Contact process with aging

Aurelia Deshayes

under the direction of Olivier Garet and Régine Marchand Institut Elie Cartan - Université de Lorraine

Young Women In Probability Bonn 26 may 2014

Contact Process

Definition

The contact process $\{\xi_t, t\geq 0\}$ is a continuous-time Markov process with values in $\{0,1\}^{\mathbb{Z}^d}$. Let $z\in\mathbb{Z}^d$:

- z is dead (or healthy) if $\xi_t(z) = 0$.
- z is alive (or infected) if $\xi_t(z) = 1$.

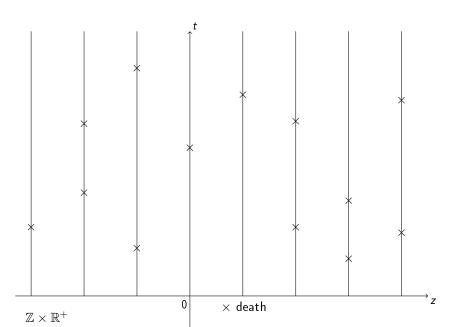
Rules of evolution:

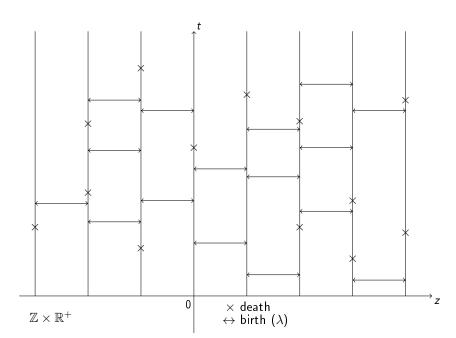
- if a site is alive then it dies at rate 1;
- ullet if a site is dead then it turns alive at rate λ times the number of its living neighbors.

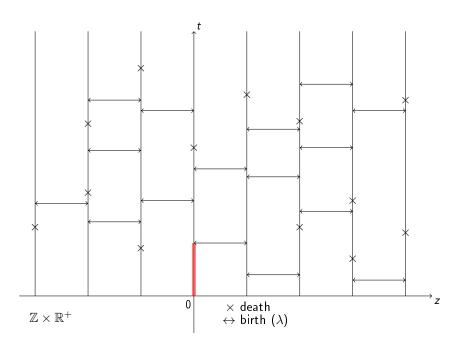
The initial set ξ_0 is a finite set of \mathbb{Z}^d , we often take $\{0\}$.

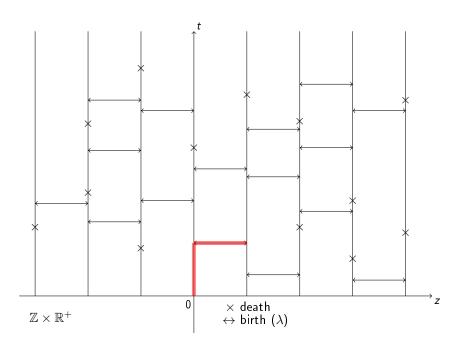
	,		t				
							\longrightarrow
		Λ					

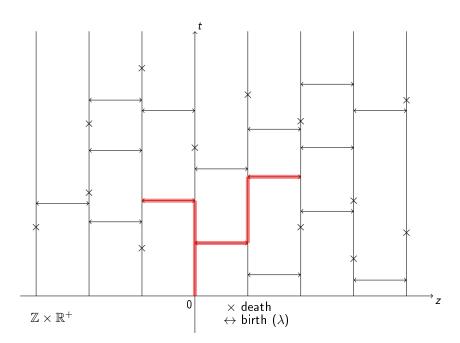
 $\mathbb{Z}\times\mathbb{R}^+$

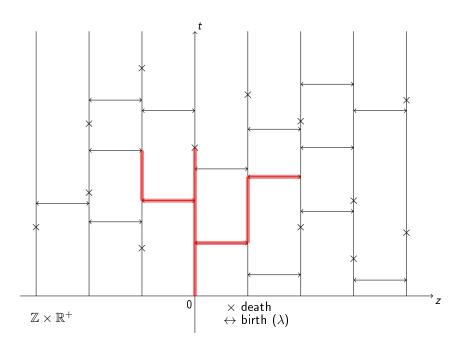


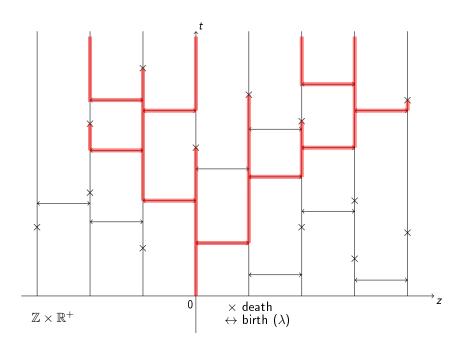


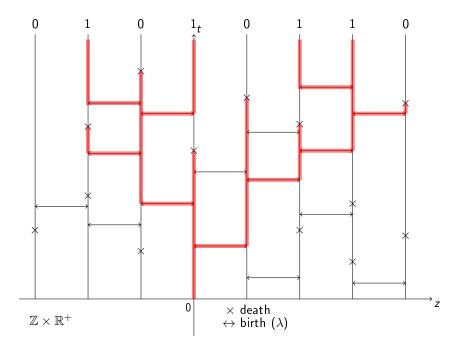


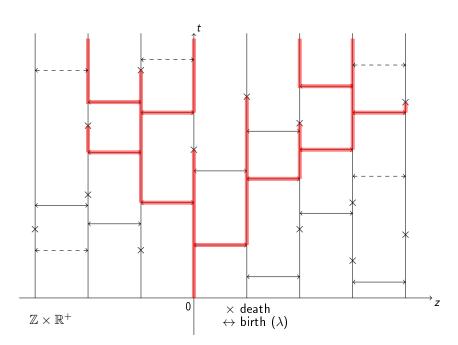


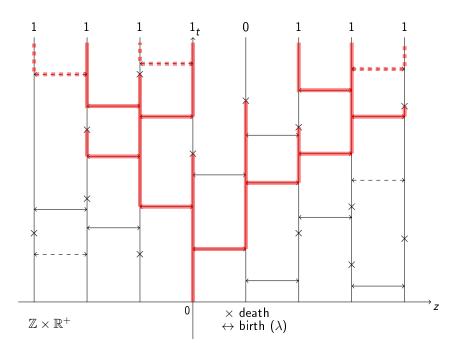


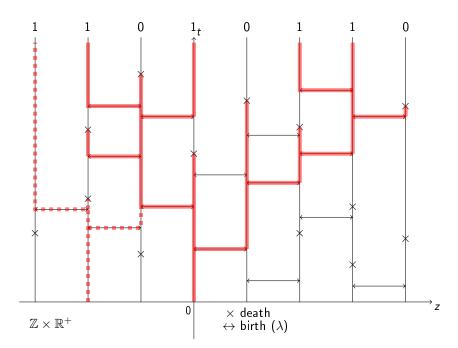


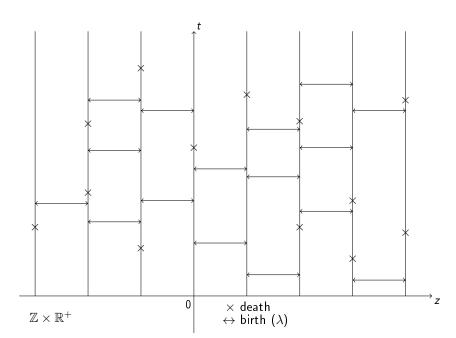


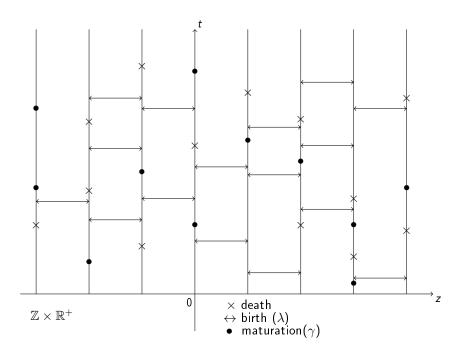


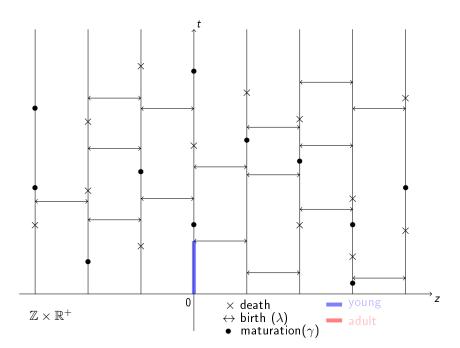


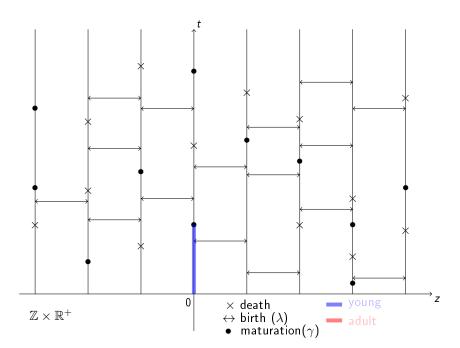


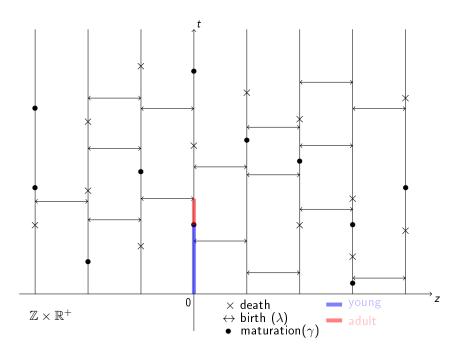


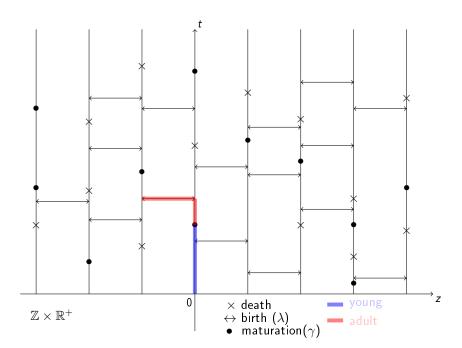


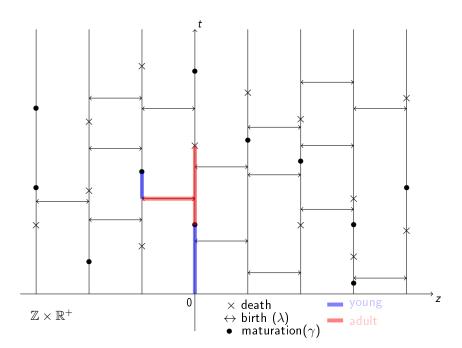


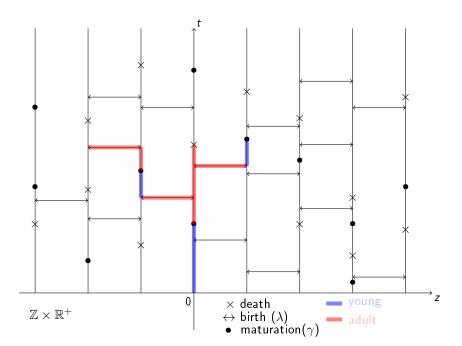


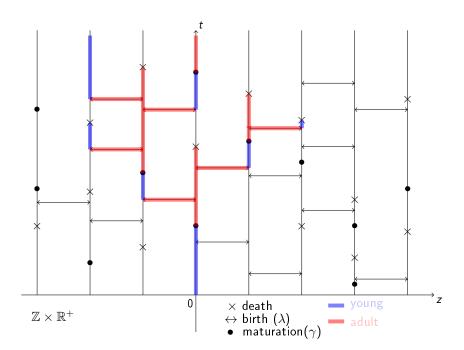


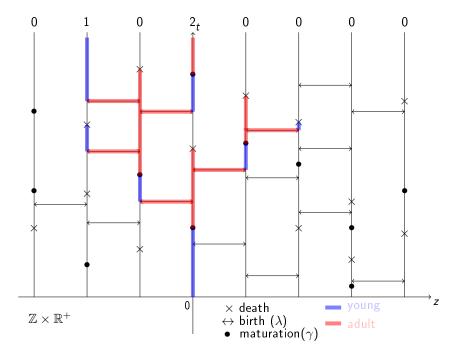


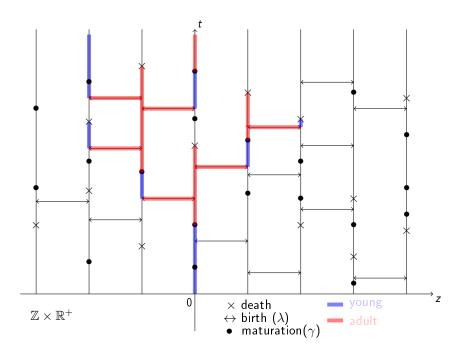


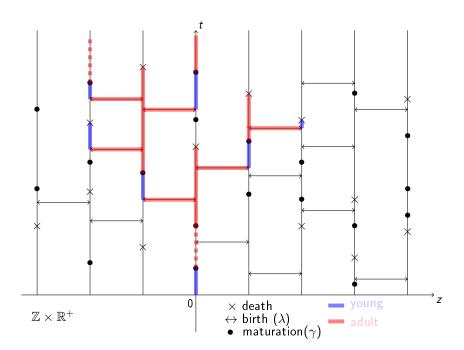


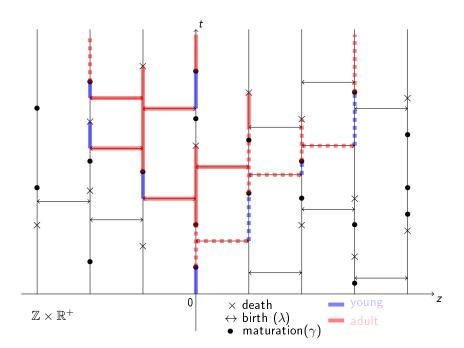


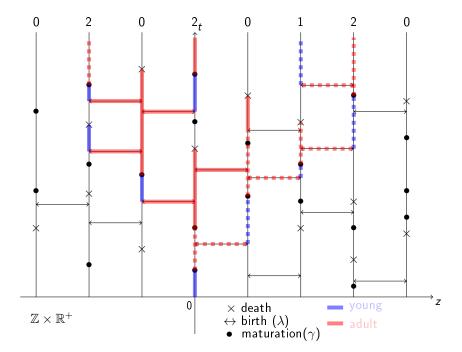


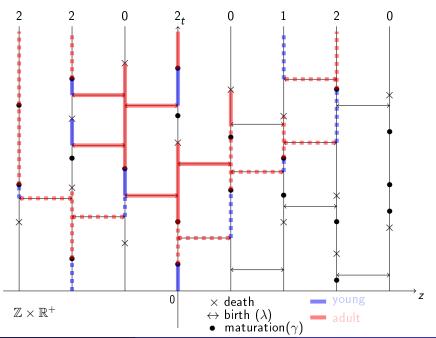


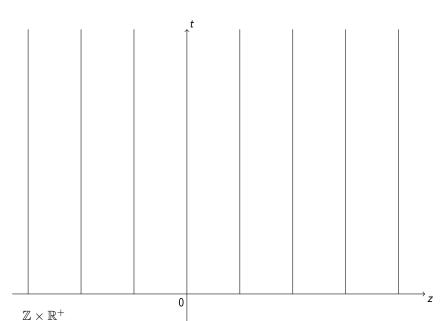


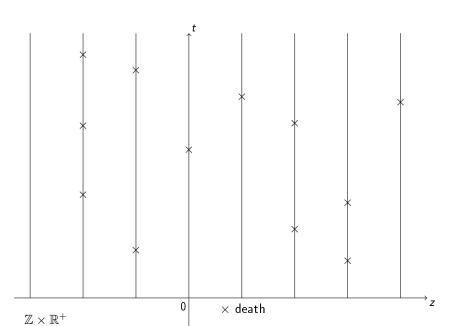


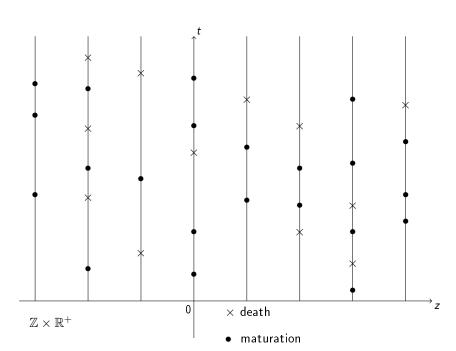


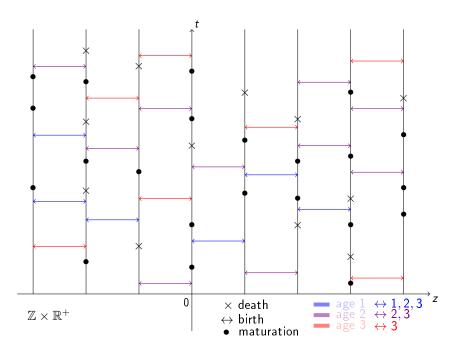


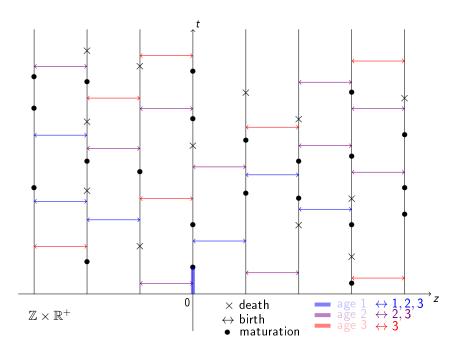


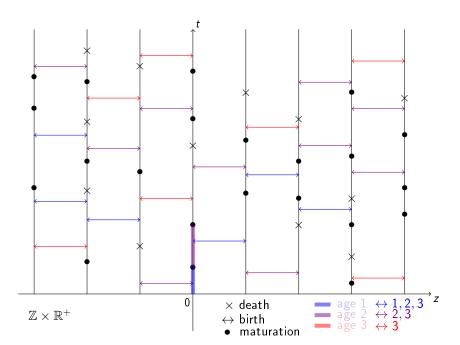


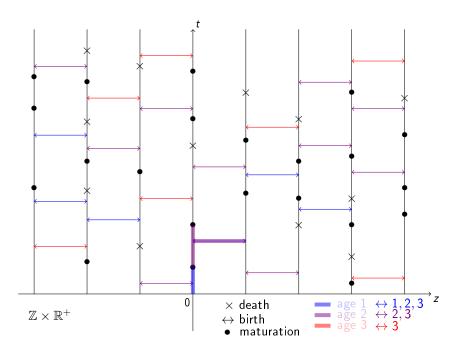


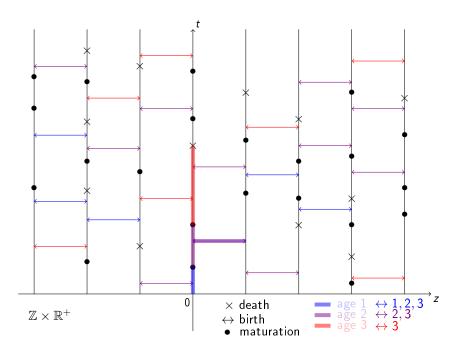


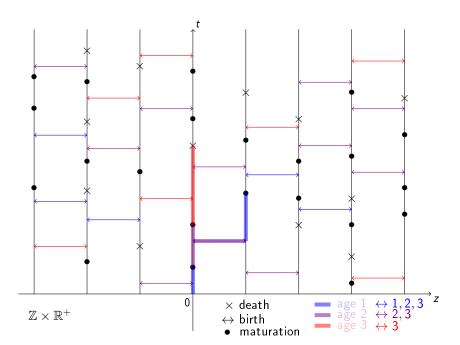


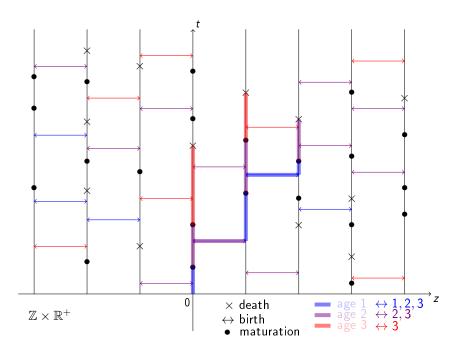


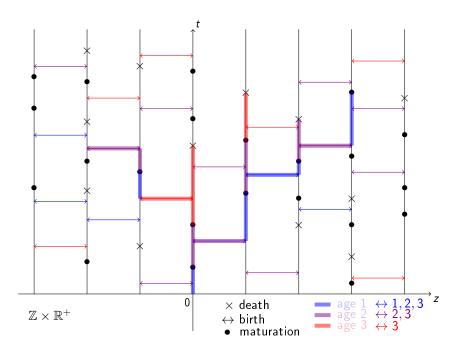


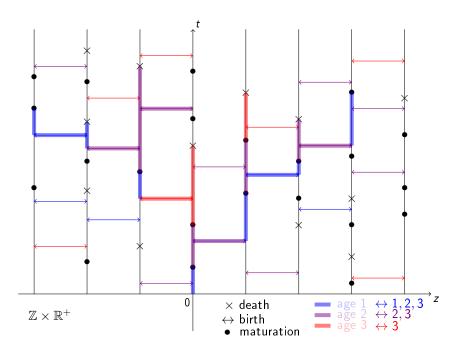


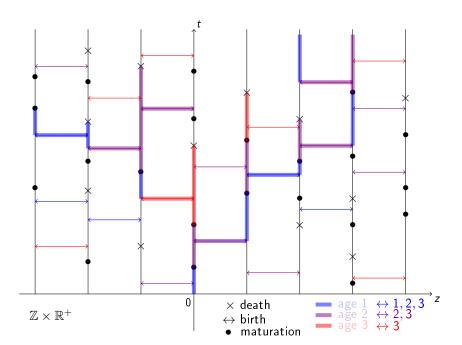


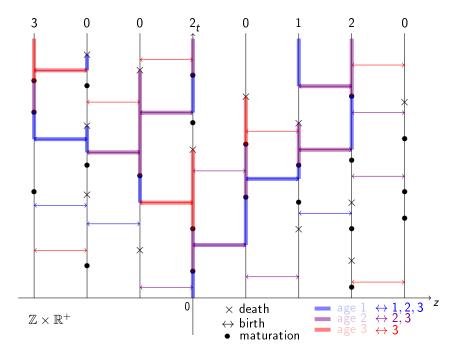


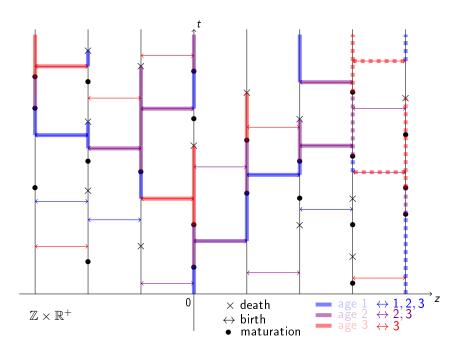


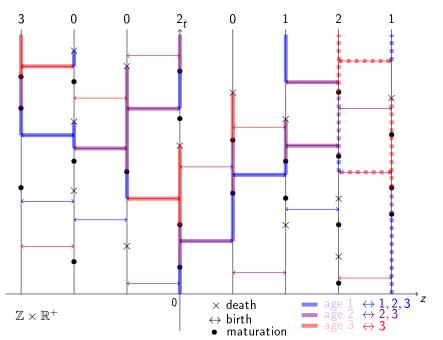












Let $\Lambda = (\lambda_i)_{i \in \mathbb{N}}$ be the sequence of birth parameters :

- \bullet $\forall i, \lambda_i \in \mathbb{R}^+$ and $\lambda_0 = 0$,
- $(\lambda_i)_i$ is non decreasing,

Let $\gamma>0$ be the maturation parameter and $f:\mathbb{Z}^d\to\mathbb{N}$ with finite support.

Let $\Lambda = (\lambda_i)_{i \in \mathbb{N}}$ be the sequence of birth parameters :

- \bullet $\forall i, \lambda_i \in \mathbb{R}^+$ and $\lambda_0 = 0$,
- $(\lambda_i)_i$ is non decreasing,

Let $\gamma>0$ be the maturation parameter and $f:\mathbb{Z}^d\to\mathbb{N}$ with finite support.

Definition

A CPA $\{\xi_t^f, t \geq 0\}$ is a continuous-time Markov process with values in $\mathbb{N}^{\mathbb{Z}^d}$ and $\xi_0 = f$. Let $z \in \mathbb{Z}^d$ and $k \in \mathbb{N}^*$:

- z is dead if $\xi_t^f(z) = 0$,
- z is alive with age k if $\xi_t^f(z) = k$.

Evolution rules:

- a living site dies at rate 1 independently of its age,
- a dead site z turns alive at rate $\sum_{z',\|z'-z\|_1=1} \lambda_{\xi_t(z')}$ (with $\lambda_0=0$),
- each new offspring has age one,
- the transition from age n to age n+1 occurs at rate $\gamma>0$, independently of its age.

For $t \geq 0$ we denote by :

$$A_t^f = \text{supp } \xi_t^f = \{x \in \mathbb{Z}^d; \xi_t^f(x) \neq 0\},$$

= set of living points at time t .

Some properties

Let $f, g: \mathbb{Z}^d \to \mathbb{N}$ and t > 0.

- The CPA is **attractive** i.e $f \leq g \implies \xi_t^f \leq \xi_t^g$ and $A_t^f \leq A_t^g$;
- The CPA is **additive** i.e $\xi_t^{f \vee g} = \xi_t^f \vee \xi_t^g$;
- The CPA is **monotone** with respect to its parameters : non decreasing with respect to birth and maturation parameters

Goal : Prove an asymptotic shape theorem for $\bigcup_{s \le t} A_t$.

Definition

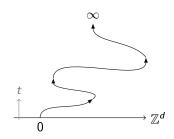
We have **survival** if $\mathbb{P}(\forall t, \ \xi_t^{\{0\}} \not\equiv 0) > 0$. **extinction** if $\mathbb{P}(\forall t, \ \xi_t^{\{0\}} \not\equiv 0) = 0$.

Critical value for the PC : $\lambda_c(\mathbb{Z}^d)$

Definition

We have **survival** if $\mathbb{P}(\forall t, \ \xi_t^{\{0\}} \not\equiv 0) > 0$. **extinction** if $\mathbb{P}(\forall t, \ \xi_t^{\{0\}} \not\equiv 0) = 0$.

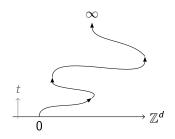
Critical value for the PC : $\lambda_c(\mathbb{Z}^d)$



Definition

We have **survival** if $\mathbb{P}(\forall t, \ \xi_t^{\{0\}} \not\equiv 0) > 0$. **extinction** if $\mathbb{P}(\forall t, \ \xi_t^{\{0\}} \not\equiv 0) = 0$.

Critical value for the PC : $\lambda_c(\mathbb{Z}^d)$



Phase transition [Harris, 74]

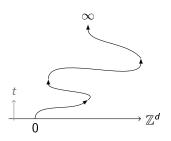
There exists a critical value $\lambda_c \in (0,+\infty)$ such that :

- ullet if $\lambda < \lambda_c$, then extinction,
- if $\lambda > \lambda_c$, then survival.

Definition

We have **survival** if $\mathbb{P}(\forall t, \ \xi_t^{\{0\}} \neq 0) > 0$. **extinction** if $\mathbb{P}(\forall t, \ \xi_t^{\{0\}} \neq 0) = 0$.

Critical value for the PC : $\lambda_c(\mathbb{Z}^d)$



Phase transition [Harris, 74]

There exists a critical value $\lambda_c \in (0,+\infty)$ such that :

- if $\lambda < \lambda_c$, then extinction,
- if $\lambda > \lambda_c$, then survival.

At the critical point? [Bezuidenhout and Grimmett, 91]

$$\lambda = \lambda_c$$
, extinction.

Krone introduces a similar quantity:

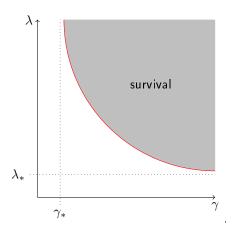
$$\lambda_c(\gamma) = \inf\left\{\lambda: \ \mathbb{P}_{\lambda,\gamma}\left(\forall t>0, \ \xi_t^{\{0(2)\}} \neq \emptyset\right) > 0\right\}.$$

0(2): the site 0 in adult state.

Krone introduces a similar quantity:

$$\lambda_c(\gamma) = \inf\left\{\lambda: \ \mathbb{P}_{\lambda,\gamma}\left(\forall t>0, \ \xi_t^{\{0(2)\}} \neq \emptyset\right) > 0\right\}.$$

0(2): the site 0 in adult state.



 $\lambda_* = \lambda_c(PC)$. $\gamma_* > 0$ for d = 1 by Krone (1999) and $d \ge 1$ by Foxall (2014).

Survival region of CPA:

$$S_{\gamma} = \left\{ \Lambda \in \mathbb{R}^{\mathbb{N}}, \text{ non decreasing } / \mathbb{P}_{\Lambda,\gamma} \left(orall t > 0, \; \xi_t \not\equiv 0
ight) > 0
ight\}.$$

- If $\Lambda \in S_{\gamma}$, then one has survival.
- If $\Lambda \notin S_{\gamma}$, then one has extinction.
- Let $\Lambda = (\lambda_i)_i$ and $\Lambda' = (\lambda_i')_i$. If $\Lambda \in S_\gamma$ and $\forall i, \lambda_i \leq \lambda_i'$ then $\Lambda' \in S_\gamma$.

Survival region of CPA:

$$S_{\gamma} = \left\{ \Lambda \in \mathbb{R}^{\mathbb{N}}, \text{ non decreasing } / \mathbb{P}_{\Lambda,\gamma} \left(\forall t > 0, \ \xi_t \not\equiv 0 \right) > 0 \right\}.$$

- If $\Lambda \in S_{\gamma}$, then one has survival.
- If $\Lambda \notin S_{\gamma}$, then one has extinction.
- Let $\Lambda = (\lambda_i)_i$ and $\Lambda' = (\lambda_i')_i$. If $\Lambda \in S_\gamma$ and $\forall i, \lambda_i \leq \lambda_i'$ then $\Lambda' \in S_\gamma$.

If $\forall i, \lambda_i > \lambda_c(PC)$, then one has survival.

Survival region of CPA:

$$S_{\gamma} = \left\{ \Lambda \in \mathbb{R}^{\mathbb{N}}, \text{ non decreasing } / \mathbb{P}_{\Lambda,\gamma} \left(\forall t > 0, \ \xi_t \not\equiv 0 \right) > 0 \right\}.$$

- If $\Lambda \in S_{\gamma}$, then one has survival.
- If $\Lambda \notin S_{\gamma}$, then one has extinction.
- Let $\Lambda = (\lambda_i)_i$ and $\Lambda' = (\lambda_i')_i$. If $\Lambda \in \mathcal{S}_{\gamma}$ and $\forall i, \lambda_i \leq \lambda_i'$ then $\Lambda' \in \mathcal{S}_{\gamma}$.

If $\forall i, \lambda_i > \lambda_c(PC)$, then one has survival.

About the survival region...

For $m \in \mathbb{N}$ and $\lambda_1, \ldots, \lambda_m$ fixed, there exist λ_{m+1} and γ such that $\mathbb{P}_{\Lambda,\gamma}$ $(\forall t > 0, \ \xi_t \not\equiv 0) > 0$.

Let
$$\Lambda, \gamma$$
 such that $\mathbb{P}_{\Lambda, \gamma}\left(\forall t > 0, \; \xi_t^{\delta_0} \not\equiv 0\right) > 0. \quad \overline{\mathbb{P}}_{\lambda, \gamma}\left(\bullet \; | \forall t > 0, \; \xi_t^{\delta_0} \not\equiv 0\right).$

Let Λ, γ such that $\mathbb{P}_{\Lambda, \gamma}\left(\forall t > 0, \ \xi_t^{\delta_0} \not\equiv 0\right) > 0$. $\overline{\mathbb{P}}_{\lambda, \gamma}\left(\bullet \mid \forall t > 0, \ \xi_t^{\delta_0} \not\equiv 0\right)$. We want to prove an **asymptotic shape theorem** for the CPA :

Theorem

There exists a norm μ on \mathbb{R}^d such that for every $\epsilon>0$ and every function $f:\mathbb{Z}^d\to\mathbb{N}$ with finite support, $\overline{\mathbb{P}}$ -almost surely,

$$orall t>0, \ (1-\epsilon)B_{\mu}\subset rac{ ilde{H}_{t}^{f}}{t}\subset (1+\epsilon)B_{\mu},$$

where $\tilde{H}_t^f = \cup_{s \leq t} A_s^f + [0,1]^d$ and B_μ the unit ball of μ .

 $ilde{H}_t^f$ is (almost) the set of points born before t.

Let Λ, γ such that $\mathbb{P}_{\Lambda, \gamma}\left(\forall t > 0, \; \xi_t^{\delta_0} \not\equiv 0\right) > 0. \quad \overline{\mathbb{P}}_{\lambda, \gamma}\left(\bullet \; | \forall t > 0, \; \xi_t^{\delta_0} \not\equiv 0\right).$ We want to prove an asymptotic shape theorem for the CPA:

$\mathsf{Theorem}$

There exists a norm μ on \mathbb{R}^d such that for every $\epsilon > 0$ and every function $f: \mathbb{Z}^d \to \mathbb{N}$ with finite support, $\overline{\mathbb{P}}$ -almost surely,

$$orall t>0, \ (1-\epsilon)B_{\mu}\subset rac{ ilde{H}_{t}^{f}}{t}\subset (1+\epsilon)B_{\mu},$$

where $\tilde{H}_t^f = \bigcup_{s \leq t} A_s^f + [0,1]^d$ and B_{μ} the unit ball of μ .

 $ilde{\mathcal{H}}_t^f$ is (almost) the set of points born before t.

At most linear growth

Let Λ, γ such that $\mathbb{P}_{\Lambda, \gamma}\left(\forall t > 0, \ \xi_t^{\delta_0} \not\equiv 0\right) > 0$. $\overline{\mathbb{P}}_{\lambda, \gamma}\left(\bullet \mid \forall t > 0, \ \xi_t^{\delta_0} \not\equiv 0\right)$. We want to prove an **asymptotic shape theorem** for the CPA:

Theorem

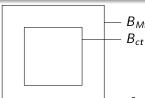
There exists a norm μ on \mathbb{R}^d such that for every $\epsilon>0$ and every function $f:\mathbb{Z}^d\to\mathbb{N}$ with finite support, $\overline{\mathbb{P}}$ -almost surely,

$$\forall t>0,\; (1-\epsilon)B_{\mu}\subset rac{ ilde{H}_{t}^{f}}{t}\subset (1+\epsilon)B_{\mu},$$

where $\tilde{H}_t^f = \cup_{s \leq t} A_s^f + [0,1]^d$ and B_μ the unit ball of μ .

 $ilde{\mathcal{H}}_t^f$ is (almost) the set of points born before t .

- At most linear growth
- At least linear growth



Let Λ, γ such that $\mathbb{P}_{\Lambda, \gamma}\left(\forall t > 0, \; \xi_t^{\delta_0} \not\equiv 0\right) > 0. \quad \overline{\mathbb{P}}_{\lambda, \gamma}\left(\bullet \; | \forall t > 0, \; \xi_t^{\delta_0} \not\equiv 0\right).$ We want to prove an asymptotic shape theorem for the CPA:

$\mathsf{Theorem}$

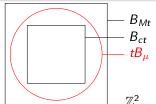
There exists a norm μ on \mathbb{R}^d such that for every $\epsilon > 0$ and every function $f: \mathbb{Z}^d \to \mathbb{N}$ with finite support, $\overline{\mathbb{P}}$ -almost surely,

$$\forall t>0,\; (1-\epsilon)B_{\mu}\subset rac{ ilde{H}_{t}^{f}}{t}\subset (1+\epsilon)B_{\mu},$$

where $\tilde{H}_t^f = \bigcup_{s \leq t} A_s^f + [0,1]^d$ and B_{μ} the unit ball of μ .

 \tilde{H}_t^f is (almost) the set of points born before t.

- At most linear growth
- At least linear growth
- Exactly linear growth



1. At most linear growth

Let Λ, γ such that $\mathbb{P}_{\Lambda, \gamma}\left(\forall t > 0 \ \xi_t^{\delta_{\mathbf{0}}} \not\equiv 0\right) > 0$.

- $H^f_t = \bigcup_{s \leq t} A^f_s$ the set of points born before t
- Let $(\eta_t)_t$ a Richardson process (contact process without death)
- $\bullet \ B_R = \{ y \in \mathbb{Z}^d : \|y\|_{\infty} \le R \}$

There exist M, A, B such that for all t > 0, $\mathbb{P}(\eta_t \nsubseteq B_{Mt}) \le A \exp(-Bt)$.

1. At most linear growth

Let Λ, γ such that $\mathbb{P}_{\Lambda, \gamma}\left(\forall t > 0 \; \xi_t^{\delta_{\mathbf{0}}} \not\equiv 0\right) > 0$.

- $H^f_t = \bigcup_{s \leq t} A^f_s$ the set of points born before t
- Let $(\eta_t)_t$ a Richardson process (contact process without death)
- $B_R = \{ y \in \mathbb{Z}^d : ||y||_{\infty} \le R \}$

There exist M, A, B such that for all t > 0, $\mathbb{P}(\eta_t \nsubseteq B_{Mt}) \leq A \exp(-Bt)$.

Lemma

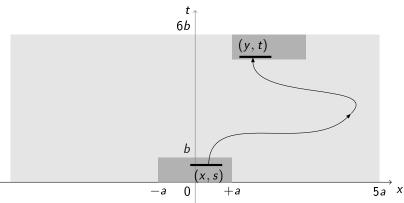
There exist A,B,M such that for every $f:\mathbb{Z}^d\to\mathbb{N}$ with finite support and every t>0

$$\mathbb{P}(H_t^f \nsubseteq B_{Mt}) \leq \mathbb{P}(\eta_t \nsubseteq B_{Mt}) \leq A \exp(-Bt).$$

- Block event
- Percolation background
- Expected estimates

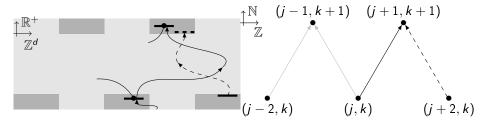
Block event

If we have survival then $\forall \epsilon > 0 \ \exists n, a, b$, such that the probability of the block event is at least $1 - \epsilon$.



- Block event
- Percolation background
- Expected estimates

Percolation background



- Block event
- Percolation background
- Expected estimates

Expected estimates

$$au^f = \inf\{t \geq 0: \xi_t^f \equiv 0\}$$
 extinction time of CPA,

Theorem

There exist A, B, C such that for all t>0, $x\in\mathbb{Z}^d$ and $f:\mathbb{Z}^d\to\mathbb{N}$:

$$\mathbb{P}\big(t<\tau^f<\infty\big)\leq A\exp(-Bt),$$

$$\mathbb{P}(B_{ct} \nsubseteq H_t^f, \tau^f = \infty) \leq A \exp(-Bt).$$

3. Exactly linear growth \rightarrow shape theorem

$$\begin{split} t^f(x) &= \inf\{t \geq 0 : \xi_t^f(x) \neq 0\} \text{ hitting time of } x. \\ H_t^f &= \{x \in \mathbb{Z}^d : t^f(x) \leq t\}. \end{split}$$

- Let $x \in \mathbb{Z}^d$. We want to prove the convergence of $\frac{t(nx)}{n}$ when $n \to \infty$.
- Ergodic subadditive theorem of Kingman :

$$t((n+p)x) \le t(nx) + t(px) \circ \text{space-time translation}.$$

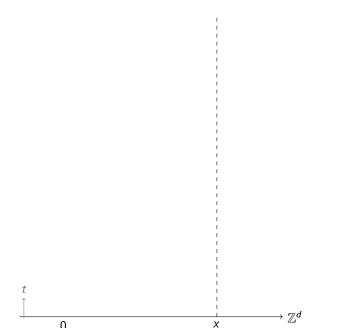
3. Exactly linear growth \rightarrow shape theorem

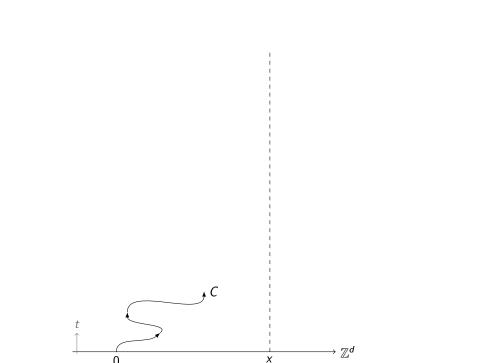
$$\begin{split} t^f(x) &= \inf\{t \geq 0 : \xi_t^f(x) \neq 0\} \text{ hitting time of } x. \\ H_t^f &= \{x \in \mathbb{Z}^d : t^f(x) \leq t\}. \end{split}$$

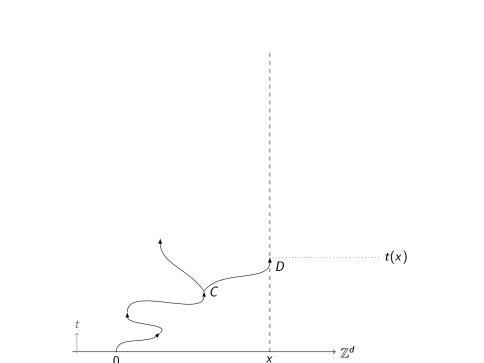
- Let $x \in \mathbb{Z}^d$. We want to prove the convergence of $\frac{t(nx)}{n}$ when $n \to \infty$.
- Ergodic subadditive theorem of Kingman :

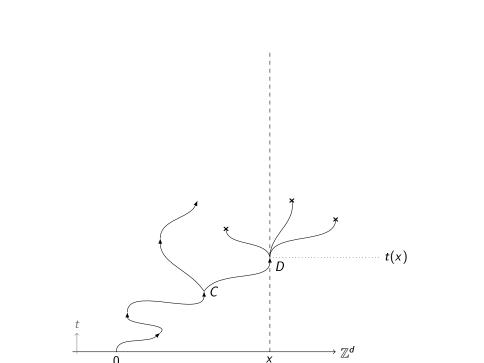
$$t((n+p)x) \le t(nx) + t(px) \circ \text{space-time translation}.$$

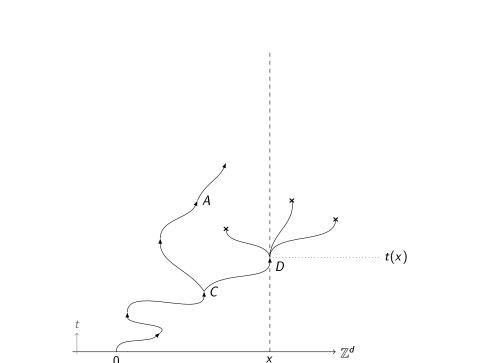
	t(x)	$t(x)$ under $\overline{\mathbb{P}}$
integrability	NO	YES
stationarity	YES	NO
subadditivity	YES	NO

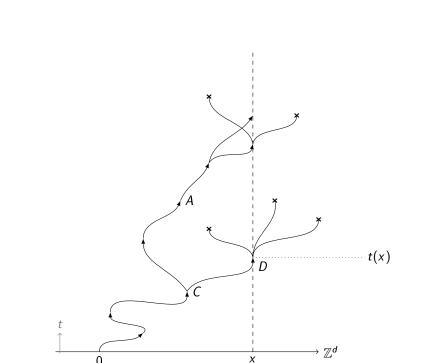




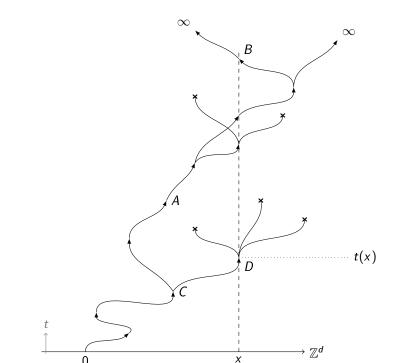


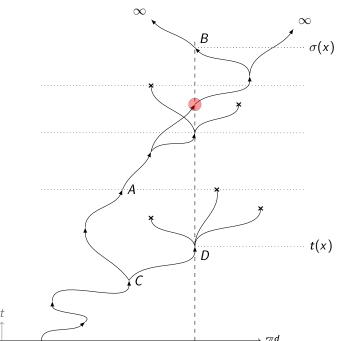












	t(x)	$t(x)$ under $\overline{\mathbb{P}}$	σ under $\overline{\mathbb{P}}$
integrability	NO	YES	YES
stationarity	YES	NO	YES
(almost) subadditivity	YES	NO	YES

	t(x)	$t(x)$ under $\overline{\mathbb{P}}$	σ under $\overline{\mathbb{P}}$
integrability	NO	YES	YES
stationarity	YES	NO	YES
(almost) subadditivity	YES	NO	YES

ullet σ satisfies also growth of linear order (as t).

	t(x)	$t(x)$ under $\overline{\mathbb{P}}$	σ under $\overline{\mathbb{P}}$
integrability	NO	YES	YES
stationarity	YES	NO	YES
(almost) subadditivity	YES	NO	YES

- σ satisfies also growth of linear order (as t).
- ullet directional convergence for σ thanks to the almost subadditive theorem of Kesten- Hammersley(74) :

$$\sigma((n+p)x) \le \sigma(nx) + \sigma(px) \circ \text{space-time translation} + \text{some controlled quantity}.$$

	t(x)	$t(x)$ under $\overline{\mathbb{P}}$	σ under $\overline{\mathbb{P}}$
integrability	NO	YES	YES
stationarity	YES	NO	YES
(almost) subadditivity	YES	NO	YES

- σ satisfies also growth of linear order (as t).
- ullet directional convergence for σ thanks to the almost subadditive theorem of Kesten- Hammersley(74) :

$$\sigma((n+p)x) \leq \sigma(nx) + \sigma(px) \circ \text{space-time translation} + \text{some controlled quantity}.$$

 \bullet « Uniform continuity » of $\sigma \to \mathsf{shape}$ theorem for $\sigma.$

	t(x)	$t(x)$ under $\overline{\mathbb{P}}$	σ under $\overline{\mathbb{P}}$
integrability	NO	YES	YES
stationarity	YES	NO	YES
(almost) subadditivity	YES	NO	YES

- σ satisfies also growth of linear order (as t).
- ullet directional convergence for σ thanks to the almost subadditive theorem of Kesten- Hammersley(74) :

$$\sigma((n+p)x) \leq \sigma(nx) + \sigma(px) \circ \text{space-time translation} + \text{some controlled quantity}.$$

- ullet « Uniform continuity » of σo shape theorem for $\sigma.$
- Control of the difference between t and σo shape theorem for t.

Thanks for your attention