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INTRODUCTION



STATISTICAL MECHANICS

Understand the macroscopic behavior of a physics system based on a
model describing interactions between microscopic components

Model:
» Structure is represented by a graph G = (V, E), finite.
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STATISTICAL MECHANICS

Understand the macroscopic behavior of a physics system based on a
model describing interactions between microscopic components

Model:
» Structure is represented by a graph G = (V, E), finite.

» Set of configurations on G: C(G).



STATISTICAL MECHANICS

» Parameter: intensity of interactions between microscopic
components and external temperature.

Positive weight function w = (Wg)ece on the edges.

X
e=xy

e,

» To a configuration C, is assigned an energy &€,(C).

We

» Boltzmann probability on configurations:

—-Ew(C)

VCeC@G). PQC)= %

where Z(G,w) = Y, e O is the partition function.
CeC(G)



TaE ISING MODEL

Model of ferromagnetism, mixture of two materials

Wilhelm Lenz (1888-1957) Ernst Ising (1900-1998)

» Graph G = (V,E).

» A spin configuration o assigns to every vertex X of the graph G a
spin oy € {-1,1}.

= CG) = {-1,1}V = set of spin configurations.



THE ISING MODEL

» A spin configuration
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THE ISING MODEL

» A spin configuration / two interpretations.

Magnetic moments:
+1/—, =1/«



THE ISING MODEL

» A spin configuration / two interpretations.

Magnetic moments: Mixture of two materials:
+1/—, =1/« +1/e, -1/o.
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THE ISING MODEL

» Positive weight function: coupling constants J = (Je)ecE.

» Energy of a spin configuration: (o) = — 3, Enya'x(Ty.
e=xye

» Ising Boltzmann probability:
e—Ci()

Voe{-1,1}V, P =
o€ } Ismg(o') ZIs'mg(G,J)

» Two neighboring spins oy, oy tend to align.
» Highest is the coupling Jyy, stronger is this tendency.



THE DIMER MODEL

Adsorption of di-atomic molecules on the surface of a crystal

Sir Ralph H. Fowler (1889-1944) George S. Rushbrooke (1915-1995)

Solvay conference 1927.
» Graph G = (V,E).

» A dimer configuration or perfect coupling: subset of edges such
that each vertex is incident to exactly one edge.

= C(G) = M(G) = set of dimer configurations.



THE DIMER MODEL

» A dimer configuration.

N/ N/ N/
N/ N/ N/ N/ N/
N/ N/ N/ N/ N/

NN NN

NN NN NN
I//////
NN NNNDN
I//////
NN\
\\\I///
U NNNN
\\I////
A A



THE DIMER MODEL

» A dimer configuration.
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THE DIMER MODEL

» A dimer configuration.
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THE DIMER MODEL

» A dimer configuration.
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» Positive weight function: v = (ve)eeE.
» Energy of a configuration M: &,(M) = — 3 ocp log Ve.
» Dimer Boltzmann measure:

[T ve

eeM

YMe M(G), Pgimere(M) = m
imer(3,

» Highest is the weight, more likely is an edge to be present.



SPANNING TREES

Related to electrical networks

Gustav Kirchhoff (1824-1887)

» Graph G = (V,E).
» A spanning tree: connected subset of edges spanning vertices of
the graph, containing no cycle.

= C(G) = T(G) = subset of spanning trees.



SPANNING TREES

» A spanning tree
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SPANNING TREES

» A spanning tree
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SPANNING TREES

» A spanning tree

» Positive weight function: p = (0¢)ecE.
» Energy of a tree T: E,(T) = — Yeer lOg 6.
» Spanning trees Boltzmann measure:

[TeeT e

VT eT(G), Puel(l)= .
©) wee(T) Ztree(G’p)

» Edges with high weights are more likely to be present.



MACROSCOPIC BEHAVIOR

Let edge-lengths tend to zero
Look at a “ typical configuration ”.

» Ising model (Simulation by R. Cerf)

J small J critical J large



MACROSCOPIC BEHAVIOR

» Dimer model (Simulation by R. Kenyon)




MACROSCOPIC BEHAVIOR

» Identification of the phase transition.

» Understanding the sub and super critical models.

» Understanding the critical model (at the phase transition):

» Universality and phase transition.
> Conjectures : Nienhuis, Cardy, Duplantier ...

Proofs : G. Lawler, O. Schramm, W. Werner, D. Chelkak, S.
Smirnov ...



EXACTLY SOLVABLE MODELS

» Boltzmann measure on configurations:

—Ew(©)

VCeCG), P(C)= ﬁ

where Z(G,w) = > e O is the partition function.
CeC(G)

» The model is exactly solvable if there exists an exact, explicit
expression for the partition function.
» Three exactly solvable models:
> Ising-2d: Onsager (1944) - Fisher (1966): Ziine(G,J) = Vdet(Kgr).
» Dimer-2d: Kasteleyn, Temperley-Fisher (1961):
when G is bipartite, Zgimer(G, v) = det(K).
» Spanning trees: Kirchhoff (1848): Zy..(G,p) = det(A").



A GLIMPSE AT SOME FOUNDING RESULTS OF
EXACTLY SOLVABLE MODELS



PARTITION FUNCTION OF THE DIMER MODEL DEFINED ON
FINITE, PLANAR, BIPARTITE GRAPHS

» Let G=(WUB,E) be a planar, finite, bipartite graph, with
IW| = |B| = n.

» Consider a dimer model on G, with weight function v on edges.
» Orientation of the edges: Kasteleyn orientation.
» Let K be the Kasteleyn matrix, defined by:

Ywb ifw~b, w—b,
YweW, YbeB, Kup=9-vap ifw~b, bow,

0 otherwise.

TaEOREM (KA,TE-FI)

If edges are oriented according to a Kasteleyn orientation, then:

Zdimer(G’ v) = |det(K)l.



SUPERIMPOSITION OF DIMER CONFIGURATIONS

» Let My, My be two dimer configurations of G, and M; U My be
their superimposition.
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SUPERIMPOSITION OF DIMER CONFIGURATIONS

» Let My, My be two dimer configurations of G, and M; U My be
their superimposition.
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SUPERIMPOSITION OF DIMER CONFIGURATIONS

» Let My, Mg be two dimer configurations of G, and M; U My be
their superimposition.
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SUPERIMPOSITION OF DIMER CONFIGURATIONS

» Let My, Mg be two dimer configurations of G, and M; U My be
their superimposition.

~ I\\ I\\ I\\ I\
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» M; UM; is a disjoint union of alternating cycles, where an
alternating cycle consists of edges alternating between M; and
Mz. An alternating cycle of length 2 is a doubled edge.



PARTITION FUNCTION OF SPANNING TREES

» Let G = (V,E) be a finite graph.
» Consider spanning trees on G, with weight function p on edges.

» Let A be the Laplacian matrix defined by:

Pxy ifX£y, X~y,
VX, yeV, Ay = _prx' ifx=y
X/ ~X
0 otherwise.

THEOREM (KI)

The spanning trees partition function is equal to
Ziree( G, p) = | det(A")],

where A" is obtained from A by removing the line and the column
corresponding to a given vertex I.



TEMPERLEY'S BIJECTION BETWEEN SPANNING TREES AND THE
DIMER MODEL ON THE DOUBLE GRAPH

» Generalized form due to Kenyon-Propp-Wilson.

» Spanning tree of a graph G



TEMPERLEY'S BIJECTION BETWEEN SPANNING TREES AND THE
DIMER MODEL ON THE DOUBLE GRAPH

» Generalized form due to Kenyon-Propp-Wilson.

» Dual spanning tree of the dual graph G*




TEMPERLEY'S BIJECTION BETWEEN SPANNING TREES AND THE
DIMER MODEL ON THE DOUBLE GRAPH

» Generalized form due to Kenyon-Propp-Wilson.

» Dimer configuration of the double graph GP
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PARTITION FUNCTIONS OF THE CRITICAL ISING
MODEL AND CRITICAL SPANNING TREES



CriTicAL ISING MODEL

» If the graph G is 72, Kramers et Wannier determine the critical
coupling constants:

1
Ve€E, Jo=log+ V2).

» Baxter generalizes the critical Ising model on Z2 to a large family
of graphs: the isoradial graphs.



ISORADIAL GRAPHS

» A graph G is isoradial if it is planar and can be embedded in the
plane in such a way that all faces are inscribed in a circle of
radius 1, and that the circumcenters are in the interior of the
faces (Duffin-Mercat-Kenyon).
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ISORADIAL GRAPHS

» A graph G is isoradial if it is planar and can be embedded in the
plane in such a way that all faces are inscribed in a circle of
radius 1, and that the circumcenters are in the interior of the
faces (Duffin-Mercat-Kenyon).




ASSOCIATED RHOMBUS GRAPH, ANGLES

» Take the circumcenters.



ASSOCIATED RHOMBUS GRAPH, ANGLES

» Join the circumcenters to the vertices of the graph G.
= Associated rhombus graph G°.




ASSOCIATED RHOMBUS GRAPH, ANGLES

» Join the circumcenters to the vertices of the graph G.
= Associated rhombus graph G°.




ASSOCIATED RHOMBUS GRAPH, ANGLES




Z-INVARIANT CRITICAL ISING MODEL

» The Ising model is Z-invariant and critical [Ba] if the coupling
constants are equal to:

1 1+ siné
VeeE, J.==log ST Ee).
2 cos 6,

» Baxter determines them using:
» Z-invariance (invariance under A — Y transformations),
» generalized form of self-duality,
» assumption of uniqueness of the critical point.
» Li and Duminil-Copin - Cimasoni, show that the Ising model is
indeed critical.

» When G =72 Ve<cE, 6, = 7> implying that J. = %log(l + V2).



Z-INVARIANT CRITICAL SPANNING TREES

» Spanning trees are Z-invariant and critical [Ke] if G is isoradial
and the weights are equal to:

YeeE, pe=tanb..



REsuULT

Critical Ising model on G

VeeE, J.=-log
cos O,

1 1+ siné,
2



REsuULT

Critical Ising model on G Critical spanning trees on G

1
YeeE, J.= élog(

1+ siné,
cos O,



REsuULT

Critical Ising model on G Critical spanning trees on G

1
YeeE, J.= élog(

1+ siné,
cos O,



REsuULT

Critical Ising model on G

1
YeeE, J.=-=1
© c 2 og( cos B,

1+ siné,

|

|

Critical spanning trees on G

Ql

[\
1
/ST

YeeE, p.=tan6,
Boundary conditions E \ E.



REsuULT

Critical Ising model on G Critical spanning trees on G

Ql

[\
1
ST

1 1+siné VYeekE, =tang
YeeE, J.=-log L pe ¢
2 cos O,

Boundary conditions E \ E.

THEOREM

ZIsi,ng(G, ])2 = 2|VI |Ztree(G’p)l-



REMARKS

» Similar result when the graph G is embedded in the torus. The
characteristic polynomial replaces the partition function:

> Proof using Fisher’s correspondence between the Ising model and
the dimer model on a non-bipartite graph [B-dT], [dT].
» Proof using Kac-Ward matrices [Ci].

» On the torus, no difficulty related to the boundary.

» Different explicit construction.



PrROOF 1. TOWARDS A BIPARTITE DIMER MODEL

» Construction of the bipartite graph G2
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» Construction of the bipartite graph G2



PrROOF 1. TOWARDS A BIPARTITE DIMER MODEL

Critical Ising model on G Dimer model on G?

cosO. if e // e*

cos B¢ ) sing, ife // e
VeeEQ v =
1 otherwise.

TaeorEM (N1, Wu-LIN,Du,BpT)

ZIsing(Gb J)Z =2V [1_[ COS_l(Qe)] Zdimer(GQ, V).

ecE



PROOF 2. DIMER PARTITION FUNCTION.

» Consider the bipartite graph G2 = (WQ U BQ,EQ), |WQ| = |BQ| = k.
» Orientation of the edges : Kasteleyn orientation.
» Let K be the matrix defined by:

Vwb ifw~b, w—b,
VweW? VbeB? Kyp={-vap ifw~b, b—w,

0 otherwise.

> det(K) = Z sgn(o) le,b(ra) ---Kwk,b<r<k)-

O’E«Sk

+1 41 contribution of dimer config.

TaEOREM (KA, TE-FT)
If edges are oriented according to a Kasteleyn orientation, then:

Zagimer(G2,v) = | det(K)].



PROOF 2. DIMER PARTITION FUNCTION.

» Consider the bipartite graph G2 = (WQ U BQ,EQ), |WQ| = |BQ = k.
» Phases (¢wb)wbeee assigned to edges : flat phasing [Ku].

» Let K be the matrix defined by:

e vy ifw~b

VweW? VbeB? Kyp= ,
0 otherwise.

» det(K) = Z sgn(o) le,b{rm ... KWkab(r(k)‘

O'Esk

#1  giphase) contribution dimer config.

TrEOREM (KU)
If the phasing of the edges is flat, then:

Zagimer(G2,v) = | det(K)|.



PROOF 2. DIMER PARTITION FUNCTION.

» Choice of phases

.
b A
-"{éf \\\-
o - —
b,
e
1.sin 6, ife/le
i.cos b, ife // e
KW,b = L'(iilr_g ) . . . .
etz %) 1 if e external and in the interior
el -0c+0)1 1 if & external and on the boundary of GQ.
LEMMA

The phasing of the edges is flat, implying that: Zgimer(G,v) = |detK|.



Proor 3. KASTELEYN MATRIX / LAPLACIAN MATRIX

» Remark: for every external edge wbs,

—Kw,p, — Kwp, if wbs is in the interior
Kw,b3 = i it )
—Kwp, — Kwp, —ie™%(e™ —1) otherwise.




Proor 3. KASTELEYN MATRIX / LAPLACIAN MATRIX

» Remark: for every external edge wbs,

_ —Kw,p, — Kwp, if wbs is in the interior
KW,b3 -

R - (’) .
~Kwp, — Kwp, —ie (e —1)  otherwise.

(wa)weWQ, beBQ (Ag;)x, yeG4Q



Proor 3. KASTELEYN MATRIX / LAPLACIAN MATRIX

COROLLARY

Zdimer(GQs v) = |det A(r)l = Z (l_[pe) .

TeTn(GR) €T




Proor 4- SPANNING TREES AND DUAL SPANNING TREES

» If T is a spanning tree of GﬁQ, then the dual configuration T*
consisting of the dual of the absent edges of T is a spanning tree

of the dual graph (GAQ)*, and by extension of the double graph GP.

Bipartite version of the dual (G»Q)* is the double graph of G, it is
denoted GP.
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Proor 4- SPANNING TREES AND DUAL SPANNING TREES
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Proor 4- SPANNING TREES AND DUAL SPANNING TREES

» If T is a spanning tree of G_’Q, then the dual configuration T*
consisting of the dual of the absent edges of T is a spanning tree

of the dual graph (GAQ)*, and by extension of the double graph GP.




Proor 4- CHARACTERIZING DUAL SPANNING TREES.

LeEmMMmA
A spanning tree of GP is the dual of a spanning tree of GQ if and only if

the restriction to every white vertex (in the interior) is of the following

£ T

Let us denote (c¢) this condition, and T(SC)(GD ) the set of these
spanning trees, oriented towards a vertex S of the boundary.

form:




Proor 5. FROM DUAL SPANNING TREES TO THE DIMER MODEL
ON THE DOUBLE GRAPH

ProrosiTiON
Let T be a spanning tree of ‘J'(Sc)(GD). Let Mt be the configuration
consisting of edges exiting from black vertices, then Mt is a dimer

configuration of GP(s).
¥, l*/x
I

’—u)—(



Proor 5. FROM DUAL SPANNING TREES TO THE DIMER MODEL
ON THE DOUBLE GRAPH

ProrosiTion

Let T be a spanning tree of T3 )(GD) Let Mt be the configuration
consisting of edges exiting from black vertices, then Mt is a dimer
configuration of GP(s).

Ui



Proor 5. FrROM DUAL SPANNING TREES TO THE DIMER MODEL
ON THE DOUBLE GRAPH

ProrosiTion

Let T be a spanning tree of T3 )(GD) Let Mt be the configuration

consisting of edges exiting from black vertices, then Mt is a dimer
configuration of GP(s).

‘1_031
\/ /’: &N
\\/\\7///\

Thus, T5,(GP) = |_| T2 (GP)
MeM(GP(s))

Zimer @O0 = )0 p(TEy(G)).

MeM(GP(s))



Proor 5. FROM DUAL SPANNING TREES TO THE DIMER MODEL
ON THE DOUBLE GRAPH

ProrosiTion

Let M be a perfect matching of GP(s), then an edge configuration
containing edges of M and satisfying condition (c) is the unoriented
version of a spanning tree of ‘J?’M(GD).

As a consequence, we have:

P(TE(GP) = p' (M) = | [ 5.

eeM

Zdimer(GQa v) = Z l_[pé.
MeM(GP(s)) eeM



Proor 6. ConcrusioN [K-P-W]

The generalized form of Temperley’s bijection due to
Kenyon-Propp-Wilson allows to conclude.



