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Introduction

Behavior of diffusions with a small parameter noise

Let X© be a random perturbation of the deterministic system:

X (t) 3
= bX®), X(0)=x (1)

We consider the following perturbation of the above deterministic

system.

dXE = be (X§) dt + Veoe (XE) dW, (2)
if € — 0 then the above SDE transformed to a deterministic
function. Let Q. be the measure induced by X, (-) on the space
of R%valued continuous functions on some arbitrary but finite
interval. Then {X§{} the unique strong solution of 2 satisfies LDP
on C|[0, 1] with good rate function:

]
L (f) =J (0 —b (1) aF (1) (F (t) = b (F (1))

0
where f € H and H is a Cameron-Martin space, otherwise

L, (f) = 0.

A solution through Freidlin-Wentzell theory

Let us consider the problem of exit from a domain. We consider

the system
dX{=b (X{) dt + Veo (X{) dW,, X¢ e RY X§ = x(3)

in the open, bounded G C R% and let G be its boundary, which
we assume to be smooth for the sake of simplicity, b (-), o (-) are
uniformly Lipschitz continuous functions of d-dimensions and W
is d-dimensional BM. If we define the stopping time

T =inf{t: X} € G}
then events like this {T¢ < T} are rare events, indeed

Pt*<T] =0 ase —=0and T < .

Motivated by Freidlin-Wentzell theory, we define the cost function

V (93 Zy t) = inf Iy,t (f) (4)

feC((0,1)):f=z

] t
= inf J g4/*ds.
gely([0,t):fi=z,fo=y~+ [, b(fu)du+t [ o(fu)gdu 2

Basic Assumptions
A-1 The unique equilibrium point in G of the d-dimensional or-

dinary differential equation

fy = b (fy) (5)

s at 0 € G, and
foe G=Vt>0,fi € G and limi{_,oo ft =0

A-2 All the trajectories of the deterministic system 5 starting at
fo € 0G converge to 0 as t — 0.

A-3 V £ inf,.5cV(0,2) < oo, where V(0,z) =
infi>o V (0, 2, 1).

A-4 There exists Ml < 0o such that for all p > 0 small enough
and all x,y with |[x —y| < p for some z € 0G U {0} there is a

function g € £; such that ||g||z, < M where
t t

£ :x+J o (fs) gds.

Ob(fs)derJ

0

» Lower bound. For any p > 0 small enough, there is T < 0o
such that

liminf € log inf Py[t¢ < T] > —V.
e—0 B

X€B,

= Let 0, 2 inf{t: Xi € B, U0dG}. Then

Iim limsuplogsup P, (0, > t) = —00.
t—o0 eHOp gxeg X( P )

« Upper bound. For any closed set N C 0G

i o sup B, € N1 < =V 0,2

where o, = inf {t : X¢ € B, U0G}.
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= For every p > 0 such that B, C G and all x € G
. ¢ B
}:1;% IP[X(Tp c Byl =1

Theorem
Assume (A-1)-(A-4) are satistied. Then for all x € G and all

o > 0,
| (V+5) (V-5)
ImPyle ¢ >1°>e ¢ |=1.
e—0

Moreover, for all x € G

Lx (Te) = V.

ll{)l’(l) € log

Connection with viscosity solution

We formulate the above result in the language of PDEs, in par-
ticular as a result of viscosity solution of a parabolic problem. We

set

O (t,x) =P 1" < t4]
where t; < oo with boundary data
D¢ (t,x) =1 (t,x) €[0,t1) x 0G
Q¢ (t;,x) =0 x€G

Then 6 satisfies a linear equation

(6)

Jik
Y ppet - @
€ 02D (t,x)
_2 % % Clij (t, X) aXian = 0.

We, now, make the logarithmic transformation:
V¢ = —elog @ (t,x)

then the dynammic programming PDE becomes
ove (t,x)
ot

€ 07V (t,x)
_Z L L H (t, X) aXian
l )
1 € €)/
—|—2%JLGU (t,x) DxVE (DyV®) =0

and the boundary data become

b (t,x) D,V (t,x) —

(9)

Ve(t,x) =0, (t,x) € (0,t1) % 0G
lim V* (t,x) = oo, x € G.
t—t
As € — 0 we have a first order PDE
VP (t, x)

b (t,x) D, VP (t, %) +

ot
0> Y a6 DV DV =0 (10
1]

and V° has a representation in terms of control theory. We con-

sider the Hamiltonian function:

] ;
H(t,x%p) = =b(t,x)p + jp'oo (t,x)p.
so that
VO
ot

Since the Hamiltonian is quadratic and particular convex in p, we

(t,X) —|—H(t,X,]ﬁ)) =0

can use the Legendre transform and may rewrite:

H (t,x,p) = sup {—up — L (t,x,u)}

:""c:{bf,;‘.%
B
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which together with the boundary data is
associated to the value function for a calculus of
variation problem and

(t,x,u) € [0,t1] x G x R%. Then from control
theory the solution to the
Hamilton-Jacobi-Bellman equation is represented
by a unique Lipschitz viscosity solution V.

Therefore, the large deviation results stated as
- 0
ilg(l) € log ®° (t,x) = —V" (t, x)

where V° (t,x) is the rate function. We

continue with two estimates of V¢:

Lemma
Suppose that 0G is smooth. Then there exists
K > O satisfying
Kdist (x,0G
Ve (1 x) < it 06)
t1—t

(12)

Lemma

For any M > 0 and d (x) = dist (x,0G) in
C’ (C_S) with d (x) = 0 for all x € 0@, there
exists Kng > O such that

VE(t,x) 2 Md (x) —Km (1 —t).  (13)

We use the Barles-Perthame procedure in order
to define a viscosity supersolution and
subsolution of 11. Define

V*(t,x) = limsup V¢ (s,y),

(s,y)—=(t,x)

V. (t,x) = liminf )Ve (s,y) .

(s,y)—=(t)x
These functions however are not necessarily

continuous. Therefore we conclude that V*, V.,
are respectively subsolution and supersolution of
11in (0, T) x G for every T < t;. Then using
equation 7 and its boundary data yields that any
viscosity subsolution is dominated by any
viscosity supersolution, V, > V*. However, by
consrtuction V, < V*. Although the terminal
data of the problem is infinite the stability result
still holds. Hence, 12 implies that V*, V,
converges to oo as t — t; uniformly on compact
subsets of G. However this convergence is
controlled by 13. These properties are used to
show the convergence of V¢ — V0 =V* =V,
which is the unique viscosity solution of HBJ

equation and Lipschitz continuous on [0, T] x G.

Theorem

Assume that the properties of b, a,a”

satisfied. Then V¢ converges to V° uniformly on
compact subsets of [0,11] x G as € — 0.

Open Questions

It should be noted here that the choice of the
model is highly arbitrary. In particular, it can de-
veloped for Poisson process and more generally
for Lévy process. But, what happened when the
model is driven by a rough path or the coefficients

of the SDE are not Lipschitz continuous?
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ucRd
— _uiélléd{up + L (t,x,ul}
where
L (t> X, LL) — Sup {—LL]D —H (t> Xy LL)}
peRd
= (b (6,x)) (00" (6,) " (u— b (1,x))
oVe (t,x) B
o ulélléd{up + L (t,x,u)} =0 (11)
where
Vo = inf J()] ; (x (s) —b(x,s)) (O‘O‘T>_1 (t, %) (x (s) = Db (x(s))) ds.
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