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Directed Random Graphs

Consider a random graph on vertex set Z with edges
between any pair of vertices (i, j), i, j ∈ Z, present with
probability p independently of the other edges.
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Directed Random Graphs

Consider a random graph on vertex set Z with edges
between any pair of vertices (i, j), i, j ∈ Z, present with
probability p independently of the other edges.
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Direct each edge (i, j) from min(i, j) to max(i, j).
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A path π is an increasing subsequence of vertices
π = (i0, i1, . . . , i`) successively connected by edges. The
number of edges, ` = |π|, is the length of the path.
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Define

L (i, j) := the maximum length of all paths with

vertices between i and j.
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Skeleton points

Definition: A vertex i of the directed random graph G is
called skeleton point if for any i′ < i < i′′, there is a path
from i′ to i and a path from i to i′′.

Let S be the set of all skeleton points. Denote its
elements as

· · · < Γ−1 < Γ0 ≤ 0 < Γ1 < Γ2 < · · · .

{Γr+1 − Γr , r ∈ Z} are independent random variables,
whereas {Γr+1 − Γr , r , 0} are i.i.d.

The sequence forms a stationary renewal process with
rate

λ :=
1

E(Γ2 − Γ1)
=

∞∏
k=1

(1 − (1 − p)k )2.
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For all integers m < n,

L(Γm, Γn) = L(Γm, Γm+1)+L(Γm+1, Γm+2)+· · ·+L(Γn−1, Γn).
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For all integers m < n,
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Let Φ(n) = max{k ∈ Z : Γk ≤ n}. Then we can write

L(0, n) = L(0, Γ1) +

Φ(n)∑
i=2

L(Γi−1, Γi) + L(ΓΦ(n), n).
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Theorem: (Denisov et al., 2012)

Let

C = lim
n→∞

L(0, n)

n
a.s.

and
σ2 = Var[L(Γ1, Γ2) − C(Γ2 − Γ1)].

Then(
L(0, bntc) − Cnt

σ
√

nλ
, t ≥ 0

)
d
→ (Bt , t ≥ 0) as n → ∞,

where (Bt , t ≥ 0) is standard Brownian motion.



Outline
• Directed Random

Graphs
− Directed Random Graph on Z

− Directed Random Graph on
Z × {1, 2, . . . ,m}

• Convergence to the
Tracy-Widom
Distribution
− Convergence to the

Tracy-Widom Distribution

− Last-Passage Directed
Percolation

− Directed Random Graph on
Z × Z

Katja Trinajstić
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Random Directed Slab Graph

For a fixed integer m, let Gm be a random graph with
vertices Z × {1, 2, . . . ,m} and with edge probability p.

Direct the edges according to the product order of the
labels: (i1, i2) ≺ (j1, j2) if the two pairs are distinct and
i1 ≤ i2, j1 ≤ j2.
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28 May 2014

Random Directed Slab Graph

For a fixed integer m, let Gm be a random graph with
vertices Z × {1, 2, . . . ,m} and with edge probability p.

Direct the edges according to the product order of the
labels: (i1, i2) ≺ (j1, j2) if the two pairs are distinct and
i1 ≤ i2, j1 ≤ j2.

●

●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

●



Outline
• Directed Random

Graphs
− Directed Random Graph on Z

− Directed Random Graph on
Z × {1, 2, . . . ,m}

• Convergence to the
Tracy-Widom
Distribution
− Convergence to the

Tracy-Widom Distribution

− Last-Passage Directed
Percolation

− Directed Random Graph on
Z × Z

Katja Trinajstić
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Skeleton points

The restriction of Gm onto Z × {j} is a directed random
graph.

Definition: Point i is a skeleton “point” if (i, j) is a
skeleton point of the restriction of Gm onto Z × {j} for all
j ∈ {1, 2, . . . ,m} and if for all j ∈ {1, 2, . . . ,m − 1} there is
an edge between (i, j) and (i, j + 1).
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Denote the points of the skeleton by

· · · < Γ−1 < Γ0 ≤ 0 < Γ1 < Γ2 < · · · .
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Denote by Ln,m the maximum length of all paths of the
graph Gm restricted to {0, . . . , n} × {1, . . . ,m}.
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L∗n,m := max
1=i1<i2···<im<im+1=Φ(n)

m∑
j=1

L (j)[Γij , Γij+1 ].
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Theorem: (Denisov et al., 2012)

Let

C = lim
n→∞

Ln,1

n
a.s.

and
σ2 = Var[L (1)(Γ1, Γ2) − C(Γ2 − Γ1)].

Then
Ln,m − Cn

σ
√

nλ

d
→ Z1,m as n → ∞,

where Z•,m is a random variable defined in terms of m
independent standard Brownian motions, B(1), . . . ,B(m),
via the formula

Z1,m := sup
0=t0<t1···<tm−1<tm=1

m∑
j=1

[B(j)
tj
− B(j)

tj−1
], t ≥ 0.
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Brownian Directed Percolation
Let (B(r), r ≥ 1) be a sequence of independent standard
Brownian motions and for any t ≥ 0 and m ≥ 1 define

Zt ,m := sup
0=t0<t1···<tm−1<tm=t

m∑
j=1

[B(j)
tj
− B(j)

tj−1
].

●

●

0 tt1 t2 t3

By Brownian scaling, Zt ,m/
√

t has the same law as Z1,m.
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Denote by λm the largest eigenvalue of the random
m ×m matrix from GUE.

Theorem: (Baryshnikov, 2001) The random variable Z1,m

has the same law as λm.

Theorem: (Tracy and Widom, 1994)

m
1
6
(
λm − 2

√
m

) d
→ FTW as m → ∞.

Using that for arbitrary t > 0 it holds Zt ,m/
√

t d
= λm, we

get

m1/6
(
Zt ,m
√

t
− 2
√

m
)

d
→ FTW as m → ∞.

Upon setting m = btac, we have

ta/6
(
Zt ,btac
√

t
− 2
√

ta

)
d
→ FTW as t → ∞.



Outline
• Directed Random

Graphs
− Directed Random Graph on Z

− Directed Random Graph on
Z × {1, 2, . . . ,m}

• Convergence to the
Tracy-Widom
Distribution
− Convergence to the

Tracy-Widom Distribution

− Last-Passage Directed
Percolation

− Directed Random Graph on
Z × Z

Katja Trinajstić
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Theorem: (Konstantopoulos and T., 2013)
Consider the directed random graph on Z × Z and let Ln,m

be the maximum length of all paths between two vertices
in {0, 1, . . . , n} × {1, 2, . . . ,m}. Then, for all 0 < a < 3/14,

na/6
(
Ln,bnac − Cn
√
λσ2n

− 2
√

na

)
d
→ FTW as n → ∞.
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Last-Passage Directed Percolation

●

●

Let Π (n, k) be the set of all up-right paths π in Z2
+ from

(1, 1) to (n, k) and let {ω(r)
i , i ≥ 1, r ≥ 1} be i.i.d. random

variables.
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Last-Passage Directed Percolation

●

●

(1,1)

(11,6)

Let Π (n, k) be the set of all up-right paths π in Z2
+ from

(1, 1) to (n, k) and let {ω(r)
i , i ≥ 1, r ≥ 1} be i.i.d. random

variables.

The last passage time to the point (n, k) is defined by

T (n, k) = max
π∈Π(n,k)

∑
(i,r)∈π

ω
(r)
i .
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Examples

I If {ω(r)
i , i ≥ 1, r ≥ 1} are exponentially or

geometrically distributed random variables. Then for
any γ ≥ 1, T (n, bγnc) appropriately
rescaled/centered converges to the Tracy-Widom
distribution. (Johansson, 2000)

I If {ω(r)
i , i ≥ 1, r ≥ 1} are i.i.d. random variables such

that E |ω(1)
1 |

p < ∞ for some p > 2. Then for all a such
that 0 < a < 6

7 (1/2 − 1/p), T (n, bnac) appropriately
rescaled/centered converges to the Tracy-Widom
distribution. (Bodineau and Martin, 2005)
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Skeleton points

Let G be the random graph on Z × Z and G(j) its
restriction on Z × {j}.

Definition: A vertex (i, j) of the directed random graph
G is called skeleton point if it is a skeleton point for G(j)

(for any i′ < i < i′′, there is a path from (i′, j) to (i, j) and a
path from (i, j) to (i′′, j)) and if there is an edge from (i, j)
to (i, j + 1).

Denote the skeleton points on line j as

· · · < Γ
(j)
−1 < Γ

(j)
0 ≤ 0 < Γ

(j)
1 < Γ

(j)
2 < · · · .
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Upper bound

Let X (j)(t) := Γ
(j)
Φ(j)(t)

and Y (j)(t) := Γ
(j)
Φ(j)(t)+1

.

●

●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

It holds
Ln,m ≤ Ln,m

where

Ln,m := sup
0=t0<t1···<tm−1<tm=n

m∑
j=1

L (j)[X (j)(tj−1), Y (j)(tj)] + m.



Outline
• Directed Random

Graphs
− Directed Random Graph on Z

− Directed Random Graph on
Z × {1, 2, . . . ,m}

• Convergence to the
Tracy-Widom
Distribution
− Convergence to the

Tracy-Widom Distribution

− Last-Passage Directed
Percolation

− Directed Random Graph on
Z × Z

Katja Trinajstić
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Upper bound

Let X (j)(t) := Γ
(j)
Φ(j)(t)

and Y (j)(t) := Γ
(j)
Φ(j)(t)+1

.

●

●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ●

● ●

● ●

● ●

X(t)(1) Y(t)(1)t0 t1

X(t)(2) Y(t)(2)t1 t2

X(t)(3) Y(t)(3)t2 t3

X(t)(4) Y(t)(4)t3 t4

It holds
Ln,m ≤ Ln,m

where

Ln,m := sup
0=t0<t1···<tm−1<tm=n

m∑
j=1

L (j)[X (j)(tj−1), Y (j)(tj)] + m.
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Lower bound
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It holds
Ln,m ≥ Ln,m

where

Ln,m := sup
0=t0<t1···<tm−1<tm=n

m∑
j=1

L (j)[Y (j)(tj−1), X (j)(tj)]

−

m∑
j=1

max
0≤i≤Φ(j)(n)

(Γ
(j)
i+1 − Γ

(j)
i )
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Lower bound
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Centering

We introduce the quantity

Sn,m := sup
0=t0<t1···<tm−1<tm=n

m∑
j=1

{
L (j)[X (j)(tj−1),X (j)(tj)]

−C[X (j)(tj) − X (j)(tj−1)]

}
.

which can be rewritten as

1
σ

Sn,m = sup
0=t0<t1···<tm−1<tm=n

m∑
j=1

Φ(j)(tj)∑
k=Φ(j)(tj−1)+1

χ
(j)
k ,

where

χ
(j)
k :=

1
σ

{
L (j)[Γ

(j)
k−1, Γ

(j)
k ] − C(Γ

(j)
k − Γ

(j)
k−1)

}
.

The term 1
σSn,m resembles a last passage percolation

path weight, except that random indices are involved.
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Lemma: For a < 3/7

Sn,bnac − (Ln,bnac − Cn)

n1/2−a/6

p
→ 0 as n → ∞.
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Recall that

na/6
(
Zn,bnac
√

n
− 2
√

na

)
d
→ FTW as n → ∞.

Thus, to show

na/6
(
Ln,bnac − Cn
√
λσ2n

− 2
√

na

)
d
→ FTW as n → ∞

it remains to prove

σ−1Sn,bnac − Zλn,bnac

n1/2−a/6

p
→ 0 as n → ∞.



Outline
• Directed Random

Graphs
− Directed Random Graph on Z

− Directed Random Graph on
Z × {1, 2, . . . ,m}

• Convergence to the
Tracy-Widom
Distribution
− Convergence to the

Tracy-Widom Distribution

− Last-Passage Directed
Percolation

− Directed Random Graph on
Z × Z

Katja Trinajstić
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Coupling with Brownian motion

The difference between σ−1Sn,m and Zλn,m can be
bounded by

|σ−1Sn,m − Zλn,m | ≤ 2
m∑

j=1

U(j)
n + 2

m∑
j=1

V (j)
n

where

U(j)
n := max

0≤i≤n

∣∣∣ i∑
k=1

χ
(j)
k −B(j)

i

∣∣∣, V (j)
n := sup

0≤s≤n

∣∣∣B(j)
Φ(j)(s)

−B(j)
λs

∣∣∣.
Using Komlós-Major-Tusnády strong approximation result
we construct jointly the RW’s and BM’s such that

1
n1/2−a/6

∑bnac

j=1 U(j)
n → 0.

To show 1
n1/2−a/6

∑bnac

j=1 V (j)
n → 0 we used a version of the

Baum-Katz theorem for the counting process.
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Thank you for your attention!
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