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Understand the macroscopic behavior of a physics system based on a
model describing interactions between microscopic components

Model:
I Structure is represented by a graph G = (V,E), finite.

I Set of configurations on G: C(G).
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I Parameter: intensity of interactions between microscopic
components and external temperature.

Positive weight function w = (we)e∈E on the edges.

w

x

y

e=xy

e

I To a configuration C, is assigned an energy Ew(C).
I Boltzmann probability on configurations:

∀C ∈ C(G), P(C) =
e−Ew(C)

Z(G,w)
,

where Z(G,w) =
∑

C∈C(G)
e−Ew(C) is the partition function.
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Model of ferromagnetism, mixture of two materials

Wilhelm Lenz (1888-1957) Ernst Ising (1900-1998)

I Graph G = (V,E).
I A spin configuration σ assigns to every vertex x of the graph G a

spin σx ∈ {−1, 1}.
⇒ C(G) = {−1, 1}V = set of spin configurations.
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I A spin configuration
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I A spin configuration / two interpretations.

Magnetic moments:
+1/→, −1/←

Mixture of two materials:
+1/•, -1/•.
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I Positive weight function: coupling constants J = (Je)e∈E.

I Energy of a spin configuration: EJ(σ) = −
∑

e=xy∈E
Jxyσxσy.

I Ising Boltzmann probability:

∀σ ∈ {−1, 1}V, PIsing(σ) =
e−EJ (σ)

ZIsing(G, J)
.

I Two neighboring spins σx, σy tend to align.
I Highest is the coupling Jxy, stronger is this tendency.
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Adsorption of di-atomic molecules on the surface of a crystal

Sir Ralph H. Fowler (1889-1944)
Solvay conference 1927.

George S. Rushbrooke (1915-1995)

I Graph G = (V,E).
I A dimer configuration or perfect coupling: subset of edges such

that each vertex is incident to exactly one edge.
⇒ C(G) = M(G) = set of dimer configurations.
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I A dimer configuration.

I Positive weight function: ν = (νe)e∈E.
I Energy of a configuration M: Eν(M) = −

∑
e∈M log νe.

I Dimer Boltzmann measure:

∀M ∈M(G), Pdimère(M) =

∏
e∈M

νe

Zdimer(G, ν)
.

I Highest is the weight, more likely is an edge to be present.
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Related to electrical networks

Gustav Kirchhoff (1824-1887)

I Graph G = (V,E).
I A spanning tree: connected subset of edges spanning vertices of

the graph, containing no cycle.
⇒ C(G) = T(G) = subset of spanning trees.
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I A spanning tree

I Positive weight function: ρ = (ρe)e∈E.
I Energy of a tree T: Eρ(T) = −

∑
e∈T log ρe.

I Spanning trees Boltzmann measure:

∀T ∈ T(G), Ptree(T) =

∏
e∈T ρe

Ztree(G, ρ)
.

I Edges with high weights are more likely to be present.



S 
I A spanning tree

I Positive weight function: ρ = (ρe)e∈E.
I Energy of a tree T: Eρ(T) = −

∑
e∈T log ρe.

I Spanning trees Boltzmann measure:

∀T ∈ T(G), Ptree(T) =

∏
e∈T ρe

Ztree(G, ρ)
.

I Edges with high weights are more likely to be present.



S 
I A spanning tree

I Positive weight function: ρ = (ρe)e∈E.
I Energy of a tree T: Eρ(T) = −

∑
e∈T log ρe.

I Spanning trees Boltzmann measure:

∀T ∈ T(G), Ptree(T) =

∏
e∈T ρe

Ztree(G, ρ)
.

I Edges with high weights are more likely to be present.



S 
I A spanning tree

I Positive weight function: ρ = (ρe)e∈E.
I Energy of a tree T: Eρ(T) = −

∑
e∈T log ρe.

I Spanning trees Boltzmann measure:

∀T ∈ T(G), Ptree(T) =

∏
e∈T ρe

Ztree(G, ρ)
.

I Edges with high weights are more likely to be present.



S 
I A spanning tree

I Positive weight function: ρ = (ρe)e∈E.
I Energy of a tree T: Eρ(T) = −

∑
e∈T log ρe.

I Spanning trees Boltzmann measure:

∀T ∈ T(G), Ptree(T) =

∏
e∈T ρe

Ztree(G, ρ)
.

I Edges with high weights are more likely to be present.



M 

Let edge-lengths tend to zero
Look at a “ typical configuration ”.

I Ising model (Simulation by R. Cerf)

J small J critical J large
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I Dimer model (Simulation by R. Kenyon)
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I Identification of the phase transition.

I Understanding the sub and super critical models.

I Understanding the critical model (at the phase transition):

I Universality and phase transition.
I Conjectures : Nienhuis, Cardy, Duplantier . . .
Proofs : G. Lawler, O. Schramm, W. Werner, D. Chelkak, S.
Smirnov . . .
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I Boltzmann measure on configurations:

∀C ∈ C(G), P(C) =
e−Ew(C)

Z(G,w)
,

where Z(G,w) =
∑

C∈C(G)
e−Ew(C) is the partition function.

I The model is exactly solvable if there exists an exact, explicit
expression for the partition function.

I Three exactly solvable models:
I Ising-2d: Onsager (1944) - Fisher (1966): ZIsing(G, J) =

√
det(KGF ).

I Dimer-2d: Kasteleyn, Temperley-Fisher (1961):
when G is bipartite, Zdimer(G, ν) = det(K).

I Spanning trees: Kirchhoff (1848): Ztree(G, ρ) = det(∆(r)).
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I Let G = (W ∪ B,E) be a planar, finite, bipartite graph, with
|W| = |B| = n.

I Consider a dimer model on G, with weight function ν on edges.
I Orientation of the edges: Kasteleyn orientation.
I Let K be the Kasteleyn matrix, defined by:

∀w ∈ W, ∀ b ∈ B, Kw,b =


νwb if w ∼ b, w→ b,

−νwb if w ∼ b, b→ w,

0 otherwise.

T (K,T-F)
If edges are oriented according to a Kasteleyn orientation, then:

Zdimer(G, ν) = | det(K)|.
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I Let M1, M2 be two dimer configurations of G, and M1 ∪M2 be
their superimposition.

I M1 ∪M2 is a disjoint union of alternating cycles, where an
alternating cycle consists of edges alternating between M1 and
M2. An alternating cycle of length 2 is a doubled edge.
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I Let G = (V,E) be a finite graph.
I Consider spanning trees on G, with weight function ρ on edges.
I Let ∆ be the Laplacian matrix defined by:

∀ x, y ∈ V, ∆x,y =


ρxy if x , y, x ∼ y,

−
∑
x′∼x

ρxx′ if x = y

0 otherwise.

T (K)
The spanning trees partition function is equal to

Ztree(G, ρ) = | det(∆(r))|,

where ∆(r) is obtained from ∆ by removing the line and the column
corresponding to a given vertex r.
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I Generalized form due to Kenyon-Propp-Wilson.
I Spanning tree of a graph G
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I Generalized form due to Kenyon-Propp-Wilson.
I Dual spanning tree of the dual graph G∗

r
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I Generalized form due to Kenyon-Propp-Wilson.
I Dimer configuration of the double graph GD

s

r

s

r
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I If the graph G is Z2, Kramers et Wannier determine the critical
coupling constants:

∀ e ∈ E, Je =
1
2
log(1 +

√
2).

I Baxter generalizes the critical Ising model on Z2 to a large family
of graphs: the isoradial graphs.
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I A graph G is isoradial if it is planar and can be embedded in the
plane in such a way that all faces are inscribed in a circle of
radius 1, and that the circumcenters are in the interior of the
faces (Duffin-Mercat-Kenyon).
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I Take the circumcenters.
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I Join the circumcenters to the vertices of the graph G.
⇒ Associated rhombus graph G�.
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I To every edge e is assigned the half-angle θe of the corresponding
rhombus.

e

θe
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I The Ising model is Z-invariant and critical [Ba] if the coupling
constants are equal to:

∀ e ∈ E, Je =
1
2
log

(
1 + sin θe
cos θe

)
.

I Baxter determines them using:
I Z-invariance (invariance under ∆ − Y transformations),
I generalized form of self-duality,
I assumption of uniqueness of the critical point.

I Li and Duminil-Copin - Cimasoni, show that the Ising model is
indeed critical.

I When G = Z2, ∀e ∈ E, θe = π
4 , implying that Je = 1

2 log(1 +
√
2).
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I Spanning trees are Z-invariant and critical [Ke] if G is isoradial
and the weights are equal to:

∀ e ∈ E, ρe = tan θe.



R
Critical Ising model on G

e
θe

G

∀ e ∈ E, Je =
1
2
log

(
1 + sin θe
cos θe

)

∀ e ∈ E, ρe = tan θe
Boundary conditions Ē \ E.

T

ZIsing(G, J)2 = 2|V| |Ztree(Ḡ, ρ)|.
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I Similar result when the graph G is embedded in the torus. The
characteristic polynomial replaces the partition function:

I Proof using Fisher’s correspondence between the Ising model and
the dimer model on a non-bipartite graph [B-dT], [dT].

I Proof using Kac-Ward matrices [Ci].
I On the torus, no difficulty related to the boundary.
I Different explicit construction.
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Critical Ising model on G

e
θe

G

∀ e ∈ E, Je =
1
2
log

(
1 + sin θe

cos θe

)

Dimer model on GQ

e*

e
θe

∀ e ∈ EQ, νe =


sin θe if e // e
cos θe if e // e∗

1 otherwise.

T (N,W-L,D,BT)

ZIsing(G, J)2 = 2|V|
[∏
e∈E

cos−1(θe)
]
Zdimer(GQ, ν).
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I Consider the bipartite graph GQ = (WQ ∪ BQ,EQ), |WQ | = |BQ | = k.
I Orientation of the edges : Kasteleyn orientation.
I Let K be the matrix defined by:

∀w ∈ WQ, ∀ b ∈ BQ, Kw,b =


νwb if w ∼ b, w→ b,

−νwb if w ∼ b, b→ w,

0 otherwise.

I det(K) =
∑
σ∈Sk

sgn(σ)︸ ︷︷ ︸
±1

Kw1,bσ(1) . . .Kwk,bσ(k) .︸                  ︷︷                  ︸
±1 contribution of dimer config.

T (K,T-F)
If edges are oriented according to a Kasteleyn orientation, then:

Zdimer(GQ, ν) = | det(K)|.
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I Consider the bipartite graph GQ = (WQ ∪ BQ,EQ), |WQ | = |BQ | = k.
I Phases (φwb)wb∈EQ assigned to edges : flat phasing [Ku].
I Let K be the matrix defined by:

∀w ∈ WQ, ∀ b ∈ BQ, Kw,b =

eiφwb νwb if w ∼ b

0 otherwise.

I det(K) =
∑
σ∈Sk

sgn(σ)︸ ︷︷ ︸
±1

Kw1,bσ(1) . . .Kwk,bσ(k) .︸                  ︷︷                  ︸
ei(phase) contribution dimer config.

T (K)
If the phasing of the edges is flat, then:

Zdimer(GQ, ν) = | det(K)|.
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I Choice of phases

w

b

b
b

1

2

3e*

e
θe

Kw,b =


1. sin θe if e // e
i. cos θe if e // e∗

ei( 3π2 −θe).1 if e external and in the interior
ei[ 3π2 −(θe+θ∂)].1 if e external and on the boundary of GQ.

L
The phasing of the edges is flat, implying that: Zdimer(GQ, ν) = | detK|.
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I Remark: for every external edge wb3,

Kw,b3 =

−Kw,b1 − Kw,b2 if wb3 is in the interior
−Kw,b1 − Kw,b2 − ie−iθe(e−iθ∂ − 1) otherwise.

w

b

b
b

1

2

3e*

e
θe

I Kasteleyn matrix / Laplacian matrix

Q

G

(Kwb)w∈WQ , b∈BQ

{w ≡ b3}

G
Q

r

(∆(r)
xy)

x, y∈ ~GQ
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2
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C

Zdimer(GQ, ν) = | det∆(r)| =

∣∣∣∣∣∣∣∣∣
∑

T∈T(r)( ~GQ)

(∏
e∈T

ρe

)∣∣∣∣∣∣∣∣∣ .

r

G
Q
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I If T is a spanning tree of ~GQ, then the dual configuration T∗

consisting of the dual of the absent edges of T is a spanning tree
of the dual graph ( ~GQ)∗, and by extension of the double graph ḠD.

r

G
Q

r

G
D

Bipartite version of the dual ( ~GQ)∗ is the double graph of Ḡ, it is
denoted ḠD.
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consisting of the dual of the absent edges of T is a spanning tree
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r

G
Q G

D

r
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L
A spanning tree of GD is the dual of a spanning tree of ~GQ if and only if
the restriction to every white vertex (in the interior) is of the following
form:

Let us denote (c) this condition, and Ts
(c)(G

D) the set of these
spanning trees, oriented towards a vertex s of the boundary.



P . F       
   
P
Let T be a spanning tree of Ts

(c)(G
D). Let MT be the configuration

consisting of edges exiting from black vertices, then MT is a dimer
configuration of GD(s).

s

r

Thus, Ts
(c)(G

D) =
⊔

M∈M(GD(s))

Ts
c,M(GD)

Zdimer(GQ, ν) =
∑

M∈M(GD(s))

ρ
(
Ts
c,M(GD)

)
.
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P
Let M be a perfect matching of GD(s), then an edge configuration
containing edges of M and satisfying condition (c) is the unoriented
version of a spanning tree of Ts

c,M(GD).
As a consequence, we have:

ρ
(
Ts
c,M(GD)

)
= ρ′(M) =

∏
e∈M

ρ′e.

Zdimer(GQ, ν) =
∑

M∈M(GD(s))

∏
e∈M

ρ′e.



P . C [K-P-W]

The generalized form of Temperley’s bijection due to
Kenyon-Propp-Wilson allows to conclude.

s

r

s

r


