
Introduction
LDP for one-dimensional SDE’s with zero coefficient a

LDP for one-dimensional SDE’s with discontinuous coefficients

Large deviation principle for one-dimensional SDE’s with discontinuous
coefficients.

D. Sobolieva1

1Department of Probability Theory
Kyiv National Taras Shevchenko University

5/26/2014
Young Women in Probability, Bonn, 26-28 May 2014

D.Sobolieva



Introduction
LDP for one-dimensional SDE’s with zero coefficient a

LDP for one-dimensional SDE’s with discontinuous coefficients

Outline

1 Introduction

2 LDP for one-dimensional SDE’s with zero coefficient a

3 LDP for one-dimensional SDE’s with discontinuous coefficients

D.Sobolieva



Introduction
LDP for one-dimensional SDE’s with zero coefficient a

LDP for one-dimensional SDE’s with discontinuous coefficients

Large deviation principle

Let (X, ρ) be a complete separable metric space with X-valued random variables Xn,
n ≥ 1.
We say that family {Xn} satisfies large deviation principle (LDP) with rate function
I : X→ [0,∞] if, for each opened set A,

lim inf
n→∞

1

n
logP {Xn ∈ A} ≥ − inf

x∈A
I(x), (1)

and, for each closed set B,

lim sup
n→∞

1

n
logP {Xn ∈ B} ≤ − inf

x∈B
I(x). (2)

If (1) holds and (2) holds for each compact set B only then family {Xn} satisfies weak
LDP. If each level set {x : I(x) ≤ a} , a ≥ 0, is compact rate functional I is called
“good”.

D.Sobolieva



Introduction
LDP for one-dimensional SDE’s with zero coefficient a

LDP for one-dimensional SDE’s with discontinuous coefficients

Large deviation principle

Let (X, ρ) be a complete separable metric space with X-valued random variables Xn,
n ≥ 1.
We say that family {Xn} satisfies large deviation principle (LDP) with rate function
I : X→ [0,∞] if, for each opened set A,

lim inf
n→∞

1

n
logP {Xn ∈ A} ≥ − inf

x∈A
I(x), (1)

and, for each closed set B,

lim sup
n→∞

1

n
logP {Xn ∈ B} ≤ − inf

x∈B
I(x). (2)

If (1) holds and (2) holds for each compact set B only then family {Xn} satisfies weak
LDP. If each level set {x : I(x) ≤ a} , a ≥ 0, is compact rate functional I is called
“good”.

D.Sobolieva



Introduction
LDP for one-dimensional SDE’s with zero coefficient a

LDP for one-dimensional SDE’s with discontinuous coefficients

Large deviation principle

Let (X, ρ) be a complete separable metric space with X-valued random variables Xn,
n ≥ 1.
We say that family {Xn} satisfies large deviation principle (LDP) with rate function
I : X→ [0,∞] if, for each opened set A,

lim inf
n→∞

1

n
logP {Xn ∈ A} ≥ − inf

x∈A
I(x), (1)

and, for each closed set B,

lim sup
n→∞

1

n
logP {Xn ∈ B} ≤ − inf

x∈B
I(x). (2)

If (1) holds and (2) holds for each compact set B only then family {Xn} satisfies weak
LDP. If each level set {x : I(x) ≤ a} , a ≥ 0, is compact rate functional I is called
“good”.

D.Sobolieva



Introduction
LDP for one-dimensional SDE’s with zero coefficient a

LDP for one-dimensional SDE’s with discontinuous coefficients

Large deviation principle

Let (X, ρ) be a complete separable metric space with X-valued random variables Xn,
n ≥ 1.
We say that family {Xn} satisfies large deviation principle (LDP) with rate function
I : X→ [0,∞] if, for each opened set A,

lim inf
n→∞

1

n
logP {Xn ∈ A} ≥ − inf

x∈A
I(x), (1)

and, for each closed set B,

lim sup
n→∞

1

n
logP {Xn ∈ B} ≤ − inf

x∈B
I(x). (2)

If (1) holds and (2) holds for each compact set B only then family {Xn} satisfies weak
LDP. If each level set {x : I(x) ≤ a} , a ≥ 0, is compact rate functional I is called
“good”.

D.Sobolieva



Introduction
LDP for one-dimensional SDE’s with zero coefficient a

LDP for one-dimensional SDE’s with discontinuous coefficients

Large deviation principle

Let (X, ρ) be a complete separable metric space with X-valued random variables Xn,
n ≥ 1.
We say that family {Xn} satisfies large deviation principle (LDP) with rate function
I : X→ [0,∞] if, for each opened set A,

lim inf
n→∞

1

n
logP {Xn ∈ A} ≥ − inf

x∈A
I(x), (1)

and, for each closed set B,

lim sup
n→∞

1

n
logP {Xn ∈ B} ≤ − inf

x∈B
I(x). (2)

If (1) holds and (2) holds for each compact set B only then family {Xn} satisfies weak
LDP. If each level set {x : I(x) ≤ a} , a ≥ 0, is compact rate functional I is called
“good”.

D.Sobolieva



Introduction
LDP for one-dimensional SDE’s with zero coefficient a

LDP for one-dimensional SDE’s with discontinuous coefficients

The model

Consider one-dimensional SDE’s

dXn
t = a(Xn

t )dt+
1√
n
σ(Xn

t )dWt (3)

with initial conditions Xn
0 = x0.

Freidlin, Wentzell’79
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Case a ≡ 0

Let X = C([0,∞)), ρ(f, g) =
∞∑
k=1

1
2k

( sup
t∈[0,k]

|f(t)− g(t)| ∧ 1) and let a ≡ 0.

Theorem 1
Consider such measurable, bounded and separated from zero σ that the set ∆σ of
discontinuity points of σ has zero Lebesgue measure.
Then the family of solutions to (3) satisfies LDP with a good rate function I, which
equals

I(x) =
1

2

∫ ∞
0

(ẋ(t))2

σ2(x(t))
dt

if x ∈ C([0,∞)) is an absolutely continuous function with x(0) = x0, ẋ ∈ L2([0,∞)),
and I(x) =∞ otherwise.
This result was obtained using semicontraction principles (Kulik’05).
Kulik, Soboleva’12
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Case a 6≡ 0

Consider now case a 6≡ 0. X = C[0, T ]. The following result was obtained using Girsanov
theorem on change of measure, Varadhan lemma and Bryc formula (Feng, Kurtz’06) and
Theorem 1.
Theorem 2
Consider X = C([0, T ]). Suppose that assumptions of Theorem 1 hold true and,
additionally, a

σ2 has bounded derivative.
Then the family of solutions to (3) satisfies LDP with a good rate function I, which
equals

I(x) = lim inf
y→x

1

2

∫ T

0

(a(y(t))− ẏ(t))2

σ2(y(t))
dt

if x ∈ C([0, T ]) is an absolutely continuous function with x(0) = x0, ẋ ∈ L2([0, T ]), and
I(x) =∞ otherwise.
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Difference from Freidlin-Wentzell result
Remark.

Rate function in Theorem 2 differs from standart Freidlin-Wentzell result. The reason for
this is that we require rate function to be lower semicontinuous and functional

Q(y) = 1
2

∫ T
0

(a(y(t))−ẏ(t))2
σ2(y(t))

dt, in general, is not lower semicontinuous.

Example. Let T = 1, x0 = 0 and

σ(y) =

{
c1, y < 0

c2, y ≥ 0
, 0 < c1 < c2, a(y) = σ2(y).

Then conditions of Theorem 2 are satisfied. Consider a sequence

yn(t) =

{
− t
n
, t ∈ [0, 1

2
]

− 1
2n
, t ∈ [ 1

2
, 1]

,

we have yn → y0 ≡ 0 as n→∞. For this sequence function Q is equal to

Q(yn) = 1
2

(
c21 + 1

n
+ 1

2n2
1
c21

)
→ c21

2
as n→∞,

Q(y0) = 1
2

∫ 1

0
σ2(0)ds =

c22
2
.

Thus, we obtain lim inf
n→∞

Q(yn) < Q( lim
n→∞

yn), which means that function Q is not lower

semicontinuous.
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