1/ 11

Limiting Spectral Distribution of Large Sample
Covariance Matrices

Marwa BANNA

PhD student at Université Paris-Est Marne-La-Vallée under the direction of
Florence Merlevede and Emmanuel Rio

Young Women in Probability
Bonn, Germany

26 May 2014



Introduction and Motivation

e Let X1,...,X, € RN bei.i.d centered random vectors with
covariance matrix ¥ = E(X1X]) = ... = E(X,X/).

2/ 11



Introduction and Motivation
e Let X1,...,X, € RN bei.i.d centered random vectors with

covariance matrix ¥ = E(X1X]) = ... = E(X,X/).

e The sample covariance matrix B, is defined by

1< 1
B = nkz—:lxkkaZ,,XanT, Xn = (X1... Xn) € Mpsn(R)

2/ 11



Introduction and Motivation
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o Let Xq,...,X, € RN be i.i.d centered random vectors with

covariance matrix ¥ = E(X1X]) = ... = E(X,X/).

e The sample covariance matrix B, is defined by
1< 1
B, = n;kalananT, Xo = (X1...Xpn) € Mysn(R)

e E(B,)=X

e For fixed N, the strong law of large numbers implies

. : 1
lim B,= Ilim -
n—-+oo n—-+oco n

n
dXX[ =% as.
k=1
e What happens once N:= N, - ocoasn— o0 ?
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Marcenko-Pastur Theorem

e Let (Xj)ij>1 be a family of i.i.d. random variables such that
E(Xll) =0 and Var(X11) == 0'2.
o Let B, = %22:1 XkaT = %X,,XnT where
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e Let (Xj)ij>1 be a family of i.i.d. random variables such that

E(Xll) =0 and Var(X11) == 0'2.
o Let B, =157 X, X[ =1x,xT where

X1 X2 ... X

Xni Xnz2 oo Xwn

e The empirical spectral measure of B, is defined by

1 N
uB, = N Zékk
k=1

where A1,..., Ay are the eigenvalues of B,,.

o We suppose that c, := & o cE (0, 00).
n——+400
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Marcenko-Pastur Theorem

Theorem
For any continuous and bounded function f : R — R,

/fdMB,, —>/fduc a.s.
n——+00

where pic is the MarCenko-Pastur law

1
(1_C>+ 27rc02 V(b= x)(x — a)lp, p(x

with .+ := max(0,.), a = 0?(1 — /c)? and b = o%(1 + /c)?.



The Stieltjes Transform

The Stieltjes transform Sg : C; — C of a measure v on R is
defined by
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The Stieltjes Transform

The Stieltjes transform Sg : C; — C of a measure v on R is
defined by

5.2)i= [ 1 vl

X —Z

e |S)(2)] £ 1/Im(z) and Im(S,(z)) >0
e The function S, is analytic over C, and characterizes v

b
v([a, b]) = I;% % / JmS, (x + iy) dx

e For a sequence of measures (v,), on R, we have

(Vn LN y) = (vZ €Cy, S(2) —— 5,,(2)).

n—oo



Non linear Stationary Process
e X = (Xx)kez is said to be stationary if Yk € Z and V¢ € N,

D
(Xis -+ s Xire) ~ (Xoy - -+, Xo)
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Non linear Stationary Process

Let (ex)kez be a sequence of i.i.d. random variables

Let g : RZ — R be a measurable function such that for any
keZ,

Xk = g(ﬁk) with & = ( .. ,8k_1,6k)
is well-defined, E(Xx) = 0 and || X||2 < oo.

e Fori=1,...,n, let (X;i)kez be n independent copies of
(Xk)kez
Xt Xz o...oXP
X,=1\ : : :
Xy X3 ... Xp
Xy Xz X,

e B,=1tx,xT =150 X X]
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Theorem: Banna and Merlevede (2013)

Suppose that lim, .o, N/n=c € (0,00) and

D 1Po(Xi)ll2 < 0o where Po(Xi) = E(Xi|&o) — E(Xk|¢-1)
k>0

Then with probability one pg,converges weakly to a non-random
probability measure whose Stieltjes transform S = S(z) satisfies the
equation

27
z=—1+i/ o
S 2mJo S+ (2nf(N))

where 5(z) :== —(1 — ¢)/z + ¢5(z) and f(-) is the spectral density of
(Xi)kez.
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Suppose that lim, .o, N/n=c € (0,00) and
> [Po(Xe)[l2 < o0 where Po(Xi) = E(Xa[0) — E(Xkl¢ 1)

k>0

Then with probability one pg,converges weakly to a non-random
probability measure whose Stieltjes transform S = S(z) satisfies the
equation

27
z=—1+i/ o
S 2mJo S+ (2nf(N))

where 5(z) :== —(1 — ¢)/z + ¢5(z) and f(-) is the spectral density of
(Xi)kez.
f(x) = Zcov (X0, Xk)e™ | x e R



Applications

o Xy =) ;>0aick—i Where (gj)jcz is a sequence of i.i.d.
centered random variables then

E(Xc|&) = aick—i and E(Xcl¢-1) = Y aieri

i>k i>k+1

Thus Po(Xk) = ak&o.
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i>k i>k+1
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Z |ak| < oo and ||€o||2 < 00.
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e Functions of linear processes (ex: Riesz-Raikov sums)
e ARCH models
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Strategy of Proof

Our aim: lim, . S5 (2) = S(z), Vz € C*.
1. Sug, (2) —E (S, (z)) — 0 a.s. Concentration inequality
2. E(Sug, (2)) —E(Spq, (2)) =0 where G,=15"0_, Z,Z]

le 212 o 4
Z,=1 : : :

zv ... oz

Z, 7, Z,

((Z})kez)1<i<n are n independent copies of (Zx)kez such
that for any i,j € Z,

COV(Z,‘, ZJ) = COV()(,'7 )<J)

Technic of blocks associated with the Lindeberg method
3. E(Sug,(2)) — S(z) — 0 Silverstein (1995)
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Thank you for your attention!
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