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Let (X, p) be a complete separable metric space with X-valued random variables X",
n > 1.

We say that family { X"} satisfies large deviation principle (LDP) with rate function
I:X — [0, 0] if, for each opened set A,

lim inf - logP{X" € A} > — 11}& I(x), (1)

n—oco N
and, for each closed set B,

1
limsup —log P{X" € B} < — ing I(z). (2)
n zEB

n— 0o

If (1) holds and (2) holds for each compact set B only then family {X™} satisfies weak

LDP. If each level set {z : I(x) < a}, a > 0, is compact rate functional | is called
“good”.
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Consider one-dimensional SDE’s

dX{ = a(X{")dt +
with initial conditions X§ = zo.
Freidlin, Wentzell'79

1 n
%U(Xt )th
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Let X = C(]0,00)), p(f,9) = k2=:1 %(tggpk] |f(t) —g(t)| A1) and let a = 0.

Theorem 1

Consider such measurable, bounded and separated from zero o that the set A, of
discontinuity points of o has zero Lebesgue measure.

Then the family of solutions to (3) satisfies LDP with a good rate function I, which

equals
L[> (@(1)?
I(z) = 7/ M(lt
o 02(z(t))
if z € C([0,00)) is an absolutely continuous function with z(0) = zo, & € L2([0, 00)),
and I(xz) = oo otherwise.

This result was obtained using semicontraction principles (Kulik'05).
Kulik, Soboleva’'12
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Case a =0

Let X = C([0,%0)). p(f.0) = 3= (0 17(0) —g(0) A1) and let 0 = 0.

Theorem 1
Consider such measurable, bounded and separated from zero o that the set A, of

discontinuity points of o has zero Lebesgue measure.
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Consider now case a #Z 0. X = C[0,T]. The following result was obtained using Girsanov

theorem on change of measure, Varadhan lemma and Bryc formula (Feng, Kurtz'06) and
Theorem 1.

Theorem 2

Consider X = C([0,T7]). Suppose that assumptions of Theorem 1 hold true and,
additionally, ~5 has bounded derivative.

Then the family of solutions to (3) satisfies LDP with a good rate function I, which

equals
1 T (ay(®) = 9()?
I(z) =1 f— s T (i
() imin 2/] o2(y (1) C

if z € C([0,T1]) is an absolutely continuous function with z(0) = zo, & € L2([0,77]), and
I(x) = oo otherwise.

yY—ra
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Difference from Freidlin-Wentzell result
Remark.

Rate function in Theorem 2 differs from standart Freidlin-Wentzell result. The reason for
this is that we require rate function to be lower semicontinuous and functional

Qly) =1 fOT %dt in general, is not lower semicontinuous.
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Rate function in Theorem 2 differs from standart Freidlin-Wentzell result. The reason for
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Example. Let T'=1, o = 0 and

c1, <0
o(y) = { S ,0<c <ca, aly) =c(y).
C2, y20

Then conditions of Theorem 2 are satisfied.
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