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Univariate limits

e for sums of i.i.d. random variables {X,}* ;
(with finite second moments)

S X — D
Zik=17k T N P N(0,1) as n — o0
a\/n

e for maxima of i.i.d. random variables {X,}7_;
(if the limit exists and is non-degenerate)

max}_ X — b D _
k=17 k n 1/~

o Gy(x) =exp(—(1+x). ")

v <0 Weibull v=0 Gumbel v >0 Fréchet
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Multivariate limits

o for sums of i.i.d. random vectors {X("}*  in R™
(with finite second moments)

S XK —pp D -
# — N (o, (Iofj)i,j:1) as n — o

o for maxima of i.i.d. random vectors {X(M}% in R™

(if the limit exists and has std. Fréchet margins)

maxg_y X —bn D Gr(x) = exp l—f _max (a,-) H(da)]
S m

an

for some positive Radon measure H on S, = {ae R7 : ||a|| = 1}
(= the spectral measure)
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Example: Spectral measures for m = 3

X = (X1, X0, X3) ~ Gu(x) = exp l—L max (%’) H(da)] }

X1=X=X3 X1, X, X3 independent X1 = Xo,
but X3 independent

H =3m H=da+ 65+ dc H =26y + 0¢

X3 X3

Cq

X2

X1 X1
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Processes

Centered Gaussian processes {X;}eT

Vtr,....tme T (Xy,..., X)) ~N(O,(C(t;, £7))]_1)

@ can arise as distributional limits of normalized sums of stochastic
processes

Simple max-stable processes {X;}:cT

th,...,tmET (th""’Xtm)NGH(tl

@ arise as distributional limits of normalized maxima of stochastic
processes
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Extremal coefficients
and

Tawn-Molchanov processes
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Summary statistics in extreme value analysis

Problem: Correlation function and higher moments

@ do not always exist.

@ are not appropriate for an extreme value context.
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Summary statistics in extreme value analysis

Problem: Correlation function and higher moments

@ do not always exist.

@ are not appropriate for an extreme value context.

Appropriate summary statististics:

@ extreme value index

@ extremal index (time series)

@ extremal coefficient function (ECF)
@ extremogram

@ tail correlation function

@ Pickands dependence function

@ mean excess function
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Extremal coefficient function (ECF)

The extremal coefficient function (ECF) 0: F(T) - R
of a simple max-stable process {X;}:c7 is given by

P (maxXt < x) = P(X; < x)?M }
teM

@ arguments M = finite subsets of T
e F(T) = set of finite subsets of T

Interpretation

0(M) = effective number of independent variables among {X;}em
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Motivation/Analogy:

Zero mean,
square integrable Covariance C(Z) N o
3| Positive definite
processes Z on T - .
11 functions
[Gaussian processes Z* J4 : ConTxT
z+(C) N
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Situation for ECFs

Simple max-stable (
processes X on T ECF Q(X)‘ Negative definite
' functions
Tawn-Molchanov 1 1:1 0 on F(T) with 6(0) =0
processes X* J4 X*(9) \ and ({t}) =1forte T

\ J
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Situation for ECFs

( Simple max-stable ) (
processes X on T ECF G(X)‘ Negative definite
' functions
Tawn-Molchanov 1 1:1 6 on F(T) with 6(0) =
processes X* J4 X*(9) \ and ({t}) =1forte T

Definition

A function ¢ : F(T) — R is negative definite, if for all n > 1,
{Ki,.... Ko} © F(T) and {ay,...,a,} c Rwith };7 2, =0

Z Z ajakw K U Kk) 0.

j=1k=1
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Tawn-Molchanov processes

Theorem (S. and Schlather '13)

a) Let§: F(T) — R. Then
0 is negative definite,

0isan ECF { 6(®) =0and O({t}) =1forte T.

b) If 6 is an ECF, then there exists a simple max-stable process
X* ={X*}ter on T with ECF 0. X* has f.d.d.

1
—logP(X} < x;, te M) = M () max —,
(Z);é;c:M tel X
where t'(8) = DL (=1)H6((M\L) v ).

IcL

X* = {X}}teT = Tawn-Molchanov process associated to the ECF 6
[Coles and Tawn '96, Schlather and Tawn '02, Molchanov '08]

12 /22



Continuity

The Tawn-Molchanov process X* = {X*};c7 with ECF 0 satisfies

& S

P(XF - X > €) <2 [1 e (—W)] <2 po((s. ) - 1.

Theorem (S. and Schlather '13)

Let X* = {X}eT be a Tawn-Molchanov process on a metric space T.
Then the following statements are equivalent:

(i) X* is stochastically continuous.
(ii

) 6 is continuous.
(iii) The bivariate map (s, t) — 6({s, t}) is continuous.
)

(iv) The bivariate map (s, t) — 6({s, t}) is continuous on the diagonal.

v
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Spectral measure of the f.d.d.

Reference sphere
S ={aeRY: |a|s =1}

H= > |LIr}(0) ey,
VAL M
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Spectral measure of the f.d.d.

Reference sphere Reference sphere
Sy ={aeRT: [lall =1} Sy ={a€Ry: |lall. =1}
H= > LT (6) be ) H= >, 7(6)6.

0#LcM 0#LcM
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Spectral representation
of the Tawn-Molchanov process

Theorem (S. and Schlather '13)

Any Tawn-Molchanov process X* = {X{};c7 has a
spectral representation (2, A, v, V), where

e (2, A,v) is a Radon measure on the Cantor cube
2 =1{0,137\{1,}

and its Borel-o-algebra A.
o Vi(w) = w(t).
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A sharp lower bound
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A sharp inequality

( Simple max-stable ) ( .
processes X on T ECF G(X)¥ Neg?tlve definite
~ unctions
Tawn-Molchanov 1 1:1 6 on F(T) with 6(0) =0
processes X* J< X*(8) and ({t}) =1forte T

17 /22



A sharp inequality

( Simple max-stable ) ( .
processes X on T ECF G(X)‘ Neg?tlve definite
~ unctions
Tawn-Molchanov 1 1:1 6 on F(T) with 6(0) =0
processes X* J< X*(8) and ({t}) =1forte T

Theorem (S. and Schlather '13)

Among all simple max-stable processes X with fixed ECF 6 the
Tawn-Molchanov processe X* gives a sharp lower bound for the f.d.d.
P(Xy, < x1,..., X, < xm) = PXJ

1
[ _/

lev---thiSXm)

depending only on x € RY and 6
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A sharp inequality

Example:

The following inequality holds trivially for (Xs, X;) simple max-stable:

P(Xs < x, X; < y) = P(max(X;, X;) < min(x, y))

()
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A sharp inequality

Example:
The following inequality holds trivially for (Xs, X;) simple max-stable:

P(Xs < x, X; < y) = P(max(Xs, X¢) < min(x, y))

()

The sharp inequality gives an additional factor:

P < x X <) 2 o0 (208 ) o (g - |- ).

min(x, y) y
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A sharp inequality: Geometric idea of proof

[Molchanov '08]:
@ For each simple max-stable distribution function Gy, the function
U(x) = —log Gy(1/x) = j max_x; H(da), x € [0,0)"
S+ =1,..., m

is sublinear and homogeneous.
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A sharp inequality: Geometric idea of proof

[Molchanov '08]:

@ For each simple max-stable distribution function Gy, the function

U(x) = —log Gy(1/x) = J “max x; H(da), x € [0,0)"

S+ i=1,..., m

is sublinear and homogeneous.

@ Therefore, the function ¢ may be expressed as support function of a
compact convex set K < [0, o0)™

0(x) = sup{{x,yy: y e K} x € [0,00)".
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A sharp inequality: Geometric idea of proof

[Molchanov '08]:

@ For each simple max-stable distribution function Gy, the function

U(x) = —log Gy(1/x) = J “max x; H(da), x € [0,0)"

S+ i=1,..., m

is sublinear and homogeneous.

@ Therefore, the function ¢ may be expressed as support function of a
compact convex set K < [0, o0)™

0(x) = sup{{x,yy: y e K} x € [0,00)".

@ /Cis called dependency set C of Gy.
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A sharp inequality: Geometric idea of proof

The dependency set K* of the Tawn-Molchanov process X*
is maximal w.r.t. inclusion when the ECF is fixed.

K = U K.

K dependency set
with the same ECF as k¥

x3
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Max-stable processes

@ arise as distributional limits of suitably normalized maxima of
stochastic processes

Subclass: Tawn-Molchanov processes

@ are in a 1:1 correspondence with extremal coefficient functions

@ yield a sharp lower bound for the f.d.d. of max-stable processes
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