Limiting Spectral Distribution of Large Sample Covariance Matrices

Marwa Banna

PhD student at Université Paris-Est Marne-La-Vallée under the direction of Florence Merlevède and Emmanuel Rio

Young Women in Probability Bonn, Germany

26 May 2014

• Let $\mathbf{X}_1, \dots, \mathbf{X}_n \in \mathbb{R}^N$ be i.i.d centered random vectors with covariance matrix $\Sigma = \mathbb{E}(\mathbf{X}_1\mathbf{X}_1^T) = \dots = \mathbb{E}(\mathbf{X}_n\mathbf{X}_n^T)$.

- Let $\mathbf{X}_1, \dots, \mathbf{X}_n \in \mathbb{R}^N$ be i.i.d centered random vectors with covariance matrix $\Sigma = \mathbb{E}(\mathbf{X}_1\mathbf{X}_1^T) = \dots = \mathbb{E}(\mathbf{X}_n\mathbf{X}_n^T)$.
- The sample covariance matrix \mathbf{B}_n is defined by

$$\mathbf{B}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{X}_k^T = \frac{1}{n} \mathcal{X}_n \mathcal{X}_n^T, \quad \mathcal{X}_n = (\mathbf{X}_1 \dots \mathbf{X}_n) \in \mathcal{M}_{N \times n}(\mathbb{R})$$

- Let $\mathbf{X}_1, \dots, \mathbf{X}_n \in \mathbb{R}^N$ be i.i.d centered random vectors with covariance matrix $\Sigma = \mathbb{E}(\mathbf{X}_1\mathbf{X}_1^T) = \dots = \mathbb{E}(\mathbf{X}_n\mathbf{X}_n^T)$.
- The sample covariance matrix \mathbf{B}_n is defined by

$$\mathbf{B}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{X}_k^T = \frac{1}{n} \mathcal{X}_n \mathcal{X}_n^T, \quad \mathcal{X}_n = (\mathbf{X}_1 \dots \mathbf{X}_n) \in \mathcal{M}_{N \times n}(\mathbb{R})$$

- $\mathbb{E}(\mathbf{B}_n) = \Sigma$
- For fixed N, the strong law of large numbers implies

$$\lim_{n\to+\infty} \mathbf{B}_n = \lim_{n\to+\infty} \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{X}_k^T = \Sigma \quad \text{a.s.}$$

- Let $\mathbf{X}_1, \dots, \mathbf{X}_n \in \mathbb{R}^N$ be i.i.d centered random vectors with covariance matrix $\Sigma = \mathbb{E}(\mathbf{X}_1\mathbf{X}_1^T) = \dots = \mathbb{E}(\mathbf{X}_n\mathbf{X}_n^T)$.
- The sample covariance matrix \mathbf{B}_n is defined by

$$\mathbf{B}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{X}_k^T = \frac{1}{n} \mathcal{X}_n \mathcal{X}_n^T, \quad \mathcal{X}_n = (\mathbf{X}_1 \dots \mathbf{X}_n) \in \mathcal{M}_{N \times n}(\mathbb{R})$$

- $\mathbb{E}(\mathbf{B}_n) = \Sigma$
- For fixed N, the strong law of large numbers implies

$$\lim_{n\to+\infty} \mathbf{B}_n = \lim_{n\to+\infty} \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{X}_k^T = \Sigma \quad \text{a.s.}$$

• What happens once $N := N_n \to \infty$ as $n \to \infty$?

- Let $(X_{ij})_{i,j\geqslant 1}$ be a family of i.i.d. random variables such that $\mathbb{E}(X_{11})=0$ and $\text{Var}(X_{11})=\sigma^2$.
- Let $\mathbf{B}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{X}_k^T = \frac{1}{n} \mathcal{X}_n \mathcal{X}_n^T$ where

$$\mathcal{X}_n = (\mathbf{X}_1 \dots \mathbf{X}_n) = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ \vdots & \vdots & & \vdots \\ X_{N1} & X_{N2} & \dots & X_{Nn} \end{pmatrix}.$$

- Let $(X_{ij})_{i,j\geqslant 1}$ be a family of i.i.d. random variables such that $\mathbb{E}(X_{11})=0$ and $\text{Var}(X_{11})=\sigma^2$.
- Let $\mathbf{B}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{X}_k^T = \frac{1}{n} \mathcal{X}_n \mathcal{X}_n^T$ where

$$\mathcal{X}_n = (\mathbf{X}_1 \dots \mathbf{X}_n) = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ \vdots & \vdots & & \vdots \\ X_{N1} & X_{N2} & \dots & X_{Nn} \end{pmatrix}.$$

• The empirical spectral measure of \mathbf{B}_n is defined by

$$\mu_{\mathsf{B}_n} = \frac{1}{N} \sum_{k=1}^{N} \delta_{\lambda_k}$$

where $\lambda_1, \ldots, \lambda_N$ are the eigenvalues of \mathbf{B}_n .

- Let $(X_{ij})_{i,j\geqslant 1}$ be a family of i.i.d. random variables such that $\mathbb{E}(X_{11})=0$ and $\text{Var}(X_{11})=\sigma^2$.
- Let $\mathbf{B}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{X}_k^T = \frac{1}{n} \mathcal{X}_n \mathcal{X}_n^T$ where

$$\mathcal{X}_n = (\mathbf{X}_1 \dots \mathbf{X}_n) = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ \vdots & \vdots & & \vdots \\ X_{N1} & X_{N2} & \dots & X_{Nn} \end{pmatrix}.$$

• The empirical spectral measure of \mathbf{B}_n is defined by

$$\mu_{\mathbf{B}_n} = \frac{1}{N} \sum_{k=1}^{N} \delta_{\lambda_k}$$

where $\lambda_1, \ldots, \lambda_N$ are the eigenvalues of \mathbf{B}_n .

• We suppose that $c_n := \frac{N}{n} \xrightarrow[n \to +\infty]{} c \in (0, \infty).$

Theorem

For any continuous and bounded function $f : \mathbb{R} \to \mathbb{R}$,

$$\int f d\mu_{\mathbf{B}_n} \xrightarrow[n \to +\infty]{} \int f d\mu_c \quad \text{a.s.}$$

where μ_c is the Marčenko-Pastur law

$$\left(1-\frac{1}{c}\right)_{+}\delta_{0}+\frac{1}{2\pi c\sigma^{2}x}\sqrt{(b-x)(x-a)}\mathbf{1}_{[a,b]}(x)dx$$

with
$$.+ := \max(0,.)$$
, $a = \sigma^2(1 - \sqrt{c})^2$ and $b = \sigma^2(1 + \sqrt{c})^2$.

The Stieltjes transform $S_G:\mathbb{C}_+ \to \mathbb{C}$ of a measure ν on \mathbb{R} is defined by

$$S_{\nu}(z) := \int \frac{1}{x-z} \, d\nu(x)$$

The Stieltjes transform $S_G:\mathbb{C}_+ \to \mathbb{C}$ of a measure ν on \mathbb{R} is defined by

$$S_{\nu}(z) := \int \frac{1}{x-z} \, d\nu(x)$$

• $|S_{
u}(z)| \leqslant 1/\mathfrak{Im}(z)$ and $\mathfrak{Im}(S_{
u}(z)) \geqslant 0$

The Stieltjes transform $S_G:\mathbb{C}_+ \to \mathbb{C}$ of a measure ν on \mathbb{R} is defined by

$$S_{\nu}(z) := \int \frac{1}{x-z} \, d\nu(x)$$

- $|S_{\nu}(z)| \leqslant 1/\mathfrak{Im}(z)$ and $\mathfrak{Im}(S_{\nu}(z)) \geqslant 0$
- The function $S_{
 u}$ is analytic over \mathbb{C}_{+} and characterizes u

$$\nu([a,b]) = \lim_{y \downarrow 0} \frac{1}{\pi} \int_a^b \mathfrak{Im} S_{\nu}(x+iy) dx$$

The Stieltjes transform $S_G:\mathbb{C}_+ \to \mathbb{C}$ of a measure ν on \mathbb{R} is defined by

$$S_{\nu}(z) := \int \frac{1}{x-z} \, d\nu(x)$$

- $|S_{\nu}(z)| \leq 1/\mathfrak{Im}(z)$ and $\mathfrak{Im}(S_{\nu}(z)) \geqslant 0$
- The function $S_{
 u}$ is analytic over \mathbb{C}_{+} and characterizes u

$$\nu([a,b]) = \lim_{y \downarrow 0} \frac{1}{\pi} \int_a^b \mathfrak{Im} S_{\nu}(x+iy) dx$$

• For a sequence of measures $(\nu_n)_n$ on \mathbb{R} , we have

$$\left(\nu_n \xrightarrow[n \to \infty]{\mathcal{L}} \nu\right) \Leftrightarrow \left(\forall z \in \mathbb{C}_+, \ S_{\nu_n}(z) \xrightarrow[n \to \infty]{} S_{\nu}(z)\right).$$

• $X=(X_k)_{k\in\mathbb{Z}}$ is said to be stationary if $\forall k\in\mathbb{Z}$ and $orall \ell\in\mathbb{N}$,

$$(X_k,\ldots,X_{k+\ell})\stackrel{\mathcal{D}}{\sim} (X_0,\ldots,X_\ell)$$

• Let $(\varepsilon_k)_{k\in\mathbb{Z}}$ be a sequence of i.i.d. random variables

- Let $(\varepsilon_k)_{k\in\mathbb{Z}}$ be a sequence of i.i.d. random variables
- Let $g: \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}$ be a measurable function such that for any $k \in \mathbb{Z}$,

$$X_k = g(\xi_k)$$
 with $\xi_k = (\dots, \varepsilon_{k-1}, \varepsilon_k)$

is well-defined, $\mathbb{E}(X_k) = 0$ and $||X_k||_2 < \infty$.

- Let $(\varepsilon_k)_{k\in\mathbb{Z}}$ be a sequence of i.i.d. random variables
- Let $g: \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}$ be a measurable function such that for any $k \in \mathbb{Z}$,

$$X_k = g(\xi_k)$$
 with $\xi_k = (\dots, \varepsilon_{k-1}, \varepsilon_k)$

is well-defined, $\mathbb{E}(X_k) = 0$ and $||X_k||_2 < \infty$.

• For $i=1,\ldots,n$, let $(X_k^i)_{k\in\mathbb{Z}}$ be n independent copies of $(X_k)_{k\in\mathbb{Z}}$

- Let $(\varepsilon_k)_{k\in\mathbb{Z}}$ be a sequence of i.i.d. random variables
- Let $g: \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}$ be a measurable function such that for any $k \in \mathbb{Z}$,

$$X_k = g(\xi_k)$$
 with $\xi_k = (\dots, \varepsilon_{k-1}, \varepsilon_k)$

is well-defined, $\mathbb{E}(X_k) = 0$ and $||X_k||_2 < \infty$.

• For $i=1,\ldots,n$, let $(X_k^i)_{k\in\mathbb{Z}}$ be n independent copies of $(X_k)_{k\in\mathbb{Z}}$

$$\mathcal{X}_n = \begin{pmatrix} X_1^1 & X_1^2 & \dots & X_1^n \\ \vdots & \vdots & & \vdots \\ X_N^1 & X_N^2 & \dots & X_N^n \end{pmatrix}$$

$$\mathbf{X}_1 \quad \mathbf{X}_2 \quad \mathbf{X}_n$$

- Let $(\varepsilon_k)_{k\in\mathbb{Z}}$ be a sequence of i.i.d. random variables
- Let $g: \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}$ be a measurable function such that for any $k \in \mathbb{Z}$,

$$X_k = g(\xi_k)$$
 with $\xi_k = (\dots, \varepsilon_{k-1}, \varepsilon_k)$

is well-defined, $\mathbb{E}(X_k) = 0$ and $||X_k||_2 < \infty$.

• For $i=1,\ldots,n$, let $(X_k^i)_{k\in\mathbb{Z}}$ be n independent copies of $(X_k)_{k\in\mathbb{Z}}$

$$\mathcal{X}_n = \begin{pmatrix} X_1^1 & X_1^2 & \dots & X_1^n \\ \vdots & \vdots & & \vdots \\ X_N^1 & X_N^2 & \dots & X_N^n \end{pmatrix}$$

$$\mathbf{X}_1 \quad \mathbf{X}_2 \quad \mathbf{X}_n$$

• $\mathbf{B}_n = \frac{1}{n} \mathcal{X}_n \mathcal{X}_n^T = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k \mathbf{X}_k^T$

Theorem: Banna and Merlevède (2013)

Suppose that $\mathit{lim}_{n \to \infty} \ \mathit{N}/\mathit{n} = c \in (0, \infty)$ and

$$\sum_{k\geq 0}\|P_0(X_k)\|_2<\infty \text{ where } P_0(X_k)=\mathbb{E}(X_k|\xi_0)-\mathbb{E}(X_k|\xi_{-1})$$

Then with probability one μ_{B_n} converges weakly to a non-random probability measure whose Stieltjes transform S=S(z) satisfies the equation

$$z = -\frac{1}{\underline{S}} + \frac{c}{2\pi} \int_0^{2\pi} \frac{1}{\underline{S} + (2\pi f(\lambda))^{-1}} d\lambda,$$

where $\underline{S}(z) := -(1-c)/z + cS(z)$ and $f(\cdot)$ is the spectral density of $(X_k)_{k \in \mathbb{Z}}$.

Theorem: Banna and Merlevède (2013)

Suppose that $\mathit{lim}_{n \to \infty} \ \mathit{N}/\mathit{n} = c \in (0, \infty)$ and

$$\sum_{k\geq 0}\|P_0(X_k)\|_2<\infty \text{ where } P_0(X_k)=\mathbb{E}(X_k|\xi_0)-\mathbb{E}(X_k|\xi_{-1})$$

Then with probability one μ_{B_n} converges weakly to a non-random probability measure whose Stieltjes transform S=S(z) satisfies the equation

$$z = -\frac{1}{\underline{S}} + \frac{c}{2\pi} \int_0^{2\pi} \frac{1}{\underline{S} + (2\pi f(\lambda))^{-1}} d\lambda,$$

where $\underline{S}(z) := -(1-c)/z + cS(z)$ and $f(\cdot)$ is the spectral density of $(X_k)_{k \in \mathbb{Z}}$.

$$f(x) = \frac{1}{2\pi} \sum_{k} \operatorname{Cov}(X_0, X_k) e^{ixk}, x \in \mathbb{R}$$

Applications

• $X_k = \sum_{i \geq 0} a_i \varepsilon_{k-i}$ where $(\varepsilon_i)_{i \in \mathbb{Z}}$ is a sequence of i.i.d. centered random variables then

$$\mathbb{E}(X_k|\xi_0) = \sum_{i \ge k} a_i \varepsilon_{k-i} \text{ and } \mathbb{E}(X_k|\xi_{-1}) = \sum_{i \ge k+1} a_i \varepsilon_{k-i}$$

Thus
$$P_0(X_k) = a_k \varepsilon_0$$
.

Applications

• $X_k = \sum_{i \geq 0} a_i \varepsilon_{k-i}$ where $(\varepsilon_i)_{i \in \mathbb{Z}}$ is a sequence of i.i.d. centered random variables then

$$\mathbb{E}(X_k|\xi_0) = \sum_{i \geq k} a_i \varepsilon_{k-i} \text{ and } \mathbb{E}(X_k|\xi_{-1}) = \sum_{i \geq k+1} a_i \varepsilon_{k-i}$$

Thus $P_0(X_k) = a_k \varepsilon_0$. The condition $\sum_{k \geq 0} \|P_0(X_k)\|_2 < \infty$ is satisfied once

$$\sum_{k\geq 0} |a_k| < \infty \ \text{ and } \|\varepsilon_0\|_2 < \infty.$$

Applications

• $X_k = \sum_{i \geq 0} a_i \varepsilon_{k-i}$ where $(\varepsilon_i)_{i \in \mathbb{Z}}$ is a sequence of i.i.d. centered random variables then

$$\mathbb{E}(X_k|\xi_0) = \sum_{i \geq k} a_i \varepsilon_{k-i} \text{ and } \mathbb{E}(X_k|\xi_{-1}) = \sum_{i \geq k+1} a_i \varepsilon_{k-i}$$

Thus $P_0(X_k) = a_k \varepsilon_0$. The condition $\sum_{k \geq 0} \|P_0(X_k)\|_2 < \infty$ is satisfied once

$$\sum_{k>0} |a_k| < \infty \text{ and } \|\varepsilon_0\|_2 < \infty.$$

- Functions of linear processes (ex: Riesz-Raikov sums)
- ARCH models

Our aim: $\lim_{n\to\infty} S_{\mu_{\mathbf{B}_n}}(z) = S(z), \ \forall z \in \mathbb{C}^+.$

1. $S_{\mu_{\mathbf{B}_n}}(z) - \mathbb{E} ig(S_{\mu_{\mathbf{B}_n}}(z) ig) o 0$ a.s.

Our aim: $\lim_{n\to\infty} S_{\mu_{\mathbf{B}_n}}(z) = S(z), \ \forall z \in \mathbb{C}^+.$

- 1. $S_{\mu_{\mathbf{B}n}}(z) \mathbb{E}(S_{\mu_{\mathbf{B}n}}(z)) o 0$ a.s.
- 2. $\mathbb{E}(S_{\mu_{\mathbf{B}_n}}(z)) \mathbb{E}(S_{\mu_{\mathbf{G}_n}}(z)) \rightarrow 0$ where $\mathbf{G}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{Z}_k \mathbf{Z}_k^T$

$$\mathcal{Z}_{n} = \begin{pmatrix} Z_{1}^{1} & Z_{1}^{2} & \dots & Z_{1}^{n} \\ \vdots & \vdots & & \vdots \\ Z_{N}^{1} & Z_{N}^{2} & \dots & Z_{N}^{n} \end{pmatrix}$$

$$\mathbf{Z}_{1} \quad \mathbf{Z}_{2} \qquad \mathbf{Z}_{n}$$

 $((Z_k^i)_{k\in\mathbb{Z}})_{1\leq i\leq n}$ are n independent copies of $(Z_k)_{k\in\mathbb{Z}}$ such that for any $i,j\in\mathbb{Z}$,

$$Cov(Z_i, Z_j) = Cov(X_i, X_j)$$

Our aim: $\lim_{n\to\infty} S_{\mu_{\mathbf{B}_n}}(z) = S(z), \ \forall z \in \mathbb{C}^+.$

- 1. $S_{\mu_{\mathbf{B}_{n}}}(z) \mathbb{E}(S_{\mu_{\mathbf{B}_{n}}}(z)) \to 0$ a.s.
- 2. $\mathbb{E}(S_{\mu_{\mathbf{B}_n}}(z)) \mathbb{E}(S_{\mu_{\mathbf{G}_n}}(z)) \rightarrow 0$ where $\mathbf{G}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{Z}_k \mathbf{Z}_k^T$

$$\mathcal{Z}_n = \begin{pmatrix} Z_1^1 & Z_1^2 & \dots & Z_1^n \\ \vdots & \vdots & & \vdots \\ Z_N^1 & Z_N^2 & \dots & Z_N^n \end{pmatrix}$$

$$\begin{array}{cccc} \mathbf{Z}_1 & \mathbf{Z}_2 & & \mathbf{Z}_n \end{array}$$

 $((Z_k^i)_{k\in\mathbb{Z}})_{1\leq i\leq n}$ are n independent copies of $(Z_k)_{k\in\mathbb{Z}}$ such that for any $i,j\in\mathbb{Z}$,

$$Cov(Z_i, Z_j) = Cov(X_i, X_j)$$

3. $\mathbb{E}(S_{\mu_{G_n}}(z)) - S(z) \to 0$

Our aim: $\lim_{n\to\infty} S_{\mu_{\mathbf{B}_n}}(z) = S(z), \ \forall z \in \mathbb{C}^+.$

- 1. $S_{\mu_{\mathbf{B}_n}}(z) \mathbb{E}(S_{\mu_{\mathbf{B}_n}}(z)) \to 0$ a.s. Concentration inequality
- 2. $\mathbb{E}(S_{\mu_{\mathbf{B}_n}}(z)) \mathbb{E}(S_{\mu_{\mathbf{G}_n}}(z)) \rightarrow 0$ where $\mathbf{G}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{Z}_k \mathbf{Z}_k^T$

$$\mathcal{Z}_n = \begin{pmatrix} Z_1^1 & Z_1^2 & \dots & Z_1^n \\ \vdots & \vdots & & \vdots \\ Z_N^1 & Z_N^2 & \dots & Z_N^n \end{pmatrix}$$

$$\begin{array}{cccc} \mathbf{Z}_1 & \mathbf{Z}_2 & & \mathbf{Z}_n \end{array}$$

 $((Z_k^i)_{k\in\mathbb{Z}})_{1\leq i\leq n}$ are n independent copies of $(Z_k)_{k\in\mathbb{Z}}$ such that for any $i,j\in\mathbb{Z}$,

$$Cov(Z_i, Z_j) = Cov(X_i, X_j)$$

3. $\mathbb{E}(S_{\mu_{G_n}}(z)) - S(z) \to 0$

Our aim: $\lim_{n\to\infty} S_{\mu_{\mathbf{B}_n}}(z) = S(z), \ \forall z \in \mathbb{C}^+.$

- 1. $S_{\mu_{\mathbf{B}_n}}(z) \mathbb{E}(S_{\mu_{\mathbf{B}_n}}(z)) \to 0$ a.s. Concentration inequality
- 2. $\mathbb{E}(S_{\mu_{\mathbf{B}_n}}(z)) \mathbb{E}(S_{\mu_{\mathbf{G}_n}}(z)) \rightarrow 0$ where $\mathbf{G}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{Z}_k \mathbf{Z}_k^T$

$$\mathcal{Z}_n = \begin{pmatrix} Z_1^1 & Z_1^2 & \dots & Z_1^n \\ \vdots & \vdots & & \vdots \\ Z_N^1 & Z_N^2 & \dots & Z_N^n \end{pmatrix}$$

$$\begin{array}{cccc} \mathbf{Z}_1 & \mathbf{Z}_2 & & \mathbf{Z}_n \end{array}$$

 $((Z_k^i)_{k\in\mathbb{Z}})_{1\leq i\leq n}$ are n independent copies of $(Z_k)_{k\in\mathbb{Z}}$ such that for any $i,j\in\mathbb{Z}$,

$$Cov(Z_i, Z_j) = Cov(X_i, X_j)$$

3. $\mathbb{E}ig(S_{\mu_{\mathbf{G}_n}}(z)ig) - S(z) o 0$ Silverstein (1995)

Our aim: $\lim_{n\to\infty} S_{\mu_{\mathbf{B}_n}}(z) = S(z), \ \forall z \in \mathbb{C}^+.$

- 1. $S_{\mu_{\mathbf{B}_n}}(z) \mathbb{E}(S_{\mu_{\mathbf{B}_n}}(z)) \to 0$ a.s. Concentration inequality
- 2. $\mathbb{E}(S_{\mu_{\mathbf{B}_n}}(z)) \mathbb{E}(S_{\mu_{\mathbf{G}_n}}(z)) \rightarrow 0$ where $\mathbf{G}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{Z}_k \mathbf{Z}_k^T$

$$\mathcal{Z}_n = \begin{pmatrix} Z_1^1 & Z_1^2 & \dots & Z_1^n \\ \vdots & \vdots & & \vdots \\ Z_N^1 & Z_N^2 & \dots & Z_N^n \end{pmatrix}$$

$$\mathbf{Z}_1 \quad \mathbf{Z}_2 \qquad \mathbf{Z}_n$$

 $((Z_k^i)_{k\in\mathbb{Z}})_{1\leq i\leq n}$ are n independent copies of $(Z_k)_{k\in\mathbb{Z}}$ such that for any $i,j\in\mathbb{Z}$,

$$Cov(Z_i, Z_j) = Cov(X_i, X_j)$$

Technic of blocks associated with the Lindeberg method

3. $\mathbb{E}ig(S_{\mu_{\mathbf{G_n}}}(z)ig) - S(z) o 0$ Silverstein (1995)

- Banna, M., Merlevede, F. (2013). Limiting spectral distribution of large sample covariance matrices associated with a class of stationary processes. *Journal of Theoretical Probability*, 1-39.
- Chatterjee, S. (2006). A generalization of the Lindeberg principle. *Ann. Probab.* **34**, 2061-2076.
- Marčenko, V. and Pastur, L. (1967). Distribution of eigenvalues for some sets of random matrices. *Mat. Sb.* **72**, 507-536.

Thank you for your attention!