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What is a McKean Vlasov process?

Roughly speaking, McKean-Vlasov processes or McKean-Vlasov diffusions
are stochastic process which can be described by SDEs of the form
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where B is a standard d-dimensional Brownian motion and L(X
t

) denotes the
marginal distribution of the process X at the time t .

In general one can think of processes which satisfy SDEs of the following form
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These processes are called non-linear diffusions.
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A little bit of history

(a) Mark Kac (b) Anatoly Vlasov

The story of these processes started with a stochastic toy model for the
Vlasov equation of plasma proposed by Mark Kac in his paper "Foundations

of kinetic theory (1956)".
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A little bit of history

In 1966 Henry P. McKean published his seminal paper "A class of Markov

processes associated with non-linear parabolic equations".
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Why these processes are interesting?

Theoretical interest
Existence, Uniqueness and Properties
Mean Fields
Stochastic Control

Connection with non-linear parabolic PDEs
Vlasov equation of plasma
Granular media equation

Applications in several areas
Physics
Finance
Social Interactions
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Starting Simple

For the rest of this talk we are going to assume that the diffusion
coefficient is constant.
Consider non-linear SDE

⇢
dX

t

=
p

2dB

t

+
R
�(X

t

, u)µ
t

(du)dt , X0 given
µ

t

= L(X
t

),
(3)

where � : Rd ⇥ Rd ! Rd is bounded and Lipschitz continuous.
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Generator

Family of generators of the form

L

t

=
1
2

dX

i,j=1

@2

@x

j

@x

i

+
dX

i=1

Z
�

i

(x , y)µ
t

(dy)
@

@x

i

,

for all t � 0.
Martingale Formulation
PDE of the form

@u

@t

(t , x) = L

t

u(t , x), t > 0,

u(0, x) = u0.
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Particle System

A natural way of associating a particle system is to consider one with
mean field interaction.
For each N 2 N consider the particle system

(
dX

i,N
t

=
p

2dB

i

t

+
R
�(X i,N

t

, y)⇧N

t

(dy)dt i = 1, . . . ,N
X

i,N
0 = X0, i = 1, . . . ,N

where

⇧N

t

=
1
N

NX

j=1

�
X

j.N
t

(dx)

Clearly this can be written as follows
(

dX

i,N
t

=
p

2dB

i

t

+
P

N

j=1 �(X
i,N
t

,X j,N
t

)dt i = 1, . . . ,N
X

i,N
0 = X0, i = 1, . . . ,N

(4)

Observe that (4) has a unique solution for every N 2 N.
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Properties

Existence and Uniqueness
Moment Control
Behaviour at Infinity

Existence of a stationary distribution
Uniqueness of the stationary distribution
Speed of convergence towards the invariant distribution

All these properties depend on the assumptions on the coefficient �!
Bounded and Lipschitz continuous
Bounded and Locally Lipschitz
What about unbounded coefficients?
Linear growth, Polynomial growth?
We require additional assumptions!
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An interesting example

Consider equations of the form
⇢

dX

t

=
p

2dB

t

� [rV (X
t

) +rW ⇤ µ
t

(X
t

)]dt , X0 given
µ

t

= L(X
t

),
(5)

where ⇤ denotes the convolution operator.
Provided some regularities on V and W the existence of theses
processes can be proved.
Moreover, it is not difficult to prove that the laws µ

t

, t � 0 are absolutely
continuous and their densities u

t

,� 0 satisfy the so-called granular media
equation

@u

@t

= r · [ru + urV + u(rW ⇤ u)].
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Some work done on this case

1998 - Benachour et al. studied equation (5) with V = 0 in the
one-dimensional case.
2001 - Malrieu studied equation (5) by using a particle system and
propagation of chaos approach.
2008 - Herrmann et al. generalised Benachour et al. results to the
multidimensional case.
2008 - Cattiaux et al. generalised Malrieu’s work.
2014 - Pierre del Moral and Tugaut proved uniform propagation of
chaos for processes of the form (5) with V = 0.
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My Work

Theorem
Let � : Rd ⇥ Rd ! Rd be a function satisfying assumptions (I)- (III) and ⇠ a
probability measure which belongs to P

q

with q = max{m + m1 + 1,m2 + 1}.
Then there exists a unique strong solution to the non-linear stochastic
differential equation

⇢
dX

t

=
p

2dB

t

+
R
�(X

t

, u)µ
t

(du)dt , L(X0) = ⇠ given
µ

t

= L(X
t

).

Moreover, we have
sup

0tT

E[|X
t

|q] < 1,

for all T > 0.
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Final Comments

Our approach consist in the application of a fixed-point argument in an
appropriate space of curves of probability measures.
It was inspired by the work of V. Kolokoltsov [2].
Assumptions (I) and (II) are more or less standard and easy to prove.
Assumption (III) might be difficult to check though.
It is possible to extended this approach to more general non-linear
diffusions.
Work in progress

Behaviour at infinity
Other kinds of non-linear diffusions
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Thank you very much for listening!

D.Santiago@warwick.ac.uk
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