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Problem

The extreme value theory has its foundations in finding the asymptotic
law of the maximum observation Xn,n = max(X1, ..., Xn). It is said
that the underlying df F of the observations is attracted to some df
H if for some sequences (an > 0)n≥1 and (bn)n≥1, we have for any
continuity point x ∈ R of H,

lim
n→∞

P(
Xn,n − bn

an
≤ x) = lim

n→∞
Fn(anx + bn) = H(x).

Non-degenerated H can be parametrized as for γ ∈ R

Gγ(x) =

{

exp(−(1 + γx)−1/γ), 1 + γx > 0, for γ > 0

exp(−exp(−x)), for γ = 0

G is named as the Generalized Extreme Value (GEV ) distribution. It
is said that F is in the domain of attraction of Gγ, hereby denoted as :
F ∈ D(Gγ). The parameter γ is called the extreme value index (EVI).

Although the parameter γ in the GEV is continuous, the three cases
γ < 0, γ = 0 and γ > 0, behave radically differently. These cases are
respectively named the Weibull, Gumbel and Frechet cases. In all these
cases, the Hill statistic is used to estimate γ. The following figure gives
a representation of these three cases

Our problem consists to find the asymptotic law of the functional Hill
stochastic process when F is in the Weibull domain. This stochastic pro-
cess generalised the Hill’s statistic of the EVI and is based on extreme
values of independent and identically distributed rv’s X1, . . . , Xn. The
process is defined as follows :

Tn(f ) =

k(n)
∑

j=1

f (j)
(

log(Xn−j+1,n) − log(Xn−j,n)
)

.

k(n) is a sequence of integers satisfying 1 ≤ k(n) < n. f (j) is a real
and increasing function of j ∈ N such that f (0) = 0.
The functional Hill process was introduced by Deme et al. (2012) [2].
From this processus is derived the Diop and Lo (2006) [1] generalization
of Hill’s statistic. Its corresponds to the continuous statistic Tn(f ) for
f (j) = jτ , τ > 0. Diop and Lo proved its asymptotic normality for
any γ, but only for τ > 1/2. The Hungarian Gaussian Approximation
used could not allow to find the asymptotic law for τ ≤ 1/2.
The functional form Tn(f ) has been extensively studied for Frechet and
Gumbel cases by Deme et al. (2012). Some conditions under wich Tn(f )
has a Gaussian limiting process were established. When particularized
for f (j) = jτ , Deme et al. get asymptotic normality for τ ≥ 1/2
and not for 0 < τ < 1/2. Deme et al. results are based on sums of
independent rv’s, and then the Kolmogorov Theorem for centred rv’s
applies
In our work we show that the law of the functional Hill process is
derived when F is in the Weibull domain from the following process :

Wk(f ) =

k−1
∑

j=1

∆f (j)



exp(−γ

k−1
∑

h=j

Eh

h
) − E exp(−γ

k−1
∑

h=j

Eh

h
)



 .

where E1, E2, ... are independent exponential standard rv’s, γ > 0 and
∆f (j) = f (j) − f (j − 1).
Our best achievement is the characterization of Wk(f ) and its use to
find the asymptotic behavior of Tn(f ).

Contribution

We describe the asymptotic behavior of the functional Hill process when
F is in the weibull domain and particulary when f (j) = jτ for small
parameters 0 < τ < 1/2. By this way we complete the open problem
consisting to characterize the asymptotic behavior of the functional Hill
process Tn(f ) for each domain of attraction.

Methods

We use martingale results to characterize the asymptotic law of the
process Wk(f ). We next apply the findings to determine the asymptotic
behavior of the functional Hill process for small parameters within the
Extreme Value Theory (EVT) field.
Consider the filtration Fk = σ(E1, ..., Ek), k ≥ 1 and remark the
sequence (Wk)k≥1 is adapted with respect to (Fk)k≥1. We have the
following intermediate results.

Theorem 1 The sequence Wk(f ) is a supermatingale with respect
to Fk. Furthermore, it converges almost-surely (a.s) to random
variable W∞(f ) with finite expectation whenever

lim sup
k→+∞

k−γ
k−1
∑

j=L

f (j)jγ−1/2 < +∞ (K1)

holds.

Corollary 1 For f (j) = fτ (j) = jτ , 0 < τ < 1/2, Wk(fτ ) converges
almost surely to a finite random variable W∞(τ ).

Results

We resume the extreme value problem. We will suppose without any
loss of generality that the observations Xi are greater than one so that
Tn(f ). Now in the sequel we simplify the notation of k(n) to k. We
combine Renyi’s and classical representation of Yj = log Xj. Denote
by G(y) = F (ey) the df of log Xi. Remind that G ∈ D(G−γ) if and
only if F ∈ D(G−γ). We then start with the simplest case of functions
F ∈ D(G−γ), that is

y0 − G−1(1 − u) = uγ, 0 ≤ u ≤ 1, (1)

where y0 is the upper endpoint of G. We use here the index −γ < 0
instead of γ < 0. We are going to characterize the asymptotic law
Tn(f ) under the condition (K1).

Theorem 2 Let X1, X2, ... be a sequence of iid rv′s with common
df G. Let f (j) be an increasing function of the integer j ≥ 1 such
that (K1) holds and let for any ≤ 1 ≤ k ≤ n,

Ak,n(f ) = f (k−1)−

k−1
∑

j=1

(f (j)−f (j−1)) exp



−

k−1
∑

h=j

log(1 + γ/h)



 .

Then

W ∗
k−1,n(f ) = Ak,n(f ) − Tn(f )/(y0 − Yn−k+1,n)

converges in distribution to the finite random variable W∞(f ) defi-
ned in Theorem 1. Further if f (j) = fτ (j) = jτ , 0 < τ ≤ 1/2, then
W ∗

k−1,n(fτ ) converges in distribution to W∞(τ ) defined in Corol-

lary 1.

The law of W∞(f ) is unusual. We use computer-based methods for
approximating this law. Simulation studies show that the empirical
df based of B0 = 1000 replications are very stable from k = 2000.
We proceed as follows. We fix τ, 0 < τ < 1/2, γ > 0 and k ≥
2000. At each step B from 1 to B0 = 1000, we generate standard
exponential samples E1(B), ..., Ek(B). Then we compute W ∗

k denoted
by W ∗

k (B). We finally consider the empirical df , denoted by Gk, based
on W ∗

k (1), ..., W ∗
k (B0). Since Gk is stable in the sense that it does not

significally change from k = 2000, we do approximate the df G∞ of
W∞(τ ) by Gk for k large enough. We illustrate in the next figure the
df Gk for k = 250, 500, 750, 1000, 2000, 500 for γ = 1 and τ = 1/4.
Here for instance, we infer that the support of G∞ is [−0.5, 0.5]. On the
whole, the figures clearly establish stability and support our proposal.

For users interested in using our method, we provide an executable file
located at :

http ://www.ufrsat.org/lerstad/resources/lmhfw1.exe

for the computation of P (W∞(τ ) ≤ x) = G∞(x) and P (|W∞(τ ))| ≤
|x|) = G∞(|x|) − G∞(− |x|) for x ∈ R.

For an application we illustrate how the law G∞ of W∞(1/4) may be
used to do a statistical test for four models. We test the hypothesis that
F ∈ D(G−γ). We use here the following approximation :

T ∗
n(f ) =

Tn(f )

y0 − log Xn−k+1,n
≈

Tn(f )

log Xn,n − log Xn−k+1,n
.

Here is the result :

Models Quantile functions T ∗
n(fτ ) P-values

Weibull 1 F−1(1 − u) = exp(1 − uγ) 3.16 67.4%

Weibull 2 F−1(1 − u) = exp(1 − uγ(1 + u9)) 0.0367 38.9%

F−1(1 − u) = exp(1 − uγ(1 + u8)) 0.048 27.3%

F−1(1 − u) = exp(1 − uγ(1 + u7)) 3.063 13.2%

F−1(1 − u) = exp(1 − uγ(1 + u6)) 3.0725 10.4%

F−1(1 − u) = exp(1 − uγ(1 + u5)) 3.097 2%

F−1(1 − u) = exp(1 − uγ(1 + u4)) 3.17 0%

Stand. Exp. F−1(1 − u) = − log u 3.77 0%

Pareto F−1(1 − u) = u−1 19.755 0%

Discussion

We indeed remark that for the Weibull simple case, the law of the func-
tional Hill process is found and particulary for f (j) = jτ , 0 < τ < 1/2.
For the general case, we have the following Karamata representation
when F is in the Weibull case of parameter γ > 0 : x0(F ) < ∞ and

y0 − G−1(1 − u) = c(1 + p(u))uγ exp(

∫ 1

u
b(t)t−1dt), (2)

where (p(u), b(u)) → (0, 0) as u → 0. So the results depends on the
auxilliary functions p and b. If some further conditions on b and p are

fullfilled, T ∗
n(f ) =

Tn(f )
y0−Yn−k+1,n

behaves as W ∗
k,n as in the present case

and then the law should be the same.
Nevertheless, we can include in the statistical tests some models with
specific forms of b(·) as shown in the precedent table.
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