] × [0, 1]). Since functions in that
space have compact support, in order to get a proper notion of weak solution we
need to add an extra condition to Definition 2 (see 3. in Definition 3).

Definition 3. We say that ρ : [0, T ] × [0, 1] → [0, 1] is a weak solution of the
heat equation with Dirichlet boundary conditions given in (28), starting from a
measurable function g : [0, 1]→ [0, 1], if the following three conditions hold:

1. ρ ∈ L2(0, T ;H1),

2. ρ satisfies the weak formulation:

F cDir :=

∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
(1

2
∆+ ∂s

)
Gs(q) dq ds = 0,

(30)

for all t ∈ [0, T ] and any function G ∈ C1,2
c ([0, T ]× [0, 1]),

3. ρt(0) = α, ρt(1) = β for all t ∈ (0, T ].

Remark 1. We note that (30) coincides with (29) by taking as input a test func-
tion G ∈ C1,2

c ([0, T ] × [0, 1]), since in this case ∂qGs(0) = ∂qGs(1) = 0, so that
the last term in (29) vanishes.
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Now we introduce the notion of weak solution of the hydrodynamic equation
that we will derive in the case θ = 1. In this regime the boundary reservoirs are
so slow and as a consequence, a different boundary condition appears. In the
case of Dirichlet boundary conditions, the value of the profile ρt(·) is fixed to be
equal to α at 0 and β at 1. This is no longer the case when θ ≥ 1 as we will see
later on.

Definition 4. We say that ρ : [0, T ] × [0, 1] → [0, 1] is a weak solution of the
heat equation with Robin boundary conditions{

∂tρt(q) = 1
2∆ρt(q), (t, q) ∈ [0, T ]× (0, 1),

∂qρt(0) = κ(ρt(0)− α), ∂qρt(1) = κ(β − ρt(1)), t ∈ [0, T ],
(31)

starting from a measurable function g : [0, 1]→ [0, 1], if the following two condi-
tions hold:

1. ρ ∈ L2(0, T ;H1),
2. ρ satisfies the weak formulation:

FRob :=

∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
(1

2
∆+ ∂s

)
Gs(q) ds dq +

1

2

∫ t

0

{ρs(1)∂qGs(1)− ρs(0)∂qGs(0)} ds

− κ

2

∫ t

0

{Gs(0)(α− ρs(0)) +Gs(1)(β − ρs(1))} ds = 0,

(32)

for all t ∈ [0, T ] and any function G ∈ C1,2([0, T ]× [0, 1]).

In the regime θ = 1 the boundary reservoirs are so slow so that a type of
Robin boundary condition appears. In this case it fixes the value of the flux
through the system as being proportional to the difference of concentration.
Note that, for example at q = 0, the value ∂qρt(0) corresponds to the flux of
particles through the left boundary and κ(ρt(0)−α) corresponds to the difference
of the concentration, since in this case, contrarily to what happens in the case
of Dirichlet boundary conditions, it is not true that ρt(0) = α (the value of the
profile at the boundaries is not fixed!)

Remark 2. Observe that in the case κ = 0 the equation above is the heat equa-
tion with Neumann boundary conditions and it is the hydrodynamic equation
that we will derive in the case θ > 1.

Remark 3. We observe that all the partial differential equations defined above
have a unique weak solution in the sense given above. We do not include the
proof of this result in these notes but we refer the interested reader to [2] for the
proof of the uniqueness in the case of Dirichlet boundary conditions and to [1]
for the proof of the uniqueness in the case of Robin boundary conditions.
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- Deriving the weak formulation: We note that the weak formulation given
in all the regimes above can be obtained from the formal expression of the corre-
sponding partial differential equation in the following way. Take a test function
G ∈ C1,2([0, T ]× [0, 1]) and multiply both sides of the equality

∂sρs(q) =
1

2
∆ρs(q)

by G and then integrate in the time interval [0, t] and in the space interval [0, 1]
to get ∫ 1

0

∫ t

0

∂sρs(q)Gs(q) ds dq =

∫ 1

0

∫ t

0

1

2
∆ρs(q)Gs(q) ds dq. (33)

To treat the term at the left hand side of last display, we perform an integration
by parts in the time integral and we get to∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

g(q)G0(q) dq −
∫ t

0

∫ 1

0

ρs(q)∂sGs(q) ds dq. (34)

The term at the right hand side of (33) can be treated by doing an integration
by parts in the space integral and we get to

1

2

∫ t

0

∂qρs(1)Gs(1)− ∂qρs(0)Gs(0) ds− 1

2

∫ t

0

∫ 1

0

∂qρs(q)∂qGs(q) ds dq.

Now, we do another integration by parts in the integral in space at the term on
the right hand side of last expression and we write the previous display as

1

2

∫ t

0

∂qρs(1)Gs(1)− ∂qρs(0)Gs(0) ds

−1

2

∫ t

0

ρs(1)∂qGs(1)− ρs(0)∂qGs(0) +
1

2

∫ t

0

∫ 1

0

ρs(q)∆Gs(q) ds dq.

(35)

Putting together (35) and (34) we obtain∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

g(q)G0(q) dq =

∫ t

0

∫ 1

0

ρs(q)
(1

2
∆+ ∂s

)
Gs(q) ds dq

+
1

2

∫ t

0

∂qρs(1)Gs(1)− ∂qρs(0)Gs(0) ds

−1

2

∫ t

0

ρs(1)∂qGs(1)− ρs(0)∂qGs(0) ds.

Now we obtain each one of the weak formulations given above. We start with the
case where G ∈ C1,2

0 ([0, T ]× [0, 1]) and we will derive (29). For that purpose note
that since G vanishes at the boundary of [0, 1] and since ρs(0) = α and ρs(1) = β,
the expression in the previous display becomes equivalent to FDir = 0.

On the other hand, ifG ∈ C1,2
c ([0, T ]×[0, 1]), thenG vanishes at the boundary

of [0, 1] and ∂qG also vanishes at the boundary of [0, 1], so that for ρ satisfying
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the Dirichlet boundary conditions of (28), the expression in the display above
becomes equivalent to F cDir = 0.

Finally for G ∈ C1,2([0, T ]× [0, 1]) and for ρ satisfying the Robin boundary
conditions of (31), the expression in the previous display becomes equivalent to
FRob = 0.

-Stationary solutions: Now we deduce the stationary solutions for each one
of the equations given above. We start with (28). For that purpose note that,
denoting by ρ̄(·) the stationary solution we have that ∆ρ̄(t, q) = 0 implies that
ρ̄(q) = aq + b for a, b ∈ IR and q ∈ (0, 1). Imposing the Dirichlet boundary
conditions we arrive at

a = (β − α) and b = β,

so that
ρ̄Dir(q) = (β − α)q + α. (36)

On the other hand, imposing the Robin boundary conditions of (31) we arrive
at

a =
κ(β − α)

2 + κ
and b = α+

β − α
2 + κ

,

so that for q ∈ (0, 1)

ρ̄Rob(q) =
κ(β − α)

2 + κ
q + α+

β − α
2 + κ

. (37)

Finally, if we impose the Neumann boundary conditions, any constant solution
is a stationary solution of (31) with κ = 0 (which corresponds to the Neumann
regime). In this case we note that the stationary solution is not unique. Below we
draw the graph of these stationary solutions for a choice of α = 0.2 and β = 0.8.

Now we give the explicit expression for the solution of each hydrodynamic
equation.

Proposition 1. We have that:

1. The solution of (28) with initial condition g(·) is equal to

ρt(q) = ρ̄Dir(q) +

∞∑
n=1

e−
(nπ)2

2 t2 sin(nπq).

2. The solution of (31) with initial condition g(·) is equal to

ρt(q) = ρ̄Rob(q) +

∞∑
n=1

Cne
−λn2 tXn(q),

where
Xn(q) = An sin(

√
λn q) +Anκ

√
λn cos(

√
λn q), (38)
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θ > 1

θ = 1

θ < 1

1
20 1

β

α

α+β
2

(α+β)+ακ
κ+2

(α+β)+βκ
κ+2

Fig. 3. Stationary solutions of the hydrodynamic equations.

An is a normalizing constant in such a way that Xn has unitary L2([0, 1])-
norm and

Cn =

∫ 1

0

(g(q)− ρ̄(q))Xn(q)dq.

Proof. The solution ρ(·) to (28) starting from a profile g(·) is such that u = ρ− ρ̄
is solution to (28) with homogeneous boundary conditions α = β = 0, i.e.{

∂tut(q) = 1
2∆ut(q), (t, q) ∈ [0, T ]× (0, 1),

ut(0) = 0 = ut(1), t ∈ [0, T ].
(39)

It is well known that ut(q) is given by

ut(q) =

∞∑
n=1

e−
(nπ)2

2 t2 sin(nπq).

From the previous computations we conclude that the solution ρ(·) of (28) start-
ing from g(·) is given by

ρt(q) = (β − α)q + α+

∞∑
n=1

e−
(nπ)2

2 t2 sin(nπq).

On the other hand, the solution ρ(·) of (31) starting from g(·) is such that
u = ρ− ρ̄ is solution to (31) with α = β = 0, i.e.{

∂tut(q) = 1
2∆ut(q), (t, q) ∈ [0, T ]× (0, 1),

∂qut(0) = κut(0), ∂qut(1) = −κut(1), t ∈ [0, T ].
(40)
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It is well known that ut(q) is given by

ut(q) =

∞∑
n=1

Cne
−λn2 tXn(q),

where Xn(q) writes as

Xn(q) = An sin(
√
λnq) +Bn cos(

√
λnq),

for some constants An and Bn. Then, the first boundary condition in (40) gives
Bn =

√
λnκAn. To avoid the null solution we consider An 6= 0. The second

boundary condition in (40) gives

tan(
√
λn) =

2κ
√
λn

λnκ2 − 1
, (41)

whose solution λn satisfying (n − 1)π ≤
√
λn ≤ nπ is such that λn ∼ n2π2

as n → ∞. From the previous computations we get that Xn(q) is given by
(38) and there An is a normalizing constant in such a way that Xn has unitary
L2([0, 1])-norm. Moreover

Cn =

∫ 1

0

(g(q)− ρ̄(q))Xn(q)dq.

From the previous computations we conclude that the solution ρ(·) of (31) start-
ing from g(·) is given by

ρt(q) =
κ(β − α)

2 + κ
q + α+

β − α
2 + κ

+

∞∑
n=1

Cne
−λn2 tXn(q).

2.7 Hydrodynamic Limit

In this section we want to state the hydrodynamic limit of the process {ηtN2 :
t ≥ 0} with state space ΩN and with infinitesimal generator N2LN defined in
(1). Note that here we are going to take Θ(N) = N2. Let M+ be the space
of positive measures on [0, 1] with total mass bounded by 1 equipped with the
weak topology. We can define a metric d(·, ·) in the space M+ by taking a
dense countable set {fn}n≥1 of real valued continuous functions defined in [0, 1]
through the following expression:

d(µ, ν) =
∑
n≥1

1

2k
|
∫
fndµ−

∫
fndν|

1 + |
∫
fndµ−

∫
fndν|

. (42)

For any configuration η ∈ ΩN we define the empirical measure πN (η, dq) on
[0, 1] by

πN (η, dq) =
1

N − 1

∑
x∈ΛN

η(x)δ x
N

(dq) , (43)
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where δa is a Dirac mass on a ∈ [0, 1], and

πNt (η, dq) := πN (ηtN2 , dq).

This measure gives weight 1
N to each occupied site of the configuration η.

Fix T > 0 and θ ∈ IR. Recall that IPµN is the probability measure in the
Skorohod space D([0, T ], ΩN ) induced by the Markov process {ηtN2 : t ≥ 0}
and the initial probability measure µN and we denote by EIPµN

the expectation
with respect to IPµN . Now let {QN}N≥1 be the sequence of probability measures
on D([0, T ],M+) induced by the Markov process {πNt : t ≥ 0} and by IPµN .

At this point we need to fix an initial profile ρ0 : [0, 1]→ [0, 1] which is mea-
surable and an initial probability measure µN ∈ ΩN . We are going to consider
the following set of initial measures:

Definition 5. A sequence of probability measures {µN}N≥1 in ΩN is associated
to the profile ρ0(·) if for any continuous function G : [0, 1]→ IR and any δ > 0

lim
N→∞

µN

(
η ∈ ΩN :

∣∣∣ 1

N − 1

∑
x∈ΛN

G
(
x
N

)
η(x)−

∫ 1

0

G(q)ρ0(q)dq
∣∣∣ > δ

)
= 0. (44)

Note that (44) states that∫
G(q)πN (η, dq) −→N→∞

∫ 1

0

G(q)ρ0(q)dq, (45)

with respect to µN , which means that the empirical measure at time t = 0
converges, in probability with respect to µN , as N → ∞, to the deterministic
measure ρ0(q)dq, which is absolutely continuous with respect to the Lebesgue
measure and the density is the profile ρ0(·).

The hydrodynamic limit that we want to derive states that the previous
result is also true for any t ∈ [0, T ], that is, the empirical measure at time t
converges in probability with respect to the distribution of the system at time
t, as N → ∞, to the deterministic measure ρt(q)dq, where ρt(·) is a solution
(here in the weak sense) to some partial differential equation, the hydrodynamic
equation.

The first main result of these notes is summarized in the following theorem
(see also Figure 4).

Theorem 1. Let g : [0, 1] → [0, 1] be a measurable function and let {µN}N≥1

be a sequence of probability measures in ΩN associated to g(·). Then, for any
t ∈ [0, T ],

lim
N→∞

IPµN

(
η· :

∣∣∣∣∣ 1

N − 1

∑
x∈ΛN

G
(
x
N

)
ηtN2(x)−

∫ 1

0

G(q)ρt(q)dq

∣∣∣∣∣ > δ
)

= 0,

where ρt(·) is the unique weak solution of :

• (28) as given in Definition 3, if θ < 0;
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θ

θ = 0

θ = 1
Heat eq. & Robin b.c.

Heat eq. & Neumann b.c.

Heat eq. & Dirichlet b.c.

Fig. 4. The three hydrodynamic equations depending on θ.

• (28) as given in Definition 2, if θ ∈ [0, 1);
• (31), if θ = 1;
• (31) with κ = 0, if θ > 1.

Remark 4. We note that in [1] it was studied the case where the reservoirs are
slowed (which corresponds to the regime θ ≥ 0). In the previous theorem we
considered also the case where the reservoirs are fast (which corresponds to
θ < 0) but we note that the macroscopic behavior of the system is also given
by the heat equation with Dirichlet boundary conditions as happens in the case
θ ∈ [0, 1). To prove this result we note that the notion of weak solution in the
case θ < 0 is different from the notion of weak solution in the case θ ∈ [0, 1)
since it uses as input functions with compact support.

The proof of Theorem 1 proceeds as follows: We split the proof into showing
first the tightness of the sequence {QN}N≥1 and then we characterize uniquely
the limiting point Q of this sequence. These two results combined together, imply
the convergence of {QN}N≥1 to Q as N →∞.

The next section is dedicated to the presentation of an heuristic argument
to deduce the hydrodynamic equations from the interacting particle system by
means of the Dynkin’s formula; in Section 2.9 we present the proof of tightness
and in Section 2.10 we characterize the limit point Q. We note that in order to
characterize the limit point Q, we prove in Section 2.10 that all limiting points
of the sequence {QN}N≥1 are concentrated on trajectories of measures that are
absolutely continuous with respect to the Lebesgue measure and that the density
ρt(·) is a weak solution of the corresponding hydrodynamic equation. From the
uniqueness of weak solutions of the hydrodynamic equations, see Remark 3, we
conclude that {QN}N≥1 has a unique limit point Q, and therefore we conclude
the convergence of the sequence to this limit point.
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2.8 Heuristics for hydrodynamic equations

In this section we give the main ideas which are behind the identification of limit
points as weak solutions of the partial differential equations given in Section 2.6.
Now we argue that the density ρt(·) is a weak solution of the corresponding
hydrodynamic equation for each regime of θ. We remark that we are not going
to prove here that the solution ρt(·) belongs to the space L2(0, T ;H1) but we
refer the reader to [1, 2] for a complete proof of this fact. In order to prove that
ρt(·) satisfies the weak formulation we use auxiliary martingales associated to
the Markov process {ηt : t ≥ 0}. For that purpose, and to make the exposition
simpler, we fix a function G : [0, 1] → IR which does not depend on time and
which is two times continuously differentiable. If θ < 0 we will assume further
that it has a compact support included in (0, 1). First we recall Dynkin’s formula.

Theorem 2. Let {ηt : t ≥ 0} be a Markov process with generator L and with
countable state space E. Let F : IR+ × E → IR be a bounded function such that

– ∀η ∈ E,F (·, η) ∈ C2(IR+),
– there exists a finite constant C, such that for j = 1, 2

sup
(s,η)

|∂jsF (s, η)| ≤ C.

For t ≥ 0, let

MF
t =F (t, ηt)− F (0, η0)−

∫ t

0

(∂s + L)F (s, ηs)ds,

NF
t =(MF

t )2 −
∫ t

0

{LF (s, ηs)
2 − 2F (s, ηs)LF (s, ηs)}ds.

Then, {MF
t }t≥0 and {NF

t }t≥0 are martingales with respect to Ft = σ(ηs ; s ≤ t).

Let us fix a test function G : [0, 1]→ IR and apply Dynkin’s formula with

F (t, ηt) = 〈πNt , G〉 =
1

N − 1

∑
x∈ΛN

ηtN2(x)G
(
x
N

)
. (46)

Above
〈
πNt , G

〉
represents the integral of G with respect the measure πNt . Note

that F does not depend on time, only through ηt. A simple computation shows
that

N2LN 〈πNs , G〉 = 〈πNs ,
1

2
∆NG〉

+
1

2

(
∇+
NG(0)ηsN2(1)−∇−NG(1)ηsN2(N − 1)

)
+
κ

2

N2−θ

N − 1
G
(

1
N

)
(α− ηsN2(1))

+
κ

2

N2−θ

N − 1
G
(
N−1
N

)
(β − ηsN2(N − 1)),

(47)
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from where we obtain that

MN
t (G) = 〈πNt , G〉 − 〈πN0 , G〉 −

∫ t

0

〈πNs ,
1

2
∆NG〉 ds

− 1

2

∫ t

0

∇+
NG(0)ηsN2(1)−∇−NG(1)ηsN2(N − 1) ds

− κ

2

∫ t

0

N2−θ

N − 1
G
(

1
N

)
(α− ηsN2(1)) ds

− κ

2

∫ t

0

N2−θ

N − 1
G
(
N−1
N

)
(β − ηsN2(N − 1)) ds,

(48)

is a martingale with respect to the natural filtration {Ft}t≥0, where for each
t ≥ 0, Ft := σ(ηs : s < t). Above, ∆N is the discrete laplacian defined in (20),
∇+
N is defined in (25) and

∇−Nf(x) = N(f(x)− f(x− 1)).

Now we look at the integral terms in (48).

- The case θ ∈ [0, 1): In this regime, we take a test function G : [0, 1] → IR
two times continuously differentiable such that G(0) = G(1) = 0. Then, we can
subtract G(0) (resp. G(1)) in the fifth term (resp. sixth term) at the right hand
side of (48) and then doing a Taylor expansion on G we get that

MN
t (G) = 〈πNt , G〉 − 〈πN0 , G〉 −

∫ t

0

〈πNs ,
1

2
∆NG〉ds

− 1

2

∫ t

0

∇+
NG(0)ηsN2(1)−∇−NG(1)ηsN2(N − 1)ds+O(N−θ).

If we can replace ηsN2(1) by α and ηsN2(N−1) by β, which will be a consequence
of Lemma 9 in Appendix A.4 (see Remark 19), then above we have

MN
t (G) = 〈πNt , G〉 − 〈πN0 , G〉 −

∫ t

0

〈πNs ,
1

2
∆NG〉ds

− 1

2

∫ t

0

∇+
NG(0)α−∇−NG(1)βds+O(N−θ)

plus a term that vanishes as N → +∞.
Taking the expectation with respect to µN in the expression above we get

1

N − 1

N−1∑
x=1

G
(
x
N

)(
ρNt (x)− ρN0 (x)

)
−
∫ t

0

1

N − 1

N−1∑
x=1

1

2
∆NG

(
x
N

)
ρNs (x)ds

− 1

2

∫ t

0

∇+
NG(0)α−∇−NG(1)βds+O(N−θ) = 0.
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Note that above we used the fact that the average of martingales is constant in
time and that MN

0 (G) = 0. Now, assuming that ρNt (x) ∼ ρt(
x
N ) and taking the

limit as N →∞ we get that∫ 1

0

ρt(q)G(q)− ρ0(q)G(q)dq −
∫ t

0

∫ 1

0

1

2
∆G(q)ρs(q)dqds

− 1

2

∫ t

0

∂qG(0)α− ∂qG(1)βds = 0.

Note that the restriction θ ≥ 0 comes from the fact that the errors, which arise
from the Taylor expansion in G, have to vanish as N → ∞ and the restriction
θ < 1 comes from the replacement of the occupation variables η(1) and η(N −1)
by α and β, respectively, see Lemma 9 in Appendix A.4 . At this point compare
the previous expression with the weak formulation given in (29) and note that
the test function G does not depend on time.

- The case θ < 0: In this regime we take a function G : [0, 1] → IR with
compact support and we note that the last three terms at the right hand side
of (48) vanish in this case. From this and the same arguments as above we get
that

MN
t (G) = 〈πNt , G〉 − 〈πN0 , G〉 −

∫ t

0

〈πNs ,
1

2
∆NG〉ds.

Taking the expectation with respect to IPµN in the expression above and as-
suming that ρNt (x) ∼ ρt( xN ), and then taking the limit as N →∞ we get that∫ 1

0

ρt(q)G(q)− ρ0(q)G(q)dq −
∫ t

0

∫ 1

0

1

2
∆G(q)ρs(q)dqds = 0.

Again compare with the weak formulation given in (30) and note that the test
function G does not depend on time.

Remark 5. We remark here that in this particular case there is an extra condition
in Definition 3 with respect to the other notions of weak solutions where we only
have to check the weak formulation and to show that the solution belongs to a
Sobolev space. In this case we also need to show that the value of the profile
ρt(·) is fixed at the boundary. We leave this issue to Appendix A.4.

- The case θ = 1: In this case we consider an arbitrary function G : [0, 1]→ IR
which is two times continuously differentiable and we get

MN
t (G) = 〈πNt , G〉 − 〈πN0 , G〉 −

∫ t

0

〈πNs ,
1

2
∆NG〉ds

− 1

2

∫ t

0

∇+
NG(0)ηsN2(1)−∇−NG(1)ηsN2(N − 1)ds

− κ

2

N

N − 1

∫ t

0

G
(

1
N

)
(α− ηsN2(1)) +G

(
N−1
N

)
(β − ηsN2(N − 1))ds.
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In this regime Lemma 9 in Appendix A.4 is no longer valid. Nevertheless, by
Remark 18 we can replace ηsN2(1) (resp. ηsN2(N − 1)) by the average in a box
around 1 (resp. N − 1):

−→η εNsN2(1) :=
1

εN

1+εN∑
x=1

ηsN2(x), ←−η εNsN2(N − 1) :=
1

εN

N−1−εN∑
x=N−1

ηsN2(x). (49)

Here we note that the sum above goes from 1 to 1+bεNc but for sake of simplicity
we write 1 + εN . By noting that

−→η εNsN2(1) ∼ ρs(0) (resp.←−η εNsN2(N − 1) ∼ ρs(1)),

for details on this approximation see for example [1, 2] - and repeating the same
arguments as above, we get to∫ 1

0

ρt(q)G(q)− ρ0(q)G(q)dq −
∫ t

0

∫ 1

0

1

2
∆G(q)ρs(q)dqds

− 1

2

∫ t

0

∂qG(0)ρs(0)− ∂qG(1)ρs(1)ds

+
κ

2

∫ t

0

G(0)(α− ρs(0))−G(1)(β − ρs(1))ds = 0.

Again compare with the weak formulation given in (30) and note that the test
function G does not depend on time.

- The case θ > 1: This regime is quite similar to the previous one. We consider
again an arbitrary function G : [0, 1] → IR which is two times continuously
differentiable and we note that the last two terms at the right hand side of
(48) vanish since θ > 1. Then, repeating the same arguments as in the previous
section and noting that Remark 18 also applies to θ > 1 we obtain at the end
that ∫ 1

0

ρt(q)G(q)− ρ0(q)G(q)dq −
∫ t

0

∫ 1

0

1

2
∆G(q)ρs(q)dqds

− 1

2

∫ t

0

∂qG(0)ρs(0)− ∂qG(1)ρs(1)ds = 0.

Again compare with the weak formulation given in (30) and note that the test
function G does not depend on time.

Remark 6. Note that the parameter κ that appears in the boundary dynamics
is only seen at the macroscopic level in the case θ = 1 which corresponds to the
heat equation with Robin boundary conditions.
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2.9 Tightness

In this section we show that the sequence of probability measures {QN}N≥1, de-
fined in the beginning of Section 2.7, is tight in the Skorohod spaceD([0, T ],M+).
In order to do that, we invoke the Aldous’s criterium which says that

Lemma 2. A sequence {PN}N≥1 of probability measures defined on D([0, T ],M+)
is tight if these two conditions hold:

a. For every t ∈ [0, T ] and every ε > 0, there exists Kt
ε ⊂ M+ compact, such

that
sup
N≥1

PN

(
πt /∈ Kt

ε

)
≤ ε,

b. For every ε > 0

lim
γ→0

lim sup
N→∞

sup
τ∈TT
θ≤γ

PN

(
d(πτ+θ, πτ ) > ε

)
= 0,

where TT denotes the set of stopping times with respect to the canonical filtration,
bounded by T and d is the metric in the space M+ defined in (42).

By Proposition 1.7 of Chapter 4 in [15] it is enough to show that for every
function G in a dense subset of C([0, 1]), with respect to the uniform topology,
the sequence of measures that corresponds to the real processes 〈πNt , G〉 is tight.

In our setting case, the first condition a. above translates by saying that:

lim
A→+∞

lim
N→+∞

IPµN

(
|〈πNt , G〉| > A

)
= 0.

This is a consequence of Chebychev’s inequality and the fact that for the exclu-
sion type dynamics, the number of particles per site is at most one, we leave the
details on this to the reader. So, it remains to show condition b. In this context
and since we are considering the real process 〈πNt , G〉, the distance d above is
the usual distance in IR. Then, we must show that for all ε > 0 and any function
G in a dense subset of C([0, 1]), with respect to the uniform topology, it holds
that

lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

IPµN

(
η· :

∣∣∣〈πNτ+τ̄ , G〉 − 〈πNτ , G〉
∣∣∣ > ε

)
= 0. (50)

Above we assume that all the stopping times are bounded by T , thus, τ + τ̄
should be understood as (τ + τ̄) ∧ T .

Recall that it is enough to prove the assertion for functionsG in a dense subset
of C([0, 1]) with respect to the uniform topology. We will use two different dense
sets, namely the space C1([0, 1]) in the case θ < 1 and the space C2([0, 1]) in the
case θ ≥ 1, which are both dense in C([0, 1]) with respect to the uniform topology.
For that purpose, we split the proof according to θ ≥ 1 and θ < 1. When θ ≥ 1
we prove (50) directly for functions G ∈ C2([0, 1]) and we conclude that the
sequence is tight. For θ < 1, we prove (50) first for functions G ∈ C2

c (0, 1) and
then we extend it, by a L1 approximation procedure which is explained below,
to functions G ∈ C1([0, 1]).
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Recall from (48) that MN
t (G) is a martingale with respect to the natural

filtration {Ft}t≥0. Then

IPµN

(
η· :

∣∣〈πNτ+τ̄ , G〉 − 〈πNτ , G〉
∣∣ > ε

)
=IPµN

(
η· :

∣∣∣MN
τ (G)−MN

τ+τ̄ (G) +

∫ τ+τ̄

τ

N2LN 〈πNs , G〉ds
∣∣∣ > ε

)
≤IPµN

(
η· :

∣∣∣MN
τ (G)−MN

τ+τ̄ (G)
∣∣∣ > ε

2

)
+IPµN

(
η· :

∣∣∣ ∫ τ+τ̄

τ

N2LN 〈πNs , G〉ds
∣∣∣ > ε

2

)
.

Applying Chebychev’s inequality (resp. Markov’s inequality) in the first (resp.
second) term on the right hand side of last inequality, we can bound the previous
expression from above by

2

ε2
EIPµN

[(
MN
τ (G)−MN

τ+τ̄ (G)
)2]

+
2

ε
EIPµN

[∣∣∣ ∫ τ+τ̄

τ

N2LN 〈πNs , G〉ds
∣∣∣].

Therefore, in order to prove (50) it is enough to show that

lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EIPµN

[∣∣∣ ∫ τ+τ̄

τ

N2LN 〈πNs , G〉ds
∣∣∣] = 0 (51)

and
lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EIPµN

[(
MN
τ (G)−MN

τ+τ̄ (G)
)2]

= 0. (52)

Let us start by proving (51). Given a test function G, we will show that there
exists a constant C such that

N2LN (〈πNs , G〉) ≤ C (53)

for any s ≤ T . We start with the case θ ≥ 1. For that purpose, recall (47). Note
that, since |ηsN2(x)| ≤ 1 for all s ∈ [0, t] and since G ∈ C2([0, 1]), we have that∣∣∣〈πNs , ∆NG〉+∇+

NG(0)ηsN2(1)−∇−NG(1)ηsN2(N − 1)
∣∣∣ ≤ 2‖G′′‖∞ + 2‖G‖∞

and ∣∣∣κN1−θG
(

1
N

)
(α− ηsN2(1)) + κN1−θG

(
N−1
N

)
(β − ηsN2(N − 1))

∣∣∣
≤ 4κN1−θ‖G‖∞
≤ 4κ‖G‖∞.

This proves (53) for the case θ ≥ 1. In the case θ < 1, we take G ∈ C2
c ([0, 1])

and we see that in this case (47) reduces to 〈πNs , 1
2∆NG〉 whose absolute value

is bounded from above by ‖G′′‖∞ and this proves (53) for the case θ < 1.
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Let us now prove (52). Applying Dynkin’s formula with F (·, ·) given by (46)
we get that

(
MN
t (G)

)2 − ∫ t

0

N2
[
LN 〈πNs , G〉2 − 2〈πNs , G〉LN 〈πNs , G〉

]
ds, (54)

is a martingale with respect to the natural filtration {Ft}t≥0. A simple compu-
tation shows that

N2
[
LN,0〈πNs , G〉2 − 2〈πNs , G〉LN,0〈πNs , G〉

]
=

1

2N2

N−2∑
x=1

(ηsN2(x)− ηsN2(x+ 1))2(∇+
NG( xN ))2

and by using the fact that |ηsN2(x)| ≤ 1 for all s ∈ [0, t] last expression is
bounded from above by 2

N ‖G
′‖∞. On the other hand, we also have that

N2
[
LN,b〈πNs , G〉2 − 2〈πNs , G〉LN,b〈πNs , G〉

]
=

κ

2Nθ

[
c1(ηsN2 , α)G( 1

N )2 + cN−1(ηsN2 , β)G(N−1
N )2

]
and by using the fact that |ηsN2(x)| ≤ 1 for all s ∈ [0, t] last expression is
bounded from above by 4κ

Nθ
‖G‖2∞.

This ends the proof of tightness in the case θ ≥ 1, since C2([0, 1]) is a
dense subset of C([0, 1]) with respect to the uniform topology. Nevertheless,
for θ < 1, since we considered functions G ∈ C2

c (0, 1), last display is equal to
zero. Therefore, we have proved (51) and (52), and thus (50), but for functions
G ∈ C2

c (0, 1) and, as mentioned above, we need to extend this result to functions
in C1([0, 1]). To accomplish that, we take a function G ∈ C1([0, 1]) ⊂ L1([0, 1]),
and we take a sequence of functions {Gk}k≥0 ∈ C2

c (0, 1) converging to G, with
respect to the L1-norm, as k →∞. Now, since the probability in (50) is less or
equal than

IPµN

(
η· :

∣∣〈πNτ+τ̄ , Gk〉 − 〈πNτ , Gk〉
∣∣ > ε

2

)
+ IPµN

(
η· :

∣∣〈πNτ+τ̄ , G−Gk〉 − 〈πNτ , G−Gk〉
∣∣ > ε

2

)
and since Gk has compact support, from the computation above, it remains only
to check that the last probability vanishes as N →∞ and then k →∞. For that
purpose, we use the fact that

∣∣〈πNτ+τ̄ , G−Gk〉 − 〈πNτ , G−Gk〉
∣∣ ≤ 2

N

∑
x∈ΛN

∣∣(G−Gk)( xN )
∣∣ , (55)
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and we use the estimate

1

N

∑
x∈ΛN

∣∣(G−Gk)( xN )
∣∣ ≤ ∑

x∈ΛN

∫ x+1
N

x
N

∣∣(G−Gk)( xN )− (G−Gk)(q)
∣∣ dq

+

∫ 1

0

|(G−Gk)(q)|dq

≤
1

N
‖(G−Gk)′‖∞ +

∫ 1

0

|(G−Gk)(q)|dq.

The result follows by first taking N →∞ and then k →∞.

2.10 The limit point

Here, we prove at first that all limit points Q of the sequence {QN}N≥1 are
concentrated on measures absolutely continuous with respect to the Lebesgue
measure, that are equal to g(q)dq at the initial time and finally that Q is con-
centrated on trajectories of measures satisfying πt(dq) = ρt(q)dq, where ρt(·) is
the weak solution of the corresponding hydrodynamic equation. Let Q be a limit
point of {QN}N≥1.

-Characterization of absolutely continuity: We start by showing that Q is
concentrated on measures which are absolutely continuous with respect to the
Lebesgue measure. Fix a continuous function G : [0, 1]→ IR. Since

sup
t∈[0,T ]

|〈πNt , G〉| ≤
1

N

∑
x∈ΛN

|G( xN )|,

which is a consequence of the fact of having at most one particle per site, the
function that associates to each trajectory π., supt∈[0,T ] |〈πt, G〉| is continuous.
As a consequence, all limit points are concentrated in trajectories πt such that

|〈πt, G〉| ≤
∫ 1

0

|G(q)|dq.

In order to show that the measure πt is absolutely continuous with respect to
the Lebesgue measure, that we denote by Leb, we have to show that for each
set A such that Leb(A) = 0, then πt(A) = 0. With this purpose, we use last
estimate for a sequence of continuous functions {GN}N≥1 that converges to the
indicator function over the set A and the result follows. Concluding, we have
just proved that

Q
(
π· : πt(dq) = π(t, q)dq,∀t ∈ [0, T ]

)
= 1

i.e. πt(dq) is absolutely continuous with respect to the Lebesgue measure with a
density π(t, q).
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-Characterization of the initial measure: Here we show that Q is concen-
trated on a Dirac measure equal to g(q)dq at time 0. For that purpose, fix ε > 0.
From the results of Section 2.9, we know, from the weak convergence over a
subsequence and Portmanteau’s Theorem, that:

Q
(∣∣∣ 1

N

∑
x∈ΛN

G( xN )η0(x)−
∫ 1

0

G(q)g(q)dq
∣∣∣ > ε

)
≤ lim inf
K→+∞

QNk

(∣∣∣ 1

N

∑
x∈ΛN

G( xN )η0(x)−
∫ 1

0

G(q)g(q)dq
∣∣∣ > ε

)
= lim inf
K→+∞

µNk

(∣∣∣ 1

N

∑
x∈ΛN

G( xN )η(x)−
∫ 1

0

G(q)g(q)dq
∣∣∣ > ε

)
.

This last limit is equal to zero, by the hypothesis of µN being associated to the
profile g(·), see Definition 5. This shows that

Q
(
π· : π0(dq) = g(q)dq

)
= 1.

-Characterization of the density π(t, q): Up to here we know that all limit
points Q of the sequence sequence {QN}N≥1 are concentrated on trajectories
πt(dq) which are absolutely continuous with respect to the Lebesgue measure,
that is, πt(dq) = π(t, q)dq. Moreover, we also know that all limit points Q of the
sequence {QN}N≥1 are such that the initial trajectory is a Dirac measure equal
to g(q)dq. Now we prove that all limit points are concentrated on trajectories of
measures of the form ρt(q)dq, that is we are going to show that π(t, q) = ρt(q)
and that ρt(·) is a weak solution of the corresponding hydrodynamic equation.
For that purpose, let Q be a limit point of the sequence {QN}N≥1, whose exis-
tence follows from the computations of Section 2.9 and assume, without lost of
generality, that {QN}N≥1 converges to Q, as N → +∞.

Proposition 2. If Q is a limit point of {QN}N∈IN then

Q (π· : Fθ = 0,∀t ∈ [0, T ], ∀G ∈ Cθ ) = 1,

where

Fθ =


F cDir, if θ < 0,

FDir, if θ ∈ [0, 1),

FRob, if θ ≥ 1,

and Cθ =


C1,2
c ([0, T ]× [0, 1]), if θ < 0,

C1,2
0 ([0, T ]× [0, 1]), if θ ∈ [0, 1),

C1,2([0, T ]× [0, 1]), if θ ≥ 1.

Proof. We consider the case θ ≥ 1. Note that we need to verify, for δ > 0 and
G ∈ C1,2([0, T ]× [0, 1]), that

Q

(
π· ∈ D([0, T ],M+) : sup

0≤t≤T
|FRob| > δ

)
= 0, (56)



Hydrodynamics for symmetric exclusion 37

Recall FRob from (32) and note that, due to the terms that involve ρs(1) and
ρs(0) and that appear in FRob, the set inside the probability in (56) is not an
open set in the Skorohod space, and as a consequence we cannot use directly
Portmanteau’s Theorem. To avoid this difficulty, we fix ε > 0 and we consider
two approximations of the identity given by

ι0ε(q) =
1

ε
1(0,ε)(q) and ι1ε(q) =

1

ε
1(1−ε,1)(q) (57)

and we sum and subtract to ρs(0) and to ρs(1) the mean

〈πs, ι0ε〉 = 1
ε

∫ ε

0

ρs(q)dq and 〈πs, ι1ε〉 = 1
ε

∫ ε

1−ε
ρs(q)dq, (58)

respectively. Above we used the fact that Q is concentrated on trajectories πt(dq)
which are absolutely continuous with respect to the Lebesgue measure: πt(dq) =
ρt(q)dq. Thus, we bound the probability in (56) from above by the sum of the
following terms

Q

(
sup

0≤t≤T

∣∣∣ ∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

ρ0(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
(1

2
∆+ ∂s

)
Gs(q) dqds−

1

2

∫ t

0

Gs(0)α+Gs(1)β ds

+
1

2

∫ t

0

〈πs, ι1ε〉
(
∂qGs(1) +Gs(1)

)
ds− 1

2

∫ t

0

〈πs, ι0ε〉
(
∂qGs(0)−Gs(0

)
ds
∣∣∣ > δ

4

)
,

(59)

Q

(∣∣∣ ∫ 1

0

(ρ0(q)− g(q))G0(q) dq
∣∣∣ > δ

4

)
, (60)

∑
k∈{0,1}

Q

(
sup

0≤t≤T

∣∣∣1
2

∫ t

0

(ρs(k)− 〈πs, ιkε〉) [Gs(k)− ∂qGs(k)] ds
∣∣∣ > δ

4

)
, (61)

and we note that the terms in (61) converge to 0 as ε→ 0 since we are comparing
ρs(0) and ρs(1) with the averages (58) around 0 and 1, respectively. Moreover,
(60) is equal to zero since Q is a limit point of {QN}N≥1 and QN is induced by
a measure µN which is associated to the profile g(·). Note that in (59) we still
cannot use Portmanteau’s Theorem, since the functions ι0ε and ι1ε are not contin-
uous. Nevertheless, by approximating each one of these functions by continuous
functions in such a way that the error vanishes as ε→ 0 then, from Proposition
A.3 of [10] we can use Portmanteau’s Theorem and bound (59) from above by

lim inf
N→∞

QN

(
sup

0≤t≤T

∣∣∣ ∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

ρ0(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
(1

2
∆+ ∂s

)
Gs(q) dqds−

1

2

∫ t

0

Gs(0)α+Gs(1)β ds

− 1

2

∫ t

0

〈πs, ι0ε〉
(
∂qGs(0)−Gs(0

)
ds+

1

2

∫ t

0

〈πs, ι1ε〉
(
∂qGs(1) +Gs(1)

)
ds
∣∣∣ > δ

24

)
.

(62)
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Summing and subtracting

∫ t

0

N2LN 〈πNs , Gs〉ds to the term inside the supremum

in (62), recalling (48) and (49), the definition of QN , we bound (62) from above
by the sum of the next two terms

lim inf
N→∞

IPµN

(
sup

0≤t≤T

∣∣MN
t (G)

∣∣ > δ

25

)
, (63)

and

lim inf
N→∞

IPµN

(
sup

0≤t≤T

∣∣∣ ∫ t

0

N2LN 〈πNs , Gs〉 ds−
∫ t

0

∫ 1

0

ρs(q)
1

2
∆Gs(q) dqds

− 1

2

∫ t

0

−→η εNsN2(1)
(
∂qGs(0)−Gs(0

)
ds+

1

2

∫ t

0

←−η εNsN2(N − 1)
(
∂qGs(1) +Gs(1)

)
ds

−1

2

∫ t

0

Gs(0)α+Gs(1)β ds
∣∣∣ > δ

25

)
.

(64)

Doob’s inequality together with the computations right below (54) show that
(63) goes to 0 as N →∞. Finally, (64) can be rewritten as

lim inf
N→∞

IPµN

(
sup

0≤t≤T

∣∣∣ ∫ t

0

N2LN 〈πNs , Gs〉 ds−
∫ t

0

〈πNs ,
1

2
∆Gs〉 ds

− 1

2

∫ t

0

−→η εNsN2(1)
(
∂qGs(0)−Gs(0

)
ds+

1

2

∫ t

0

←−η εNsN2(N − 1)
(
∂qGs(1) +Gs(1)

)
ds

−1

2

∫ t

0

Gs(0)α+Gs(1)β ds
∣∣∣ > δ

25

)
.

(65)

Now, from (47) we can bound from above the probability in (65) by the sum of
the following terms

IPµN

(
sup

0≤t≤T

∣∣∣ 1

N

∫ t

0

∑
x∈ΛN

1

2
∆NGs(

x
N )ηsN2(x)ds−

∫ t

0

〈
πNs ,

1

2
∆Gs

〉
ds
∣∣∣ > δ

26

)
,

(66)

IPµN

(
sup

0≤t≤T

∣∣∣1
2

∫ t

0

∇+
NGs(0)ηsN2(1)−−→η εNsN2(1)∂qGs(0) ds

∣∣∣ > δ

26

)
, (67)

and

IPµN

(
sup

0≤t≤T

∣∣∣1
2

∫ t

0

κN1−θGs

(
1
N

)
(α− ηsN2(1))−Gs(0)(α−−→η εNsN2(1))ds

∣∣∣ > δ

26

)
(68)

and two other terms which are very similar to the two previous ones but related
to the action of the right boundary dynamics given by LN−1

N,b . Applying a Taylor
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expansion on the test function G it is easy to show that (66) goes to 0 as N →∞.
Also by Taylor expansion, (67) can be bounded from above by

IPµN

(
sup

0≤t≤T

∣∣∣ ∫ t

0

∂qGs(0)(ηsN2(1)−−→η εNsN2(1))ds
∣∣∣ > δ

28

)
, (69)

plus a term that vanishes as N →∞. Using Lemma 7 we see that (69) vanishes
as N → ∞. The term (68) can be estimated using exactly the same argument
that we just used, that is: Taylor expansion on G plus Lemma 7. For the terms
related to the right boundary the argument is the same and with this we finish
the proof.

We leave the other case, namely θ < 1 for the reader. This case is even simpler
than the previous one and for the interested reader we refer to, for example, [1,
2].

2.11 Hydrostatic limit

In this section we prove that the hydrodynamic limit holds when we start the
system from the stationary measure µss, see Section 2.4. By looking at the
statement of Theorem 1 we see that, in fact, to conclude we only need to show
the next result.

Proposition 3. Let µss be the stationary measure for the Markov process {ηtN2 :
t ≥ 0} with generator N2LN . Then, µss is associated to the profile ρ̄ : [0, 1] →
[0, 1] given on q ∈ (0, 1) by (22), that is

ρ̄(q) =


(β − α)q + α ; θ < 1,
κ(β−α)

2+κ q + α+ β−α
2+κ ; θ = 1,

β+α
2 ; θ > 1,

which is a stationary solution of the corresponding hydrodynamic equation, see
(36) and (37).

Proof. Recall from (44), that we need to prove:

lim
N→∞

µss

(
η ∈ ΩN :

∣∣∣ 1

N

∑
x∈ΛN

G
(
x
N

)
η(x)−

∫ 1

0

G(q)ρ0(q)dq
∣∣∣ > δ

)
= 0
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for any continuous function G : [0, 1]→ IR. By Markov’s and triangular inequal-
ities, we bound the previous probability from above by

1

δ
EIPµss

[∣∣∣ 1

N

∑
x∈ΛN

G
(
x
N

) (
η(x)− ρNss(x)

)∣∣∣
+
∣∣∣ 1

N

∑
x∈ΛN

G
(
x
N

)
ρNss(x)−

∫ 1

0

G(q)ρ̄(q)dq
∣∣∣]

≤1

δ
EIPµss

[∣∣∣ 1

N

∑
x∈ΛN

G
(
x
N

) (
η(x)− ρNss(x)

)∣∣∣]
+

1

δ

∣∣∣ 1

N

∑
x∈ΛN

G
(
x
N

)
ρNss(x)−

∫ 1

0

G(q)ρ̄(q)dq
∣∣∣.

(70)

The last term can be bounded from above by

1

δ

∣∣∣ 1

N

∑
x∈ΛN

G
(
x
N

) (
ρNss(x)− ρ̄

(
x
N

))∣∣∣
+

1

δ

∣∣∣ 1

N

∑
x∈ΛN

G
(
x
N

)
ρ̄
(
x
N

)
−
∫ 1

0

G(q)ρ̄(q)dq
∣∣∣.

The term at the left hand side of last expression is bounded from above by

1

δ

1

N

∑
x∈ΛN

∣∣∣G ( xN ) ∣∣∣∣∣∣ρNss(x)− ρ̄
(
x
N

)∣∣∣ ≤ ‖G‖∞
δ

max
x∈ΛN

∣∣∣ρNss(x)− ρ̄
(
x
N

)∣∣∣
where from (21) it vanishes as N →∞, while the term at the right hand side also
vanishes as N →∞ since we compare the Riemann sum with the corresponding
converging integral.

To finish the proof it remains to analyse the third term in (70). By the
Cauchy-Schwarz’s inequality the expectation appearing in that term can bounded
from above by(∣∣∣ 1

N2

∑
x∈ΛN

G
(
x
N

)
EIPµss

[
(η(x)− ρNss(x))2

]
+

2

N

∑
x<y

G
(
x
N

)
G
(
y
N

)
EIPµss

[
(η(x)− ρNss(x))(η(y)− ρNss(y))

]) 1
2

≤
(C‖G‖∞

N
+ 2‖G‖∞max

x<y
ϕNss(x, y)

) 1
2

.

From (17) the previous expression vanishes as N →∞. This finishes the proof.

Note that the proof presented above uses the information about the two point
correlation function which is not always easy to obtain. We refer the reader to [8]
for another proof of this results without using the knowledge on the correlations.
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3 Symmetric exclusion with long jumps in contact with
reservoirs

3.1 The model

In this section we want to generalize the results of the previous section to the
case where particles can give jumps arbitrarily large. As in the previous section,
the bulk consists in the set of points ΛN = {1, ..., N − 1} and we artificially
add two end points x = 0 and x = N . Now, we explain the dynamics of the
models we consider and we start by describing the conditions on the jump rate.
For that purpose, let p : ZZ × ZZ → [0, 1] be a transition probability such that
p(x, y) = p(y−x) and which is symmetric. We are going to discuss two cases: the
first one, when p(·) has finite variance and the second one when p(·) has infinite
variance. Note that since p(·) is symmetric it has mean zero, that is:∑

z∈ZZ

zp(z) = 0.

We denote m =
∑
z≥1 zp(z). As an example we consider p(·) given by p(0) = 0

and

p(z) =
cγ
|z|γ+1

, (71)

for z 6= 0, where cγ is a normalizing constant. For simplicity of the presentation
we stick to this choice of p(·) along this section but we note that many of our
results are true, in the case where p(·) has finite variance, in a more general
setting where we only assume p(·) to be translation invariant and mean zero.

We consider the process in contact with stochastic reservoirs at the left and
the right of the bulk. We fix four parameters α, β ∈ [0, 1], κ > 0 and θ ∈ IR, so
that particles can get in the bulk of the system from the site x = 0 to any site
y ∈ ΛN at rate ακN−θp(y) or leave the bulk from any site y ∈ ΛN to the site
x = 0 at rate (1 − α)κN−θp(y); and particles can get in the bulk to any site
y ∈ ΛN from the site x = N at rate βκN−θp(N − y) or leave the bulk from any
site y ∈ ΛN to the site x = N at rate (1− β)κN−θp(N − y).

We define the dynamics of the process in the following way. We start with
the bulk dynamics. Each pair of sites of the bulk {x, y} ⊂ ΛN carries a Poisson
process of intensity p(y − x)/2. Poisson processes associated to different bonds
are independent. If for the configuration η, the clock associated to the bound
{x, y} rings, then we exchange the value of the occupation variables η(x) and
η(y) at rate p(y − x)/2. Now we explain the dynamics at the boundary. Each
pair of sites {0, x} with x ∈ ΛN carries two Poisson processes, all of them
being independent. If for the configuration η, the clock associated to the Poisson
process of the oriented bond {0, x} (resp. {x, 0}) rings, then we change the value
η(x) into 1−η(x) with rate κN−θp(x)α(1−η(x)) (resp. κN−θp(x)(1−α)η(x)). At
the right boundary the dynamics is similar but instead of α the intensity is given
by β. Observe that the reservoirs (x = 0 and x = N) add and remove particles on
all the sites of the bulk ΛN , and not only at the boundaries x = 1 and x = N−1
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as happened in the model of Section 2, but with a rate that decreases as the
distance from the corresponding reservoir increases. We remark that as in the
previous section, we could do another interpretation of the previous dynamics
at the boundary, as follows. Particles can either be created or annihilated at any
site x ∈ ΛN according to the following rates:

– from the left reservoir, from x = 0 to y ∈ ΛN :
• creation rate: ακN−θp(y),
• annihilation rate: (1− α)κN−θp(y).

– from the right reservoir, from x = N − 1 to y ∈ ΛN :
• creation rate: βκN−θp(N − y),
• annihilation rate: (1− β)κN−θp(N − y).

Let us see an illustration of the dynamics just described with N = 11 and the
configuration η = (1, 1, 0, 0, 0, 0, 1, 0, 1, 1):

κN−θβp(5)

κN−θ(1− β)p(1)
κN−θ(1− α)p(2)

κN−θαp(8)

The infinitesimal generator of the process is given by

LN = LN,0 + LN,b, (72)

where LN,0 and LN,b act on functions f : ΩN → IR as

(LN,0f)(η) =
1

2

∑
x,y∈ΛN

p(x− y)[f(ηx,y)− f(η)],

(LN,bf)(η) =
κ

Nθ

∑
y∈{0,N}

∑
x∈ΛN

p(y − x)cx(η, r(y))[f(ηx)− f(η)]

(73)

where the configurations ηx,y and ηx have been defined in (3), the rates cx(η, r(y))
have been defined in (4) and r(0) = α and r(N) = β.

We consider the Markov process speeded up in the time scale tΘ(N) and note
that {ηtΘ(N) : t ≥ 0} has infinitesimal generator given by Θ(N)LN . Although
ηtθ(N) depends on α, β and θ, we shall omit these index in order to simplify
notation.

As in Section 2.4 we can prove that the Bernoulli product measures νNρ as
defined in (7) are reversible when we consider α = β = ρ. The proof is quite
similar to the one given in Lemma 1 and for that reason it is omitted.
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In the next section we analyse the case where p(·) has finite variance and we
denote it by σ2, so that

σ2 :=
∑
z∈ZZ

z2p(z) <∞.

As an example we consider p(·) as in (71), that is p(0) = 0 and

p(z) =
cγ
|z|γ+1

,

for z 6= 0, where cγ is a normalizing constant and we take γ > 2, so that p(·) has
finite variance. For simplicity of the presentation we stick to this choice of p(·)
whenever we mention to the case where p(·) has finite variance but we note that
many of our results are true in the more general setting where we just assume
p(·) to be translation invariant, mean zero and with finite variance.

Remark 7. We note that for the choice of p with p(1) = 1
2 = p(−1) the dynamics

described above coincides with the one of the first section. In that sense many of
the results that we will derive here are a generalization of those obtained before.

In Section 3.3 we analyse the case where p(·) is as in (71) but we consider
γ ∈ (1, 2) so that p(·) has mean zero but with infinite variance. We note that
in the case γ = 2 the transition probability p(·) also has mean zero and infinite
variance, but in this case the results are similar to those when p(·) has finite
variance, see Remark 12.

3.2 The finite variance case

-Hydrodynamic equations: Recall the notation introduced in Section 2.6. We
can now give the definition of the weak solutions of the hydrodynamic equations
that will be derived in this section when p(·) is assumed to have finite variance.
In what follows g : [0, 1] → [0, 1] is a measurable function and it is the initial
condition of all the partial differential equations that we define below, that is
ρ0(q) = g(q), for all q ∈ (0, 1).

Definition 6. Let σ̂ ≥ 0 and κ̂ ≥ 0 be some parameters. We say that ρ :
[0, T ] × [0, 1] → [0, 1] is a weak solution of the reaction-diffusion equation with
Dirichlet boundary conditions{

∂tρt(q) = σ̂2

2 ∆ρt(q) + κ̂
{
α−ρt(q)
qγ+1 + β−ρt(q)

(1−q)γ+1

}
, (t, q) ∈ (0, T ]× (0, 1),

ρt(0) = α, ρt(1) = β, t ∈ (0, T ],

(74)
starting from a measurable function g : [0, 1] → [0, 1], if the following three
conditions hold:

1. – ρ ∈ L2(0, T ;H1) if σ̂ > 0,
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–
∫ T

0

∫ 1

0

{
(α−ρt(q))2

qγ+1 + (β−ρt(q))2
(1−q)γ+1

}
dq dt <∞ if κ̂ > 0,

2. ρ satisfies the weak formulation:

FRD :=

∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
( σ̂2

2
∆+ ∂s

)
Gs(q) dq ds

− κ̂
∫ t

0

∫ 1

0

Gs(q)

(
α− ρs(q)
qγ+1

+
β − ρs(q)
(1− q)γ+1

)
dq ds = 0,

(75)

for all t ∈ [0, T ] and any function G ∈ C1,2
c ([0, T ]× [0, 1]),

3. if σ̂ > 0 then ρt(0) = α, ρt(1) = β for all t ∈ [0, T ].

Remark 8. Observe that in the case σ̂ > 0 and κ̂ = 0 we recover the heat
equation with Dirichlet boundary conditions. If σ̂ = 0 the equation does not
have the diffusion term.

Definition 7. Let σ̂ > 0 and m̂ ≥ 0 be some parameters. We say that ρ :
[0, T ]× [0, 1]→ [0, 1] is a weak solution of the heat equation with Robin boundary
conditions{

∂tρt(q) = σ̂2

2 ∆ρt(q), (t, q) ∈ [0, T ]× (0, 1),

∂qρt(0) = 2m̂
σ̂2 (ρt(0)− α), ∂qρt(1) = 2m̂

σ̂2 (β − ρt(1)), t ∈ [0, T ],
(76)

starting from a measurable function g : [0, 1]→ [0, 1], if the following two condi-
tions hold:

1. ρ ∈ L2(0, T ;H1),

2. ρ satisfies the weak formulation:

FRob :=

∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
( σ̂2

2
∆+ ∂s

)
Gs(q) dq ds

+
σ̂2

2

∫ t

0

{ρs(1)∂qGs(1)− ρs(0)∂qGs(0)} ds

− m̂
∫ t

0

{Gs(0)(α− ρs(0)) +Gs(1)(β − ρs(1))} ds = 0,

(77)

for all t ∈ [0, T ], any function G ∈ C1,2([0, T ]× [0, 1]).

Remark 9. Observe that in the case m̂ = 0 the equation above is the heat
equation with Neumann boundary conditions.
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-Hydrodynamic Limit: Recall the notion of the empirical measure given in
Section 2.6 and note that in this case we have

πNt (η, dq) := πN (ηtθ(N), dq)

and we note that, in this case, the time scale θ(N) will change with the range
of θ, contrarily to what happens in the model of Section 2. As before, let IPµN
be the probability measure in the Skorohod space D([0, T ], ΩN ) induced by the
Markov process {ηtθ(N) : t ≥ 0} and the initial probability measure µN and
we denote by EIPµN

the expectation with respect to IPµN . Let {QN}N≥1 be

the sequence of probability measures on D([0, T ],M+) induced by the Markov
process {πNt ; t ≥ 0} and by IPµN .

Remark 10. We note that due to the presence of long jumps in the system,
we cannot obtain information about the empirical profile nor the two point
correlation function in a simple way as we did in Section 2.5. We also note that
the matrix ansatz method described in Section 2.4 in this case does not give us
any information about the stationary measures for this model. This study is left
for a future work.

Let g : [0, 1]→ [0, 1] be a measurable function and let {µN}N≥1 be a sequence
of probability measures in ΩN associated to g(·), see (44). The first result in this
section is stated in the following theorem (see Figure 7).

Theorem 3. Let g : [0, 1] → [0, 1] be a measurable function and let {µN}N≥1

be a sequence of probability measures in ΩN associated to g(·). Then, for any
0 ≤ t ≤ T ,

lim
N→∞

IPµN

(
η· :

∣∣∣∣∣ 1

N − 1

∑
x∈ΛN

G
(
x
N

)
ηtθ(N)(x)−

∫ 1

0

G(q)ρt(q)dq

∣∣∣∣∣ > δ
)

= 0,

where the time scale is given by

Θ(N) =

{
N2, if θ ≥ 1− γ,
Nγ+θ+1, if θ < 1− γ,

(78)

and ρt(·) is the unique weak solution of :

• (74) with σ̂ = 0 and κ̂ = κcγ , if θ < 1− γ;
• (74) with σ̂ = σ and κ̂ = κcγ , if θ = 1− γ;
• (74) with σ̂ = σ and κ̂ = 0, if θ ∈ (1− γ, 1);
• (76) with σ̂ = σ and m̂ = κ

2 , if θ = 1;
• (76) with σ̂ = σ and m̂ = 0, if θ > 1.

Remark 11. We note that for a transition probability p(·) which is symmetric and
with finite variance the last three regimes obtained above are in force (however
(74) with κ̂ = 0 is obtained for θ ∈ [0, 1)). We note that the two first regimes
depend on the specific choice of the transition probability p(·) that we have
assumed in (71). We also note that if we impose that the higher moments of p(·)
are finite then the regime (74) with κ̂ = 0 can be reached for θ ∈ [v, 1) where
v < 0 depends on the finiteness of the moments of p(·).
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Remark 12. Despite, in the case γ = 2, the transition probability p(·) has infinite
variance, we obtain a very similar behavior to the one described above but the
time scale that one has to consider is N2/ log(N) instead of N2. We leave the
adaptation of the proof in this case as an exercise to the reader.

Remark 13. We note that the solution of the hydrodynamic equation depends
on the parameter κ which appears at the boundary dynamics in two different
regimes of θ, namely θ = 1− γ and θ = 1.

θ

γθ = −1, γ = 2

θ = 1, γ = 2

R
eaction-D

iffusion
eq. &

D
irichlet

b.c.

Heat eq. & Robin b.c.

Heat eq. & Neumann b.c.

Heat eq. & Dirichlet b.c.

Reaction eq. & Dirichlet b.c.

θ = 1− γ

Fig. 5. The five different hydrodynamic regimes in terms of γ and θ.

Now note that as before, the stationary solutions of the hydrodynamic limits
in the case θ > 1 − γ are standard and for that reason they are ommited. On
the other hand, the form and properties of the stationary solutions in the case
θ ≤ 1 − γ are more complicated to obtain in the case θ = 1 − γ. This problem
is studied in more details in [14] for a slighlty different dynamics. In Figure 6
we only present some graphs of the stationary solutions and refer the interested
reader to [14] for a complete description on the behavior of those solutions.
Below we draw the graph of these stationary solutions for a choice of α = 0.2
and β = 0.8.

The proof of Theorem 3 is described in Section 2.7 below Figure 4 and for
that reason many steps now are omitted. The proof of tightness of the sequence
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θ > 1

θ = 1

1− γ < θ < 1

θ = 1− γ

θ < 1− γ

1
20 1

β

α

α+β
2

(α+β)σ2+ακ
(κ+2σ2)

(α+β)σ2+βκ
(κ+2σ2)

Fig. 6. Stationary solutions of the hydrodynamic equations.

{QN}N≥1 is quite similar to the one given in Section 2.9. The characterization
of limit points is also close to the one given in Section 2.10, the only difference
comes at the level of the identification of the density as a weak solution of the
corresponding partial differential equation. For that purpose, the next section
is dedicated to the presentation of an heuristic argument to deduce the weak
formulation for the solution of the corresponding hydrodynamic equation. The
adaptation of the rest of the arguments to this new dynamics is left to the reader.

-Heuristics for hydrodynamic equations: As in Section 2.8, the identifi-
cation of the density ρt(·) as a weak solution of the corresponding hydrody-
namic equation is obtained by using auxiliary martingales. Fix then a function
G : [0, 1] → IR which does not depend on time and which is two times contin-
uously differentiable. As in Section 2.8, we use Dynkin’s formula and we note
that∫ t

0

Θ(N)LN (〈πNs , G〉) ds =

Θ(N)

N − 1

∫ t

0

∑
x∈ΛN

L̃NG( xN )ηsθ(N)(x) ds

+
κΘ(N)

(N − 1)Nθ

∫ t

0

∑
y∈{0,N}

∑
x∈ΛN

G( xN )p(y − x)(r(y)− ηsθ(N)(x)) ds,

(79)

where for all x ∈ ΛN

(L̃NG)( xN ) =
∑
y∈ΛN

p(y − x)
[
G( yN )−G( xN )

]
. (80)
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Now, we extend the first sum in (79) to all the integers so that we extend
the function G to IR in such a way that it remains two times continuously
differentiable. By the definition of L̃N , we get that

Θ(N)

N − 1

∫ t

0

∑
x∈ΛN

L̃NG( xN )ηsθ(N)(x) ds

=
Θ(N)

N − 1

∫ t

0

∑
x∈ΛN

(KNG)( xN )ηsθ(N)(x) ds

−
Θ(N)

N − 1

∫ t

0

∑
x∈ΛN

∑
y≤0

[
G( yN )−G( xN )

]
p(x− y)ηsθ(N)(x) ds

−
Θ(N)

N − 1

∫ t

0

∑
x∈ΛN

∑
y≥N

[
G( yN )−G( xN )

]
p(x− y)ηsθ(N)(x) ds,

(81)

where
(KNG)( xN ) =

∑
y∈ZZ

p(y − x)
[
G( yN )−G( xN )

]
. (82)

Now, we are going to analyse how the different boundary conditions appear on
the hydrodynamic equations given in Section 3.2 from this dynamics.

- The case θ < 1− γ: Take a function G : (0, 1)→ IR two times continuously
differentiable and with compact support in (0, 1), so that we can choose an
extension by 0 outside of the support of G. Since Θ(N) = Nγ+θ+1 (see the
statement of Theorem 3) a simple computation shows that the first term in (81)
vanishes for θ < 1 − γ. Indeed, by a Taylor expansion on G and the fact that
p(·) is mean zero, we have that

Nγ+θ+1
∑
y∈ZZ

(G(y+x
N )−G( xN ))p(y)

is of same order as
Nγ+θ−1G′′( xN )

∑
y∈ZZ

y2p(y)

and since θ < 1− γ last expression vanishes as N →∞.
Now, the second and third terms in (81) vanish as N → ∞, since Θ(N) =

Nγ+θ+1 and θ < 1 − γ. Note that since G vanishes outside (0, 1), those terms
can be rewritten as

Θ(N)

N − 1

∫ t

0

∑
x∈ΛN

G( xN )r−N ( xN )ηsNγ+θ+1(x) ds

+
Θ(N)

N − 1

∫ t

0

∑
x∈ΛN

G( xN )r+
N ( xN )ηsNγ+θ+1(x) ds,

(83)
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where

r−N ( xN ) =
∑
y≥x

p(y), r+
N ( xN ) =

∑
y≤x−N

p(y). (84)

We observe that, for any a ∈ (0, 1), uniformly in u ∈ (a, 1− a), as N →∞:

Nγr−N ([uN ])→N→+∞ cγγ
−1u−γ := r−(u),

Nγr+
N ([uN ])→N→+∞ cγγ

−1(1− u)−γ := r+(u).
(85)

Now we note that we can bound from above, for example the term at the left
hand side in (83) by Nθ+1 times

1

N − 1

∫ t

0

∑
x∈ΛN

Nγr−N ( xN ) |G( xN )|

because |ηsNγ+θ (x)| ≤ 1 for all s > 0. Since θ < −1 and since the previous sum
converges to the (finite) integral of |G|r− on (0, 1), by (85), the previous display
vanishes as N →∞. Now we look at the boundary terms in (79), which can be
written, for the choice of Θ(N) = Nγ+θ+1, as:

κNγ+1

N − 1

∫ t

0

∑
y∈{0,N}

∑
x∈ΛN

G
(
x
N

)
p(y − x)(r(y)− ηsNγ+θ+1(x)) ds

which is equal to

κ

∫ t

0

〈α− πNs , Gp〉+ 〈β − πNs , Gp̃〉 ds,

where p̃(q) = p(1 − q), and can be replaced, thanks to the fact that G has
compact support, by

κ

∫ 1

0

G(q)
(
p(q)(α− ρs(q)) + p̃(q)(β − ρs(q))

)
dq

as N → ∞. The last convergence holds because G has compact support in-
cluded in (0, 1) so that Gp and Gp̃ are continuous function. From the previous
computations we recognize the terms in (75) with κ̂ = κcγ and σ̂ = 0.

- The case θ = 1 − γ: In this case we also take a function G : (0, 1) → IR
two times continuously differentiable and with compact support in (0, 1), so
that we can choose an extension by 0 outside of its support. In this case, since
Θ(N) = N2, by Lemma 3, which we state below, the first term in (81) can be
replaced, for N sufficiently big, by

1

N − 1

∫ t

0

∑
x∈ΛN

σ2

2 ∆G( xN ) ηsN2(x) ds =

∫ t

0

〈πNs , σ
2

2 ∆G〉 ds.
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Moreover, a similar computation to the one above shows that the second and
third terms in (81) vanish as N → ∞ (recall that Θ(N) = N2 and γ > 2).
Finally, the second term in (79) can be rewritten as

κNγ+1

(N − 1)

∫ t

0

∑
y∈{0,N}

∑
x∈ΛN

G( xN )p(y − x) (r(y)− ηsN2(x)) ds

and repeating the analysis we did in the previous case it converges, as N → ∞
to

κ

∫ t

0

∫ 1

0

G(q)
(
p(q)(α− ρs(q)) + p̃(q)(β − ρs(q))

)
dq ds.

As above, from the previous computations we recognize the terms in (75) with
κ̂ = κcγ and σ̂ = σ.

- The case θ ∈ (1 − γ, 1): Take again a function G : (0, 1) → IR two times
continuously differentiable and with compact support in (0, 1) and extend it by 0
outside (0, 1). As above, since Θ(N) = N2, by Lemma 3, which we prove below,
the first term in (81) can be replaced, for N sufficiently big, by∫ t

0

〈πNs , σ
2

2 ∆G〉 ds.

Now, the second term in (3.2) equals to

κN2−θ

N − 1

∫ t

0

∑
y∈{0,N}

∑
x∈ΛN

G( xN )p(y − x)(r(y)− ηsN2(x)) ds

and vanishes as N → ∞ since θ > 1 − γ. Now, the last two terms in (81) also
vanish because, for example, the second term in (81) can be written as∫ t

0

N2

N − 1

∑
x∈ΛN

G( xN )r−N ( xN )ηsN2(x) ds

which can be bounded from above by a constant times tN2−γ times a sum
converging to the integral of |G|r− on (0, 1), and since γ > 2 this term vanishes.
From this, we see the terms in (75) with κ̂ = 0 and σ̂ = σ.

Remark 14. We remark here that in the last three cases, similarly to what we
have seen in the case θ < 0 for the models of Section 2 (see Remark 5), there is
an extra condition in the definition of the weak solution of (74). In this notion
of solution we need to show that the value of the profile ρt(·) is fixed at the
boundary. This issue is analysed in Appendix A.4.
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- The case θ = 1: In this case we consider a function G : [0, 1] → IR which
is two times continuously differentiable and we extend it on IR in a two times
continuously differentiable function with compact support which strictly contains
[0, 1]. Note that in this case G can take non-zero values at 0 and 1. As above,
since Θ(N) = N2, by Lemma 3, which we state below and which holds for
this new space of test functions, the first term in (81) can be replaced, for N
sufficiently big, by ∫ t

0

〈πNs , σ
2

2 ∆G〉 ds.

Now we look at the terms coming from the boundary, namely the last term
in (79). Then, in the term for y = 0 of (79)(resp. for y = N) we do at first
a Taylor expansion on G and then we replace η(x) by the average −→η εN (1) =

1
εN

∑1+εN
x=1 η(x) (resp. η(x) by ←−η εN (N − 1) = 1

εN

∑N−1
x=N−1−εN η(x)), which can

be done as a consequence of Lemma 7 as pointed out in Remark 17. Moreover,
note that for y = 0 and y = N it holds that∑

x∈ΛN

p(y − x) −−−−−→
N→+∞

1

2
. (86)

Therefore, we can write the last term in (79) as

κ

2

∫ t

0

{(α−−→η εNsN2(1))G(0) + (β −←−η εNsN2(N − 1))G(1)} ds,

plus terms that vanish as N → +∞. Since

−→η εNsN2(1) ∼ ρs(0) and ←−η εNsN2(N − 1) ∼ ρs(1)

last term writes as

κ

2

∫ t

0

{(α− ρs(0))G(0) + (β − ρs(1))G(1)} ds. (87)

Now, we analyse the two last terms in (81). Since the function G has been
extended into a two times continuously differentiable function on IR, by a Taylor
expansion on G we can write those terms as

N

N − 1

∫ t

0

∑
x∈ΛN

G′( xN )Θ−x ηsN2(x) ds−
N

N − 1

∫ t

0

∑
x∈ΛN

G′( xN )Θ+
x ηsN2(x) ds

(88)
plus terms that vanish as N → +∞. Above for x ∈ ΛN ,

Θ−x =
∑
y≤0

(x− y)p(x− y) and Θ+
x =

∑
y≥N

(y − x)p(x− y).

Note that

1

N

∑
x∈ΛN

xΘ−x −−−−−→
N→+∞

0 and
1

N

∑
x∈ΛN

xΘ+
x −−−−−→

N→+∞
0. (89)
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Moreover, note that∑
x∈ΛN

Θ−x =
∑
x∈ΛN

∑
y≥x

yp(y) −−−−−→
N→+∞

σ2

2 ,∑
x∈ΛN

Θ+
x =

∑
x∈ΛN

∑
y≥N−x

yp(y) −−−−−→
N→+∞

σ2

2 .
(90)

In order to prove the convergence of
∑
x∈ΛN Θ

−
x (or of

∑
x∈ΛN Θ

+
x in (90)) we

use Fubini’s theorem to get that

∑
x∈ΛN

Θ−x =
∑
y∈ΛN

y∑
x=1

yp(y) +
∑
y≥N

∑
x∈ΛN

yp(y)

=
∑
y∈ΛN

y2p(y) + (N − 1)
∑
y≥N

yp(y),

and since γ > 2 the result follows. By another Taylor expansion on G we can
write (88) as

N

N − 1
G′(0)

∫ t

0

∑
x∈ΛN

Θ−x ηsN2(x) ds−
N

N − 1
G′(1)

∫ t

s

∑
x∈ΛN

Θ+
x ηsN2(x) ds (91)

plus terms that vanish as N → +∞. From Lemma 7 we can replace in the term
on the left (resp. right) hand side of last expression ηsN2(x) by −→η εNsN2(1) (resp.
←−η εNsN2(N − 1)). Therefore, (91) can be replaced, for N sufficiently big and for ε
sufficiently small, by∫ t

0

G′(0)σ
2

2
−→η εNsN2(1)−G′(1)σ

2

2
←−η εNsN2(N − 1) ds.

Since −→η εNsN2(1) ∼ ρs(0) and ←−η εNsN2(N − 1) ∼ ρs(1), last term tends to∫ t

0

G′(0)σ
2

2 ρs(0)−G′(1)σ
2

2 ρs(1) ds, (92)

as N →∞.
Putting together (87) and (92) we see the boundary terms that appear at

the right hand side of (77).

- The case θ > 1: In this case we consider an arbitrary function G : [0, 1]→ IR
which is two times continuously differentiable and we extend it on IR in a two
times continuously differentiable function with compact support. Its support
strictly contains [0, 1] since G can take non-zero values at 0 and 1. As in the last
case, since Θ(N) = N2, by Lemma 3, the first term in (81) can be replaced, for
N sufficiently big, by ∫ t

0

〈πNs , σ
2

2 ∆G〉 ds.
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The last term in (79) vanishes, as N →∞ since, we can bound it by a constant
times

N1−θ
∑
x∈ΛN

p(x).

Since γ > 2 last display vanishes if θ > 1, as N → +∞. Thus, we only need to
look at the expression (81). Therefore, in order to see the boundary terms that
appear in (77), we can use exactly the computations already done in the case
θ = 1 from which we obtain (92).

We finish this section with the statement of the lemma which is used above in
order to obtain the diffusion term in the equations above in the cases θ ≥ 1− γ.
Its proof can be seen in [2].

Lemma 3. Let G : IR→ IR be a two times continuously differentiable function
with compact support. We have

lim sup
N→∞

sup
x∈ΛN

∣∣∣∣∣∣N2
∑
y∈ZZ

(G(y+x
N )−G( xN ))p(y)− σ2

2
∆G( xN )

∣∣∣∣∣∣ = 0.

3.3 The infinite variance case

In this section we analyse the case in which p(·) is as in (71) but now γ ∈ (1, 2)
so that p(·) has mean zero but infinite variance. We also consider only the case
where θ = −1, but we note that in the regime θ < −1 the behavior of the system,
when we take the time scale Θ(N) = Nγ+θ+1 is the same as when θ < 1 − γ
and when p(·) has finite variance, that is, it is given by the weak solution of
(74) with σ̂ = 0 and κ̂ = κcγ . The other regimes are open and seem to be quite
challenging. Recall the infinitesimal generator given in (72) and (73) and since
we are restricted to the case θ = −1, we consider the Markov process speeded up
in the time scale Θ(N) = Nγ , so that {ηtNγ : t ≥ 0} has infinitesimal generator
given by NγLN . As in Section 2.4 we can prove that the Bernoulli product
measures νNρ as defined in (7) are reversible when we consider α = β = ρ. The
proof is quite similar to the one given in Lemma 1 and for that reason it is
omitted.

-Hydrodynamic equations: We can now give the definition of the weak solu-
tion of the hydrodynamic equation that will be derived in this section when p(·)
is assumed to have infinite variance.

Recall the notations introduced in the beginning of Section 2.6. We recall
the definition of the fractional Laplacian operator of exponent γ/2 denoted by
(−∆)γ/2. It is a non-local operator which is defined on the set of functions
G : IR→ IR such that ∫ ∞

−∞

|G(q)|
(1 + |q|)1+γ

dq <∞ (93)
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by

(−∆)γ/2G (q) = cγ lim
ε→0

∫ ∞
−∞

1|q−v|≥ε
G(q)−G(v)

|q − v|1+γ
dv (94)

provided the limit exists, which is the case, for example, if G is in the Schwartz
space. Recall that cγ is fixed in (71). Up to a multiplicative constant, −(−∆)γ/2

is the generator of a γ-Lévy stable process.
We define another operator L whose action is given on functionsG ∈ C∞c ((0, 1)),

by

∀q ∈ (0, 1), (LG)(q) = cγ lim
ε→0

∫ 1

0

1|q−v|≥ε
G(v)−G(q)

|q − v|1+γ
dv.

The operator L is called the regional fractional Laplacian on (0, 1). The semi
inner-product 〈·, ·〉γ/2 is defined on the set C∞c ((0, 1)) by

〈G,H〉γ/2 =
cγ

2

∫∫
[0,1]2

(H(q)−H(v))(G(q)−G(v))

|q − v|1+γ
dqdv. (95)

The corresponding semi-norm is denoted by ‖·‖γ/2. Observe that for any G,H ∈
C∞c ((0, 1)) we have that

−
∫ 1

0

G(q)LH(q) dq = −
∫ 1

0

LG(q)H(q) dq = 〈G,H〉γ/2

and note that for all q ∈ (0, 1),

(LG)(q) = −(−∆)γ/2G (q) + V1(q)G(q) (96)

where V1(q) = r−(q) + r+(q), see (85), that is, V1(·) is given on q ∈ (0, 1) by:

V1(q) = cγγ
−1
( 1

qγ
+

1

(1− q)γ
)
. (97)

Definition 8. The Sobolev space Hγ/2 consists of all square integrable functions
g : (0, 1)→ IR such that ‖g‖γ/2 <∞. This is a Hilbert space for the norm ‖·‖Hγ/2
defined by

‖g‖2Hγ/2 := ‖g‖2 + ‖g‖2γ/2.
Its elements elements coincide a.e. with continuous functions.

The space L2(0, T ;Hγ/2) is the set of measurable functions f : [0, T ]→ Hγ/2
such that ∫ T

0

‖ft‖2Hγ/2dt <∞.

We now extend the definition of the regional fractional Laplacian on (0, 1) to
the space Hγ/2.

Definition 9. For ρ ∈ Hγ/2 we define the distribution Lρ by∫ 1

0

Lρ(q)G(q) dq =

∫ 1

0

ρ(q)LG(q) dq, G ∈ C∞c ((0, 1)).
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Let Lκ be the regional fractional Laplacian on [0, 1] with zero Dirichlet
boundary conditions, indexed by κ, and taking the form

Lκ = L− κṼ1, (98)

where for q ∈ (0, 1),

Ṽ1(q) = p(q) + p̃(q) = cγ

( 1

qγ+1
+

1

(1− q)γ+1

)
. (99)

Above p̃(q) = p(1 − q). Below g : [0, 1] → [0, 1] is a measurable function and it
is the initial condition of the partial differential equation that we obtain in this
section.

Definition 10. Let κ > 0 be some parameter. We say that ρκ : [0, T ]× [0, 1]→
[0, 1] is a weak solution of the regional fractional reaction-diffusion equation with
Dirichlet boundary conditions given by{

∂tρ
κ
t (q) = Lκρ

κ
t (q) + κṼ0(q), (t, q) ∈ [0, T ]× (0, 1),

ρκt (0) = α, ρκt (1) = β, t ∈ [0, T ],
(100)

where

Ṽ0(q) = αp(q) + βp̃(q) = cγ

( α

q1+γ
+

β

(1− q)1+γ

)
,

and starting from a measurable function g : [0, 1]→ [0, 1], if:

1. ρκ ∈ L2(0, T ;Hγ/2).

2.
∫ T

0

∫ 1

0

{
(α−ρκt (q))2

q1+γ +
(β−ρκt (q))2

(1−q)1+γ

}
dq dt <∞ .

3. For all t ∈ [0, T ] and all functions G ∈ C1,∞
c ([0, T ]× (0, 1)) we have that

FκDir :=

∫ 1

0

ρκt (q)Gt(q) dq −
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρκs (q)
(
∂s + Lκ

)
Gs(q) dqds

− κ
∫ t

0

∫ 1

0

Gs(q)Ṽ0(q) dq ds = 0.

(101)

Remark 15. We observe that the partial differential equation above has a unique
weak solution in the sense defined above. We do not include the proof of this
result in these notes but we refer the interested reader to [2] for the proof of the
uniqueness for a very similar equation. The same proof gives uniqueness in this
case.

-Hydrodynamic Limit: Recall the notion of the empirical measure given in
Section 2.6 and note that in this case we have

πNt (η, dq) := πN (ηtNγ , dq)

since the time scale now is equal to θ(N) = Nγ .
The second result of this section is stated in the following theorem.
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Theorem 4. Let g : [0, 1] → [0, 1] be a measurable function and let {µN}N≥1

be a sequence of probability measures in ΩN associated to g(·). Then, for any
0 ≤ t ≤ T ,

lim
N→∞

IPµN

(
η· :

∣∣∣∣∣ 1

N − 1

∑
x∈ΛN

G
(
x
N

)
ηtNγ (x)−

∫ 1

0

G(q)ρκt (q)dq

∣∣∣∣∣ > δ

)
= 0,

where ρκt (·) is the unique weak solution of (100) in the sense of Definition 10.

-Heuristics for hydrodynamic equations: Fix G : [0, 1] → IR which does
not depend on time and has compact support included in (0, 1). Recall (79) and
(81) and recall that we assumed θ = −1, so that (3.2) now writes as∫ t

0

NγLN (〈πNs , G〉) ds =
Nγ

N − 1

∫ t

0

∑
x∈ΛN

(L̃NG)( xN )ηsNγ (x)

+
κNγ+1

(N − 1)

∫ t

0

∑
y∈{0,N}

∑
x∈ΛN

G( xN )p(y − x)(r(y)− ηsNγ (x)) ds.

(102)

Note that the first term on the right hand side in last display is equal to∫ t

0

〈πNs , L̃NG〉 ds.

Since from Lemma 3.3 in [4], we can deduce that

lim
N→∞

Nγ(L̃NG)(q) = (LG)(q) (103)

uniformly in [a, 1 − a], for all functions G with compact support included in
[a, 1−a]. Therefore, the first term on the right hand side of (102) can be replaced
by ∫ t

0

∫ 1

0

(LG)(q)ρκs (q) dq ds, (104)

for N sufficiently big. Now, the second term on the right hand side in (102) is
equal to

κ

∫ t

0

〈α− πNs , Gp〉 ds+ κ

∫ t

0

〈β − πNs , Gp̃〉 ds

and converges, as N →∞, to

κ

∫ t

0

∫ 1

0

(α− ρκt (q))G(q)p(q)du+ κ

∫ t

0

∫ 1

0

(β − ρκt (q))G(q)p̃(q)dq

= −κ
∫ t

0

∫ 1

0

ρκt (q)G(q)Ṽ1(q)dq + κ

∫ t

0

∫ 1

0

G(q)Ṽ0(q)dq.

(105)

Putting together (104) and (105) and using (98) we recognize the corresponding
terms in (101).
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We finish this section by noting that in [3] it was studied a similar dynamics
to the one described above. There we considered the same bulk dynamics with
long jumps given by p(·) with the choice (71) and γ ∈ (1, 2) but the boundary
dynamics was different. In [3] instead of considering just one boundary at each
end point of the bulk, it was added infinitely many reservoirs at the left and at the
right of the bullk. As in the dynamics described above, particles can be injected
and removed from the system at any point of the bulk by any of the reservoirs
located at y ≤ 0 or y ≥ N . We note that in the case of this new dynamics
the results obtained in [3] are similar to those presented here, except that the
transitions occur for a different value of θ and for that reason, the potential Ṽ1

that appears in the definition of Lκ in the reaction-diffusion equation (100) has
a different power than the one that appears in the hydrodynamic equation in
[3]. It would be very interesting to analyse other types of boundary dynamics
superposed to the bulk dynamics that we defined above in order to see if we
can come up with new fractional reaction-diffusion equations with more tricky
boundary conditions than the Dirichlet boundary conditions that we obtained
here. And it would be very interesting to look at the case where θ > −1, the
slow boundary regime, when p(·) is given as above with γ ∈ (1, 2), see the area
coloured in rose in the figure below. This is a subject to pursue in the near
future. In the figure below we summarize the scenario of the hydrodynamic limit
for the models of this section.

???

θ

γθ = −1

θ = 1

γ = 1 γ = 2

γ = 2

Reaction-D
iffusion

eq. &
D

irichlet b.c.

Heat eq. & Robin b.c.

Heat eq. & Neumann b.c.

Heat eq. & Dirichlet b.c.

Reaction eq. & Dirichlet b.c.
θ = 1− γ

Fig. 7. Hydrodynamical behavior of the symmetric exclusion with long jumps.
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A Auxiliary results

In this section we establish some technical results that are needed in order to
prove the hydrodynamic limit for the models discussed in the previous sections.

A.1 Entropy bound

From now on, we suppose that α ≤ β. Let ρ : [0, 1] → [0, 1] be a function such
that α ≤ ρ(q) ≤ β, for all q ∈ [0, 1]. Let νNρ(·) be the Bernoulli product measure
on ΩN with marginals given by

νNρ(·){η : ηx = 1} = ρ
(
x
N

)
. (106)

Given two functions f, g : ΩN → IR and a probability measure µ on ΩN , we
denote here by 〈f, g〉µ the scalar product between f and g in L2(ΩN , µ), that is,

〈f, g〉µ =

∫
ΩN

f(η)g(η) dµ.

Let HN (µ|νNρ(·)) be the relative entropy of a probability measure µ on ΩN with

respect to the probability measure νNρ(·) on ΩN . We claim that there exists a

constant C0 := C(α, β), such that

HN (µ|νNρ(·)) ≤ C0N. (107)

For that purpose note that, since νNρ(·) is product we have that

νNρ(·)(η) =

N−1∏
x=1

ρ( xN )η(x)(1− ρ( xN ))1−η(x) ≥ (α ∧ (1− β))N

from where we obtain that

H(µ|νNρ(·)) =
∑
η∈ΩN

µ(η) log

(
µ(η)

νNρ(·)(η)

)
≤
∑
η∈ΩN

µ(η) log

(
1

νNρ(·)(η)

)

≤ log

([
1

α ∧ (1− β)

]N) ∑
η∈ΩN

µ(η) ≤ N log

(
1

α ∧ (1− β)

)
≤ C0N.

We remark here that below when we use as reference measure the Bernoulli
product measure given in (106) we have to restrict to α 6= 0 and β 6= 1 since in
last estimate the constant C0 = − log(α ∧ (1− β)). We also note that when we
use the Bernoulli product measure with a constant parameter we do not need to
impose that restriction.
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A.2 Estimates on Dirichlet forms

In this section we consider the model described in Section 3 since the results for
the model of Section 2 can be obtained easily from the ones we derive below.
In any case we present some remarks along the text about the corresponding
results for the model of Section 2.

For a probability measure µ on ΩN , x, y ∈ ΛN and a density function f :
ΩN → [0,∞) with respect to µ we introduce

Ix,y(
√
f, µ) :=

∫
ΩN

(√
f(ηx,y)−

√
f(η)

)2

dµ,

Ir(y)
x (

√
f, µ) :=

∫
ΩN

cx(η; r(y))
(√

f(ηx)−
√
f(η)

)2

dµ.

In last identity y ∈ {0, N} and r(0) = α and r(N) = β. We define

DN (
√
f, µ) := (DN,0 +DN,b)(

√
f, µ)

where

DN,0(
√
f, µ) :=

1

2

∑
x,y∈ΛN

p(y − x) Ix,y(
√
f, µ), (108)

DN,b(
√
f, µ) :=

κ

Nθ

∑
y∈{0,N}

∑
x∈ΛN

p(y − x) Ir(y)
x (

√
f, µ). (109)

Note that for the models of Section 2 the expressions above simplify to

DNNN,0 (
√
f, µ) :=

∑
x∈ΛN

Ix,x+1(
√
f, µ), (110)

DNNN,b (
√
f, µ) :=

κ

Nθ

(
Iα1 (
√
f, µ) + IβN−1(

√
f, µ)

)
. (111)

Our first goal is to express, for the measure µ = νNρ(·), a relation between the

Dirichlet form defined by −〈LN
√
f,
√
f〉νN

ρ(·)
and DN (

√
f, νNρ(·)). We claim that

for any positive constant B, there exists a constant C > 0 such that

1

BN
〈LN

√
f,
√
f〉νN

ρ(·)
≤ − 1

4BN
DN (

√
f, νNρ(·))

+
C

BN

∑
x,y∈ΛN

p(y − x)
(
ρ( xN )− ρ( yN )

)2

+
Cκ

BN1+θ

∑
y∈{0,N}

∑
x∈ΛN

(
ρ( xN )− r(y)

)2

p(y − x).

(112)

Our aim is then to choose ρ(·) in order to minimize the error term, i.e. the two
last terms at the right hand side of the previous inequality.
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Remark 16.

1. If p(·) has finite variance σ2, then:

– for ρ(·) Lipschitz and such that ρ(0) = α and ρ(1) = β, we get

1

BN
〈LN

√
f,
√
f〉νN

ρ(·)
≤ − 1

4BN
DN (

√
f, νNρ(·)) +

C

BN2
σ2

+
Cκ

BN3+θ

∑
y∈{0,N}

∑
x∈ΛN

(
y − x

)2
p(y − x)

≤ − 1

4BN
DN (

√
f, νNρ(·)) +

C

BN2
σ2 +

Cκ

BN3+θ
.

(113)

– for ρ(·) such that ρ(0) = α, ρ(1) = β, Hölder of parameter γ
2 at the

boundaries and Lipschitz inside, we get

1

BN
〈LN

√
f,
√
f〉νN

ρ(·)
≤− 1

4BN
DN (

√
f, νNρ(·)) +

C

BN2
σ2 +

Cκ log(N)

BNγ+θ+1
.

(114)

– for ρ(·) such that ρ(0) = α, ρ(1) = β, Hölder of parameter 1+γ
2 at the

boundaries and Lipschitz inside, we get

1

BN
〈LN

√
f,
√
f〉νN

ρ(·)
≤− 1

4BN
DN (

√
f, νNρ(·)) +

C

BN2
σ2 +

Cκ

BNγ+θ+1
.

(115)

– for ρ(·) constant, equal to α or to β, we have

1

BN
〈LN

√
f,
√
f〉νNα ≤ −

1

4BN
DN (

√
f, να) +

Cκ

BNθ+1
. (116)

2. If p(·) is such that p(1) = p(−1) = 1
2 , then:

– for ρ(·) Lipschitz and such that ρ(0) = α, ρ(1) = β and locally constant
at 0 and 1, we get

1

BN
〈LN

√
f,
√
f〉νN

ρ(·)
≤ − 1

4BN
DNNN (

√
f, νNρ(·)) +

C

BN2
. (117)

Note that the choice of asking ρ(·) to be locally constant at 0 and 1 turns
the errors coming from the boundary dynamics to vanish.

– for ρ(·) constant, equal to α or to β, then we have exactly the same error
as in (116).

3. If p(·) has infinite variance, then:
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– for ρ(·) Lipschitz and such that ρ(0) = α and ρ(1) = β, we get

1

BN
〈LN

√
f,
√
f〉νN

ρ(·)
≤ − 1

4BN
DN (

√
f, νNρ(·))

+
C

BN3

∑
x,y∈ΛN

1

|x− y|γ−1

+
Cκ

BN3+θ

∑
y∈{0,N}

∑
x∈ΛN

(
y − x

)2
p(y − x)

≤ − 1

4BN
DN (

√
f, νNρ(·)) +

C

BNγ
σ2 +

Cκ

BNγ+θ+1
.

(118)

In order to prove (112) we need some intermediate results. For that purpose we
recall from [2] the following two lemmas.

Lemma 4. Let T : η ∈ ΩN → T (η) ∈ ΩN be a transformation in the configura-
tion space and c : η ∈ ΩN → c(η) be a positive local function. Let f be a density
with respect to a probability measure µ on ΩN . Then, we have that〈

c(η)[
√
f(T (η))−

√
f(η)] ,

√
f(η)

〉
µ

≤ −1

4

∫
c(η)

([√
f(T (η))

]
−
[√

f(η)
])2

dµ

+
1

16

∫
1

c(η)

[
c(η)− c(T (η))

µ(T (η))

µ(η)

]2 ([√
f(T (η))

]
+
[√

f(η)
])2

dµ.

(119)

Lemma 5. There exists a constant C := C(ρ) such that for any N ≥ 1 and
density f be a density with respect to νNρ(·)

sup
x 6=y∈ΛN

∫
ΩN

f(ηx,y) dνNρ(·) ≤ C, sup
x∈ΛN

∫
ΩN

f(ηx) dνNρ(·) ≤ C.

A simple consequence of the previous lemmas is the next two corollaries. Recall
the bulk generator LN,0 given in (73).

Corollary 1. There exists a constant C > 0 (independent of f(·) and N) such
that〈
LN,0

√
f,
√
f
〉
νN
ρ(·)

≤ −1

4
DN,0(

√
f, νNρ(·)) + C

∑
x,y∈ΛN

p(y − x)
(
ρ( xN )− ρ( yN )

)2

for any density f(·) with respect to νNρ(·).

Now we look at the generator of the boundary dynamics given in (73).
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Corollary 2. Let θ ∈ IR be fixed. There exists a constant C > 0 (independent
of f(·) and N) such that

〈LN,b
√
f,
√
f〉νN

ρ(·)
≤ −1

4
DN,b(

√
f, νNρ(·))

+
Cκ

Nθ

∑
x∈ΛN

(
ρ( xN )− α

)2

p(x)

+
Cκ

Nθ

∑
x∈ΛN

(
ρ( xN )− β

)2

p(N − x)

(120)

for any density f(·) with respect to νNρ(·).

To prove the first corollary take c ≡ 1, T (η) = ηx,y and note that

|θx,y(η)− 1|2 ≤ C(ρ( xN )− ρ( yN ))2.

To prove the second corollary we take for each y ∈ {0, N}, c(η) = cx(η; r(y))
and T (η) = ηx. From the two previous corollaries the claim (112) follows easily.
We leave the details of the gaps to the reader.

A.3 Replacement Lemmas

In this section we prove rigorously all the replacements that were mentioned
along the Sections 2.8 and 3.2. We first recall Lemma 5.5 of [2] adapted to our
situation (with just one reservoirs at each end point of the bulk).

Lemma 6. For any density f(·) with respect to νNρ(·), any x ∈ ΛN , any y ∈
{0, N} and any positive constant Ax, there exists a constant C such that∣∣∣〈η(x)− r(y), f〉νN

ρ(·)

∣∣∣ ≤ C

Ax
Ir(y)
x (

√
f, νNρ(·)) + CAx + C

∣∣∣ρ( xN )− r(y)
∣∣∣.

The first replacement lemma that we prove is the one that is needed for the
model of Section 3 when p(·) has finite variance for the case θ ≥ 1.

Lemma 7. For any t > 0, for γ > 2 and for any θ ≥ 1 we have that

lim
ε→0

lim
N→∞

EIPµN

[∣∣∣ ∫ t

0

∑
x∈ΛN

Θ−x (ηsN2(x)−−→η εNsN2(1)) ds
∣∣∣] = 0,

lim
ε→0

lim
N→∞

EIPµN

[∣∣∣ ∫ t

0

∑
x∈ΛN

Θ+
x (ηsN2(x)−←−η εNsN2(N − 1)) ds

∣∣∣] = 0.

Proof. Below C is a constant than can change from line to line. Note that since
θ ≥ 1 we have θ(N) = N2. We present the proof for the first term, but we note
that the proof for the second one is analogous. Here we take as reference measure
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the Bernoulli product measure with constant parameter (for example α) and we
recall (116), from where we see that

N

B
〈LN

√
f,
√
f〉να ≤ −

N

4B
DN (

√
f, νNα ) +

Cκ

B
N1−θ (121)

so that the error to change the Dirichlet form vanishes as N →∞ for θ > 1 and
for θ = 1 it vanishes when B → +∞.

By the entropy and Jensen’s inequalities, the first expectation in the state-
ment of the lemma is bounded from above, for any constant B > 0, by

H(µN |νNα )

BN
+

1

BN
logEIPνNα

[
e
BN

∣∣∣ ∫ t0 ∑
x∈ΛN

Θ−x (ηsN2 (x)−−→η εN
sN2 (1)) ds

∣∣∣]
.

We can remove the absolute value inside the exponential since e|x| ≤ ex + e−x

and

lim sup
N→∞

N−1 log(aN + bN ) ≤ max

{
lim sup
N→∞

N−1 log(aN ), lim sup
N→∞

N−1 log(bN )

}
.

(122)
By (107), the Feynman-Kac’s formula and (116), last expression can be estimated
from above by

C0

B
+ t sup

f

{ ∑
x∈ΛN

Θ−x 〈η(x)−−→η εN (1), f〉νNα −
N

4B
DN (

√
f, να) +

Cκ

B
N1−θ

}
,

(123)
where the supremum is carried over all the densities f(·) with respect to νNα .

Now we have to split the sum in x, depending on whether N − 1 ≥ x ≥ εN
or x ≤ εN − 1. We start by the first case and we have

〈η(x)−−→η εN (1), f〉νNα =
1

εN

1+εN∑
y=1

∫
(η(x)− η(y))f(η) dνNα

=
1

1 + εN

εN∑
y=1

x−1∑
z=y

∫
(η(z + 1)− η(z))f(η) dνNα .

By writing the previous term as its half plus its half and by performing in one
of the terms the change of variables η into ηz,z+1, for which the measure νNα is
invariant, we write it as

1

2εN

1+εN∑
y=1

x−1∑
z=y

∫
(f(η)− f(ηz,z+1))(η(z + 1)− η(z)) dνNα .
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By using the fact that (a− b) = (
√
a−
√
b)(
√
a+
√
b) for any a, b ≥ 0 and since

ab ≤ Aa2

2
+

b2

2A
for all A > 0, we have that

N−1∑
x=εN

Θ−x 〈η(x)−−→η εN (1), f〉νNα

≤
A

2

N−1∑
x=εN

Θ−x
2εN

1+εN∑
y=1

x−1∑
z=y

∫
(
√
f(η)−

√
f(ηz,z+1))2dνNα

+
1

2A

N−1∑
x=εN

Θ−x
2εN

1+εN∑
y=1

x−1∑
z=y

∫
(
√
f(η) +

√
f(ηz,z+1))2(η(z + 1)− η(z))2dνNα .

(124)

By neglecting the jumps of size bigger than one, we see that

∑
z∈ΛN

∫ (√
f(η)−

√
f(ηz,z+1)

)2

dνNα ≤ C DN,0(
√
f, νNα ).

Therefore, by using also (89), the first term at the right hand side of (124) can
be bounded from above by

A

4

N−1∑
x=εN

Θ−x
∑
z∈ΛN

∫ (√
f(η)−

√
f(ηz,z+1)

)2

≤ CADN,0(
√
f, νNα ). (125)

Recall (116) and observe that

DN (
√
f, νNα ) ≥ DN,0(

√
f, νNα ).

Then we choose the constant A in the form A = CN/B for some constant C.
Moreover, for this choice of A, we can bound from above the last term at the
right hand side of (124) by (use Lemma 5)

B

N

N−1∑
x=εN

Θ−x
1

2εN

εN∑
y=1

x−1∑
z=y

∫
(
√
f(η) +

√
f(ηz,z+1))2(η(z + 1)− η(z))2dνNα

≤ C B
N

∑
x∈ΛN

xΘ−x

(126)



Hydrodynamics for symmetric exclusion 65

which vanishes as N →∞ by (116). Note that the previous result holds for any
ε > 0. Now we analyse the case when x ≤ εN − 1. In that case, we write

〈η(x)−−→η εN (1), f〉νNα =
1

1 + εN

εN∑
y=1

∫
(η(x)− η(y))f(η) dνNα

=
1

εN

x−1∑
y=1

x−1∑
z=y

∫
(η(z + 1)− η(z))f(η) dνNα

− 1

εN

1+εN∑
y=x+1

y−1∑
z=x

∫
(η(z + 1)− η(z))f(η) dνNα .

and the same estimates as before give that there exists a constant C > 0 such
that for any A > 0,

εN−1∑
x=1

Θ−x 〈η(x)−−→η εN (1), f〉νNα ≤ C

[
ADN (

√
f, νNα ) +

εN

A

εN−1∑
x=1

Θ−x

]
.

Recall (116) and (89). Then, we choose A = N/ 8CB and the result follows. ut

Remark 17. We note that above, if we change in the statement of the lemma
Θ−x by r−N (resp. Θ+

x by r+
N ) then the same result holds by performing exactly

the same estimates as above, because what we need is that∑
x∈ΛN

Θ±x < +∞ and
1

N

∑
x∈ΛN

xΘ±x →N→+∞ 0 (127)

which also holds for r±N instead of Θ±x since γ > 2.

Remark 18. Let us see now what the previous lemma says when p(1) = p(−1) =
1
2 . In this case we note that we have the same estimate as in (121), see 2. in
Remark 16 and also note that Θ−x 6= 0 for x = 1 and Θ−x = 0 for x 6= 1.
Moreover, Θ−1 = p(1) = 1

2 , so that the result above reads as

lim
ε→0

lim
N→∞

EIPµN

[∣∣∣ ∫ t

0

(ηsN2(1)−−→η εNsN2(1)) ds
∣∣∣] = 0.

lim
ε→0

lim
N→∞

EIPµN

[∣∣∣ ∫ t

0

(ηsN2(N − 1)−←−η εNsN2(N − 1)) ds
∣∣∣] = 0.

A.4 Fixing the profile at the boundary

Let Q be a limit point of the sequence {QN}N≥1 and assume, without lost of
generality, that {QN}N≥1 converges to Q, as N → +∞. In this section we prove
that for the model of Section 3 if θ ∈ [1−γ, 1) (and also for the model of Section
2 when θ < 0) that the profile satisfies ρt(0) = α and ρt(1) = β for t ∈ (0, T ] a.e.
We present the proof for ρt(0) = α but the other case is completely analogous.
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Recall (49). Observe that

EIPµN

[∣∣∣ ∫ t

0

(−→η εNsN2(1)− α) ds
∣∣∣] = EQN

[∣∣∣ ∫ t

0

(〈πs, ι0ε〉 − α) ds
∣∣∣]

where ι0ε(·) = ε−1 1(0,ε)(·). Therefore we have that for any δ > 0,

QN

[∣∣∣ ∫ t

0

(〈πs, ι0ε〉 − α) ds
∣∣∣ > δ

]
≤ δ−1EIPµN

[∣∣∣ ∫ t

0

(−→η εNsN2(1)− α) ds
∣∣∣] .

Note that ι0ε is not a continuous function so the set{
π ;
∣∣∣ ∫ t

0

(〈πs, ι0ε〉 − α) ds
∣∣∣ > δ

}
is not an open set in the Skorohod topology, but, a simple argument as we did
in Section 2.10 allows to overcome the problem. Therefore, by Portemanteau’s
Theorem we conclude that

Q

[∣∣∣ ∫ t

0

(〈πs, ι0ε〉 − α) ds
∣∣∣ > δ

]
≤ δ−1 lim inf

N→∞
EIPµN

[∣∣∣ ∫ t

0

(−→η εNsN2(1)− α) ds
∣∣∣] .

Now, if we are able to prove that the right hand side of the previous inequality is
zero, since we have that Q a.s. πs(dq) = ρs(q)dq with ρs(·) a continuous function
in 0 for a.e. s, by taking the limit ε → 0, we can deduce that Q a.s. ρs(0) = α
for s a.e. The result follows from the next lemma.

Lemma 8. For any t ∈ [0, T ] we have that

lim
ε→0

lim
N→∞

EIPµN

[∣∣∣ ∫ t

0

(−→η εNsN2(1)− α) ds
∣∣∣] = 0,

lim
ε→0

lim
N→∞

EIPµN

[∣∣∣ ∫ t

0

(←−η εNsN2(N − 1)− β) ds
∣∣∣] = 0.

To prove last lemma we use a two step procedure. First we replace, when inte-
grated in time, ηsN2(1) by α and then we replace ηsN2(1) by −→η εNsN2(1). This is
the content of the next two lemmas.

Lemma 9. For γ > 1, for 1− γ ≤ θ < 1 and for t ∈ [0, T ] we have that

lim
N→∞

EIPµN

[∣∣∣ ∫ t

0

(ηsN2(1)− α) ds
∣∣∣] = 0,

lim
N→∞

EIPµN

[∣∣∣ ∫ t

0

(ηsN2(N − 1)− β) ds
∣∣∣] = 0.

Proof. We give the proof for the first display, but we note that for the other one
it is similar. Fix a Lipschitz profile ρ(·) such that α = ρ(0) ≤ ρ(·) ≤ ρ(1) = β
and ρ(·) is γ

2 -Hölder at the boundary. From (114) that we know that

N

B
〈LN

√
f,
√
f〉νN

ρ(·)
≤− N

4B
DN (

√
f, νNρ(·)) +

C

B
σ2 +

Cκ log(N)

BNγ+θ+1
. (128)
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By the entropy inequality, for any B > 0, the previous expectation is bounded
from above by

H(µN |νNρ(·))
BN

+
1

BN
logEIP

νN
ρ(·)

[
e
BN

∣∣∣ ∫ t0 (ηsN2 (1)−α) ds

∣∣∣]
.

By (107), Jensen’s inequality and the Feynman-Kac’s formula and noting, as we
did in the last proof, that we can remove the absolute value inside the exponen-
tial, last display can be estimated from above by

C0

B
+ t sup

f

{
〈η(1)− α, f〉νN

ρ(·)
− N

4B
DN (

√
f, νNρ(·)) +

C

B
σ2 +

Cκ

BNγ+θ−1

}
,

(129)
where the supremum is carried over all the densities f(·) with respect to νNρ(·).

By Lemma 6, since ρ(·) is γ
2 -Hölder at the boundaries, for any A > 0, the first

term in the supremum in (129) is bounded from above by

C

[
1

A
Iα1 (
√
f, νNρ(·)) +A+

1

Nγ/2

]
for some constant C > 0 independent of f(·) and A. Moreover from (114), since

DN (
√
f, νNρ(·)) ≥ DN,b(

√
f, νNρ(·))

and γ + θ − 1 > 0, by choosing A = 4C(p(1))−1BNθ−1, we get then that the
expression inside the brackets in (129) is bounded from above by

4C2BN
θ−1

p(1)
+

C

Nγ/2
+
C

B
.

Now if p(1) 6= 0, then the proof follows by sending first N → ∞ and then
B → ∞. For γ + θ − 1 = 0 the same proof as above holds, the only difference
is that we use a Lipschitz profile ρ(·) such that α = ρ(0) ≤ ρ(·) ≤ ρ(1) = β and
ρ(·) is γ+1

2 -Hölder at the boundaries. From (115) that we know that

N

B
〈LN

√
f,
√
f〉νN

ρ(·)
≤− N

4B
DN (

√
f, νNρ(·)) +

C

B
σ2 +

Cκ

B
, (130)

and with last bound and the previous argument the proof ends.

Remark 19. The previous lemma tells us that for the model of Section 2 and for
θ < 1 and t ∈ [0, T ] we have that

lim
N→∞

EIPµN

[∣∣∣ ∫ t

0

(ηsN2(1)− α) ds
∣∣∣] = 0,

lim
N→∞

EIPµN

[∣∣∣ ∫ t

0

(ηsN2(N − 1)− β) ds
∣∣∣] = 0.

Note that the previous proof follows since we have the bound (117) and in this
model p(1) = 1

2 .
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Remark 20. We note that for the case where p(1) = 0 above what we have to do
is to use the two step procedure with a point z such that p(z) 6= 0, from where
we get that:

lim
N→∞

EIPµN

[∣∣∣ ∫ t

0

(ηsN2(z)− α) ds
∣∣∣] = 0

and the same result holds by changing α to β.

Now we prove the second part of the two step procedure.

Lemma 10. For 1− γ ≤ θ < 1 and t > 0 we have that

lim
ε→0

lim
N→∞

EIPµN

[∣∣∣ ∫ t

0

−→η εNsN2(1)− ηsN2(1) ds
∣∣∣] = 0,

lim
ε→0

lim
N→∞

EIPµN

[∣∣∣ ∫ t

0

←−η εNsN2(N − 1)− ηsN2(N − 1) ds
∣∣∣] = 0.

(131)

Proof. We present the proof of the first item, but we note that for the second
it is exactly the same. When γ + θ − 1 > 0, we fix a Lipcshitz profile ρ(·) such
that α = ρ(0) ≤ ρ(·) ≤ ρ(1) = β, and ρ(·) is γ

2 -Hölder at the boundaries, when

γ + θ − 1 = 0, the Holder regularity at the boundary is γ+1
2 . Since we imposed

the same conditions as in the previous lemma in the profile ρ(·) then in this case
(128) and (130) holds. From now on we suppose that γ + θ − 1 > 0, the other
case is completely analogous. By the entropy and Jensen’s inequalities, for any
B > 0, the previous expectation is bounded from above by

H(µN |νNρ(·))
BN

+
1

BN
logEIP

νN
ρ(·)

[
e
BN

∣∣∣ ∫ t0 −→η εNsN2 (1)−ηsN2 (1) ds

∣∣∣]
.

By (107), the Feynman-Kac’s formula, and using the same argument as in the
proof of the previous lemma, the estimate of the previous expression can be
reduced to bound

C0

B
+ t sup

f

{1

`

`+1∑
y=2

|〈η(y)− η(1), f〉νN
ρ(·)
| − N

4B
DN (

√
f, νNρ(·)) +

C

B
σ2 +

Cκ log(N)

BNγ+θ−1

}
,

(132)

where ` = εN . As above, the supremum is carried over all the densities f(·) with
respect to νNρ(·). Note that since y ∈ ΛN we know that

η(y)− η(1) =

y−1∑
z=1

(η(z + 1)− η(z)).

Observe now that∫
(η(z + 1)− η(z))f(η)dνNρ(·) =

1

2

∫
(η(z + 1)− η(z))(f(η)− f(ηz,z+1))dνNρ(·)

+
1

2

∫
(η(z + 1)− η(z))(f(η) + f(ηz,z+1))dνNρ(·).
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By using the fact that for any a, b ≥ 0, (a − b) = (
√
a −
√
b)(
√
a +
√
b) and

Young’s inequality, we have, for any positive constant A, that

1

`

`+1∑
y=2

|〈η(y)− η(1), f〉νN
ρ(·)
|

≤ 1

2A`

`+1∑
y=2

y−1∑
z=1

∫
(η(z + 1)− η(z))2

(√
f(η) +

√
f(ηz,z+1)

)2

dνNρ(·)

+
A

2`

`+1∑
y=2

y−1∑
z=1

∫ (√
f(η)−

√
f(ηz,z+1)

)2

dνNρ(·)

+
1

2`

`+1∑
y=2

∣∣∣∣∣
y−1∑
z=1

∫ (
η(z + 1)− η(z)

) (
f(η) + f(ηz,z+1)

)
dνNρ(·)

∣∣∣∣∣ .
(133)

Now, we neglect jumps of size bigger than one as we did below (124), from where
we get that the second term on the right hand side of (133) is bounded from
above by CADN (

√
f, νNρ(·)) where C is a positive constant independent of A, `, f .

Then, for the choice A = N(4BC)−1 and since γ + θ − 1 ≥ 0, we can bound
from above (132) by

2BC

N`

`+1∑
y=2

y−1∑
z=1

∫
(η(z + 1)− η(z))2

(√
f(η) +

√
f(ηz,z+1)

)2

dνNρ(·)

+
1

2`

`+1∑
y=2

∣∣∣∣∣
y−1∑
z=1

∫ (
η(z + 1)− η(z)

) (
f(η) + f(ηz,z+1)

)
dνNρ(·)

∣∣∣∣∣+
C ′

B

≤C
(B`
N

+
1

B
+

1

2`

`+1∑
y=2

∣∣∣ y−1∑
z=1

∫ (
η(z + 1)− η(z)

) (
f(η) + f(ηz,z+1)

)
dνNρ(·)

∣∣∣)
(134)

for some constant C. For the last inequality we used Lemma 5. Observe that
B`/N = Bε vanishes as ε→ 0. It remains to estimate the third term on the right
hand side of the last inequality. For that purpose we make a similar computation
to the one of Lemma 6 from where we get that

y−1∑
z=1

∣∣∣∣∫ (η(z + 1)− η(z))(f(η) + f(ηz,z+1))dνNρ(·)

∣∣∣∣ ≤ C y−1∑
z=1

∣∣∣ρ( z+1
N

)
− ρ
(
z
N

))∣∣∣.
Since ρ(·) is Lipschitz, by (134), this estimate provides an upper bound for (132)
which is in the form of a constant times

B`

N
+

1

B
+

1

N`

`+1∑
y=2

y ≤ Bε+B−1 + ε

which vanishes, as ε→ 0 and then B →∞. This ends the proof. ut
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9. Franco, T., Gonçalves, P. and Neumann, A.: Non-equilibrium and stationary fluctu-
ations for a slowed boundary symmetric exclusion process, to appear in Stochastic
Processes and their Applications.
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