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Bielefeld University

May 26, 2014

YOUNG WOMEN IN PROBABILITY 2014

Diana Puţan (Bielefeld University) Uniqueness Criterion for Gibbs Measures May 26, 2014 1 / 21



The Setting

In this presentation we will focus on a joint work with Yu. Kondratiev, Ju.
Kozicki and T. Pasurek. The main theorem we present is a refinement of a
result obtained by Dobrushin and Pechersky in 1982.

The setting:

• an infinite countable, connected, simple graph G = (E,V)
with finite maximum degree n and chromatic number m;

• a standard Borel space (Ξ,E) ;

• the product space (X,F) := (Ξ,E)V;

• a family π = (πxl )l,x s.t. x 7→ πxl (A) is measurable ∀A ∈ E ;

• the set M(π) of probability measures consistent with π

µ(f) =

∫
X

(∫
Ξ
f(zl × xlc)πxl (dzl)

)
µ(dx).
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The Total Variation Distance

For π, π′ ∈ P(Ξ) define

d(π, π′) := inf
ρ∈C(π,π′)

∫
Ξ2

16=(ξ, η)ρ(dξ, dη),

where C(π, π′) is the set of all couplings of π and π′.
In our case, there exists ρx,yl such that

d(πxl , π
y
l ) =

∫
Ξ2

16=(ξ, η)ρx,yl (dξ, dη),
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Contraction Condition

We denote by Π1(h,K, κ) the class of all families π such that

d(πxl , π
y
l ) ≤

∑
l′∈∂l

κll′16=(xl′ , yl′), ∀l ∈ V and x, y ∈ X(h,K),

where κ = (κll′)l,l′∈V has positive entries and null diagonal such that

κ̄ := sup
l∈V

∑
l′∈∂l

κll′ < 1,

and for a constant K > 0, l ∈ V and a measurable function
h : Ξ→ R+ := [0,+∞), we set

X(h,K) = {x ∈ X : h(xl) ≤ K for all l ∈ V}.
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Integrability Condition

Denote by Π2(h,C, c) the class of families π such that

πxl (h) ≤ C +
∑
l′∈∂l

cll′h(xl′),∀l ∈ V and x ∈ X,

where C > 0 and c = (cll′)l,l′∈V has positive entries and null diagonal such
that

c̄ := sup
l∈V

∑
l′∈∂l

cll′ < 1/nm.

We introduce a new set of measures Mt(π) as the set of measures
µ ∈M(π) for which

sup
l

∫
X
h(xl)µ(dx) <∞.
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The Uniqueness Result

Theorem

There exists K0 > 0 dependent only on n,m,C such that, for all K > K0

and any κ such that κ̄ < 1, for each π ∈ Π1(h,K, κ) ∩Π2(h,C, c), the set
Mt(π) is a singleton at most.
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Idea of the Proof

The proof of the theorem follows immediately from

Lemma

Let µ1, µ2 ∈Mt(π) and ν ∈ C(µ1, µ2) such that∫
X

∫
X
16=(xl, yl)ν(dx, dy) = 0,∀l ∈ V.

Then µ1 = µ2.
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Auxiliary Functionals

For l ∈ V and (x1, x2) ∈ X2, set

Il(x
1, x2) := 16=(x1

l , x
2
l )

and
γ(ν) := sup

l∈V
ν(Il)

for ν ∈ C(µ1, µ2). In order to control the behaviour of γ(ν) one needs to
also introduce

λ(ν) := max
i=1,2

sup
l,l′∈V

ν(IlH
i
l′),

where
H i
l (x

1, x2) := h(xil), i = 1, 2.
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The Reconstruction Transformation

We start from an arbitrary coupling ν0 ∈ C(µ1, µ2) and apply to it
succesively transformations Rl for each l ∈ V, which will yield a coupling
ν∗ with γ(ν∗) = 0.

(Rlν)(f) =

∫
X2

(∫
Ξ2

f(ξ × xlc , η × ylc)ρx,yl (dξ, dη)

)
ν(dx, dy),

It is easy to see that

(Rlν)(Il1) = ν(Il1), (Rlν)(Il1H
i
l2) = ν(Il1H

i
l2) for l 6= l1, l 6= l2.
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Reconstruction in One Site

Lemma

For an arbitrary ν ∈ P(X2), l, l1 ∈ V, with l 6= l1 and i = 1, 2 the
following estimates hold

(Rlν)(IlH
i
l1) ≤

∑
l2∈∂l

ν(Il2H
i
l1),

(Rlν)(Il1H
i
l ) ≤ Cν(Il1) +

∑
l2∈∂l

cll2ν(Il1H
i
l2),

(Rlν)(IlH
i
l ) ≤ C

∑
l1∈∂l

ν(Il1) +
∑

l1,l2∈∂l
cll2ν(Il1H

i
l2),

(Rlν)(Il) ≤
∑
l′∈∂l

κll′ν(Il′) +K−1
∑
i=1,2

∑
l1,l2∈∂l

ν(Il1H
i
l2).
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The Dobrushin-Pechersky Matrix

By applying the reconstruction transformation once at every site l ∈ V one
obtains a coupling ν1 ∈ C(µ1, µ2) such that

(
γ(ν1)
λ(ν1)

)
≤M(K)

(
γ(ν0)
λ(ν0)

)
,

where

M(K) =

(
κ̄+ P (K−1) Q(K−1)

nC nm−1
n−1 + P (K−1) nmc̄+Q(K−1)

)
,

where P , Q are polynomial functions of order m of K−1 with non-negative
coefficients depending on n, C, and m and null free coefficients.
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Decay of Correlations of Gibbs measures

Theorem

Let µ ∈Mt(π), Λ, Λ̃ b V disjoint and f, g : X → R with f ∈ B(ΞΛ̃) and
g ∈ B(ΞΛ) such that |g(x)| ≤

∑
l∈Λ h(xl). Then there exists a constant

K0 such that if π ∈ Π1(h,K0, κ̄) ∩Π2(h,C, c̄) for some κ̄, one can find a
constant D = D(n,m,C, κ) > 0 for which one has

|µ(fg)− µ(f)µ(g)| ≤ D|Λ|2 exp
(
−αd(Λ, Λ̃)

)∫
X
|f(x)|h̃(x)µ(dx)

whenever µ ∈Mt(π) and α and h̃ are defined as follows

α := −1

r
log

[
1

2
(max({κ, c̄nm}) + 1)

]
,

h̃(y) := sup
l∈Λ

max

{∫
Ξ
h(xl)µl(dx|y),

∫
Ξ
h(xl)µl(dx), 1

}
,∀y ∈ X.

Diana Puţan (Bielefeld University) Uniqueness Criterion for Gibbs Measures May 26, 2014 12 / 21



Classical Lattice Systems: The Model

IPS on a lattice Zd are mathematical models of anharmonic crystals:
infinite collection of spins (xl)l ∈ X := (RN )Z

d
, governed by the following

formal Hamiltonian

H(x) :=
∑
l

Vl(xl) +
1

2

∑
l,l′

Wll′(xl, xl′).
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Assumptions on the interaction

(W) There exist constants R ≥ 2, IW ≥ 0 and a symmetric
matrix J = (Jll′)Zd×Zd with non-negative entries and zero
diagonal, such that for all xl, xl′ ∈ RN

|Wll′(xl, xl′)| ≤ Jll′(IW + |xl|R + |xl′ |R), l 6= l′.

(FR) The potential has finite range, i.e there exists r > 0 such that

Jll′ = 0 for any |l′ − l| > r.

Hence Wll′ ≡ 0 for |l− l′| > r. We write l′ ∼ l if |l′ − l| ≤ r.

(V) For given P ≥ R, there exist positive A1 ≤ A2 and real
B1 ≤ B2 such that the estimate

A1|xl|P +B1 ≤ Vl(xl) ≤ A2|xl|P +B2

holds for all xl ∈ RN .
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Classical Lattice Systems: Gibbsian Formalism

For Λ b Zd and y ∈ X and A ∈ B(X), we can define

πΛ(A|y) =
1

ZβΛ(y)

∫
(RN )Λ

1A(xΛ × yΛc) exp (−βHΛ(xΛ|y))×l∈Λ dxl,

ZβΛ =

∫
(RN )Λ

exp (−βHΛ(xΛ|y))×l∈Λ dxl

as being the local Gibbs specification of the model.
Here, the local energy is defined to be

HΛ(xΛ|y) =
∑
l∈Λ

Vl(xl) +
1

2

∑
l∼l′:l,l′∈Λ

W (xl, xl′) +
∑

l∼l′:l∈Λ,l′∈Λc

W (xl, yl′),
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Tempered configurations

We introduce the set of tempered configurations

Xt := ∪p>dXp = {x ∈ X|∃p = p(x) : ||x||p <∞},

where

Xp :=

x ∈ X∣∣∣||x||p :=

[∑
l

(1 + |l|)−p|xl|R
]1/R

<∞

 , p > d,

and also the set of tempered Gibbs measures

Mt := {µ ∈M(π)|∃p = p(µ) > d : µ(Xp) = 1}.
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One-point estimate

The key technical result is the following exponential bound for the
one-point kernels πl(dx|y).

Lemma

Assuming the assumptions on the interaction hold, for some positive τ
there exists a corresponding Υ = Υ(β, τ) > 0 such that for all l ∈ Zd and
y ∈ Xt

∫
X

exp{βτ |xl|R}πl(dx|y) ≤ exp

β
Υ +

∑
l′ 6=l

Jll′ |yl′ |R
 .
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Classical Lattice Systems: High Temperature Case

Assume (V), (W) and (FR).

Theorem (Uniqueness by small interaction)

For every β0 > 0 one finds J := J(β0) > 0, such that the set Mt(π) is a
singleton at all values of β ≤ β0 and ||J ||0 ≤ J.

Theorem (Uniqueness by high temperature)

One finds β0 such that, for any β ≤ β0, the set Mt(π) is a singleton.
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Classical Lattice Systems: Low Temperature Case

Strengthening the conditions on the interaction potentials, one can get

Theorem (Uniqueness by small interaction)

For every β0 > 0 one finds J := J(β0) such that the set Mt(π) is a
singleton at all values β ≥ β0 and ||J ||0 ≤ J.

Theorem (Uniqueness by low temperature)

For each β0 > 0 and J0 <some given constant one finds a proper
ζ0 := ζ0(β0, J0) > 0 such that the corresponding set Mt(π) is a singleton
at all values of β ≥ β0 and ||J ||0 ≤ J0 related by

β1−R/2||J ||0 =: ζ ≤ ζ0.
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Further Applications

The main result can also be applied to

• Gibbs measures in continuum,

• Gibbs measures on the cone of discrete measures,

• Gibbs measures on marked configuration spaces.

Strategy of proof for these models: show equivalence of these models to
new ones, lying on the lattice to which one can apply the uniqueness
criterion.
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Thank you for your attention!
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