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Hidden Markov Model Model

Hidden Markov Model in Continuous Time

@ Observation process Y = (Y¢)icpo, 7] on (2, A, P) with

t
Yl’ = / ,LLSdS + Wt'
0
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o Drift u; is governed by signal X;, a Markov jump process with state
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Hidden Markov Model Model

Hidden Markov Model in Continuous Time

Observation process Y = (Yt)¢cpo,77 on (22, A, P) with

t
Yt = / ,LLSdS + Wt'
0

Y: models a return process.

Drift u: is governed by signal X;, a Markov jump process with state
space {e1,...,eq}, so pur = (1, X¢), and rate matrix Q.

@ The volatility is constant.

o W Brownian motion, independent of signal X.
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Hidden Markov Model in Continuous Time

@ Observation process Y = (Y¢)icpo, 7] on (2, A, P) with

t
Yt = / ,LLSdS + Wt'
0

Y: models a return process.

Drift u: is governed by signal X;, a Markov jump process with state
space {e1,...,eq}, so pur = (1, X¢), and rate matrix Q.

@ The volatility is constant.
o W Brownian motion, independent of signal X.

o We are interested in the filter E [X; | V:], where V; = o(Ys|s < t) is
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Hidden Markov Model Change of Measure and Filtering Equations

Change of Measure

@ We introduce a change of measure using the density

dE = 7, = ex /t< X)dW—I/t< Xs)2ds
d]P) — &t — p 0 My As S 2 0 Hy As .

Ft
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Hidden Markov Model Change of Measure and Filtering Equations

Change of Measure

@ We introduce a change of measure using the density

dP t 1/t )
—| =Zi=exp (p, Xs)dWs — = [ (u, Xs)“ds | .
dP - 0 2 Jo

@ Define the unnormalized filter as

pe(X) = E [Z7 X |Ve] < E[Xe | Vel
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Hidden Markov Model Change of Measure and Filtering Equations

Filtering Equations

@ For the unnormalized filter we have that
dpe(X) = QT pe(X)dt + Bpe(X)dYs,

where B = Diag(u).
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Hidden Markov Model Change of Measure and Filtering Equations

Filtering Equations

@ For the unnormalized filter we have that
dpe(X) = QT pe(X)dt + Bpe(X)dYs,

where B = Diag(u).

@ In general, filtering equations are not finite dimensional.
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Hidden Markov Model Properties of the Model

Portfolio Optimization

e Portfolio optimization is possible in the HMM (Haussmann/Sass,
2004).
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@ For U = log this leads to the optimal risky fraction
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Hidden Markov Model Properties of the Model

Portfolio Optimization

Portfolio optimization is possible in the HMM (Haussmann/Sass,
2004).

@ Goal is to maximize E[U(V7T)] for wealth process V™ and utility U.
@ For U = log this leads to the optimal risky fraction

(1, E[Xe| D))

o2

@ The optimal strategy depends on the filter.
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Hidden Markov Model Properties of the Model

Properties of the HMM

o Filter equations are finite dimensional, so the filters can be computed
from finitely many SDEs.
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Properties of the HMM

o Filter equations are finite dimensional, so the filters can be computed
from finitely many SDEs.
e Parameters can be estimated using the EM-algorithm (Elliott, 1992).

@ Robustifications are available which eliminate the stochastic integral
from the filtering equation (James/Krishnamurthy/Le Gland, 1992).

o Filters can be derived for any o > 0.

But: o has to be constant.
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Hidden Markov Model Properties of the Model

Properties of the HMM

o Filter equations are finite dimensional, so the filters can be computed
from finitely many SDEs.

e Parameters can be estimated using the EM-algorithm (Elliott, 1992).

@ Robustifications are available which eliminate the stochastic integral
from the filtering equation (James/Krishnamurthy/Le Gland, 1992).

o Filters can be derived for any o > 0.
@ But: o has to be constant.

@ So 'Stylized Facts' as e.g jumps in the volatility or volatility clustering

cannot be modeled using a HMM!
]
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Markov Switching Model Model

Markov Switching Model

o Drift and volatility are governed by Markov chain X.

-
I m TeCHNISCHE UNIVERSITAT
m KAISERSLAUTERN

Elisabeth Leoff (TU Kaiserslautern) Filter Based Volatility in the HMM May 26 2014 9 /19



Markov Switching Model Model

Markov Switching Model

o Drift and volatility are governed by Markov chain X.

@ Observations Y = (Y¢)¢c[o,7] are given by

t t
Yt:/ (,u,Xs>ds—|—/ (o, Xs)dW.
0 0
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o Drift and volatility are governed by Markov chain X.
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Markov Switching Model Model

Properties of the MSM

@ Many ’'Stylized Facts' can be modeled.
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Markov Switching Model Model

Properties of the MSM

Many 'Stylized Facts' can be modeled.

But: In theory X; can be observed via [Y];.

There is no filtering problem in the continuous time MSM!

(]

The optimal risky fraction for log utility is (Bauerle/Rieder, 2004)

<,u7Xt>

Tt = <0_7 Xt>2.
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Markov Switching Model Model

Properties of the MSM

Many 'Stylized Facts' can be modeled.

But: In theory X; can be observed via [Y];.

@ There is no filtering problem in the continuous time MSM!
@ The optimal risky fraction for log utility is (Bauerle/Rieder, 2004)
T = <:U7Xt> .
<Uv Xt>2

For finer discretizations, the MSE in the MSM behaves differently
than in the HMM.
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Markov Switching Model Comparison to HMM
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@ ldea: Different dynamics for o.
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@ ldea: Different dynamics for o.

@ Model volatility as depending on an observable process.
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Markov Switching Model Observable Volatility

Filter Based Volatility Model

@ Observations Y are

t t
Yt:/ (u,X5>ds—|—/ osd Ws.
0 0
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Markov Switching Model Observable Volatility

Filter Based Volatility Model

@ Observations Y are

t t
Yt:/ (u,X5>ds—|—/ osd Ws.
0 0

@ Change of measure with density

dZ, = = Zo M (p, Xe)dW,
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Filter Based Volatility Model

@ Observations Y are

t t
Yt:/ (u,X5>ds—|—/ osd Ws.
0 0

@ Change of measure with density
dZ, = = Zo M (p, Xe)dW,

leads to

t
Yt:/ USdWS
0
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Markov Switching Model Observable Volatility

Filter Based Volatility Model

@ Observations Y are

t t
Yt:/ (u,X5>ds—|—/ osd Ws.
0 0

@ Change of measure with density
dZ, = = Zo M (p, Xe)dW,

leads to

t
Yt:/ USdWS
0

where dW; = AW, + o; (i, X¢)dt P-Brownian motion.
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Markov Switching Model Observable Volatility

Filter Based Volatility

e Consider a model for oy = (&) with

dé = v(&)dt + T(ét)dwt'
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e Consider a model for oy = (&) with

dé = v(&)dt + T(ét)dwt'

@ The equation for the unnormalized filter is

dpe(X) = QT pe(X)dt + BPt(X)dyt-

e Since dY; = o, d W,
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Markov Switching Model Observable Volatility

Filter Based Volatility

e Consider a model for oy = (&) with

dé = v(&)dt + T(ft)th'

@ The equation for the unnormalized filter is

dpe(X) = QT pe(X)dt + BPt(X)dYt-

@ Since dY; = atth, we can choose

§t = Pt(X)-
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Markov Switching Model Filter Based Volatility

Approximating the MSM

@ Assume returns in both models are depending on the same Markov
chain X and Brownian motion W.
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Markov Switching Model Filter Based Volatility

Approximating the MSM

@ Assume returns in both models are depending on the same Markov
chain X and Brownian motion W.

@ Difference of the returns is

vy | (0. X6) — o(&)) WS,

e Want to minimize the (squared) distance over all YfV-adapted
processes &:
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Markov Switching Model Filter Based Volatility

Approximating the MSM

@ Assume returns in both models are depending on the same Markov
chain X and Brownian motion W.

@ Difference of the returns is

vy | (0. X6) — o(&)) WS,

e Want to minimize the (squared) distance over all YfV-adapted

processes
( /0 t<0, X:) — a(ét)dws>2] .

O]
I m TeCHNISCHE UNIVERSITAT
m KAISERSLAUTERN

E[( YtMSM _ YtFV)Z] ; msan

Elisabeth Leoff (TU Kaiserslautern) Filter Based Volatility in the HMM May 26 2014 14 /19



Markov Switching Model Filter Based Volatility

Approximating the MSM

@ This results in

o(&) = E[{o, Xt>‘thV]
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Markov Switching Model Filter Based Volatility

Approximating the MSM

@ This results in

o(&) = El(o, X0)| V1 V] = (o, EIXe| Ve V]).
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Markov Switching Model Filter Based Volatility

Approximating the MSM

@ This results in

o(&) = El(o, X0)| V1 V] = (o, EIXe| Ve V]).

@ So: The general ansatz of observable volatility approximating the
MSM leads to a function of the filter!
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@ This results in

o(&) = El(o, X0)| V1 V] = (o, EIXe| Ve V]).

@ So: The general ansatz of observable volatility approximating the
MSM leads to a function of the filter!

@ This function corresponds exactly to the function of X in the MSM.
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Markov Switching Model Filter Based Volatility

Approximating the MSM

@ This results in

o(&) = El(o, X0)| V1 V] = (o, EIXe| Ve V]).

@ So: The general ansatz of observable volatility approximating the
MSM leads to a function of the filter!

@ This function corresponds exactly to the function of X in the MSM.

@ In particular, it is linear in the filter.
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Markov Switching Model Filter Based Volatility

Linear Model
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Markov Switching Model Filter Based Volatility

Properties of the Model

@ Model captures the same 'Stylized Facts’ as the MSM in general.
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Properties of the Model

@ Model captures the same 'Stylized Facts’ as the MSM in general.

@ But some are less pronounced, e.g. Heavy Tails.
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Markov Switching Model Filter Based Volatility

Properties of the Model

@ Model captures the same 'Stylized Facts’ as the MSM in general.
@ But some are less pronounced, e.g. Heavy Tails.

@ Portfolio optimization can be done for several utility functions
(Sass/Haussmann,2004).
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Markov Switching Model Filter Based Volatility

Properties of the Model

Model captures the same 'Stylized Facts' as the MSM in general.

But some are less pronounced, e.g. Heavy Tails.

@ Portfolio optimization can be done for several utility functions
(Sass/Haussmann,2004).

Robust discretizations are available.
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Conclusion

Summary

The filter based volatility model

@ ...has non-constant volatility.

-
I m TeCHNISCHE UNIVERSITAT
m KAISERSLAUTERN

Elisabeth Leoff (TU Kaiserslautern) Filter Based Volatility in the HMM May 26 2014 18 /19



Conclusion

Summary

The filter based volatility model
@ ...has non-constant volatility.

@ ...has a finite dimensional filtering equation.

-
I m TeCHNISCHE UNIVERSITAT
m KAISERSLAUTERN

Elisabeth Leoff (TU Kaiserslautern) Filter Based Volatility in the HMM May 26 2014 18 /19



Conclusion
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Conclusion

Summary

The filter based volatility model
@ ...has non-constant volatility.
@ ...has a finite dimensional filtering equation.
@ ...approximates the MSM.

@ ...allows for portfolio optimization and parameter estimation with the
EM-algorithm.

But: Some 'Stylized Facts’ are less pronounced.
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