ADVANCED TOPICS LECTURE: FREE BOUNDARY PROBLEMS

MARVIN WEIDNER

The goal of this lecture is to give an introduction to free boundary problems. These are partial
differential equations which exhibit an a priori unknown interface. A prototype example is given by
the melting of ice in water, but free boundary problems also exist in various other contexts such as,
physics, material sciences, biology, finance, etc.

Typical questions:

e optimal regularity of solutions (across the free boundary)
e regularity of the free boundary
e singular free boundary points

(1) Basic properties of harmonic functions
— mean value property, maximum principle
— basic regularity results
(2) The obstacle problem [FRRO22), [PSU12]
— optimal regularity
— Caffarelli’s dichotomy: regular and singular points
— O regularity of the free boundary near regular points
— higher regularity of the free boundary
— properties of singular points
— outlook
(3) The Alt-Caffarelli problem [Vel23] [CS05]
— optimal regularity
— improvement of flatness
— higher regularity of the free boundary
— singular points
— outlook
(4) Further topics
— thin obstacle problem and nonlocal operators
— time-dependent free boundary problems
— free boundary problems with multiple phases

1. BASIC PROPERTIES OF HARMONIC FUNCTIONS

The Dirichlet problem for the Laplace equation is given as follows

—Au = f in
U =g in 09,
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where the boundary condition g and the source term f are given and 2 C R™ is a bounded (Lips-
chitz) domain. There are different ways to make sense of solutions to this problem. Under suitable
assumptions on f, g, there exists a unique solution.

From now on, let 2 C R™ be a bounded Lipschitz domain. We recall several important facts and
definitions.

e We have the following function space
HY(Q) = {u e L*(Q) : du € L*(Q) for i € {1,...,n}},

where Q;u are the weak partial derivatives of uw and Vu = (01, ..., 0hu).
e When equipped with the following scalar product, H'(Q) is a Hilbert space

(u, ) () = /uvdx+/Vqud:c, (u, ) () = ||u||%11(9).

e Recall the following integration by parts formula: if u,v € H'(), then

/@uvdxz—/u@wdx—l—/ uvy; do, i=1,...,n,
Q Q o0

where v € S"7! is the unit outward normal vector to 9.
e There is a compact trace operator Tr : HY(Q) — L?(99), such that Tru = u|sn whenever
u € HY(Q)NCO(). We define

Hy(2) := C2(Q) 1.0
as the closure of C°(Q) with respect to || - [| 1(q). It holds
Hy(Q) = {u € H'(Q) : Tr(u) = 0}.
e Sobolev embedding
HY(Q) C La2(Q), if2<n,

Moreover, the embedding H!(Q) € L%(Q) is compact, whenever ¢ < 712% In particular,

2
HY(Q) € L*(Q).
e Poincaré inequality: for any u € H*(f) it holds

/|u u)ol? dx<C'1/ |Vul|? d,
/]u\degCg/ \Vu|2da:+/ | Trul? dz.
) Q 09

The constants C1, Cy only depend on n, 2. -
e Holder spaces: Let o € (0,1]. We define for u € C(Q)

s [042) = )
x’yeﬁ | - y‘

Moreover, for k € NU {0}, we set

[U]co,a(ﬁ) = ’ ||U”co,a(§) = ||lull e (o) + [u]oma(ﬁ)-

b

ullgra ey = lullery + [P ulgo.0 @y l[ullex Z |1 D7ul| oo )
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Note that by Holder interpolation, it holds
lulloray = Nl o) + [P ulpoags — lulloragy = ull gy + 1D ull oo 0)-
We define the spaces
P (@) = {u € C(Q) : ||ull crog < 00}

Sometimes, when 0 < k 4+ o = 8 ¢ N, we define C8(Q) := C**(Q2). Note

C*@Q)c---cCPQ) cch@) c @) c c¥HQ) c ¢ Q) c C(Q).
e Arzela-Ascoli’s theorem: Given a sequence (f;); C C**(Q) for some a € (0,1] and k£ € NU{0}
satisfying | fill or.oy < C for some €' > 0. Then, there exists a subsequence (fi;); C (fi):
which converges uniformly (if & = 0) and in C¥(Q) (if k& € N) to some f € C**(Q) and

[ Fllena ($2) < €.
Literature recommendation: [Eval0]. Also recall functional analysis and PDE lecture.

Definition 1.1. Let f € L?(Q). We say that u satisfies —Au = f in € in the weak sense whenever
u € HY(Q) and

/ Vu-Vodr = / fv forall v € H}(R). (1.2)
Q Q

Let g € L?(09). We say that u is a weak solution of the Dirichlet problem (T.1)) if u € H'(Q) satisfies
Tru = g, and (1.2).

We say that u is weakly superharmonic (resp. weakly subharmonic) in €2, or satisfies —Au > 0 in Q
in the weak sense (resp. —Awu < 0 in the weak sense) if

/Vu-VvdacZO resp. /Vu-VdeSO for all v € HL(Q),v > 0.
Q Q

We say that w > g on 9Q if Tru > g on 0f).

Remark 1.2. If u € C?(Q), then it holds —Awu = f in  in the classical sense, if and only if it holds
in the weak sense. Proof: integration by parts.

1.1. Regularity of solutions and the maximum principle. Throughout this section, whenever
we say that  C R” is a domain, we mean that €2 is a connected, bounded, open set with 9Q € C%1.
The latter assumption can usually be relaxed, but we assume it here for simplicity in order to have a
well-defined trace operator.

Theorem 1.3 (Existence and uniqueness of weak solutions). Let Q C R” be a domain, f € L?(£2)
and

{we HY(Q) : Trw = g} # 0. (1.3)
Then, there exists a unique weak solution to the Dirichlet problem (1.1).

Proof. Lax Milgram. (We expect this to be well-known.) O
Remark 1.4. e A sufficient condition for (1.3)) to hold true is if g € C%1(09).

e ([1.3) holds true if and only if there exists G € H'(Q) such that Tr G = g. One can show that
this is the case if and only if g € H'/2(99).



4 MARVIN WEIDNER

The unique weak solution to the Dirichlet problem in a ball is explicit:

_ : 2
Au=0 in By N u(x):wn_l/ (- J2[7)g(y)
U=y on 0B, oB, |z —yl"

where w1 = |S"7L].

By a rescaling argument, a similar formula holds in any ball B, (xg) C R™. Thus, we deduce that for
any harmonic function Au = 0 in ©, with B, (xg) C 2, we have (Poisson kernel representation)

2 2
9B (o) |z =yl

An immediate consequence of (1.4 is the following result.

Corollary 1.5. Let Q C R" be any open set, and u € H*(Q) be any function satisfying Au = 0 in Q
in the weak sense. Then, u is C™° inside  and w is a classical solution.

Moreover, if u is bounded and Au = 0 in By in the weak sense, then we have the estimates
HUHck(Bl/Q) < CkHUHL‘”(Bl)v (1.5)

for all k € N, and for some constant Cy, depending only on k and n.

Proof. For any ball B,(z9) C € it holds (1.4). By differentiating this formula it is immediate to see
that u € C°°(B, 2(z0)) and that (L.5) holds. Since this can be done for any ball B.(zo) C €, we
deduce that u is C*° inside (2. O

Next, we prove the maximum principle for weak solutions.
Proposition 1.6. Let Q C R" be a domain. Assume that u € H'() satisfies, in the weak sense,

—Au>0 inQ
u>0 on 0f.

Then, u > 0 in €.
Proof. Notice that since —Awu > 0 in  we have

/Vu'Vvdx>O for all v > 0, ’UEH&(Q). (1.6)
Q

Let us consider ™ := max{—wu,0} and vt := max{u, 0}, so that u = v —u~. It is easy to check that
ut € HY(Q) whenever u € H'(Q), and that v~ € H}(Q) since Tru > 0 on 9). Hence we can choose
v=u" > 0in (L.6). Then, using that Vu = Vu™ — Vu~ and Vu' - Vu~ = 0, we get

0§/Vu-Vudm=/Vu+~Vudx—/\Vu\Qd:z::—/Vude.
Q Q Q Q

Hence, Vu~™ =0 in . Since Tru~™ = 0 this implies v~ = 0 in §2, that is, « > 0 in . O

Remark 1.7. e comparison principle: If —Au > —Aw in Q and v > v on 912, then u > v in Q.
e in particular, superharmonic functions have their minimum on the boundary.
e Analogously, if —Au <0in  and u < 0 on 92, then © < 0 in .

A useful consequence of the maximum principle is the following.
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Lemma 1.8. Let Q C R" be a domain. Let u be any weak solution of

—Au=f inQ
u=g on 0f).

Then,

lull oo ) < Cllfllzoe () + 19l e (002)
for a constant C' depending only on the diameter of €.

Proof. Let us consider the function

w(z) := u(x)/(|fl| Lo (@) + 19l Lo o02))-
We want to prove that |a| < C in 2. Notice that @ solves

~Ai=f inQ
{& =g on 0,
with [§] < 1 and |f| < 1.
Let us choose R large enough so that Br D €; after a translation, we can take R = diam(f?). In Bg,
let us consider the function
R? — |z

1.
5 +

w(z) =
The function w satisfies
{—Aw =1 inQ
w>1 on 0f).
Therefore, by the comparison principle, we deduce that
o <w in .

Since w < C' (with C' depending only on R), we deduce that @ < C in Q. Finally, repeating the same
argument with —a instead of u, we find that |a| < C in 2, and thus we are done. O

The following result follows from the maximum principle and states how solutions to the Dirichlet
problem behave near the boundary.

We say that 2 satisfies the interior ball condition whenever there exists pg > 0 such that every point
on 0f) can be touched from inside with a ball of radius pg contained in 2. That is, for any zg € 92
there exists By, (yo) C Q with zg € 0B, (o).

It is not difficult to see that any C? domain satisfies such condition, and also any domain which is the

complement of a convex set.

Lemma 1.9 (Hopf lemma). Let Q C R" be a domain satisfying the interior ball condition and

U Buo(wo) D {dist(-,002) > po/2}.
zo€IN

Let uw € C(Q) be a positive weakly superharmonic function in QN By, with u > 0 on 9Q N By. Then,
u > cod in QN By for some ¢y > 0, where d(x) := dist(z, ).

Note that ¢y in general depends on u!
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Proof. Since w is positive and continuous in {2 N By, we have that
U/ZC1>0 1n{d2p0/2}ﬂBg/2
for some ¢; > 0. Let us consider the solution of

—Aw =0 in BPO \BPO/27

w =0 on 0B,
w =1 on dB, .
One can check
2-n _ 2-n
x) = i Fo if n >3,

(po/2)> ™ —pp "
w(a:):ln(iolgw if n=2,
2 .
w(z) = max {1, %(po — \x|)} ifn=1.

In particular, it is immediate to check that w > ca(po — |z|) in B, for some ¢z > 0.

Let us take zyp € 0, and apply the comparison principle to the functions u and ciw(yo + z) in
(Bpo(y0) \ By, /2 (yo)) C QN Bs /2, Where yg is from the definition of the interior ball condition. (We

are using that v € C'(2) to guarantee u > 0 on 9B, (yo)). Hence, we deduce that
u(z) 2 crw(yo + ) = crca(po — & — yol) = ercad(x) in By, (yo)-

Setting ¢o = cic2 and using the previous inequality for zg € 02 and the corresponding ball B, (yo) C
2N Bs/z, the result follows.

If Q satisfies the exterior ball condition, i.e. there exists pg > 0 such that every point on 92 can be
touched from outside with a ball of radius py contained in €2, we also have the following result:

Lemma 1.10. Let Q C R"™ be a domain satisfying the exterior ball condition. Let u € C(Q) be a
harmonic function in QN Bs, with u =0 on 0QN By. Then, u < cod in QN By for some cg > 0, where
d(x) := dist(z, Q°).

Proof. We employ a similar barrier argument as before. O

Remark 1.11. In particular, in nice domains (i.e. those satisfying the interior and exterior ball
condition, e.g. if 9Q € C11), harmonic functions with u = 0 on 9 behave like linear functions near
the boundary, i.e.

c1d < u < cod  close to 02

This property remains true in domains with 9Q € C®. However, it is dramatically different in bad
domains. For instance,

ui(x) = x129 solves —Au; =0 in Q) = {z122 >0} withu; =0 on 9y,

ug(x) = r2/3 sin(2¢/3) solves — Aug =0 in Qo ={z1 <0 or xze <0} with ug =0 on 9.
More generally, for any o > 0, the function u,(z) = 7% sin(ag) is harmonic in R? \ {0} and satisfies
uq =0 on {(rcosp,rsing) : ¢ € [0,7/al}.

Hence, in free boundary problems (where the boundary of the solution domain is unknown), it is a
delicate question to analyze the behavior of the solution close to the boundary.
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Remark 1.12. One can prove that solutions to the Dirichlet problem in Q (1.1) always satisfy

u € C(9) if 2 satisfies the interior or exterior ball condition.

1.2. The mean value property.

Lemma 1.13. Let Q@ C R™ be any open set. If —Au =0 in Q, then
u(z) = ][ u(y)dy = ][ u(y)dy  for any ball B,(x) C Q. (1.7)
OBr(x) By ()

Moreover, it holds for any weakly superharmonic (subharmonic) function u € H(Q),

T u(y)dy is monotone non-increasing (non-decreasing) for r € (0, dist(x,09)).  (1.8)
By (x)

The property in (|1.7)) is called the mean value property.

Proof. If u is harmonic, the first equality in the mean value property follows by setting xp = x in
(1.4). The second equality follows by integrating the first one, namely

][ u(y) dy:nr‘”/ p”‘l][ u(y) dy dp.
Br(x) 0 B,(x)

The claim for weakly subharmonic functions goes as follows. Fix 0 < p < r such that B,(x) C Q. Let
v be the solution to —Av = 0 in B,(z) with v = w on 0B, (x). Then, by the maximum principle u < v
in B,(x). Hence, by the mean value property

ﬂsz u@@sf zwmpmm:f v@@=f u(y) dy = S(r).
0B, (x) 0B, (x) OB (x) OBr(x)
Then, by integrating over (0,7),

= u =nr " "t r)ynr" "t = 5(r).
lww—ﬁm)@@ | o serap < sy [ tan=s0)

P

However, this yields

Al(r) = —n?1 /1" P 1S (p)dp 4+ nr S (r)r" T = —(S(r) — A(r)) >0,

0
as desired. O

The following two lemmas yield the Harnack inequality for harmonic functions.

Lemma 1.14 (Weak Harnack inequality for weak supersolutions). Let u € C(By). Then,

—Auz>0 B e clull
( 1
u>0 in B By F B

for some ¢ > 0 depending only on n.

Proof. By the Lebesgue differentiation theorem and (1.8, we have for any z¢ € By 3

u(zo) >

w = cllullzr (5, ey 2 cllullz
|B2/3‘ By s (a0) LY (By/3(z0)) L1(By/3)

for some ¢ = ¢(n) > 0, so that we have proved the property in a ball of radius 1/3.
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To prove it in B /5, consider Zg € 9B, /3 and the ball By 5(Zo). We can repeat the previous steps to
derive

. f > = .
BJ?(DEO) v= cHuHLl(Bl/G(M))

Moreover, if we denote B := By /3N By /6(Zo), then
inf wu>cllullr -y >c [ u>|Blinfu> ¢ inf u.
otz el oy 2 ¢ [ 0= Bl > ot
This implies

inf u> inf u A inf inf w>cinf u.
By/g Bys ©0€0B1 /3 By /6(%0) By

Similarly,

lullrr(s, ) < lullrs, ) +Cxoglaa3>§/3 lull (s, 6(z0)) < cllullprs, 5)-

Altogether, from the first result in this proof, we can conclude

il ajof u> el 2 el

for some c3 = c3(n) > 0. In the last step we have used again (|1.8]). O
Lemma 1.15 (L* bound for weak subsolutions). Let u € C(By). Then,

—Au<0 inB = supu< C’||u||L1(BS/4),
B2

for some C' depending only on n.

We will see later that the L' norm in this estimate can be replaced by the L® norm for any e > 0.
This follows from Young’s inequality and a covering argument.

Proof. The result follows from the the mean value property (1.8) in the same way as|Lemma 1.14] O
Theorem 1.16 (Harnack inequality). Let v € C(By).

{—AU—O in B —> supu < c inf u,

u>0 inbB By /s Bi s
for some ¢ > 0 depending only on n.
Proof. Combine [Lemma 1.15| and [Lemma 1.14] Il

Remark 1.17. In particular, we have the following strict maximum principle: If —Awu > 0 in 2 with
©>01in Q and v #Z 0, then u > 0 in Q.

We end this subsection with three auxiliary lemmas that all follow from the mean value property and
that will be used later in the lecture.

The first lemma says that the pointwise limit of a sequence of superharmonic uniformly bounded
functions is superharmonic (in the sense that (1.8 holds).

Lemma 1.18. Let Q C R"™, and let (wg)r be a sequence of uniformly bounded functions wy : @ — R
satisfying (L.8)), converging pointwise to some w : Q — R. Then w satisfies (|1.8)).
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©

Proof. The proof is immediate. In fact, let woo := w and let us define for k € NU {oo}, ¢, x(r) :
fBT(a:) wg. Notice that ¢, 1 (r) is non-increasing in r for all k£ € N. In particular, given 0 < r;
ry < Ry, we have that ¢y (11) > ¢y i(r2) for £ € N. Now we let & — oo and use that w; —

pointwise to deduce, by the dominated convergence theorem (notice that wy are uniformly bounded
that ¢z 00(71) > ¢z,00(r2). That is, we = w satisfies (|1.8)).

g A

~—

)

O

The second lemma shows that superharmonic functions are lower semicontinuous.

Lemma 1.19. Let us assume that w € L} (Q) and satisfies (1.8) in Q@ C R™. Then, up to changing
w in a set of measure 0, w is lower semicontinuous in Q.

Proof. We define wo(z) := lim, g fBr () W (which is well defined, since the average is monotone non-
increasing). Then wg(z) = w(zx) if x is a Lebesgue point, and thus wy = w almost everywhere in
Q. Let us now consider zg € Q, and let x — zg as k — oo. Then, by the dominated convergence
theorem,

][ w = lim w < lim inf wo(xy) (1.9)
Bi(z0) k—o0 By (zk) k—o0
for0 <r < %dist(:no, 09). Now, by letting r | 0 on the left-hand side, we reach that
wo(zo) < liminf wo(zy), (1.10)
k—o00
that is, wg is lower semi-continuous at xg. O

The next result yields a classification of global harmonic functions.

Theorem 1.20 (Liouville’s theorem). Any bounded solution of Au =0 in R™ is constant.

Proof. Let u be any global bounded solution of Au = 0 in R™. Since u is smooth (by |Corollary 1.5)),
each derivative 0;u is well-defined and is harmonic. Thus, thanks to the mean-value property and the
divergence theorem, for any x € R” and R > 1 we have

Cn Cn Yi C
— o;u / u(y)—dy §/ ul. 1.11
R™ /BR(:L«) R™ J9B () ( )|y| R" 8BR(:E)| | (L11)

Thus, using that |u| < M in R”, we find

|Oiu(z)| =

/
n n _ WM
D5u(z)| < %\8BR(x)\M - %mBl\Rn M = CR 50, as R — oco. (1.12)
Therefore, 0;u(z) = 0 for all z € R™, and w is constant. g

2. THE OBSTACLE PROBLEM

In this chapter, we deal with our first free boundary problem: the obstacle problem.

There is a wide variety of problems in physics, industry, biology, finance, and other areas which can be
described by PDEs that exhibit free boundaries. Many of such problems can be written as variational
inequalities, for which the solution is obtained by minimizing a constrained energy functional. The
obstacle problem is one of the most important and canonical examples.

Given smooth functions ¢ : 2 — R and g : 92 — R, the obstacle problem is the following;:

1
minimize 3 / |Vo|?dz  among all functions v > ¢ in Q withwv =g on 9.
Q
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Interpretation: we look for the least energy function v, but the set of admissible functions
consists only of functions that are above a certain “obstacle” ¢.

e in 2D: Think of v as an elastic membrane that is constrained to be above ¢
o We will see that the Euler-Lagrange equation is given as follows:

v > in Q

—Av>0 inQ

—Av =0 1in the set {v > ¢},
Intuition: Maybe you already know that the unconstrained problem leads to harmonic func-
tions! Hence, if we denote E(v) = 3 [, |Vv|?dz, then we will have E(v +en) > E(v) for every
e>0and n>0,n¢e CX(Q), which yields —Av > 0 in Q. That is, we can perturb v with
nonnegative functions (en) and we always get admissible functions (v 4 en). However, due to
the constraint v > ¢, we cannot perturb v with negative functions in all of €2, but only in the
set {v > ¢}. This is why we get —Av > 0 everywhere in Q, but —Av = 0 only in {v > ¢}.
(We will show later that any minimizer v is continuous, so that {v > ¢} is open.)

Short form of the Euler-Lagrange equation:

min{—Av,v — ¢} =0 in Q.
Consider u := v — ¢. Then, the obstacle problem is equivalent to

u>0 in
Au<f inQ
Au = f in the set {u > 0},

where f := —A¢p. This way, we can assume without loss of generality that the obstacle is zero.
The previous problem is the Euler-Lagrange equation associated to the following minimization
problem:

1
minimize / §]Vu\2 + fudx among all functions u >0 withu=g¢g—¢ on 0.
Q

A key feature of the obstacle problem is that it has two unknowns:
the solution u, and the contact set {u = 0}.
In other words, there are two regions in €2, characterized by the minimization problem:
one in which v = 0, and one in which — Au = f.
Moreover, we denote the free boundary by
I':=0{u>0}NnQ,

We will see that since u is a nonnegative supersolution, it will hold Vu = 0 on I', that is, we
will have that u > 0 solves

Au=f in{u>0}
u=0~0 onT

Vu=0 onl.

This is yet another way to write the Euler Lagrange equation (this time explicitly including
the interface T').
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e We see that we have both Dirichlet and Neumann conditions on I'. This would usually be
an over-determined problem (too many boundary conditions on I', recall Lax-Milgram), but
since I is also free, it turns out that the problem has a unique solution (where I' is part of the
solution).

Some applications of the obstacle problem

Dam problem,

Stefan problem,

Hele-Shaw flow,

optimal stopping, finance,
interacting particle systems,
elasticity

2.1. Well-posedness and the Euler Lagrange equation. Existence and uniqueness of solutions
follows easily from the fact that the functional [, [Vv|*dz is convex, and that we want to minimize
it in the closed convex set {v € H'(2) : v > ¢}. The following proof is standard in the calculus of
variations

Proposition 2.1 (Existence and uniqueness). Let Q C R" be a Lipschitz domain, and let g : 02 — R
and ¢ € HY () be such that

C={we H Q) :w>¢inQTrw= g} #0.

Then, there exists a unique minimizer of

E(v) = / |Vol>dz  among all v € C. (2.1)
Q

Proof. Let us define

1
o = inf{E(w) = 2/ Vw|*dz : w € K},
Q

that is, the infimum value of E(w) among all admissible functions w € C. Let us take a sequence of
functions {vy} such that

(i) vy € H'(Q),
(ii)) Trox = g and v > ¢ in Q,
(iii) E(vg) — 6p as k — oo.

By (i), ||kl z2(q) is uniformly bounded, and by the Poincaré inequality,
vkllz2) < ClIVllz2) + 9]l 200

i.e., the sequence {vy,} is uniformly bounded in H*(€). Therefore, a subsequence {vy,} will converge
to a certain function v strongly in L2(Q) and weakly in H' ().

Moreover, by compactness of the trace operator Tr : H'(Q) — L?(8€2), we will have Trv;, — Tro in
L2(09), so that Trv = g.

Furthermore, v satisfies (weak lower semi-continuity of || - | 1) and compactness of H'(Q) C L*(Q2))

vl () < hjfggolf il 71 ()5 vl p2) = jlggo 5]l 20



12 MARVIN WEIDNER

and therefore,

1 1. . .
E(v) = Sllm@ <5 hjrgg)lf[vj]Hl(Q) = hjfgg)le(vkj)-

Hence, v is a minimizer of the energy functional. Since vg; > ¢ in  and vg; — v in L?(€2), we have
v > ¢ in ). Thus, we have proved the existence of a minimizer v.

The uniqueness of the minimizer follows from the strict convexity of the functional E(v), as follows:
First, observe that the set C is convex, i.e. if u,v € C are both minimizers, then for ¢ € (0,1), we have
w:=tu+ (1 —t)v €C.

By minimality of v and v,
E(u) = E(v) < E(wy). (2.2)
On the other hand, for the gradients we have the identity
|Vw|* = 2| Vul? + (1 — t)*|Vu|* + 2t(1 — t)VuVo
= *|Vul® + (1 — t)*|Vu]* = t(1 — t) (|Vu — Vov]* = |[Vul* — [Vv]?)
= t|Vul> + (1 — t)|Vo]? — t(1 — t)|Vu — Vu|2.
Integrating over 2 yields

1
Blw) = tB(w) + (1~ )E@) — 111 - t)/ IV — Vol da.
Q
Since E(u) = E(v), this simplifies to

E(w;) = E(u) — %t(l —t) /Q \Vu — Vo> de < E(u). (2.3)

Combining (2.2)) and (2.3) gives equality, and therefore it must be,
/ |Vu — Vo> dz = 0. (2.4)
Q

Therefore Vu = Vv a.e. in §2, so u — v is constant a.e. Since u — v = 0 on 052, the constant must be
zero. Hence u = v. 0

From now on, we will always assume that ¢ € C*°(Q2) for simplicity. One gets analogous results under
much weaker regularity assumptions on ¢, but the proofs might be more technical.

Our goal is to derive the Euler-Lagrange equation for minimizers v of ([2.1).

We start with the following lemma.

Lemma 2.2. Let Q C R" be a Lipschitz domain, ¢ € C*(Q), and v € H* () be any minimizer of
(2.1). Then, —Av >0 in Q.

Proof. Since v minimizes F among all functions above the obstacle ¢ (and with fixed boundary con-
ditions on 012), we have that

E(v+en) > E(v) forevery e >0and n>0,ne C(Q).
This yields

2
€/VU~V77—|—€2/]V77|2da:20 for every ¢ > 0 and n > 0,1 € C°(92),
Q Q
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and thus
/ Vu-Vn>0 foreveryn>0,neCr(Q).
Q

This means that —Av > 0 in  in the weak sense, as desired. O

From here, by showing first that {v > ¢} is open, we obtain the Euler-Lagrange equations for the
functional:

Proposition 2.3. Let Q C R" be a Lipschitz domain, ¢ € C®(Q), and v € H'(Q) be any minimizer
of (2.1)). Then, v € Cj,.() and it holds
v >¢ inf)
—Av >0 inQ (2.5)
Av =0 inf{v>¢}nQ.

Proof. By construction, we already know that v > ¢ in Q and, thanks to —Av >0in Q,
i.e, v is (weakly) superharmonic. Up to replacing v in a set of measure zero, we may also assume that
v is lower semi-continuous (by [Lemma 1.19). Thus, we only need to prove that Av =0 in {v > ¢} NQ

and that v is continuous.

First, we show that {v > ¢} N Q is open. Let zg € {v > ¢} N Q be such that v(zg) — ¢(zo) > o > 0.
Since v is lower semi-continuous and ¢ is continuous, there exists some § > 0 such that

v(x) — P(x) > e0/2 Vr € Bs(xo).
Hence Bj(zg) C {v > ¢}. Since xy was arbitrary, this means that {v > ¢} is open.

This implies, also, that Av = 0 weakly in {v > ¢} N Q. Indeed, for any zy € {v > ¢} and n €
C°(Bs(xo)) with |n| < 1, we have v £en > ¢ in Q for all |¢| < £0/2, and therefore it is an admissible
competitor. Thus, we have

E(v+en) > E(v) Vel < eo.

In particular, the map € — E(v + en) has a critical point at ¢ = 0, i.e.

d
%E(v +en)|e=o = 0.

Equivalently,
d
0= dELso/Q V(v +en)|? da

d
= d5|€=°/ (Vo|? + 2| Vn|? + 2e VoV dz
Q

:2/ VuVnde,
Q

i.e. v is weakly harmonic in Bjs(zg). Hence, we deduce that v is harmonic in {v > ¢} N Q.

Finally, let us show that v is continuous. We already know, by the regularity of harmonic functions

(see |Corollary 1.5)), that v is continuous in {v > ¢} N Q. Let us now show that v is continuous in
{v=09¢}NQ, as well.

Let yo € {v = ¢} NQ, and let us argue by contradiction. Since v is lower semi-continuous, it suffices
to assume that there is a sequence y; — 3o such that

v(yr) — v(yo) + €0 = ¢(yo) + €0
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for some g¢ > 0.

Since ¢ is continuous, we may assume also that y; € {v > ¢}. Let us denote by zj the projection of
yr towards {v = ¢}, so that o := |zx — yx| < |yo — yk| 4 0 and

v(zx) = v(yo) = ¢(vo)- (2.6)

Now, since v is superharmonic, by (1.8)),

fu(zk)z][ v:(1—2”)f v—|—2"f v=1I1+1I.
Bas,, (21) Bas), (21)\Bs,, (Yk) Bs, (yk)

For the first equality, we used that Bj, (yx) C Bas, (21). Observe that, for I, since v is lower semi-
continuous and d; | 0, we can assume that, for k large enough, v > ¢(yo) — 27 "¢o in Bas, (21), so
that

I = (1=27")[¢(yo) — 27 "e0]-
On the other hand, since v is harmonic in B, (yj), we have by the mean-value property that
I = 27"v(yk).
Combining everything, we get
v(zk) = (1=27")[b(yo) — 27 "e0] + 270 (yr) — ¢(yo) +27*"<o,

which contradicts (2.6). Hence, v is continuous in €. O
Remark 2.4. As in the case of harmonic functions, it is easy to show that if a function v satisfies

v>¢ in Q,

Av <0 in €,

Av =0 in the set {v > ¢},
then it must actually be a minimizer of .

We next prove the following result, which says that v can be characterized as the least supersolution
above the obstacle.

Proposition 2.5 (Least supersolution). Let Q C R” be a Lipschitz domain, ¢ € H'(Q), and v €
HY(Q) be any minimizer of (2.1). Then, for any function w satisfying —Aw > 0 in Q, w > ¢ in Q,
and Trw > Trv, we have w > v in Q. In other words, if w is any supersolution above the obstacle ¢,
then w > v.

Proof. If w is any function satisfying —Aw > 0in Q, w > ¢ in Q, and Trw > Trw, it simply follows
from the maximum principle that w > v. Indeed, we have —Aw > —Av in QN {v > ¢}, and on the
boundary of Q we have Trw > Trv and w > ¢ = v on {v = ¢}. O

2.2. Optimal regularity of solutions. Thanks to [Proposition 2.3 we know that any minimizer of
(2.1)) is continuous and solves ([2.5).

From now on, we will restrict our study to solutions of the Euler Lagrange equation without any
boundary conditions on 9€). This means, we localize the problem and study it in a ball:

For ¢ € C*°(By), we consider

v > ¢ in B17
“Av >0 in B, (2.7)
—Av =0 in{v>¢}NB.
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Our next goal is to answer the following question:

Question: What is the optimal regularity of solutions?

Remark 2.6. Notice that in the set {v > ¢} we have Av = 0, while in the interior of the set {v = ¢}
we have Av = A¢ (since v = ¢ there). Thus, since A¢ is in general not zero, Av is discontinuous

across the free boundary d{v > ¢} in general. In particular, v ¢ C2.
Example: in 1D, consider v(z) = —xi, which solves (2.7) in (—1,1) with ¢ = —22.

We will now prove that any minimizer of (2.1)) is actually C''', which by the previous remark is the
optimal regularity.

Theorem 2.7 (Optimal regularity). Let ¢ € C°°(By), and v be any solution to (2.7). Then, v is
01’1(31/2), with the estimate

[ollcri(s, y) < Cllvlie sy, + 10llcras,,,)-
The constant C' depends only on n.

To prove this, the main step is the following lemma, which establishes that solutions detach at most
quadratically from the free boundary.

Lemma 2.8. Let ¢ € C*°(B1), and v be any solution to (2.7)). Let xo € By o be any point on {v = ¢}.
Then, for any r € (0,1/4) we have

0< sup (v— ) < Clllleri (s,

Br (IO

with C depending only on n.

In particular, implies that v € L>°(Bsg4).

Proof. After dividing v by a constant if necessary, we may assume that [|¢[|c11(p,) < 1. Let
U(z) := ¢(x0) + Vo(zo) - (z — x0)

be the linear part of ¢ at zg. Let r € (0,1/4). Then, by the C! regularity of ¢, in B,(x) we have

U(x) — 1% < p(z) < v(x). (2.8)
Next, we consider

w(z) = v(z) — (x) + 72
Our goal is to show that in the ball B, (x(), we have

w < Cr?.

This function w satisfies w > 0 in B, (zg) by , and —Aw = —Av > 0 in B,(z9). Let us split w

into w = wy + ws, with

{—Aw1 =0 in B,(x0) and {—Awg >0 in B(x0)

w, = w on 0B, (zo) wy =0 on B, (xp).

Notice that by the maximum principle, 0 < w; < w and 0 < ws, and hence 0 < wy < w.
Moreover, note that

wi(20) < w(zp) = v(wo) — (o) + 72 =17,
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and thus by the Harnack inequality (see [Theorem 1.16)),

[will Los (B, 5 (@o)) < CT.

For wy, notice that —Awy = —Aw, and in particular —Awy = 0 in {v > ¢}. This means that ws
attains its maximum on {v = ¢}. But in the set {v = ¢} we have

W §w:¢f€+r2 SCT2,

and therefore we deduce that

lwall Lo (B, (o)) < CT°-
Combining the bounds for w; and we, we get

| o (B, (20)) < CT2,
as desired. Recalling the definition of w, and using that [[¢[|c1.1(p,) < 1, we find by (2.8)),

v—¢=w+{l—¢+7r><Cr’ in B,js(z0),

as desired. O

As shown next, the previous lemma easily implies the C'*! regularity.

Proof of [Theorem 2.7, Dividing v by a constant if necessary, we may assume that
HUHLW(B3/4) + ||¢H(1171(33/4) <L

We already know that v € C.({v > ¢}), since v is harmonic there. Moreover, v is C*({v = ¢}),
since ¢ € C*°. Hence, it remains to show smoothness of v across the interface I' = 0{v > ¢}. For

this, we will use

Let z1 € {v > ¢} N By/y, and let 29 € I' be the closest free boundary point. Denote p = |21 — 2o|.
Then, we have —Av = 0 in B,(z1), and thus we have also —A(v — ¢) = 0 in B,(x1), where £ is the
linear part of ¢ at xg. By estimates for harmonic functions (see |Corollary 1.5), the quadratic growth
from and since ¢ € Cb! (arguing as in (2.8))), we find

C
100l 8, o) = D% = Ol (8, o) < g0 = Elios (5, o1
C CP2 sz
= ﬁ”v n quLoo(Bp(xl)) + 7 < pT =C.

[The fa.ctor p~2in t2he second step coZmeSerom rescaling|Corollary 1.5, i.e. applying it to v,(z) := v(px)
and using that || D%v||p=(p,,,) = p~ "Dl (B, )]

In particular, | D?v(z1)| < C. We can do this for all 21 € {v > ¢}N By 5. Moreover, for z1 € d{v > ¢},
we deduce |D?v(z1)| < C from Altogether, it follows ||’UHCI,1(31/2) < C, as desired. O

2.3. Nondegeneracy. Next, we want to prove that, at all free boundary points, v separates from ¢
at least quadratically (we already know at most quadratically). That is, we want

0<er?< B51(1p)(v —¢) < Cr? (2.9)
L0

for all free boundary points zy € d{v > ¢}. This property is essential in order to study the free
boundary later.

We will prove it under an additional assumption:
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Assumption: The obstacle ¢ satisfies
—A¢p>cy>0 in By. (2.10)
Remark 2.9. The assumption (2.10]) is quite mild.

e Since —Awv > 0 everywhere, it is clear that if g € 9{v > ¢}, then —A¢p(zo) > 0.

In fact, if —A¢(zg) < 0, then, since v touches ¢ from above at z¢, the function v — ¢ has a
global minimum there, i.e. (—A)(v—¢) <0, i.e.—Av(xg) < 0, a contradiction).

e It can be proved that, in fact, if A¢ and VA¢ do not vanish simultaneously, then —A¢ > 0
near all free boundary points [Caf98].

e The assumption is somewhat necessary. Without it, the lower bound in actually
fails and one can construct counterexamples in which the free boundary is a fractal set with
infinite perimeter (see [Caf98]).

Idea: Just choose u = 0 and note that given any fractal set, we can find ¢ such that {¢ = 0}
is this set. Then, u = 0 solves the obstacle problem with obstacle ¢.

Proposition 2.10 (Nondegeneracy). Let ¢ € C*°(By), and v be any solution to (2.7). Assume that
¢ satisfies —A¢p > co > 0 in By. Then, for every free boundary point xo € 0{v > ¢} N By /9, we have

0<er?< sup (v—¢) <Cr® forallr € (0,1/4),
By (zo)

with a constant ¢ > 0 depending only on n and cq.

Proof. Let x1 € {v > ¢} be any point close to z¢ (we will let 1 — z¢ at the end of the proof).
Consider the function [we will see that the r? essentially comes from the fact that A(|x — z1|?) = 2n.]

— _ _ G0 2
w(z) :=v(r) — ¢(x) 2n|x x|

Then, in {v > ¢} N B, (x1), we have
—Aw=—-Av+A¢p+cy=A¢+ ¢y <0,

Moreover, w(z1) > 0. Hence, by the maximum principle, w attains a positive maximum on d({v >
¢} N By(x1)). But on the free boundary d{v > ¢} we clearly have w < 0. Therefore, there is a point
on 0B, (z1) at which w > 0. In other words,

0< sup w= sup (v—gb)—ﬂr?
9B (1) 9B, (1) 2n
Letting now 1 — xo, we find supyp, ()(v — ¢) > er® > 0, as desired. O

Remark 2.11. Note that we have used the fact that —Awv > 0 in B; only for continuity of v in the
proof of the nondegeneracy!

This ends the study of basic properties of the obstacle problem. Before we continue, let us quickly
summarize:
Summary of basic properties. Let ¢ € C°°(Bp) and v be any solution to the obstacle problem

v Z (b in B1

—Av>0 in By

Av=0 in{v>¢}NB.

Then, we have:

e Optimal regularity: [[v]c11(s, ,) < C([[v]lz=B,) + 19llcris,))-
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e Quadratic growth: If —A¢ > ¢y > 0, then

0<er?< sup (v—¢) <Cr? forall re (0,1/2)
BT(LI:())

at all free boundary points xg € 9{v > ¢} N By /5.

2.4. An alternative way to formulate the obstacle problem. Recall the obstacle problem ({2.7)
problem

v = ¢ in Bb
Av <0 in Bl,
Av=0 in{v>¢}NDB;
for some ¢ € C*°(B1) with —A¢ > ¢y > 0. Clearly, this problem is equivalent to
u Z 0 in Bl,
Au < f in By, (2.11)
Au=f in{u>0}NBy,
where f = —A¢ > ¢y > 0.

Let us quickly explain that this problem arises as the Euler-Lagrange equation of an alternative energy
functional, without going into too much detail.

Proposition 2.12 (An alternative energy functional). Let Q@ C R™ be any bounded Lipschitz domain,
and let g : 9Q — R be such that

C={uec HY(Q) :u>0inQulsq = g} # 0.

Then, for any f € L?(Q) with f > 0 there exists a unique minimizer of

1
2/§2\Vu|2dx+/gfu (2.12)

among all functions u € C.
Moreover, the following are equivalent.

(i) w minimizes %fQ |Vul? + Jq fu among all functions satisfying u > 0 in Q and Tru = g.
(ii) w minimizes %fQ |Vul? + Jo fuT among all functions satisfying Tru = g.

Proof. We skip the proof of the existence and uniqueness. The equivalence of (i) and (ii) follows once
we show that minimizers to (ii) are nonnegative. (Note that C # () implies that g > 0 on 912.)
To show this, recall that |Vu|? = |[Vut|? + |Vu~|?, and therefore, since f > 0 in €,

1/ |Vu+|2+/fu+ < 1/ \Vu!2+/fu+,
2 Jo Q 2 Jo Q

with strict inequality unless v = u". Hence, any minimizer u of the functional in (ii) must be

nonnegative. O

The equivalence of (i) and (ii) will help us understand the connection between the obstacle problem
and the Alt-Caffarelli free boundary problem later.

The Euler-Lagrange equation associated to (2.12)) is given as follows:
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Proposition 2.13. Let Q C R" be any bounded Lipschitz domain, f € C®(Q), and u € H*(2) be
any minimizer of (2.12)) subject to the boundary conditions Tru = g. Then, u solves

Au = fX{us0y €,
U >0 mn Q

in the weak sense.

Proof. Notice that, by [Proposition 2.12| u is actually a minimizer of

=5 [1vul+ [ pet

subject to the boundary conditions Tru = g. Hence, for any n € H(Q2) and ¢ > 0 we have
E(u+en) > E(u).

In particular, we obtain

E . + _
0 < lim 20 En) = B :/Vu~V77+lim/f(u+€n)
€l0 15 Q el0 Jo S

Notice that

lim (u+en)t —ut _Jn in {u > 0},
€0 € nt in {u = 0},

so that we have

/Vu-Vn+/ f77><{u>0}+/ S Xquzoy = 0 for all n € Hy(9).
Q Q Q

Assume first that n > 0, so that

/Vu-Vn—l—/fnZO for all n € Hy (), > 0,
Q Q

which implies that Au < f in the weak sense. On the other hand, if n < 0, then

/ Vu-Vn +/ fXgus0y =0 forallne H}(Q),n <0,
Q Q

which implies that Au > fx (>0} in the weak sense. Hence, (recall that f > 0),
fXfus0y CAu < fin Q.

In particular, notice that Au = f in {u > 0}.

Now, since f is smooth, this implies that Au € L{* (£2). One can show (elliptic regularity theory
and Calderén-Zygmund estimates) that this implies u € C’lloc1 ()N VVli 02 (©). Thus, Au = 0 almost
everywhere in the level set {u = 0} and we have

Au = fx{us0} a.e. in (2

From here, one can easily deduce that Au = fx(,~0y in © in the weak sense. O

As we mentioned before, the formulation of the obstacle problem ([2.12)) is equivalent to the one from
([2.1). One can also deduce the C*! regularity and nondegeneracy from the Euler-Lagrange equation
in [Proposition 2.13] This is a little shorter, however, more complicated tools like Schauder theory

and the Harnack inequality for equations of the form —Awu = f have to be used. For more details see
[FRRO22].
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Summary of basic properties. Let f € C°°(B) and u be any solution to the obstacle problem
u>0 in By,
Au = fX{u>0} in Bl.
Then, we have:
e Optimal regularity: ”UHCM(BW) < C([lullpee(syy + I fllcor(my))-
e Quadratic growth: If f > ¢y > 0, then

0<er?< sup u<Cr? forallre(0,1/2)
Br(zo0)

at all free boundary points xg € d{u > 0} N By /.

2.5. Regularity of free boundaries: an overview. The next goal of this chapter is to understand
properties of the free boundary in the obstacle problem.

We will from now on consider solutions to

u e Cl’l(Bl),
w>0in By, (2.13)
Au= fin {u >0} N By,
with
f>co>0 and fe€C®(B).

Note that all of these properties are in particular satisfied by solutions to the obstacle problem, as we
have seen before.

Remark 2.14. Several remarks are in order:
e Note that on the interface
I'=0{u> 0} N By,
since v € C1! and u > 0, we have that
u=0onT, Vu=0onT.

(if Vu # 0 on I', there would be a sign change).
e Due to the nondegeneracy from [Proposition 2.10]still holds true. Hence, under
(2.13), we still have for some 0 < ¢ < C (now with C' depending on |[u[|c1.1(p,)),

0<cer? < sup u<Cr? Vag € 0{u > 0}. (2.14)
By (z0)

e Since u € C1!, we have that Au € L®, i.e. it holds Au = f a.e. in {u > 0} N B;. Moreover,
since u € CH!, we have that Vu € H!, it holds that Au = 0 a.e. on {Vu = 0} D {u = 0} (It
is a general fact that derivatives of an H' function v vanish a.e. on {v = 0}, and it follows
from the fact that Vo = Vo — Vo~ a.e.). From here, we can deduce that for any n € C2°(B)

and B € Bj,
/ VuVn = —/ Aun + oyun = —/ IX{us0yndz,
B B oB B
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i.e. u solves in the weak sense
Au = fX{u>0} in Bl.

For simplicity, we will assume from now on that
f=1
i.e. we will consider solutions u to
u € CHY(By),
u > 0in By, (2.15)
Au=11in {u >0} N By,

It is also possible to study the problem with a general f € C°°, but it is more technically involved.

The central mathematical challenge in the obstacle problem is to understand the geometry/regularity
of the free boundary I'. Clearly, despite knowing that u € C1!, T' could still be a very irregular object,
even a fractal set with infinite perimeter.

Our goal will be to prove Caffarelli’s dichotomy, which splits the free boundary I' into a set of regular
points and a set of singular points. We will show that

(i) T" is C*° near regular points
(ii) Characterize the set of singular points and prove that they are contained in an (n — 1)-
dimensional C' manifold.

These are the main and most important result in the obstacle problem. (i) was proved by Caffarelli
in 1977 (see [Caf77]), and it is one of the major results for which he received the Wolf Prize in 2012,
the Shaw Prize in 2018, and the Abel Prize in 2023.

Definition 2.15 (blow-up). We say that ug is a blow-up of u (satisfying (2.15))) at ¢ € 9{u > 0} By,
if there is a sequence r; \, 0 such that
u(xo + r17)
o) = D)
satisfies

Up, — ug  in OL(R™).

If zog = 0, we denote u, 4o = Ur,

Clearly, blow-ups always exist by Arzela-Ascoli’s theorem and the C'! regularity of u. Moreover, it
is not difficult to see that they are global solutions to the obstacle problem (2.15]).

Overview of the strategy.

e Given any free boundary point zp, one considers the rescalings u,, », (“zooming in” at a free
boundary point).
e By C!! estimates, a subsequence of u,, — ug (blow-up) in C} (R") as rj, — 0.
e Main issue: classify blow-ups:
— either ug(z) = £(z - )2 (regular points)
— or ug(z) = 12T Az (singular points).
Here, e € S* ! and A > 0 is a positive semi-definite matrix satisfying trA = 1.
e transfer information from ug to u:
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— free boundary is C'h* near regular points (for some small a > 0).
— CH* implies C* (reminiscent of Hilbert’s XIX problem).

2.6. Classification of blow-ups. The aim of this section is to classify all possible blow-ups ug. For
this, we proceed in three steps:

e prove that blow-ups are 2-homogeneous, i.e. ug(Ax) = A\2ug(z) for all A > 0.
e prove that blow-ups are convex, i.e. D?ug > 0.
e complete classification of blow-ups

Proposition 2.16 (Homogeneity of blow-ups). Let u be any solution to (2.15|) with 0 € 0{u > 0}.
Then, any blow-up of u at 0 is 2-homogeneous.

Remark 2.17. Note that not all global solutions to the obstacle problem in R"™ are homogeneous.
There exist global solutions ug that are convex, C!, and whose contact set {ug = 0} is an ellipsoid.
In fact, it was shown recently in [EFW25| (it was a conjecture for more than 90 years) that the
coincidence set of a global solution with non-empty interior has to be either a half-space, an ellipsoid,
a paraboloid, or a cylinder with an ellipsoid or paraboloid as base.

The result |Proposition 2.16| says that such non-homogeneous solutions cannot appear as blow-ups.

Our proof uses a very important tool in the theory of free boundaries, namely a monotonicity formula.

Theorem 2.18 (Weiss’ monotonicity formula). Let u be any solution to (2.15|) with 0 € d{u > 0}.
Then, the quantity
1 1 1 )

d 1

ar V) =

is monotone in r, i.e.

/ (z - Vu—2u)?dz >0 Yre (0,1).
0B,

Proof. Let u,(z) = r~2u(rz), and observe that by scaling

Wa(r) :/31 (;|Vur|2+ur> /331 w2, (2.17)

Using this, together with %(VUT) = V%u,«, we find

d d d d
7Wu = r'vir 7r_2 r 5 Up.
dr (r) By vu dr " + dr /831 Y
Now, integrating by parts we get
d d d
Vu, - V—u, = — Aty —u, + Oy (Uy ) —uy.
B d?" B d’l" 8B d?"
Now, note that
d 1
ol = —2r3u(ra) + r 2z - Vu(rz) = ;{x -V, — 2u, }. (2.18)

Thus, d%ur = 0 in {u, = 0} (recall that Vu, = u, = 0 on {u, = 0} by [Remark 2.14)). Moreover, since

Au, = 1in {u, > 0}, we have

d d d
Vi, - V—u, = —/ —uy; + Oy (uy) — .
/Bl dr B, dr 9B, ( )dr
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Thus, we deduce, using also that 9, = x -V on 9B together with (2.18)

d d d
—Wy(r) = Oy (up) —uy — 2/ Up— Uy
dr 9B, dr op, dr

= / z - Vur Hz - Vu, — 2u,} — 2/ ur Y - Vu, — 2u,}
0B, 0B

1
= / (z - Vu, — 2u,)?,
T JoB,
which gives the desired result after scaling back from w, to wu. O

Proof of [Proposition 2.16. Let u,(x) = r~2u(rz), and notice that we have the scaling property
W, (p) = Wu(pr),

for any r, p > 0. Indeed,

e 1 e
W) =02 [ (G ) s [ a2
B 9B,

P

1
:p—n—QT—Q/ <|Vu]2+u> _p—n—3r—4/ u?
B, \2 8B,

ot [ (57 +u) = o [ = Walro)

If ug is any blow-up of u at 0 then there is a sequence r; — 0 satisfying u,;, — g in C’lloC
for any p > 0 we have

P

(R™). Thus,

W, (p) = Ji W, (p) = Jion, Wau(prj) = Wu(0+). (2.19)
Notice that the limit W, (0+) := lim,_,o W,,(r) exists by monotonicity of W and since u € C! implies
Wy (r) > —C for all r > 0. Moreover, the second equality follows by scaling (see (2.17))).
Hence, the function W, (p) is constant in p. However, by this yields that
x-Vug—2up =0 in R",

and therefore ug is 2-homogeneous. (Note that wug is a global solution to ([2.15]), and therefore we can

take any r > 0 in ) Indeed, this property implies that
»(X) = A ug(Ax)
satisfies
YA\ = A3 (—2up(Mx) + (A\z) - Vug(Az)) =0 VA >0,
which implies that
AP ug (M) = (A) = ¥(1) = uo(x).
O

Using the 2-homogeneity of blow-ups, we can now show that they are also convex. We actually prove
a slightly more general result:
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Proposition 2.19. Let ug € Cb! be any 2-homogeneous global solution to

ug > 0 mn R™
Aug =1 in {up > 0}

such that 0 € 0{u > 0}. Then, ug is convex.

[Heuristic idea of the proof: D?uq is harmonic in {ug > 0} and D?ug > 0 on 8{ug > 0} (since ug > 0,
it is convex at the free boundary). Since D?uq is also 0-homogeneous, by the maximum principle,
D?ug > 0 everywhere.]

We need the following auxiliary lemma.

Lemma 2.20. Let A C By be closed. Let w € H'(B1) N C(By) be such that w > 0 on A and such
that w is superharmonic in the weak sense in By \ A. Then min{w,0} = —w™ is superharmonic in
the weak sense in Bi.

Proof. 1t is a well-known fact that if —Av > 0 in © the weak sense, then —A min{v,0} > 0 in € in the
weak sense. To see it, note that if F € C°°(R) is non-decreasing and concave, then F(v) € H(By),
and moreover, for any n € H}(By) with n > 0,

VF(v)Vndz = F'(v)VuVndz
B1

= V(F/(v)n)Vvdx—/ nF" (v)|Vo|? dz.
Bl Bl

Since F'(v) > 0 and 0 < F'(v)n € H(By) is an admissible test-function, and thus, the first term is
non-negative. Moreover, we have F”(v) < 0 by concavity, and therefore

VF(v)Vndz >0,
By

ie. —A(F(v)) > 0. Then, the fact follows by taking a sequence Fj(t) — —t_ as k — oo uniformly,
and taking limits.

We define w. = min{w, —e} € H'(B;). By continuity, we know that in a neighborhood of {w = —¢},
it holds —Aw > 0. By application of the previous fact to v := w + &, we have that

0 < —Amin{w +¢,0} = —A(min{w +¢,0} —¢) = —Aw;
in Bj in the weak sense.

Since the functions (w,). are uniformly bounded in H!(Bj), up to subsequences they converge weakly
to min{w,0}. Since the weak limit of weakly superharmonic functions is superharmonic, we deduce
the desired result. O

[It is possible to remove the continuity assumption on w € H'(By).]
[Recall [Lemma 1.18| and [Lemma 1.19}]

Proof of [Proposition 2.19, Let e € S*! and consider the second derivatives O.cug. We define

wp = min{decug, 0}

and we claim that wy is superharmonic in R", in the sense (|1.8)), i.e. such that

T wp(y) dy is monotone non-increasing. (2.20)
B (x)



ADVANCED TOPICS LECTURE: FREE BOUNDARY PROBLEMS 25

Indeed, let §2ug(x) for t > 0 be defined by

uo(z + te) + up(z — te) — 2up(x)
t2 '

Now, since Aug = X{u,>0} by we have that in the weak sense,

1 .
A(S?Uo = ?(X{uo(-+te)>0} + X{uo(-—te)>0} — 2) <0 in {ug >0}

62ug(z) =

Moreover, it holds 62ug > 0 in {ug = 0} and §2uy € C1:L.

Thus, by [Lemma 2.20, w; := min{d?ug, 0} is weakly superharmonic, and hence w; satisfies (2.20)).

Since uyp € CH, we have that §2ug(x) is uniformly bounded independently of ¢, and therefore wy is
uniformly bounded in ¢ and converges pointwise to wg as t | 0. In particular, by we have
that wy satisfies (2.20)), as claimed.

Up to changing it in a set of measure 0, wq is lower semi-continuous by In particular,
since wy is 0-homogeneous by assumption, it must attain its minimum at a point yg € B;. Here, we
used that lower semi-continuous functions attain their minimum in compact sets. But for now, wy is
defined in R". 0-homogeneity allows us to restrict the search for the minimum to S*~1.)

But since fBT- (o) WO is non-increasing for r > 0, we must have that wy is constant.
Since wq vanishes on the free boundary due to (2.14]), we have wg = 0.
That is, for any e € S"! we have that deeug > 0 and therefore g is convex. O

Remark 2.21. The original proof by Caffarelli yields a quantitative estimate on the convexity without
using the homogeneity assumption. More precisely, for any solution u to (2.15) with 0 € 9{u > 0},

Decus(x) > —C|log |z||™¢ forallec S" ! 2 ¢ By s,

for some ¢ > 0.

[Since C|log|z||™¢ — 0 as x — 0, it says that u becomes closer and closer to being convex as we
approach to the free boundary. Rescaling this result to Bg, and letting R — oo, this implies that any
global solution is convex.]

Let us summarize our findings in the following proposition.

Proposition 2.22. Let u be any solution to (2.15) with 0 € d{u > 0}, and let u.(z) = u(rz)/r?.
Then, for any sequence 1 — 0 there is a subsequence ry; — 0 such that

1
Urkj — Uy N Cloc(]Rn)
as kj — 00, for some function ug satisfying

ug € Clot(R™),

ug > 0 in R™,

Aug =1 in {ug > 0},
0 € 9{up > 0},

Uug 1S COMVEL,

| uo s homogeneous of degree 2.
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Proof. Recall that by the C'! regularity of u, and by nondegeneracy, we have that (see ([2.14)))

1

— <supu, <C

c = Blp r >
for some C' > 0. Moreover, again by C! regularity of u, we have

2
D% || poo

Byjar) = HD2U||L°°(B1/2) <C.

Since the sequence {u,, }, for rx, — 0, is uniformly bounded in C*!(K) for each compact set K C R™,
by Arzela-Ascoli’s theorem there is a subsequence 75, — 0 such that

Upy, = Uo 0 ClL.(R™)
for some ug € CV1(K). Moreover, ug satisfies
1 D%ug|| oo (1) < C
with C independent of K, and ug > 0 in K.

Next, we prove that Aug =1 in {ug > 0} N K: For any n € C°({ug > 0} N K') we have that, for k;
large enough, Uy, > 0 in the support of n, and thus

Vurkj -Vndx = / ndx.

n

R
Since Upy, = Up In CY(K), we can take the limit k; — oo to get

/Vuo-Vndx:—/ ndx.

Since n € C°({u > 0} N K), and K C R™ were arbitrary, it follows that Aug =1 in {ug > 0}.
The fact that 0 € 9{up > 0} follows by taking limits to Ury, (0) =0 and ||u7«k7_ | oo,y = p? for all p €

(0,1). Finally, the homogeneity and convexity of ug follow from [Proposition 2.16/and [Proposition 2.19]
O

Our next goal is to prove the following.

Theorem 2.23 (Classification of blow-ups). Let u be any solution to (2.15) with 0 € 0{u > 0}, and
let ug be any blow-up of u at 0. Then,

(a) either
up(z) = 5 (x-e)t
for some e € S*1.
(b) or
L 7
uo(z) = 2% Az

for some matriz A > 0 with trA = 1.

Important comment: At this point, blow-ups are not unique, i.e. different subsequences could lead to
different blow-ups ug.

Before we can classify blow-ups, we need three additional elementary lemmas.
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Lemma 2.24. Let X C R"™ be a closed convexr cone with nonempty interior with verter at the origin.
Let w € C(R™) be a function satisfying

Aw=0inX% w>0inX and w=0inX.

Assume in addition that w is homogeneous of degree 1. Then, ¥ must be a half-space.

Proof. By convexity of 3, there exists a half-space H = {z-e > 0}, with e € S"~1, such that H C X¢.
Let v(xz) = (z - €)+. v is harmonic and positive in H, and vanishes in H€.

By the Hopf Lemma (see 3¢ satisfies the interior ball condition by convexity of ), we
have that

w > cody,  in XN By,
where dy(z) = dist(z, X) and ¢( is a small positive constant.
In particular, since both w and dyx, are homogeneous of degree 1, we deduce that

w Z Codz in €.

Thus, since dy. > dye = v, we deduce that
w > cov
for some cg > 0.

[The idea is now to consider the functions w and cv, and let ¢ > 0 increase until the two functions
touch at one point, which will give us a contradiction, since two harmonic functions cannot touch at
an interior point.]

Define
¢ :=sup{c>0:w > cvin XY}.
Notice that ¢* > ¢y > 0. Then, we consider the function w — c*v > 0.
Assume that w — c*v is not identically zero. Since this function is harmonic in H, by the strict
maximum principle, w — ¢*v > 0 in H.

Then, using the Hopf Lemma in H (see [Lemma 1.9 and repeating the arguments from before, we
deduce that

w— v > codge = o,
since v = dgc. This implies
w — (¢* 4+ ¢o)v >0,

a contradiction with the definition of ¢*. Therefore, it must be w — ¢*v = 0. This means that w is a
multiple of v, and therefore ¥ = H€, a half-space. O

[An alternative way to argue in the previous lemma is by harmonic functions on the sphere (compare
with . Any function w which is harmonic in a cone ¢ and homogeneous of degree o can
be written as a function on the sphere, satisfying Agn-1w = pw on S*~! NX¢ with = a(n+a —2) -
in our case o = 1. (Here, Agn-1 denotes the spherical Laplacian, i.e. the Laplace-Beltrami operator on
S"=1.) In other words, homogeneous harmonic functions solve an eigenvalue problem on the sphere.
Nnotice that w > 0 in ¢ and w = 0 in ¥ imply that w is the first eigenfunction of S*"'NX¢. The first
eigenvalue is u = n — 1. But, on the other hand, the same happens for the domain H = {z - e > 0},
since v(x) = (x - €), is a positive harmonic function in H. This means that both domains S*~! N x¢
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and S"~'N H have the same first eigenvalue p. But then, by strict monotonicity of the first eigenvalue
with respect to domain inclusions, we deduce that H C ¥¢ implies H = X¢, as desired. ]

Lemma 2.25. Assume that Au = 1 in R" \ OH, where OH is a hyperplane. If u € C*(R™), then
Au =1 in R™.

Proof. Assume OH = {x; = 0}. For any ball B C R", we consider the solution to
{Aw =1 in Bpg,
w =u on JBg,
and define v = u — w. Then, we have
{Av =0 in Bg\oH,
v =0 on dBpg.
We want to show that w coincides with w, that is, v = 0 in Bpg.

For this, notice that since v is bounded in Bpg, for k > 0 large enough we have by the maximum
principle (applied in both halfs of Br \ OH separately)

v(z) < k(2R — |z1]) in Bg,
since 2R — |z1]| is positive in B and harmonic in Bg \ {x1 = 0}. Thus, we may consider
k" :=1inf{k > 0:v(z) < K(2R — |21]) in Bg}.
Assume £* > 0. Since v and 2R — |x1| are continuous in Bg, and v = 0 on dBg, we must have a point
p € Bgr at which
v(p) = " (2R — |p1).

Moreover, since v is C!, and the function 2R — |z1| has a wedge on OH = {x; = 0}, we must have
p € Bg \ OH.

This is not possible, as two harmonic functions cannot touch tangentially at an interior point p.
This means that k* = 0, and hence v < 0 in Bg.
Repeating the same argument with —v instead of v, we deduce that v = 0 in Bg, and thus the lemma
is proved. O
Finally, we will use the following basic property of convex functions.
Lemma 2.26. Let u: R™ — R be a convex function such that the set {u = 0} contains the straight
line {teg : t € R}, eq € S*" L. Then, u(z + teg) = u(z) for all z € R™ and all t € R.
Proof. After a rotation, assume ey = e,. Then, writing z = (2/,2,) € R""! x R, we have that
u(0, zy,) = 0 for all ,, € R, and we want to prove that

w(z',z,) = u(2’,0) Vo' e R" z, €R.

By convexity, given 2’ and z,, for every e > 0 and M € R we have
(1 —e)u(z’, ) +eu(0,xn + M) > u((1 — &)z’ z, + eM).
Since u(0, x, + M) = 0, choosing M = \/e and letting ¢ — 0 we deduce that
w(@' xn) > (@, z, + N).
Since this can be done for any A € R and z,, € R, the result follows. O
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We finally establish the classification of blow-ups at regular points.
Proof of|Theorem 2.25. Let ug be any blow-up of v at 0. We already proved that ug is convex and
homogeneous of degree 2. We divide the proof into two cases.

Case 1. Assume that {up = 0} has nonempty interior. Then, by convexity and homogeneity of ug, we
have {up = 0} = X, a closed convex cone with nonempty interior.

For any direction 7 € S"~! such that —7 € 3, we claim that
w:= 0;up >0 in R"™
Indeed, for every = € R™ we have that ug(x + 7t) is zero for t < —1, and therefore by convexity of

ug we get that dyug(z + 7t) is monotone non-decreasing in t, and zero for ¢ < —1. This means that
Opup(x + 7t) > 0, and thus d-ug > 0 in R™, as claimed.

Note that, at least for some 7 € S*! with —7 € ZO), the function w is not identically zero (otherwise,
we would get a contradiction with the nondegeneracy (12.14])). Moreover, since it is harmonic in ¢
(recall that Aug =1 in X°), it holds w > 0 in X°.

But then, since w is homogeneous of degree 1, we can apply to deduce that X is a
half-space.

By convexity of ug and this means that ug is a one-dimensional function, i.e.
ug(x) =U(x - e)
for some U : R — R and some e € "7,
Thus, we have that U € O solves
U'(t)=1 fort>0, U(t)=0 fort<0.

From ODE theory, we deduce that U(t) = 1t and therefore

up(z) = %(l"e)i-

Case 2. Assume now that {ug = 0} has empty interior. Then, by convexity, {up = 0} is contained in
a hyperplane 0H.

Hence, Aug = 1 in R* \ 0H, with OH being a hyperplane, and ug € C*!. [Lemma 2.25| yields that
Aug=1 in R™.

Then all second derivatives of ug are harmonic and globally bounded (due to their 0-homogeneity) in
R™, so by the Liouville theorem (see [Theorem 1.20)) they must be constant. Hence, ug is a quadratic
polynomial. Finally, since ug(0) = 0, Vug(0) = 0, and ug > 0, we deduce

1
uo(z) = §a:TA$
for some A > 0, and since Aug = 1, we have trA = 1. O

2.7. Lipschitz regularity of the free boundary near regular points.
Definition 2.27. Let u be any solution to (2.15)) satisfying for some z¢ € By, N 9{u > 0}

=0}NBAB

o sup [ = 0101 By (20)
r—0 ’B'r (330)’

(i.e., the contact set has positive density at ). Then, x¢ is called a regular free boundary point.

>0 (2.21)
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Our goal is to show that the free boundary 0{u > 0} is C*° in a neighborhood of regular points .

This is usually done in three steps:

(1) Lipschitz regularity of the free boundary near regular points,

(2) Lipschitz implies C1<,

(3) CH* implies C™.
To prove the first step, we transfer the local information on u into a blow-up ug. More precisely, we
will show that

xo is a regular point = The contact set of a blow-up 1o has nonempty interior.

Lemma 2.28. Let u be any solution to (2.15) and assume that 0 € 0{u > 0} is a reqular point. Then,
there is at least one blow-up uy of u at 0 such that the contact set {ug = 0} has nonempty interior.

Proof. Let r, — 0 be a sequence along which

>0 > 0.
Tk—)o ’B’I‘k ’ -

Such a sequence exists (with & > 0 small enough) by assumption. Thanks to [Proposition 2.22|
there exists a subsequence 74, | 0 along which Upy, — Uo uniformly on compact sets of R", where
2

ur(xz) = r~“u(rz) and ug is convex.

Assume by contradiction that {ug = 0} has empty interior. Then, by convexity, we have that {ug = 0}
is contained in a hyperplane, say {up = 0} C {x; = 0}. Since up > 0 in {z1 # 0} and ug is continuous,
we have that for each § > 0 there is some € > 0 such that

up>¢e>0 in{|z1| >0} N By.
Therefore, by uniform convergence of u,, — g in By, there is r; > 0 small enough such that
J
€ .
Upy, 2> 5> 0 in {|z1] >0} N By.
In particular, the contact set of u,, is contained in {|z1| < ¢} N By, i.e.
J

{ury, =0F OB [{Jar| < 6} 0 Byl

B S B S
Rescaling back to u, we find
H{u=0}nN BTkj| B |{Urkj =0} N By

‘ij ‘ B |Bl|

Since we can do this for every § > 0, we find that
{u=0}NBy, |
lim I =0,
T, =0 |BTkj|

a contradiction. Thus, the lemma is proved. g

Combining the previous lemma with the classification of blow-ups (see [Theorem 2.23|), we deduce:

Corollary 2.29. Let u be any solution to (2.15)), and assume that 0 € O{u > 0} is a regular point.
Then, there is at least one blow-up of u at 0 of the form
1 2

uo(x) = g(x e)l, eesS"h (2.22)
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Next, we use this information to show that the free boundary must be smooth in a neighborhood of
any regular point. Our first goal is to establish Lipschitz regularity of the free boundary.

Proposition 2.30. Let u be any solution to (2.15)), and assume that 0 € d{u > 0} is a regular point.
Let € > 0. Then, there exist e € S* 1 and rg > 0 such that

1
|urg () — 5(17 : 6)3_\ <e in B,
and
0rury (z) — (z- €)1 (7€) <e in By

for all T € S,

Proof. By |Corollary 2.29|and [Proposition 2.22|there are a subsequence r; — 0 and e € S"=1 for which

1 .
Uy, — 5(3: e)2 in OL (R™).
In particular, for every 7 € S"! we have
1 1
Up; — 5(3: “e)3, Ortr; — 875(1’ o)l =(z-e)(r-€) uniformly in Bj.

Hence, given € > 0, there exists jo such that
1 :
|ur,, () — §($ e)i|<e in By,
and
0rup, (2) — (- e)4(T-€)] <& in By.
g
Note that if (7-€) > 0, then the derivatives d;ug = (x-e)4(7-€) are nonnegative, and strictly positive
in {z-e>0}.

We want to transfer this information to w,,, and prove that d-u,, > 0in By for all 7 € SP—1 satisfying
T -e > 1/2. For this, we need the following auxiliary lemma.

Lemma 2.31. Let u be any solution to (2.15)), and consider u,,(z) = ry *u(roz) and Q = {u,, > 0}.
Assume that a function w € C(By) satisfies:

(a) w is bounded and harmonic in QN By.
(b) w=10 on 02N By.
(¢) Denoting Ns := {x € By : dist(z,09) < §}, we have w > —cy in N5 and w > Cy > 0 in Q\ Ny.

If ¢1/Cy is small enough, and 6 > 0 is small enough, then w > 0 in By, N Q.

Proof. Notice that in 2\ Ns we already know that w > 0. Let yop € NsN QN By /o, and assume by
contradiction that w(yy) < 0.

Consider, for v > 0 to be chosen later, the following function in By /4(yo):

(o) = we) = (12 = 5l — ol ).

Then, —Av = 0 in By/4(yo) N €2, and moreover v(yo) < 0. Thus, v must have a negative minimum on
(B /4(yo) N ).
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Let us now prove that this does not happen, if ¢;/Cs and § are small enough.
To see it, we write

O(B1/4(y0) N2) C OQU (831/4(3/0) N Ns) U (331/4@0) N (Q2\ Ny)).
On 012 we have v > 0.

Moreover, let us write ||uy,[lc1.1(p,) =: Co, and choose v > 0 and 4 such that

&)
Co

5% <

6dne, <~ <
= 64Con’ =7

Then, on 0B /4(yo) N Ns we have

2
v > —c; — Coyd? + A () > 0.
2n

Moreover, on 9By /4(y0) N2\ Ns we have

v>Cy—Chy>0 on 631/4(3/0) N\ Ns.
Hence, v > 0 on 9(By,4(yo) N §2), a contradiction. O
Using the previous lemma, we can now show that there is a cone of directions 7 in which the solution
is monotone near the origin.

Proposition 2.32. Let u be any solution to (2.15)), and assume that 0 € O{u > 0} is a regular point.
Let u,(z) = r~2u(rx). Then, there exist ro > 0 and e € S such that

87-’&7»0 >0 B1/2

for every T € S"! satisfying T-e > 1/2.

Proof. By |Proposition 2.30} for any € > 0 there exist e € S*~! and r¢ > 0 such that for all 7 € S*~1,

g () — %(;p 2| <e B (2.23)
|0-tr, () — (z-€e)+ (7€) <e in Bj. (2.24)
Next, we claim
U, > 0in {z-e > Cove}, up=0in {z-e < —Cove}, (2.25)
which means that [the free boundary is contained in a strip]
IQ = 0{u,, >0} C {|z-e| < Cove} (2.26)

for some Cy depending only on n.
To prove the first property in (2.25), note that if 2 - e > Cy+/z then, if Cy > /2,

1
Uy > 5((Jmﬁ)z —e>0.

To prove the second property in (2.25)), note that if there was a free boundary point z¢ in {z - e <
—Cp+/e} then by nondegeneracy we would get

sup  up, > c(Cov/e)? > 2,
Be, (o)

if Cp > /2/c, a contradiction with (2.23]). Therefore, we have (2.25)), and thus also (2.26|), as desired.
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Next, for each 7 € S~ satisfying 7-e > 1/2 we define w := d,u,,. Our goal is to apply [Lemma 2.31
Note:

(a) w is bounded and harmonic in 2N Bj.
(b) w=0on 92N Bj.
(c) By (2.24), if 6 > /e then w satisfies w > —e in N5 and w > /4 > 0 in (2 \ N5) N By.

[Recall Ny := {z € By : dist(z,9Q) < ¢§}.] The first inequality in (c) follows from ({2.24)), and to check
the last inequality in (c), note that by (2.25) and (2.26)), we have

{$'€<5—Co\/g}ﬁQCN5.

Thus, by (2.24)), we get that for all z € (2\ Ny) N By, if § > /¢,

1 1 1
w25($-€)+—6255—500\/g—62

Using (a)-(b)-(c), we deduce from [Lemma 2.31| that w > 0 in By ;.

Since 7 € S"~! with 7 - e > 1/2 was arbitrary, the proposition is proved. O

0.

e~ =

Remark 2.33. The property is of fundamental importance in the theory of free boundary
problems. It is also known as ”flatness“ of the free boundary (see also the concept of a ”Reifenberg
flat domain“). In many free boundary problems, flatness of the free boundary implies that it is smooth.
We will also observe it later, when we study the one-phase free boundary problem.

As a consequence of the previous proposition, we find:

Corollary 2.34. Let u be any solution to (2.15)), and assume that 0 € 0{u > 0} is regular. Then,
there exists ro > 0 such that the free boundary 0{u,, > 0} is Lipschitz in By y. In particular, the free
boundary of u, 0{u > 0}, is Lipschitz in B, (with Lipschitz constant bounded by one).

Proof. This follows from the fact that for all 7 € S*~! with 7-e > 1/2 (by [Proposition 2.32),
a‘,—UTO Z 0 in BI/Q‘ (227)

Indeed, let xg € By /5 N 0{uy, > 0} be any free boundary point in B /5, and let
O:={resS"tir.e>1/2},
¥y :={x € Byjp:x =120 —tr, with 7 € ©,¢ > 0},
and Y := {x € Byjp : ¥ = 7o + t7, with 7 € ©, > 0}.
We claim that

Urg = 0in El, (2 28)
Up, > 01in Xg. '

Indeed, since uy,(z9) = 0, it follows from (2.27), and since u,, > 0 that
Upo (o —t7) =0 VYVt >0 and 7€ O.
In particular, there cannot be any free boundary point in .
On the other hand, by the same argument, if u,,(x;) = 0 for some z; € 32 then we would have

Uy =0 in{x € Byjp:x=mx1 —tr, with 7 € ©,t > 0} > .
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In particular, zp would not be a free boundary point. Thus, u,,(z1) > 0 for all z; € ¥g, and (2.28))
follows.

Finally, notice that (2.28)) yields that the free boundary d{u,, > 0} N By, satisfies both the interior
and exterior cone condition, and thus it is Lipschitz (with Lipschitz constant bounded by one). O

Once we know that the free boundary is Lipschitz, we may assume without loss of generality that
e = e, and that

Nury > 0} N Byjg = {zn = g(a’)} N By o
for a Lipschitz function g : R"~! — R. Here, z = (2, x,,), with 2/ € R*~! and xz,, € R.

Remark 2.35 (C! regularity of the free boundary). (i) It is not difficult to show that the Lips-
chitz constant can be made as small as desired (in smaller balls) by refining the proof (scaling
argument). Basically, this amounts to showing that there is e € S"~! such that for any § > 0
there is rs > 0 with

O-u>0 in B,

for any 7 € S"~! such that 7-e > 6.

(ii) Regularity of a free boundary point is an open property, i.e. if 0 € 9{u > 0} is regular, then
there is p > 0 such that any point in 9{u > 0} N B, is also regular. In fact, by [Proposition 2.32|
and the local C! convergence, any blow-up ug at y € {u > 0} N B, must satisfy d,ug > 0 in
R™ whenever 7 -e > % By the classification of blow-ups from this implies that
ug is 1D, i.e. y is a regular point.

(iii) From (i) and (ii) one can easily deduce that the free boundary is C! near regular points.
[We will not need this fact, since we will provide a direct proof of C** regularity in the next
subsection)].

Indeed, by (i), making 6 > 0 small, we obtain the existence of a tangent plane to the free
boundary at 0 € d{u > 0}. By (ii), all points z € B, have a tangent plane (and hence a
normal vector v,), and by (i),

lv, — | < C6 for all z e 0{u >0} N B,,.

This implies that the free boundary is C*.

As another application of [Remark 2.35(1), we get the uniqueness of blow-ups at regular points.

Lemma 2.36. Let u be a solution to (2.15) and assume that 0 € 0{u > 0} is a regular point. Then,
the blow-up lim,_ou, = ug 1S unique.

Proof. By |[Proposition 2.22| and |Corollary 2.29| there exists a subsequence r; — 0 such that u,;, —

Uy = %(:L’ . e)%r for some e € S"~!. Assume that there is another subsequence 7‘9 — 0 such that
Uy — uf = 2(x - €)L for some ¢/ € S""!. Note that uf, must be 1D by the same argument as in
Remark 2.35(ii), namely due to [Proposition 2.32| and the local C'! convergence towards the blow-up

limit. Then, as soon as r} < rg from [Remark 2.35(1), it holds
(%ur; >0

for all 7 € S"! with 7-e > 4. In particular,

Orug > 0.
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This implies ¢/ - 7 > 0 for any 7 € S*~! with 7-e > 6. Letting § — 0, this yields e = ¢’ and
therefore ug = . Since by [Proposition 2.22| any subsequence r; has a subsubsequence rj, for which
Ur;, CONVETges, this implies convergence of the sequence u,., as claimed. O

2.8. Lipschitz implies C1'® regularity of the free boundary. Now, we want to prove that Lip-
schitz free boundaries are C1®. A key ingredient in the proof is the following boundary Harnack
principle.

Theorem 2.37 (Boundary Harnack principle). Let 2 be a Lipschitz domain and wi and wy be non-
negative functions such that for i =1, 2,

—Aw; =0 i BN,

Wy =0 on B;NoL,
and for some Coy > 0

Cyt < lwill oo (B, ,5) < Co.
Then, it holds

1
6w2 <w <Cwy in N B1/2‘ (2.29)
Moreover,
le <C (2.30)
w2

CO2(QNBy /9)
for some a > 0. The constants a and C depend only on n, Cy, and the Lipschitz constant of €.

We first explain how [Theorem 2.37] implies the Cb* regularity of the free boundary. Later, we will
provide a proof of the boundary Harnack principle.

Remark 2.38. It is of central importance that Q is allowed to be Lipschitz in If
0N is smooth (i.e. at least C’LO‘) then it follows from a barrier argument that both w; < wy =< dg
(see . However, in Lipschitz domains the result cannot be proved with a simple barrier
argument, and it is much more delicate to establish.

The boundary Harnack is a crucial tool in the study of free boundary problems!

Theorem 2.39. Let u be any solution to (2.15), and assume that 0 € 0{u > 0} is a regular point.
Then, there exists ro > 0 such that the free boundary 0{u,, > 0} is CH* in By 4, for some small

a > 0. In particular, the free boundary of u, d{u > 0}, is CH* in B,y /4

Proof. Let Q = {u,, > 0}. By|Corollary 2.34] if 7o > 0 is small enough then (possibly after a rotation)
we have
QN Byjg = {zn > g(a)} N By o, 00N By = {xn = g(2')} N By s,
where ¢ is Lipschitz.
Let

wy 1= O, Ur, and wy = O¢;Ury + Oc, Ury, t=1,...,n—1.

Since Oruy, > 0 in By, for all 7 € S*1 with 7- e, > 1/2 by |Proposition 2.32|, we have that

w1 Z 0 in Bl/27 w2 2 0 in Bl/2
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The nonnegativity of ws is obvious. To see the nonnegativity of wi, we apply [Proposition 2.32] with

T = 4t which satisfies
le1+en]’

e1+ e, 1
7'671:7
ler + en| le1 + en|

=1/V2>1/2.

Since wy and wsy are positive harmonic functions in {2 N By /3, and vanish on Q2 N By, we can use
the boundary Harnack (see [Theorem 2.37)) to get for some o > 0

<C.
0, O‘(QﬂBl/4)

|

Since wy/wa = 1 4 O¢,Ur, /e, Ur,, this yields
Joz

aen Uy

<C. (2.31)
CO’C“(QQBlM)

We claim that this implies that the free boundary is C1® in By /4 Indeed, if u,o(z) = t then the
normal vector to the level set {u,, =t} is given by

e, Ur _ Oe;Urg [ De,, Urg

‘VUT0| \/1—|—Z aeJuTO/aenuT0)27

By (2.31)), this function is a C%® function. Taking ¢ — 0, we get that the free boundary is C*% (since
the normal vector to the free boundary is a C%® function). O

vi(z) = i=1,..,n.

2.9. Boundary Harnack principle. The goal of this subsection is to give a proof of

The boundary Harnack principle in Lipschitz domains has a long history. It was first established
in [Kem72]. A standard reference for its proof is [CS05], where it was also applied to free boundary
problems. In this lecture, however, we will follow a much more recent (and shorter) proof from [DSS20].

Remark. We make a few more comments on the boundary Harnack principle.

e It holds true in much rougher situations than For instance, it holds true in
Holder domains 99 € C%¢, where « € (0,1).
e The following two assumptions on the domain 2 are even sufficient for a BHP to hold:
— interior corkscrew condition: For any £ € 02 and r € (0,1) there are kK > 0 and = €
such that By, (x) C B.(§) N Q
— Harnack chain condition: There is k € N such that for any z,y € 2 and balls By, ..., By
such that = € By, y € By, B; N Biy1 # 0, such that

diam(B;) = dist(B;, 09), k <log(1l+ |z — y| min{dist(z, 9Q), dist(y, 9Q)} ).

e A nontrivial example of a domain satisfying the previous two conditions is the Koch snowflake
e The boundary Harnack principle fails in domains with ”exponential cusps“, e.g. for

Q={(z,y) eR?:0<z <1, 0<y<e /),
For simplicity, we assume from now on that 0 € 92 and that 02 is a Lipschitz graph in the e, direction
where the Lipschitz constant of 9€) is bounded by one, i.e. that
lollcoson <1 where QN Byjs = {zn > g(')} N Byjo. (2.32)

Note that in that case, the constants will be independent of €. It is not difficult to generalize the
proof to domains with arbitrary Lipschitz constants.
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Moreover, note that the proof of [Proposition 2.43|is a little simpler if the Lipschitz constant is assumed
to be small.

We introduce the notation

Qs :={z € Q:d(z) := dist(z, Q°) > d}.
[Recall the weak Harnack inequality for supersolutions (see [Lemma 1.14]), the local boundedness
estimate with exponent £ = 1 (see [Lemma 1.15]), and the Harnack inequality (see [Theorem 1.16]).]

First, we have to improve the local boundedness estimate from
Lemma 2.40 (improved L* bound for weak subsolutions). Let u € C(By). Then, for any e >0

—Au<0 in B = supu < Cllulls,,),
1/2

for some C' depending only on n and .

Proof. The result for ¢ = 1 was already shown in For ¢ > 1, we deduce the result
immediately from Holder’s inequality.

For ¢ € (0,1) and r € (0,1/2), we can proceed by Young’s inequality

1
1 :
sup u < Cr~"||ul|L1(p,) < sup u'~¢ ][ |ul® dz < 3 Sgpu +C <][ ]u\adx)

Br/2 By
By a standard iteration argument (see [GG82, Lemma 1.1]), this implies
1
sup u < & sup u+ Clul e s,
By /2 By /2
which immediately implies the desired result.

Let us give a few more details on the iteration argument. We define

Moreover, we define

Q:= sup S(B,(v0)), Q:= sup S(B,(v0))
Bp(z0)CB1 By(x0)CB1

We have already shown that
S(B,/a(x0)) < 6Q + Cvy VB,(x0) C By, ie. Q < 6Q + Cy.
We claim that also the following holds true:
Q< Q.
In that case, we could deduce the desired result, since it would yield
lR<Q<IQ+Cy  de Q<

as desired. To prove the claim, we fix B,(z9) C Bi and cover B, (xo) with balls B,g(z;), for
j €{1l,...,N}, and points z; € B, (o) such that B,/5(z;) C B1. Note that we can choose N € N
depending only on the dimension. Then, it holds

S(B,s(z)) < Q.
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By summing over j, we deduce

N
S( p/2 l’o <CZS 0/8 Z] <CQ.
7j=1
This proves the claim and we conclude the proof. O

As a consequence, we show an L bound for « in terms of its value an interior point in €.
Lemma 2.41 (Carleson estimate). Let u € C(By) be a nonnegative function such that

—Au =0 in BN,
u =0 onB\Q,

where @ C R™ is a Lipschitz domain as in [2:32). Assume, moreover, that u(3e,) = 1. Then,
ull Lo (B, ) < C,

for some constant C' depending only on n.

Note that by the assumptions on €2, we have that ¢ € Q and d(%) > (2v/2)~!. Moreover, if u does

not satisfy the assumption u(%en) =1, then we get

1
||UHL0®(31/2) Cu <en> .

Proof. Notice that since v > 0 is harmonic whenever u > 0, and it is continuous, we have —Au =
—Auy <0 in Bj in the weak sense (see the proof of [Lemma 2.20, where we have shown that —u_ is
superharmonic).

Moreover, since the Lipschitz constant of 02 is bounded by 1, we have

1 1

In particular, by Harnack’s inequality (see [Theorem 1.16)) we have
) 1
u<Cp in By <2en> .
That is,

11
n < n f n R
u(0,z,) < C, forz 6[4 2]

Repeating iteratively, we get
u(0,z,) < C* for z,, € [2_]“_1,2_k] ,
so that
u(0,t) <t™K forte (0, ;] ,

where K depends only on n.

We can repeat the same procedure at all points in By by iterating successive Harnack inequalities,
to deduce that

u S d_K in B1/2'
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In particular, for € > 0 small enough we have

/ lu|® < C.
By

By [Lemma 2.40} we deduce that [ul[ze(p, ;) < C, and the result in By, follows from a covering
argument. O

We need another auxiliary lemma.

Lemma 2.42. Let § > 0 and let Q C R™ be a Lipschitz domain as in (2.32)). Let u € C(By) satisfy

Au=0 inQNB; and u>1 m B1 N Qs
u=0 on 002N By u>—0 in Bi.

Then, for all k € N such that ké < 3/4, we have
u>—46(1— co)k in Bi_ps

for some constant ¢y depending only on n.

Proof. Let v~ = min{u,0}. Notice that u~ is superharmonic since —Au~™ = 0 when v~ < 0, and
u~ <0, so we have —Au~ > 0 (see the proof of [Lemma 2.20). Let w = u~ + 4. By assumption,
w >0, —Aw > 0.

Let zp € 002N B1_95. By the weak Harnack inequality (see|Lemma 1.14)) applied to Bas(xg), we deduce

inf w>ed " :
B};I(lzo)w = C HwHLl(Ba(ﬂﬂo))

Since 012 is Lipschitz and w > § in Q¢ we can bound
lwll 2185 (o)) = 0{w = 6} N Bs(o)| = 6™
for some ¢ depending only on n. Thus,

inf w > ¢yd.
Bs(wo)

In particular, since w > ¢ in By N 25 we have w > cgd in By_s and therefore
u>—0(1—-c¢y) in By_s.

Applying iteratively this inequality for balls of radius 1—2§,1—34, .. ., we obtain the desired result. [J

The following result is a key step in the proof of the boundary Harnack inequality.

Proposition 2.43. There exists 6 > 0, depending only on n, such that the following holds. Let
Q C R"™ be a Lipschitz domain as in (2.32)). Assume that u € C(By) satisfies

Au=0 inQNB; u>1 in B1NQs
u=20 on 000N By u>—0 in Bj.

Then, u >0 in By ;.

Note that in comparison to [Lemma 2.31 where 092 = d{u,, > 0} is the free boundary of a (rescaled)
solution to the obstacle problem, here, we assume instead that 9 is Lipschitz continuous.
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Proof. It is enough to show that, for some a > 0, we have

{UZCL in Bl/QﬂQ(g/Q

2.33
u > —da in Byjs. ( )

Indeed, iterating at all scales, and at all points z € 92N By 5, we obtain
{u > aF in By k(2) N Qys
u > —da® in By (2)
for all k£ € N. In particular, the first inequality yields that
u(z +te,) 20 for 2 € 9QN Byjp, t>0,
and therefore u > 0 in By .

Let us show (2.33). We start with the first inequality. Let xg € By /o N Qs /2, and let us suppose that
0/2 < dist(zo,2¢) < (otherwise, we are done by assumption).

Consider the function w = u + §, which satisfies w > 0 in 2 by assumption. Notice that we can
. 1 . . .
connect the points xg and g + 5de, with a sequence of (three) overlapping balls in €2, and that

1
w(xo + 5(56”) > 149,
by assumption. Hence, by Harnack’s inequality (see [Theorem 1.16)

()>l +15 >
wxoicw X0 2€n =

_ =

for some constant C.

In particular, by taking 6 > 0 smaller than 1/(2C) =: a, we get

u(xg) > % -0 > % for all zg € By /o N Qs/9,
which yields the first claim in .
Moreover, by if k§ < 3/4, then
u>—6(1—co)* in Bi_ps.
Hence, if we take k = 1/(26), we deduce
u>—6(1—co)/® in By /2,

and taking § small enough such that (1 — ¢g)%/) < 1/(2C) we are done. O

We can now give the proof of the boundary Harnack principle.
Proof of|[Theorem 2.3%. Thanks to up to a constant depending on Cj, we may assume
wi(3€,) > 1 and wo(5€,) > 1. [Since Hw1HLoo(B1/2) > Cp by assumption]|. Then, let us define

v = Mw; — ews

for some constants M (large) and e (small) to be chosen later.

Let § > 0 be given by [Proposition 2.43] Our goal is to apply [Proposition 2.43]|to v. Clearly,
—Av=0 in QN By,
v=0 on B; NoN.




ADVANCED TOPICS LECTURE: FREE BOUNDARY PROBLEMS 41

Moreover, since ws is bounded and w; > 0 by assumption,
v> —gwy > =4 in By
for € > 0 small enough.

Moreover, by the Harnack inequality (see [Theorem 1.16)), and since wi(e,/2) > 1, we can take M
large so that

M’LU121+6 inBl/QﬂQ(g.
That is,
v=Muw; —ewes >1 in Bl/zﬂﬁg,

for M large enough depending only on n. Thus, the hypotheses of [Proposition 2.43| are satisfied, and
therefore we deduce that v > 0 in By 5.

This means that,
we < Cwy in Byyy

for some constant C' depending only on n. The inequality in By, follows by a covering argument.
Finally, reversing the roles of w; and we, we obtain the first claim.
To prove the second claim, let us denote

w

W .= —1,

w2
so that we have to prove Holder regularity for W in 2N By /5. Notice that, by the first claim, we know
that

égwgc in By N,
for some C depending only on n. We start by claiming that, for some 6 > 0 and all k € N, we have
oscp, , W < (1-— Q)OSCB27,€W (2.34)
Indeed, let
ap:= sup W and b := inf W.

Bsz B2_k

If we denote py = #en, then
1 1
either Wi(py) > i(ak +b;) or Wipg) < §(ak + by).

Suppose first that W (pg) > 3(ax, + by), and let us define
_wy — brws
ap — by
Notice that, by assumption, %wg(pk) < v(pr) < wa(pg). In particular, we can apply the first claim to

the pair of functions v and w9 in the ball By—«, to deduce that v > %'LUQ in By %1, that is,
w1 — bpws 1 . . 1

————= > —wyin By—y-1 <= inf W > —(ap—0b bj.

a,—b, — C 2 27t B, k-1 _C(k k)+k

Since SUPp, W < SUpp, W < ag, we deduce that

1 1
OSCB27k71W S ap — a(ak — bk) — bk = <1 — C> (ak — bk) = (1 — 0)08632716“/,
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with 6 = 1/C, as desired. If we assume instead that W (py) < (aj, +by,), then the argument is similar
taking v := (apwz2 — w1)/(ar — by) instead. Altogether, we have shown ([2.34)).

In particular, we have shown that, for some small a depending only on n, we have
0SCB, (z)W < Cr®  for all r € (0,1/4) and o € 92 N By, (2.35)

We now need to combine (2.35)) with interior estimates for harmonic functions.
Indeed, letting z,y € N By, we want to show that

(W(z) = W(y)| < Clz —yl|% (2.36)

for some constant C' depending only on n. Let 2r = dist(z, ) = |x — «*|, with z* € 9.

We consider two cases:
o If [x — y| > r/2, then we apply (2.35)) in a ball B,(z*) with radius p = 2r + |« — y| to deduce
W (x) = W(y)| < oscp,@W < C2r+ o —y)* < Oz —y|™

o If [z — y| < /2, then by (2.35) we know that oscp ;)W < Cr®. In particular, if we denote
c¢* := W (x), then

w1 — c*wall oo (B, (2)) = lwa(W — )|l (B, (2)) < CTw2|l 1o (B, (2))-

Moreover, since wy — ¢*wy is harmonic in B, (x), by [Corollary 1.5/ (rescaled and after Holder

interpolation) we know that

C
(w1 = CCwalcoa(s, jp@)) < gllwr = Cwallree (B, (@) < Cllwellze(s,@))-
Hence, using that wy(z) — c*wa(x) = 0, we get

wi(y) — crwa(y) |wallLoo (B, (2))
w Y)— Wi(z)| = < (Clx — Y al 7~ \r\)
(W (y) — W(z)| (1) | | ws(y)
Finally, by Harnack’s inequality (see [Theorem 1.16|) applied to ws in Ba,(x),

w2l oo (B, (z)) < Cw2(y)

for some C' depending only on n.

With these two cases, we have shown (2.36]). This proves the result. O

2.10. Higher regularity of the free boundary. Summary: So far we have proved

{u = 0} has positive any blow-up is free boundary free boundary

density at the origin uy = %(x . 6)2+ is Lipschitz near 0 is C1* near 0

As a last step, we prove that C1® free boundaries are actually C*.

Theorem 2.44 (Smoothness of the free boundary near regular points). Let u be any solution to

(2.15), and assume that 0 € 9{u > 0} is a reqular free boundary point. Then, the free boundary
O{u > 0} is C*° in a neighborhood of the origin.

For this, we need the following result.
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Theorem 2.45 (Higher order boundary Harnack). Let Q C R™ be any C* domain, with k > 1 and
a € (0,1). Let wy,ws be two solutions of

{—Awi =0 inBNQ,
wj =0 ondQN By,
with we > 0 in Q. Assume that

Cy' < lwill Lo (B, ) < Co.
Then,

<C,

I
Ck:a(QNBy2)

w2

where C' depends only on n, k, a, Cy, and Q.

Important comment: Contrary to the proof of is a perturbative argument,

in the spirit of (but much more delicate than) the Schauder estimates from Chapter 3. We will not
prove the higher order boundary Harnack here; we refer to [DSS15] for the proof of such a result.

Proof of [Theorem 2.74. Let u,,(z) = ry2u(rox). By [Theorem 2.39| and [Proposition 2.32) we know
that if ro > 0 is small enough then the free boundary d{u,, > 0} is C1® in By, and (possibly after a
rotation)

Oe, ury >0 in {uy, >0} N Bj.

Thus, using the higher order boundary Harnack (see|Theorem 2.45) with wy = 0e,ur, and wa = e, Ur,,
we find

<C.

‘ De; Ur,
CLe@NB, )

Oe,, Ur,

Actually, by a simple covering argument,

867; Uy

< Cs (2.37)
CL(QNB1—5)

Oe,, Ur
for any § > 0.

Now, as in the proof of [Theorem 2.39| we notice that if u,,(x) = ¢ then the normal vector to the level
set {u,, =t} is given by

_ e, Ur, _ Oe;trg / Dentirg
|Vum | \/1 —+ 2?21 (86]» Uy /8en Um)Q

vi(x) i=1,..,n.

By (2.37), this is a C™* function in Bj_s for any § > 0. Hence, taking ¢ — 0 we see that the normal
vector to the free boundary is Cb* inside B;. Hence, the free boundary is actually C>.

Repeating now the same argument, and using that the free boundary is C*% in B;_s for any § > 0,
we find

which yields that the normal vector is C*“ and thus the free boundary is C3.

Oestrg <cy
— )

CQ’O‘(QI"IBI_(;/)

Oe,, Urg
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Iterating this argument, we find that the free boundary O{u,, > 0} is C*° inside B, and hence
O{u > 0} is C*° in a neighborhood of the origin. O

Remark 2.46. Note that near any regular point, w is actually C*° up to the free boundary. This
follows from the boundary regularity of solutions to the Dirichlet problem in smooth domains (see for
instance [Eval(]).

Remark 2.47. There are other ways to prove the C* regularity of the free boundary near regular
points. Moreover, it turns out that the free boundary is actually analytic near regular points. This
can be proved for instance by applying a so-called partial hodograph-Legendre transformation. This
idea goes back to Kinderlehrer-Nirenberg (see [KN77]) and is nicely explained for instance in [PSU12],
Chapter 6.4.2].

This completes the study of regular free boundary points. It remains to understand what happens at
points where the contact set has density zero. This is the content of the next section.

2.11. Uniqueness of blow-ups at singular points. We finally study the behavior of the free
boundary at singular points.
Definition 2.48. Let u be any solution to (2.15)) satisfying for some z¢ € By, N 9{u > 0}

i [0 =0} 01 By (a0)
b 1B (o)

=0 (2.38)

(i.e., the contact set has zero density at zg). Then, z is called a singular free boundary point. We
denote by ¥ C 9{u > 0} the set of all singular points.

The following result is basically a combination of Caffarelli’s classification of blow-ups (see
rem 2.23|) and the results of the previous subsections.

Proposition 2.49. Let u be any solution to (2.15) and 0 € 0{u > 0}. Then, we have the following
dichotomy:

(a) Either (2.21)) holds (i.e. 0 is a reqular point) and the blow-up of u at 0 is unique and of the

form

wola) = (o e)2,

for some e € S*1,
(b) Or (2.38) holds (i.e. 0 is a singular point) and all blow-ups of u at 0 are of the form

1
up(x) = ixTAsc,

for some matriz A > 0 with trA = 1.

To show [Proposition 2.49| remains to prove that the blow-up near singular points cannot also be of
type (a).

Proof. By the classification of blow-ups (see [Theorem 2.23|), the possible blow-ups can only have one
of the two forms presented. If (2.21)) holds, then by |[Corollary 2.29| there is at least one blow-up of

the form ug(z) = 3(z - €)%. Then, ug is unique by [Lemma 2.36}
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Alternatively, let us assume that ([2.38)) holds. Let ug be a blow-up of u at 0, i.e., u,, — ug in CL_(R™)

along a sequence 7, — 0, where u,(z) = r~?u(rz). Notice that the functions u, solve Au, = Xy, >0}
in By in the weak sense, i.e.

Vu, - Vndx = —/ X{u,>0yndz  for all n € CZ°(By). (2.39)
B1 B
Moreover, by assumption ([2.38]), we have |[{u, = 0} N By| — 0. Thus taking limits r, — 0 in (2.39),

Vuo-Vndx——/ ndz for all n € C°(By),

B1 Bl

i.e. Aug =1 in Bj. By the classification of blow-ups, this implies that ug(z) = %mTAx, as desired. [
In the previous section we proved that the free boundary is C**° in a neighborhood of any regular
point. A natural question then is to understand better the solution w near singular points. The main

question is to determine the size of the singular set! The key to proving this is the uniqueness of
blow-ups [uniqueness will provide us with expansions].

Theorem 2.50 (Uniqueness of blow-ups at singular points). Let u be any solution to (2.15)). Let
0 € {u > 0} be a singular free boundary point. Then, there exists a homogeneous quadratic polynomial
p(z) = 32T Az, with A >0 and Ap = 1, such that

u, —p in CL.(R).
In particular, the blow-up of u at 0 is unique.

To prove this, we need the following result on Weiss” monotonicity formula, and we will also introduce
another monotonicity formula due to Monneau.

Recall Wy, (r) as in [Theorem 2.18| i.e.
1 1 1 )
Wy(r) = ) /BT (2|Vu| —i—u) o /BBTU .

Lemma 2.51. Let u be any solution to (2.15) with 0 € 0{u > 0}. Then, any blow-up ug of u at 0
satisfies for any r >0

@ fug = S(x-e)?,
Wao (1) = Wa (1) = {(12 if up = iacTAa;+
n =35 )

where
Wn

T it 2)

Proof. First, note that Wy, (r) = Wy, (1) due to (2.19), namely for any r > 0,
W, (T) = leir_?o Wur]- (T) = rljiLnO Wy (Trj) =Wy (0+)'

Then, we compute using that Aug = 1 in {ug > 0} and that by the 2-homogeneity of uy (see
[Proposition 2.22)), ,ug = 2ug (radial derivative),

1
Wuo(l)—/ <|w0\2+u> —/ 2
B1 2 631

1 1
= / <—AUO + 1) upde + = Oruguo dr — / ’LL(%
B, 2 2 JoB, 9By
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and for ug(z) = 2T Az,
Wiy (1) = / 2T Az dx = a, Tr(A) = ay,.
B

O

Theorem 2.52 (Monneau’s monotonicity formula). Let u be any solution to (2.15)), and assume that
0 € 0{u > 0} is a singular free boundary point. Let q be any homogeneous quadratic polynomial with
q>0,q(0)=0, and Aq = 1. Then, the quantity

1
Myq(r) = Jnt3 /8B (u—q)?

L My q(r) > 0.

is monotone in v, that is, 7-M,,

Proof. A direct computation yields

d A1 )
M) =5 (i [ o)

/BBI (u — if(?‘@/))

_ / 2(u — q)(ry)(ry - V(u— q)(ry) — 2(u — q)(ry))
0B, rd

_ rfM/BBr(u— O{z - V(u—q) —2(u—q)}.

On the other hand, recall that W, (r) is monotone increasing in r > 0, and that by
Wy (04) = Wy(r) = .
Hence,
0 < Wy(r) — Wo(0+)
Wau(r) = We(r)
1

1
= ~|V(u—q)*+ V(u—q) Vg+ u—q)—/ u—q)? +2(u —q)q
W/Br(zw P V=) Vo (u=0) )~ g [ (=0 + 20—
1
_T”JF/BTQ
/1
_’I"n+ B'r2
rn+2/BT

T

1 , 1
_ — Vg —2
T i /(9 BT(U Q)"+ s /a Br(u q)(z - Vg —2q)

(u—q)|

1 2
(u—q)| M/aB(U—Q)
(u—q)A

=)+ s [ (=0 V=0 = 2u =)
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Altogether, we have

o [ w-0au-o.

r

But since Au=Ag=11in {u > 0}, and (v — ¢)A(u —q) = ¢ > 0 in {u = 0}, we have

g

Proof of [Theorem 2.50. By |Proposition 2.49|and [Proposition 2.22] we know that at any singular point
we have a subsequence r; — 0 along which u,;, — p in C’lloc(JR”), where p is a 2-homogeneous quadratic
polynomial satisfying p(0) = 0,p > 0, and Ap = 1.

By Monneau’s monotonicity formula with such polynomial p, we find

1
M) = s [ (u=pP

is monotone increasing in > 0. In particular, the limit lim,_,o My, (1) := M, ,(0+) exists.

Now, recall that we have a sequence r; — 0 along which u,, — p. In particular, if 0 € ¥,

_ e . 1
r; 2u(rjz) — p(rjz)} — 0 loc. unif. in R" ie. r—QHu —pHLoo(BTj) — 0
J
as r; — 0. This yields

1
Muglr) < iz [ lu= bl =0
ri .
along the subsequence r; — 0, and therefore M, ,(0+) = 0.
Let us show that this implies the uniqueness of blow-ups.

Indeed, if there was another subsequence r, — 0 along which u,, — ¢ in ClloC (R™), for a 2-homogeneous

quadratic polynomial ¢, then we would repeat the argument above to find that M, ,(0+) = 0.
But then, by homogeneity of p and ¢,
1
/8 Lm0t /8 (0= ) < 2V 1) + 2Ma () 0.

This means that p = ¢, and thus the blow-up of u at 0 is unique. U
Summarizing, we have proved the following result:
Theorem 2.53. Let u be any solution to (2.15). Then, we have the following dichotomy:

(a) Either the blow-up of u at 0 is of the form

1
uo(z) = §($ )L for some e S

and the free boundary is C*° in a neighborhood of the origin.
(b) Or there is a homogeneous quadratic polynomial p, with p(0) = 0,p > 0, Ap =1, such that

uo(z) = p(x).
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In particular, when this happens we have
. Hu=0}N B
1 =0
rs0 |B,] ’
2.12. The size of the singular set. The last question that remains to be answered is: How large
can the set of singular points be?

To prove it, we establish expansions of u at singular points. This is similar to what we did for regular
points (recall [Proposition 2.30, where we proved that for any € > 0, there is 9 > 0 such that

1 .
|ury () — 5(1’ : 6)3_| <e¢ in By,

or equivalently

1 .
lu(z) — i(x ce)l| <erg in By,

We need the following lemma, which mainly follows from the uniqueness of blow-ups and uses again
Monneau’s formula.

Lemma 2.54. Let u be any solution to (2.15)). Let us denote by ¥ C 0{u > 0} the set of singular free
boundary points, and denote for xo € X the blow-up by pz, = %xTAxO:E. Then, for any € > 0 there is
r > 0 such that whenever |x — x| <, then

[u(x) — pay(z — 20)| < €|z — 20)?, |Vu(z) — Vpg,(x — z0)| < e|lz — 0. (2.40)

Here, r > 0 is independent of xo and only depends on ||ul|c1,1 and n.
Moreover, the map £ 3 xg — Ay, s continuous.

Remark 2.55. e The expansion in ([2.40) implies that u € C?(zg) (i.e. C? at the point zg)!
e Another way to think about (2.40) would be

[u(@) = pay (@ — o) = 0|z = wof*),  [Vu() = Vpay(z — 20)| = o(|z — z0l),

where the modulus o(]x — x¢|?) is independent of z¢! (This is crucial!)

Proof. We will not prove the statement in (2.40) in full detail. Here, we will only show (2.40) with
r > 0 depending on zg, because the proof is much simpler. Indeed, let g = 0 € ¥ and assume by
contradiction that there is a subsequence 7 — 0 along which

rk_zHu —pHLoo(BTk) >c > 0.

Then, there would be a subsequence of 7, along which Upy,, — Ug in Clloc(]R”), for a certain blow-up
ug satisfying |lug — pl/ree(p,) > c1 > 0. However, by uniqueness of blow-ups it must be ug = p, and
hence we reach a contradiction.

The proof of the second part of (2.40) is analogous.

Note: It requires a lot more work to prove that the expansions in (2.40|) are independent of zp. In
that case, we assume by contradiction that there is a ¢ > 0 and sequences r; — 0 and solutions u; to
(2.15) with [|uj|lc11 < 1, and 0 € X for all j such that for any 2-homogeneous quadratic polynomial
p with p > 0, p(0) = 0 and Ap = 1, we have

luj = pllLees, y > erf > 0. (2.41)

J
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Consider now the sequence

By assumption, (v;) is uniformly bounded in C LI and hence, by Arzela-Ascoli’s theorem, there exists
vy € CH(R™) such that v; — v locally in C'(R™) (up to extracting a further subsequence) and v
solves Avg = X{yy>0}-

Once we prove that vg = %xTAx for some matrix A > 0 with trA = 1, i.e. that 0 is a singular point
for vg, then we immediately obtain a contradiction to v; — vy from (2.41) by taking p = vo.
To show it, one can prove that
{v; >0} N B,|
| B |
uniformly in j by establishing Lipschitz estimates of the free boundary near regular points that only
depend on the C™! norm of the solution (see [PSUI2, Lemma 7.2]).

—0

Finally, let us prove continuity of xg — Ag,.

Let (x) C ¥ with x — 0 € 3. Then, let py and py be the blow-ups at xj and 0, respectively. First,
by the convergence u, — pg as r — 0, for any € > 0 there is r. > 0 such that

/ (ur, — po)* < e. (2.42)
0B
Next, by the convergence u, ;, — py and [I'heorem 2.52] it holds for any k£ € N,

/ (pk - p0)2 = lim (ur,xk - p0)2
9B =0 JoB,

li L
= 11m ——--
r—0 ’I"n+3

< r"1+3/a (w(zk, + 7o) — po(w))?

€

/‘meW@—mmw
OB,

= [ utont ) — (@)
0B,
Hence, taking the limit £k — oo, we deduce from (|2.42))

lim sup/ (P —p0)2 < limsup/ (r;2u(:1:k +rex) — po(x))2
9B B

k—o0 k—o0

[ . -mze
0B1

This yields the continuity of the map x¢ + ps, in L?(B1) at 0 (due to the 2-homogeneity of p,,, and
implies the desired result, using again that the p,, are homogeneous polynomials. In particular, the
map xo — Ay, is uniformly continuous on compacts. O

We are now in a position to state a major result on the size of the singular set (due to [Caf98§]):

Theorem 2.56. Let u be any solution to (2.15). Let ¥ C By be the set of singular points. Then,
¥ N By g 1s locally contained in a C' manifold of dimension n — 1.

Remark 2.57. e One can construct examples in which the singular set is (n — 1)-dimensional.
This means that the singular set can be of the same dimension as the regular set!
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e Singular points appear in all dimensions n > 2 (see [Sch75, [Sch77]).

We will prove a much finer result in this section.
Note that blow-ups might look very different, depending on the dimension of the set {p,, = 0}.

This motivates the following definition:

Definition 2.58. Given any singular point zg, let p,, be the blow-up of u at zp (a quadratic poly-
nomial). Let k € {0,...,n — 1} be the dimension of the set {p;, = 0} (a proper k-dimensional linear
subspace of R". We define

Y = {xo € ¥ : dim({py, = 0}) = k}.
Clearly, > = UZ;(I)Ek. This is called stratification of the singular set.

The following result gives a more precise description of the singular set.

Theorem 2.59. Let u be any solution to (2.15). Then, Xy, is locally contained in a C* manifold of
dimension k.

Rough heuristic idea: Assume for simplicity that n = 2, so that ¥ = 3; U .
o Let xg € Xg. Then, by uniqueness of blow-ups we have the expansion
u(@) = pag (& — z0) + 0(|z — 20
e By definition of ¥y, we have p;, > 0 in R™ \ {0}, and thus by homogeneity py,(z — z9) >
c|x — mo|?, with ¢ > 0.
e Hence, by the expansion, u must be positive in a neighborhood of (. In particular, all points
in Yo are isolated.
o If zyp € 3. Then, by definition of ¥; the blow-up must necessarily be of the form pg,(z) =
3(z - eg,)?, for some ey, € S*L.
e Hence, by the expansion, u is positive in a region of the form

{z € By(zo) : [(z = 0) - €xo| > w(|a = 20[)},

where w is a certain modulus of continuity, and p > 0 is small.
Hence, the set ¥; has a tangent plane at xg.

e Now, repeat this at other points o € ¥ and prove that if Zy is close to g then ez, must be
close to e,. This implies that ¥; is contained in a C! curve.

For the rigorous proof, we require Whitney’s extension theorem (see [Whi34] and [PSUI2, Lemma
7.10)):

Lemma 2.60 (Whitney’s extension theorem). Let E C R™ be compact, and f : E — R". Assume
that for any xo € E, there is a polynomial p,, of degree m such that

® Guy(x0) = f(x0),
e |D¥q (71) — DFqyy (21)| = o(|zo — 21|™%) for any zo, 21 € E and k € {0,...,m},
where o(r) — 0 as v — 0 (uniformly in xg,x1 € E). Then, f extends to a C™ function on R™ with
f(@) = qzo(x) + 0(|Jz — zo|™) Vo € E.

Proof of [Theorem 2.59. We set E = ¥ N By. E is compact since X is closed. We claim that the

polynomials (¢z,)z.ex defined as gz, () = px,(xr — x0) satisfy the assumptions of [Lemma 2.60| with
f=0and m = 2.
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Let us first explain how [Lemma 2.60 implies the desired result. By [Lemma 2.60, there is f € C?(B;)
such that f =0 in ¥ N By, and
f(x) = quo(z) 4+ o(|z — 20]?) Vo € £ N By.
This means

f(xo) =V f(zo) =0,  D*f(x0) = Ay,

Moreover, for xg € X, we can arrange the coordinate vectors so that ey, ..., e,_j are the eigenvalues
Of Aﬂ?o, le
2
det D(xl,,..,xnfk)f(aco) £ 0.

Since f € C%(By), by the implicit function theorem,
n—k
({0 =0}
i=1

is a k-dimensional C'' manifold in a neighborhood of x(. Indeed, we can apply the implicit function
theorem to ® : R — R" % with ®(z) = (O f(x),...,0n_rf(x)) which satisfies ®(xg) = 0, D®(z) is
invertible and ® € C' by construction, to see that {® = 0} can be written as a graph expressing the
first n — k variables in terms of the remaining &k variables locally near zg, i.e. it is a k-dimensional C!
manifold.

Since
SN By C{Vf=0}=[){0:f =0},
i=1
this yields the desired result.

Hence, it remains to verify the assumptions of Whitney’s extension theorem (see|Lemma 2.60]). Clearly,
Gz (0) = P2 (0) = 0 = f(xg) for any zg € X. Hence, it remains to show for any zg,z1 € ¥ N By

|D*qpy (1) — DPquy (1) = o(|xo — 21/*7%), VE € {0,1,2}.
By [Lemma 2.54] and using that ¢, (x1) = Dy, (z1) = 0 we get for k= 0,1
|20 (21) = @z, (21)] = G (21) = (@) + o(|21 = 20[*) = 0|1 — 2o?),
[Dgug (1) = Dy (21)] = [ Do (21)] = |Du(z1)| + o(|z1 = wo]) = of|z1 — 2ol).

Moreover, since D?p,, = D?q,, = Ay,, the condition for k = 2 is equivalent to continuity of the map
xo — Ag,, which also follows from [Lemma 2.54] The proof is complete. O

2.13. Further results on singular points. So far, we have proved that the singular set ¥ = UZ;(l) Xk
can be stratified and that the ¥ are contained in a k-dimensional C'' manifold.

Question: Is this the best we can do?
The dimension (n — 1) of the singular set is optimal.

Natural further questions are the following:
(1) Can we improve the order of the expansion to
u(@) = pa(a) + of|z[**)?

(2) Is the singular set (or some stratum Y) contained in a C'® manifold? (This would follow
from (1) by Whitney’s extension theorem)
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(3) How often do singular points occur (generic regularity)?

2.13.1. More recent results on the size of the set of singular points.

e Weiss (1999) [Wei99]: In n = 2, one has expansion of order 1 + o, i.e. ¥ lies in a C1® curve
e Colombo, Spolaor, Velichkov (2018) [CSV18]: If n > 3, one has

lu = pll e,y < Cr?|logr|~*,

i.e. ¥, lies in a C11°8° m-dimensional manifold

e Figalli, Serra (2019) [FS19]: If n = 2, one has expansions of order a = 1, i.e. ¥ lies in a C?
curve

e Figalli, Serra (2019) [ES19]: If n > 3, one can write X,_1 =7  UX? | where XY | isina
C1H! n—1-dimensional manifold and 3¢, satisfies dimpg (2% ;) < n—3, and X,,_; lies in a C1®
n — l-dimensional manifold. Here, g and a stand for ”good“ and ”anomalous“, respectively.

e Figalli, Serra (2019) [FSI9): If n > 3, one can write £ = X UX{ for any k =1,...,n — 2
(note that g consists of isolated points, i.e. analytic), where Ez is in a CM! k-dimensional
manifold and %¢ satisfies dimpy(X¢) < k — 1, and %, lies in a C1°8° k-dimensional manifold.

e Franceschini, Zaton (2025) [EZ25b]: There is a closed set ¥oo C X such that dimpy (X \ o) <
n — 2 and X is contained in a C*° n — 1-dimensional manifold.

2.13.2. Generic reqularity. It is very natural to understand whether singularities appear often, or if
instead most solutions have no singularities. In the context of the obstacle problem, the key question
is to understand the generic regularity of free boundaries.

Conjecture (Schaeffer, 1974). Generically, the weak solution of the obstacle problem is also a strong
solution, in the sense that the free boundary is a C'*° manifold.

In other words, the conjecture states that, generically, the free boundary has no singular points.

e Monneau (2003) [Mon03]: The conjecture holds in R?
e Figalli, Serra, Ros-Oton (2020) [FROS20]: The conjecture holds in R?® and R* and in R*, for
k> 5, generically dimpy(X) <n —4

It remains an open problem to decide whether or not Schaeffer’s conjecture holds in dimensions n > 5
or not.

3. THE ALT-CAFFARELLI PROBLEM

We have seen that the obstacle problem can be written as an unconstrained minimization problem as
follows:

1
minimize / ~|Vul? + uT du,
Q2

This minimization problem contains a non-smooth term u™ in the functional. The Euler-Lagrange
equation for this functional is then

Au= fx{us0y in

One can consider more general minimization problems with non-smooth terms of the following form

1
minimize / §]Vu|2 + (ut)" du,
Q
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for some v € (—2,00). They are also known as the Alt-Phillips problems (see [AP86]). The behavior
of minimizers differs widely, depending on the value of ~.

For v = 1, we recover the obstacle problem.

As v — —2, the functional converges to the perimeter functional and minimzers converge to
minimal surfaces (see [DSS23]).

For v > 2, minimizers do not exhibit free boundaries.

Indeed, in that case the Euler-Lagrange equation is of the form Au = ~u?~! in all of Q. By a
semilinear version of the strong maximum principle (see [V84]), if Au = F'(u) in By, where F

is such that fol F(S)_% ds = 400, then if u > 0 and «(0) = 0, it must be u = 0.

In this chapter, we will deal with the special case v = 0, which is known as the Alt-Caffarelli problem
(also known as “one-phase problem”). Its rigorous mathematical study goes back to [AC81]. There
are many different ways to motivate the study of this problem. For instance, there are close relations
to certain questions in

fluid equations

capillarity problems

shape optimization problems
optimal eigenvalue

optimal partition problems
harmonic measure

A very natural way to motivate the one-phase problem goes as follows:

Consider a smooth domain 2 C R™ and a solution u to

—Au =1 in €,
U =0 on 09,
IVu| =1 on dQ.

This problem is known as ”Serrin’s problem “. It is well-known that there only exists a solution
to this problem if  is a ball (see [Ser71]). (Very recently, it was shown that this result holds
true in Lipschitz (and even more general domains) [FZ25a].) The reason for this phenomenon
is that the problem is overdetermined. As we have seen, there already exists a unique solution
to the Dirichlet problem —Au =1 in Q with ¥ = 0 on 92. In general, this solution does not
satisfy |Vu| = —d,u = 1.

A more general question in this setting is the following: Consider a domain 2 C R™ and a
solution u to

—Au =0 in QN By,

u =0 ondQN By,

Vu| =@ ondQN By,

where @) = 1 (or more generally, 0 < Q € C*), what can we say about 9Q N By 5?7 Note that
also this problem is overdetermined, but now we are asking about local properties of 9f!

e A natural question to ask would be

Qecke =0 eckthe?
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This question is equivalent to asking whether the harmonic measure being C*® implies that
00 € C*t1e [Note that the reverse question, namely whether 9Q € C*+1* implies that the

harmonic measure is C* is a standard consequence of Schauder theory (see [Eval0])].

e It is already a non-trivial question to prove the existence of solutions to the previous problem.
It turns out (we will prove it later), that solutions arise from minimizing the following energy

functional:

U |Vu|* + Qz(x)]l{u>0} dz.
By

For @ = 1, this problem becomes exactly the Alt-Caffarelli problem and Q = {u > 0}!

3.1. Basic properties of minimizers.

Proposition 3.1. Let A > 0, Q C R™ be a bounded open set and g € H' () be such that g > 0 in

and define
C:={we H' Q) :w—ge H(}.

Then, there exists a minimizer of

F(u) = Fa(u) = Fa(u,) = / |Vul> + Al{u > 0}NQ| among all v € C.
Q

Moreover, any minimizer u satisfies u > 0 in ).

Proof. For any v € H'() it holds
V(max{u,0}) = Lgy~03 Vu.
Hence,
Fa(u,Q) = Fa(max{u,0},) + / |Vu|?> > Fp(max{u,0},Q),
{u<0}NQ
which implies that any minimizer must be nonnegative in €.
Let ux, € H*(Q) be a minimizing sequence such that u; — g € H(Q2) and
Falug, Q) < Falg,2) for every k > 1.

By (3.2), we may assume that, for every k € N, ugx > 0 on €.
2n

For simplicity, we assume that n > 2 (the case n = 2 is analogous) and we set 2* = =&,

n

Then, we have by the Sobolev embedding

luk = gll72- () < C | |V (ur — g)fPda
() 0

<20 </ yvuk\2d:c+/ \vg|2dx)
Q Q

< 2C(Fp(ug, Q) + Falg, Q)
< 4CF(9,9).
Now, we estimate, [using that if ug # g, then ux > 0 or g > 0 for the second estimate]
2
k= 91220y < Hur — g # 0} 19 g — gl12ae
2
< (Hur > 03N Q[+ {g > 0} N Q)» 4CFp(9,92)

(3.1)

(3.2)
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24n

< 8CA™YMFp(g, ),
which implies that the sequence uy, is uniformly bounded in H'(€2).

Then, up to a subsequence, u;, converges weakly in H'(Q) and strongly in L?(Q) to a function u €
HY(Q).

Now, the semi-continuity of the H! norm (with respect to the weak H' convergence) gives

/\Vu]degliminf/ |Vug|?de.
QO k—oo  Jo

On the other hand, passing again to a subsequence, we get that uy — u pointwise a.e. This implies
Liusop < liminf 1y, oy,
and so,
H{u >0} N Q| <liminf |[{ux >0} NQY,

k—o0

which finally gives that
Fa(u, Q) < liminf Fp (ug, ),

k—o0
and so, u is a solution to ((3.1]). O
Remark 3.2. Note that the functional F, is not convex, i.e. for u;(z) = (1 —t)u;(x)+tua(x) it holds

Liy,>0p £ (1= 1)1y, 50y + tl{uy>0}-
Therefore, minimizers are in general not unique! For instance, consider = (—2,2), A = 1 and
minimize F (u, Q) among functions u € H'(Q2) with u(—2) = u(2) = 1. Define
uy(x) =1, uz(x) = max(0,1 — |z + 2|) + max(0,1 — |z — 2]).
Then, it holds

Falu1, Q) :/

2

, Liyiso0y = 4, Fa(ug, ) = /2

-1

2
1+1—|—/ 1+1=4.
1

One can show (by using the Euler Lagrange equation (see [Proposition 3.4))) that there is no u €
H'((—2,2)) with u(—2) = u(2) = 1 with Fa(u; Q) < 4. Hence, uy,uz are both minimizers.

We introduce the concept of local minimizers. This allows us to consider the problem without explicitly
prescribing boundary data.

Definition 3.3 (Local minimizers). Let  C R™. We say that u : © — R is a local minimizer of Fa
in Q, if ue HL (Q), u> 0, and for any bounded open set B € €2, we have

Fa(u, B) < Fa(v,B) for every v € HI{)C(Q) such that u —v € H&(B).

If © is bounded and smooth, we can equivalently take B = () in the above definition.

The goal of this subsection is to prove the following basic properties of (local) minimizers
Proposition 3.4. Let Q C R" and v € H* () be a local minimizer of Fa in Q. Then,

(i) w>0 a.e. in Q.

(ii) w is weakly subharmonic, i.e. —Au <0, in Q.
G

)
( 11% If u is continuous, then u € LS ().

(iv) If u is continuous, then —Au =0 in QN {u > 0}.
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Remark 3.5. e We will prove that any minimizer is continuous in the next subsection.
e [Proposition 3.4{(ii) yields that the distributional Laplacian
Au(p) = —/ Vu-Vo¢ Vo e CHR) (3.3)
Q

is representable as a positive Borel measure, namely given an open set A C 2, one defines
Au(A) == / Audz == sup {Au(¢) : ¢ € CL(Q), 0< ¢ <1, supp(p) C A}.
A

In fact, since is defined for any ¢ € CL(2), by density of C(2) C C.(Q) with respect to
the supremum norm, we can first extend Au : C(2) — [0, 00) and then apply Riesz’ represen-
tation theorem. Note that the idea behind the definition of Au(A) is to approximate 14 by
functions ¢ € C1(Q). Unlike for the obstacle problem, we will see that the Laplacian measure

is not absolutely continuous with respect to Lebesgue measure, and instead is concentrated on
the free boundary d{u > 0}.

First, we see that local minimizers are subharmonic, and in particular they are locally bounded in 2.

Lemma 3.6. Let Q C R” and u € HY(Q) be a local minimizer of Fa in Q. Then u is weakly

subharmonic, i.e. —Au <0, in Q. In particular, if u is continuous, then u € L}S ().

Note that we assume ontinuity of u in order to deduce u € L;° (§2) from [Lemma 1.15] One can prove

loc
that any weak subharmonic function is locally bounded, without assuming it to be continuous.

Proof. Let B C Q and ¢ € Hi(B) be a given non-negative function. Suppose that ¢t > 0 and v = u—t¢.
Then we have that v4 < u = uy, and therefore

{v>0}NB={vy>0}NBC{uy >0} NB={u>0}NB.
In particular, since v is a minimizer and v is a competitor, we have

/\WP-/ Vo> < ~A([{u> 0} N B| — [{v >0} N B) <0
B B

This implies that
/ |Vu|?dr < / IV (u — tp)|2da
B B

:/ yvude—m/ Vu-V(bdac—i—tz/ \Vo|*dz,
B B B
This yields

t
/ Vu-Vodr < / \Vo|%de,
B 2 /B
and the first claim follows by taking the limit ¢ — 0.

Since u > 0 and —Awu < 0, we can apply the local boundedness estimate from to deduce
that u € L{° (). a

loc

Remark 3.7 (Pointwise definition of minimizers). By |Lemma 1.13] we know that for every zo € €2,

we have

T u dx is non-decreasing.
By (z0)
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As a consequence, we can define the following pointwise representative @ of u

w(xp) ;= lim u(x)dx for every xy € .
r—0t B (w0)

Note that & = v a.e. in Q and @ > 0 in .
From now on, we will identify any solution u of (3.1) with its representative @ (and for simplicity, we
will always write u instead of a).

Lemma 3.8. Let 2 C R" and u € H*(Q) be a local minimizer of Fp in Q. Then u is weakly harmonic
in the interior of {u > 0}.

Proof. Let t € R and ¢ € H{(B) for some open set B C {u > 0} N €. Such a set exists since we
assume the interior of {u > 0} to be non-empty (otherwise, there is nothing to prove).

Then, it holds
{u+tp>0}NBC{u>0}NB

and hence, since u is a local minimizer,
0= [ [vup - [ W) =2 [ v+ [ Vu-vo.
B B B B
Dividing by [t|, we deduce

Sgn(t)/BVu-VQSSS/BVU‘qu.

Hence, by taking the limits ¢ \, 0 and ¢ 0, we obtain the desired result. O

Proof of [Proposition 3.4} Property (i) follows as in [Proposition 3.1l Properties (ii) and (iii) follow

from [Lemma 3.6/ and (iv) follows from [Lemma 3.8 O

3.2. Optimal regularity of solutions. The goal of this section is to prove the following theorem
Theorem 3.9. Let Q C R" and u € H(Q) be a local minimizer of Fp in Q. Then, {u > 0} is open,
and u € C&E(Q) and for any By(xg) with Bay(xg) C €,

lulleoa (s, o) < € (VA+17"lullz1 (5 0o )

where C' only depends on n.

Since [Theorem 3.9| yields openness of {u > 0}, we obtain in particular that u is weakly harmonic in

{u > 0} from [Lemma 3.8}

There are several ways to prove this result. We refer to [Vel23] for a discussion of three different
proofs. Here, we will follow an approach that is due to Alt-Caffarelli-Friedman and also works for free
boundary problems with two phases (this means that solution are also allowed to be negative).

Lemma 3.10 (The Laplacian estimate). Let u be a local minimizer of Fa in Q. Then, for every ball
B, (z9) such that Bay(z9) C Q we have

Au(B,(x0)) < CVAr"L.
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Proof. Without loss of generality we can assume that zop = 0. Moreover, by scaling [replace u by

\/Kflu], we can assume A = 1. We now notice that by the distributional Laplacian (see
(3-3))

Au(ep) := — /Q Vu-Vedr for every ¢ € CHQ),

is a positive Radon measure. We first prove that
Au(p) < Cr"/2||Vd>HL2(BT) for every ¢ € C}(B,) and every B, C Q. (3.4)
Indeed, for every 1 € C1(B,), the optimality of u gives

/ ]Vu\%lmﬁ/ Vul2dz + |{u> 0} N B, g/ IV (u + ) [2da + | B..
B, B;

This implies
1
— | Vu-Vide < / \V|*dx + Cr™.
B, 2 Jp,
Setting

Tn/2

V= ||V¢||L2(BT)¢

we get

— | Vu Védr < 2|Vl 2.,
B,

which proves (3.4)), as desired.

Let now ¢ € C}(Ba,) be such that ¢ > 0 in By, ¢ = 1 on By, and ||V (p,,) < 2/r. Thus, by the
positivity of Au we have

Au(By) < Au(9) < Cr||Vo| 2(p,,) < O,
The first inequality follows because for any ¢, € C}(Q2) with 0 < ¢, < 1 and supp(¢,) C By, it holds
¢ — ¢r > 0, since ¢ > 1, by construction. O
The following lemma yields a useful consequence of the Laplacian estimate.

Lemma 3.11. Suppose that u € H'(Bg) is a nonnegative subharmonic function in the ball B C R™
such that uw(0) = 0. Suppose that there is a constant Cy > 0 such that

Au(B,) < Cor™™ ! for every 0 < r < R. (3.5)

Then we have

C
][ udx < 0y for every 0 <r < R.
OB, nwny,

Proof. We first notice that for every smooth u., we have

d 1
— ][ usdx | = ][ Oue de = —— Aug(z) dz.
dr \ Jag, oB, OV nwpr™t g

Integrating in r and passing to the limit as ¢ — 0 and using that fB'r Au; — Au(B,), and (3.5 we get

][ udz < u(0) —|—/ Mds < &r.
OB,

0 Mwpst1 nwy,
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g

Applied to a minimizer of the one-phase problem, the estimate (3.6)) yields an upper estimate on the
growth of solutions near a free boundary point (compare for the obstacle problem). It is

the main ingredient in the proof of the optimal Lipschitz regularity:

Proof of [Theorem 3.9. The proof is divided into several steps.
Step 1: Suppose that zg € 2N {u > 0} such that Bagr(zo) C Q2 for some R > 0. We claim that

][ uwdz < CVAr Y0 <r <R. (3.6)
aBr(xo)

Step la: To prove it, we first observe that
Hu>01NQ={zeQ:0<|{u>0}NBy(z)] <|Br| Vr<dist(zo,00)}

Since 0{u >0} NQ = {u>0}NQ\ {u>0}NLQ, the inclusion D is trivially satisfied. To prove the
inclusion C we observe two things.

First, if |B,(x) N {u = 0}| = 0, then u is harmonic in B,(z) and therefore, B,(x) N {u = 0} = 0.
Indeed, we have seen in the proof of that by the minimality of u, it holds

/ |Vul|? < / |Vo|? Vo € Hy(B.(z)) st.v=0 ae. in {u=0}NDB.(x).
By () B (x)

Therefore, by choosing v to be the unique weak solution to —Av = 0 in B, (z) with v = uw on B, (z), we
get a contradiction with the previous display [note that v is admissible since by |B,(z) N{u = 0}| =0,
it holds v = 0 a.e. when w = 0 in B, ()], since v has less energy than u, unless u = v.

This means that u is harmonic in B,(z), and therefore, by the strict maximum principle, it must be
u>0in By(x).

Second, if |B,(z) N {u > 0}| = 0, then by [Remark 3.7, it must be u = 0 in B,(z), which means that
By (z)Nn{u>0} =0.
This proves the remaining inclusion C and yields the claim.

Step 1b: Note that if we knew that u(zg) = 0, then the claim (3.6) would immediately follow from
ILemma 3.10| and [Lemma 3.11] [At this point, we don’t know that u(zg) = 0 since we don’t know
continuity of u, yet.]

In particular, by the claim in Step 1b, we can find a sequence (x,) with u(x,) = 0 such that x,, — zo.
Since (3.6 holds true at x,, (as a consequence of [Lemma 3.10| and [Lemma 3.11)), we can deduce (3.6
at xo by using the continuity of the function

T+ U,
8B, (z)

for any fixed r > 0, which follows from the fact that u € H} (). This proves (3.6).

Step 2: Passing the estimate (3.6) on both sides to the limit as » — 0, in particular, we obtain that
u(xo) = 0, recalling that we identify u with its pointwise representative (see |Remark 3.7)).
Thus {u > 0} N d{u > 0} = 0 and so {u > 0} is open.

Step 3: Let zp € Q be such that Bag(xg) C Q. To prove the Lipschitz estimate, we distinguish
between two cases.
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e Case 1: If dist(z9,0{u > 0}) > R/4, then w is harmonic in the ball Bg,4(zo) and so, by gradient
estimates (see for instance |Corollary 1.5) and using also [Lemma 1.15| (or rather |Remark 3.7)),
we have

C C /
Vulzg)| < —||ul|700 o) < —— udx.
| ( 0)’ Rn H HL (Br(z0)) Rnt1 Br(zo)

o Case 2: If dist(xo,0{u > 0}) < R/4, then we suppose that the distance to the free boundary
is realized by some yo € 9{u > 0} and we set

r = dist(zg, 0{u > 0}) = |20 — yol-

Since u is harmonic in B, (z¢), we can again apply the gradient estimate and ({3.6|), obtaining

C
|Vu(zo)| < n/ udz
™ By (wo)

C
< T udx
r Bar(yo)

2r 2r
¢ / udr | ds < CvVA s"ds < CV/A.
0 0Bs(yo)

= 1 1
rt rtl Jg

where we used that v > 0 and the inclusion B,.(z¢) C Ba,(yo)-
By combining the results from both cases we deduce the desired result. O
3.3. Nondegeneracy. In this section we prove the non-degeneracy of the solutions to the one-phase
problem (2.1). Our main result is the following:

Proposition 3.12 (Non-degeneracy of the solutions). Let Q C R™ andu € H'(Q) be a local minimizer
of Fa in Q. Let xg € {u >0} N Q. Then for every ball By, (xg) C 2, we have

[ull Lo (B, (o)) = AV 2er,

where ¢ > 0 depends only on n.

The result will follow from the following lemma. In its proof, we will use the property (3.6)). Note that
there are also direct proofs of nondegeneracy which do not use the Lipschitz continuity of minimizers.

Lemma 3.13. Let Q C R" and u € H' () be a local minimizer of Fp in Q. Then, there is a constant
ko > 0, depending only on n and A, such that:

If xg € Q and r € (0,dist(xg, 0N)) are s.t. ][ udr < Kor, then u =0 in B, 5(zo).
OBr(x0)

We first explain how implies |Proposition 3.12|

Proof of [Proposition 3.13, By scaling [replace u by \/K_lu], it suffices to assume A = 1. Then, by the
previous lemma, there is k > 0 such that for any zp € Q and r > 0 with Ba,(z¢) C € it holds

either =0 in B,/s(zo) or ][ udz > kr.
0B (o)

In particular, if x9 € {u > 0}, then u # 0 in B, 3(zo) for any r > 0 such that By, (zo) C 2.
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Hence, for any such r > 0,

T T
max u > ][ udr = cr_"/ / udzdp > CHT_n/ p"tdp > ckr,
Br(x0) Br(z0) 0 JOB,(x0) 0

as desired. O

We end this subsection by giving the proof of

Proof of[Lemma 3.13 The proof is a consequence of the following three claims:
(i) Suppose that

][ udxr < Kor.
OBr(z0)

Then, u < k1r on BT/Q(xO) where k1 = 2"kg.
(ii) Suppose that u < k17 in B, 3(z0). Then,
{u > 0} N B, j5(w0)| < k2| Byl
where Ky = % and we denote L := [|u|co.1(B, (z0))-
(iii) Suppose that
{u >0} N B, ja(x0)] < k2|By|  and  Jullpoo(p, ,(z0)) < K17

Then, for every yo € B, s(z0), there is p € [r/4,7/8] such that

][ uwdr < Kk3p
6313(1/0)

where k3 = 8"k ko.

We first prove Claim 1. Let h be the harmonic replacement of u in the ball B,(z), i.e. the unique
weak solution to

—Ah =0 1in By(xg),

h =u on 0B;(xp).
By the maximum principle, we have that u < h on B,(z¢) (since u is subharmonic by [Lemma 3.6)).
On the other hand, the Poisson formula (see (1.4)) implies that for any y € B, j5(o)

r? — Y 2 u(C
== [ M

nwnT Br(x0) ’y - C|n
2

r T n n
(7> / u(¢)d¢ <2 ][ wdr < kor < 2"kor,
nwnpT \2 8B (o) 9By (x0)

IN

which gives Claim 1.
In order to prove Claim 2, we consider a function ¢ € C°(B,(x)) such that
0<¢<1 inBy(xo), ¢=1 inBplx), [Vo|<3r "

Consider the competitor v = (u — k17¢)+ for u in B, (zo). Note that since v = 0 in B, 5(zo) and
v < u, we have

[{v >0} N B, a(x0)| = {v >0} N Br(w0) \ Brya(wo)| < [{u >0} N Br(w0) \ Byy2(wo)l,
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and therefore, by the optimality of u in B,(x), and using again that Vv, = L1y>0) Vo, we obtain
A{u >0} N B, js(zo)| < A{u > 0} N Br(zo)| — Al{v > 0} N By (z0)|

g/ |Vv\2dx—/ |Vu|*dx
By (o) By (zo)

< / |V (u — r17¢)|*de — / |Vu|*dzx
By (o) By (zo)

< 2/@17“/ |Vul||Vo|dx + m%r2/ \Vé|*dx < (6k1L + 9x3)|B,|,
r{Zo

By (xg
which concludes the proof of Claim 2.

Let us now prove Claim 3. We first estimate
| uds < e, ey > 030 Byyatan)| < manal Bl
Br/2($0)

Now, taking yo € B, g(w0), we have (B,/4(y0) \ By/s(v0)) C By/2(%0), so there is p such that /8 <
p <r/4 and

r/4
/ udr < 8/ / udrds < 8/ udr < 8kika|B,| < 8" ko1 kown p",
0B, (yo) " Jr/8 JoBs(yo) " JB, 2 (x0)

which concludes the proof of Claim 3.

We are now in a position to conclude the proof of the lemma. We first notice that

9Tn+8 L+ ko 2

R3 = 8n+1f£1,‘£2 S 0-

Choosing

— inf A
Ko = In 1,<L+1>27nJr8 :

we get that k3 < kg. In particular, if

][ udx < Kor,
0By (z0)

then by Claims (i)-(iii), for any yo € B, /s(zo) there is a sequence (p;), such that r/8 < p; < r/4 and

% < pjs1 < % and udr < kop; for every j > 1.
9By, (yo)

In particular, this implies that v =0 in B, g (z0), which proves the claim. (|

3.4. Measure and dimension of the free boundary. The Lipschitz continuity and nondegeneracy
of minimizers to the one-phase problem allow us to prove several basic properties of the free boundary.
In this section we will establish the following three facts:

e For any 29 € 0{u > 0}, Both {u > 0} and {u = 0} have a positive density around x.
e The positivity set {u > 0} has finite perimeter
e The (n — 1) dimensional Hausdorff measure of 9{u > 0} is (locally) finite.
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[Note that finiteness of the perimeter merely yields finite H"~! measure of the reduced boundary.]

[Density estimates and finite perimeter will be used to show that the singular part of the free bound-
ary has zero H" ! Hausdorff measure. Apart from that, the results of this subsection are rather
independent of the rest of the lecture.]

3.4.1. Density estimates. We start by proving the density estimates.

Lemma 3.14 (Density estimate). Let Q@ C R™ and u € H'(Q) be a local minimizer of F in . Let
zo € H{u > 0} NQ and Bay(zg) C Q.

Then, there is a constant dg € (0,1), depending onn, A, and the Lipschitz constant L := ||ul|co1 (B, (xy));
such that
0l By| < [{u > 0} 0 By(z0)] < (1— 60)1B, . (3.7)

Note that this result is not true for the obstacle problem, where singular points are precisely the ones
that violate (the upper bound in) (3.7).

We start by the following auxiliary lemma. Note that it is the key tool in the proof of the upper
bound in (3.7):

Lemma 3.15. Let Q@ C R" and u € HY(Q) be a local minimizer of Fa in Q. Let z9g € Q and
By (x0) C Q. Let h be the harmonic replacement of u in By (xg), i.e. the unique solution to

—Ah =0 in By(x),
h =u on dB;(xp).

Then, it holds

/ |V(u—h)*dz < Al{u = 0} N B.(x0)].
By (z0)

Proof. Without loss of generality we can suppose that xg = 0. Since w is a minimizer, we get
/ |V(u—h)]2d$:/ |Vu|2d:b—/ |Vh|?dz < Al{u =0} N B,|.
r r By

Using the algebraic identity u? — h? = 2h(u — h) + (u — h)?, and the function (u — h) € H}(B,) as a
test function for the equation satisfied by h, we deduce

/ \vu|2da:—/ |Vh|? dz = 2 VhV(u—h)da:+/ \V(u—h)|2da::/ IV (u — h)|* dz.
B, By B

T T

Moreover, since u is a minimizer, we get by using h as a competitor in B,
/ |Vu|*dx —/ |Vh|?de < —A[{u > 0} N B,| + A|{h >0} N B,|
B, B,
< A(’Br’ - ’{u > O} N Br‘) - A’{u = 0} N Br|’
Altogether, we deduce the desired result. (|

Proof of[Lemma_3.14, Without loss of generality we can suppose that zo = 0.

We first prove the estimate by below in (3.7). Since 0 € 9{u > 0}, the non-degeneracy (see
tion 3.12)) implies that

ull oo (B, ) = KoT/2.



64 MARVIN WEIDNER

Thus, there is a point y € B, /5 such that u(y) > kor/2.

Now, the Lipschitz continuity of u implies that v > 0 in the ball B,(y), where p = £ min{1, xo/L},
and so, we get the first estimate in (3.7]).

For the upper bound on the density, we consider the harmonic replacement n of u in the ball B, and
apply the previous lemma to deduce

/ V(= h)Pde < Al{u = 0} N Byl.

T

By the Poincaré inequality in the ball B, we have

C C (1 2
h—u)de > = [ |h—ulPdz > — / h—u)dz | .
[ vt wpar= 5 [ —upan = (5[ b= )

The non-degeneracy of u (see [Proposition 3.12|, or rather [Lemma 3.13)) now implies

h(0) = ][ hdx = ][ udzr > Kor.
oB;, 0By
By the Harnack inequality (see [Theorem 1.16)) applied to h, there is a constant ¢ > 0 such that
h > ckor in B, o.

On the other hand, the Lipschitz continuity of v and the fact that «(0) = 0 give that

u < Ler in Bg,.

Choosing € > 0 small enough such that ckg > 2¢L, we get, using also that h —u > 0 by the maximum
principle,

1
/ (h —u)dz > / (h —u)dx > §CI£QT|BET|.

Altogether, this yields

C (1 ?
A{u=0}NB,| > — </ (h — u)d$> > Ce?pdrm,
T

r

as desired. O

3.4.2. The positivity set has finite perimeter. Next, we prove that the (generalized) perimeter of {u >
0} is locally finite in Q. In particular, this means that {u > 0} has locally finite perimeter

The following is the main result in this context:

Proposition 3.16 (Minimizers have locally finite perimeter). Let Q C R™ and u € H* () be a local
minimizer of Fp in Q. Then {u > 0} has locally finite perimeter in §Q.

Let us quickly recall a few basic facts (for a more detailed overview, we refer to [Magl2]).

e The perimeter of a Borel set E in €) is the total variation of its characteristic function, i.e.

Per(E; Q) = sup {/ 1gdivede : ¢ € CHQ,RY), 9l oo () < 1} .
Q
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e If F has finite perimeter in {2, we can define a vector valued Radon measure D1g as the
distributional gradient of 1 as follows

/]lEdivqbdx:/divgbdx ::—/<¢,D1E>dx Vo € CH(Q,R™).
Q E Q

Moreover, we can denote by |D1g| its total variation measure.
e If F has finite perimeter, we denote its reduced boundary 0*E by the set of all points = € 2
such that
D1g(B,(x
vp(z) := lim DLp(B(x))
=0 [D1p(B,(z))|
exists and |vg(x)| = 1. One can show that 0*FE C supp D1 C OF.
Intuitively, the reduced boundary is the set of all boundary points at which a measure-theoretic
normal vector exists.
Moreover, one can show that reduced boundary points have density %, i.e. if x € 0*FE, then
|[ENBy(x)] 1

Jim =2
r50 |By] 2

e Given a Borel set £ C R™ and s > 0, we define the s-dimensional Hausdorff measure of E as

W (E) = lim H3(E),

eR”

where
H3(E) :=inf ¢ > diam(U;)* : E C | J Ui, diam(U;) <6
j=1 j=1

e De Giorgi’s theorem: H"~1(0*E N Q) = Per(E; Q).
e If a function u is in BV (in particular true if it is in H'), then the superlevel sets {u > t} have
finite perimeter for a.e. t. Moreover, we have the co-area formula

/ |Vu|dz = / H (0 {u >t} N Q) dt.
Q -0
We say that E has Hausdorff dimension s if
s = dimy(F) := inf{d > 0 : HY(E) = 0} :=sup{d > 0 : HY(E) = o0}.
In particular, if Per(E;Q) < oo, then dimy(0*ENQ) <n — 1.

First, we give a sufficient condition for the local finiteness of the perimeter of a super-level set of a
Sobolev function (see [Lemma 3.17)). In the second step we will show that subsolutions satisfy this

condition (see [Lemma 3.18§]).

Lemma 3.17. Suppose that  C R™ is an open set and that ¢ : Q — [0, +00] is a function in H()
for which there exist eg > 0 and C' > 0 such that

/ Vo2 dz +A{0< ¢ <e}NQ < Ce, for every 0 < e < . (3.8)
{0<p<eINQ

Then, it holds
Per({¢ > 0}; Q) < ovVA

[If A is large, then the set {¢ > 0} will be small. Hence, the perimeter will be small.]
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Proof. Then, by the co-area formula , the Cauchy-Schwarz inequality, and (3.8)), for every ¢ < &,
1/k

H L0 {p >t} NQ)dt = / V| dx

0 {0<¢<e}nQ

1/2
<H0< ¢ <e}nQ)/? (/ |V¢>]2d1:> <eOVA .
{

Taking € = 1/k, we get that there is §; € [0,1/k] [there is a J; for which f(d) < Ol/k f(t)dt.] such
that

0<p<e}NQ

1/k B
WO o> 6 N0 <k | H™ N0 o>t} NQ)dt < CVA .
0

Passing to the limit as k — oo, we obtain

H (9 {6 > 0} N Q) < OVA |
which concludes the proof of the lemma. O
Lemma 3.18. Let Q C R™ and u € HY(Q) be a local minimizer of Fa in Q. Let xo € 2 such that
Ba,(xg) C Q. Then, there exists a constant C > 0 such that

/ \Vul|?dz + A[{0 < u < e} N B, (20)| < Ce  for every 0 < e < 1.
{0<u<e}nByr(zo)

Precisely, one can take C = C(r_lHVuHLz(BQT(IO)) +772), where C depends only on n.
Proof. We fix a function 0 < ¢ € C*°(R"™) such that ¢ =0 in B, $ =1 in R™\ By,, and ¢ > 0 in By;..
For a fixed € > 0 we consider the functions
ue = (u—¢)y and w. = du+ (1 — @)u..
We now calculate |Vi.|? in the ball By,
Ve[ = Liocuce) |V (o) * + Lius ey V(u — e(1 = ¢))?
< 1{0<u<6}¢2‘vu|2 + Il{u>a}|vu|2
+e(Liocuse)2[Vul[Ve| + €[ V) + e(Lpusey 2 Vul[ Vo] + e[ Vel?).
Now setting
C =2||Vull 2B, ) IVPl L2(B,,) + HVfbHQB(BQT),

and using the optimality of u in Bs, with 4. as a competitor, as well as the fact that by definition of

?,
{te >0} N B, ={u: >0} NB, ={u>e}NBkB,, {te >0} N (Ba \ By) ={u>0}N (B \ B,),

we get

oz/ |Vu]2dx—/ Vite2de + A(1{u > 0} N Bay| — [{iie > 0} A Bay|)
BQT B2'r
:/ |Vu]2dx—/ |Viie|*de + A{0 < u < e} N B, |
BQT BQ'r

2/ (1 — ¢?)|Vul?dz + A|{0 < u < e} N B,| - Ce
{0<u<e}nBa,
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>/ \Vaul?dz 4+ AJ{0 < u < e} N B,| — Ce,
{0<u<e}nB,
which concludes the proof. O

Proof of [Proposition_3.10, [Lemma 3.18| implies that (3.8]) does hold. By [Lemma 3.17, we obtain that

the perimeter is locally bounded. Precisely,

Per({u > 0}; B, /2(w0)) < CVA ' for every By(zg) C Q,

where C depends on r and n. O

3.4.3. Hausdorff measure of the free boundary. Finally, we prove that the (n—1)-dimensional Hausdorff
measure of d{u > 0} is locally finite in . In particular, this means that {v > 0} has locally finite
perimeter. Hence, we recover in particular |Proposition 3.16}

The proof will use the Lipschitz continuity and the non-degeneracy of the solution, as well as, the
so-called inner Hausdorff content estimate (see (3.9))), which is a consequence of |[Lemma 3.18|from the
previous proof.

Proposition 3.19. Let Q C R" and v € H'(Q) be a local minimizer of Fa in Q. Then, for every
compact set K C 0, we have H" (K N d{u > 0}) < co.

The proof of [Proposition 3.19|is a consequence of and the following rather abstract result.
Lemma 3.20. Let Q C R™ be an open set and u € C%1(Q) such that:

(a) u is non-degenerate, in the sense that there is a constant ¢ > 0 such that

sup u>cr Ve e d{u>0}NnQ, V0<r<dist(zg, ),
By (z0)

(b) there is a constant C > 0 such that u satisfies the estimate
HOo<u<e}lnQ| <Ce for every e > 0. (3.9)

Then, for every compact set K C Q, we have H" (K N d{u > 0}) < oo.

Proof. Let us first recall that, for every 6 > 0 and every A C R",

H;gl(A) < wy,—1 inf Zr?_l : for every By, (z;) such that U By (zj) D Aand r; <6,
=1 j=1
and
H'H(A) = lim M~ (A).
Let 6 > 0 be fixed and let {Bg(a:j)}?[:l be a covering of K N d{u > 0} such that z; € 0{u > 0} for
every j = 1,..., N and the balls Bs/5(x;) are disjoint.

The non-degeneracy of u implies that, in every ball Bj,j(z;) there is a point y; such that u(y;) > ¢6/10
for some ¢ € (0,1).

The Lipschitz continuity of u implies that Bes/101)(y;) C {u > 0}, where L = max{1, ||Vul[zq)}-
On the other hand, since u(z;) =0 and B s (yj) C Bs | e (), we have that
10L 10 ' 10L

e 5 J .
u <L (10L + 10) <(L+ 1)5 in Bes)ioz) (Ys)-
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Altogether, this implies that the balls B.s/101)(v;), j = 1, ..., NV, are disjoint and

0
Bc&/(lOL)(yj) - {0 <u < (L + 1)6}

Now, the estimate from (b) implies that

é crom
5

N
5
C(L+1); > ‘{0 <u<(L+ 1)5}‘ > [Besyaor) ()] = Nonroion
j=1

which implies that
anlN(sn_l < Co,

where Cy > 0 depends only on n, ¢, C, L. By the construction of the covering, and since, the right-hand
side does not depend on 4, we get that

H" YK No{u>0}) < Co.
O

Proof of [Proposition 3.19. The fact that u € C’loo’cl(Q) and nondegenerate (i.e. satisfies (a) in|Lemma 3.20))
follows from [Theorem 3.9] and [Proposition 3.12, Moreover, condition (b) in [Lemma 3.20| follows from

This concludes the proof. Il

3.5. Blow-ups. Given a local minimizer u of 5 in Q@ C R", and a free boundary point xzy € 0{u >
0} N, we will now investigate blow-ups of u at zg.

For every r > 0, we define the rescaled function
u(xo + 1)

ul"oﬂ"(x) = ,

Note that in comparison to the obstacle problem, here we normalize by 7 instead of by r2. This is
due to the Lipschitz regularity of minimizers, compared to C1!' regularity in the obstacle problem.
As before, by Arzela-Ascoli’s theorem, for any sequence r, — 0, there exists a subsequence (rkj) such

that Uy, = Up € C'IOO’C1 (R™) locally uniformly.
Definition 3.21 (Blow-up limit). We say that the function ug : R™ — R is a blow-up limit of u at xg
if there is a sequence r; — 0 such that

Up, — up locally uniformly in R".
Remark 3.22. We notice that every blow-up limit ug of a local minimizer u of F, is non-negative,
Lipschitz continuous (in R™) and vanishes in zero.

Moreover, there might be numerous blow-up limits, each one depending on the choice of the subse-
quence Uy, .. 1f this is the case, then we simply say that the blow-up limit is not unique.

The classification of all the possible blow-up limits and the uniqueness of the blow-up limit at a given
point xg € d{u > 0} are both central questions in the free boundary regularity theory, which do not
have a complete answer yet.

As for the obstacle problem, later we will decompose the free boundary into its regular and singular
parts according to the structure of the space of blow-up limits at the points of 9{u > 0}. Note that
their definitions need to be different from the ones for the obstacle problem due to

Most of the remainder of this subsection is dedicated to the proof of the following result.
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Proposition 3.23 (Convergence of the blow-up sequences). Let Q C R"™ and u € H. () be a local
minimizer of Fp in Q. Let xg € 0{u > 0} NQ and let rp — 0 be such ug,,, — uo in the sense of
[Definition 3.21. Then, there is a subsequence such that, for every R > 0, we have:

(1) Uwgr, — uo strongly in H*(Bg),
(ii) 1q, — lg, in LY(Bg), where Qi := {uzyr, > 0} and Qq := {ug > 0},
(iil) wo is a non-trivial local minimizer of Fy in R™.

Proof. By the local Lipschitz continuity of u, we have that for any R > 0, the sequence uj, := Uz 1,
is uniformly bounded in H'(Bg).

Up to extracting a subsequence, we can suppose that uy — us, € H'(Bpr) weakly in H'(Bg), strongly
in L?(Bgr) and pointwise (Lebesgue) almost-everywhere in B.

We set for simplicity Qx = {ur > 0} and Qo = {use > 0}.
The weak H'-convergence implies that for every 0 < r < R
IVucollz2(,) < limnf [|Vugl g2,
—00
with an equality, if and only if, (up to a subsequence) the convergence is strong in B,. On the other
hand, the pointwise convergence of u; implies that for almost-every z € Bp
T € Qoo = Uoo(x) >0 = ug(z) >0 for large k = =z € Qy, for large k.
In particular this implies that

1o, <liminflgq,,
k—oo

and so, by Fatou’s Lemma, for every 0 < r < R, we have
|00 N By| < liminf [Q N By,
k—o00
with an equality, if and only if, (again, up to a subsequence) 1g, converges strongly to 1o in L*(B,).
The latter fact follows from Scheffé’s Lemma (which is a basic consequence of dominated convergence).

Notice that, up to extracting a subsequence we may assume that the limits in the right-hand sides of
all three previous displays do exist.

In order to prove (i) and (ii), it is sufficient to prove that, for fixed 0 < r < R, we have

||Vu00||L2(BT) = likrninf ”vukHLZ(B,«) and |Qo N B,| = liminf |Qg N B,|. (3.10)
—00 k—00

Let n : B — R be a function such that
neC®(Bgr), 0<n<1linBgr, n=1ondBg, n=0in B,.
Consider the competitor 4 = nug + (1 — 7)us. Since uy is a local minimizer for Fp in By, and since

ug = U on OBR, we have Fy(ug, Br) < Fa(tug, Br), that is,

og/ \vak|2dx—/ |V |?dz + Ay, N Br| — A|Qx N Bg|,
Br Br

where we have set Q := {a, > 0}.

We first estimate

Q% N Br| — [ N Br| = |20 {n = 0} — % N {n = 0} + [% N {n > 0} — |% N {n > 0}|
= Qe N {n =0} = [ N {n =0} + (2 U Q) N {n > 0} — [ N {n > 0}]
< Qo0 N {n = 0} — [ N {n =0} + [{n > 0}.
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By Fatou’s Lemma on the set {n =0} \ B,, we have
9200 0 (I = 0} \ By)| < liminf 2,1 ({n = 0} \ B,)]

and so, we get

limsup(|Qx N Br| — |Q% N Br|) < limsup(|Qo N By| — [ N B,|) + [{n > 0}]. (3.11)

k—o0 k—o0
We next calculate
Vg |* — Vg = [V (nug + (1 = n)uoo)|* — [Vug|”
= |(ur — too) V1 4+ nVug 4+ (1 — 7)) Vs |* — |Vug|?.

Now since uy — s strongly in L?(Bg), we have that

limsup/ (|Vig)? — |Vug|*)dz
Br

k—o0

k—o00

= limsup/ (g — oo ) V1) + Vg, + (1 — 1) Voo |* — |Vug|2de
Br

= limsup/ (n? — 1)|Vug|> + 2n(1 — 7)Vug - Ve + (1 = 10)?| Ve |2da
Bgr

k—o00

_ hmsup/ (1 = 12)(| Vs |? — |Vug|?)dz
Br

k—o00
< limsup/ (|Vuso* = |Vug|?)dz +/ | Voo |?diz.
k—oo J{n=0} Br\{n=0}

By the weak H' convergence of u to us on the set {n = 0} \ B,, we have

limsup/ (|Vig|* = |Vug|?)dz < limsup/ (Voo |* — |Vug|?)dz +/ |Vitioo |2 dz.
k—oo JBpg k—o0 - {n>0}

This estimate, together with (3.11) and the minimality of ug, gives

lim inf Fa (ug, B,) = lim inf (/ \Vaug|?dz + AJS% N BT|)
k—o0 k—o00 B,

< likm inf (/ Vg |2de + A|Q N Br|> + lim sup (]:A(ﬂk, Bpr) — Fa(ug, BR))
— 00 By,

k—o00

g/ Vuoo\deJrAQmﬂBr\Jr/ Voo Pz + Al {5 > 0}]
B, {n>0}

g/ Vuoo\de—i—AQooﬂBr\—i-/ Voo 2dx + Al{n > 0}|
B, {n>0}

= FA (oo, Br) +/ |Vuoo|2dx + Al{n > 0}|.
{n>0}

Since 7 is arbitrary, we finally obtain by approximating n — lsg,,
lim inf Fp (ug, Br) < Fa(too, Br).
k—o0

By the observations from the beginning of the proof, this implies

liminf | Vug | p2(p,) + liminf [Q 0 By[ = ||[Vus | z2(,) + [Qec N By,
k—o0 k—o0
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and therefore, using the observations from the beginning of the proof one more time, this implies
and, as a consequence, the claims (i) and (ii).

We now prove (iii). Let 0 < r < R and ¢ € H}(B,). We will show that
FA (oo, Br) < Fa(tuoo + &, By). (3.12)
In order to prove , we will use the optimality of u; and pass it to the limit.

[For a fixed k > 1, the natural competitor is simply uy + ¢. Unfortunately, we do NOT a priori know
that limg_oo [{ur + ¢ > 0}| = [{uco + ¢ > 0}|. Hence, the proof is not completely straightforward!]

We consider a function n : B — R as before such that the set N := {n < 1} is a ball strictly contained
in Bg. Precisely, we have that the following inclusions do hold:

{p #0} C B, C {n=0} C N ={n<1}C Bg,
the last two inclusions being strict. We define the competitor for u; in NV
v =uk + ¢+ (1 — 1) (uso — ug),
and we set for simplicity voo := Ueo + ¢.

Now, note that vy = ueo + ¢ = Vo in {n = 0}, and moreover, since ¢ = 0 on By \ N, is
equivalent to

Fa(too, N) < FA(voo, N). (3.13)
By (i) and (ii), we have that

FA(too, N) = lim Fp(ug, N).
k—o0
The optimality of uj and the strong H' convergence of uy, — s in N give
lim Fa(ug, N) <liminf Fy(vg, N) = / Voo |2dz + Alim inf [{vy > 0} N N|. (3.14)
k—o0 k—o0 N k—o0

Moreover, since vy, = v on the set {n = 0}, we have
Hor > 0} N N| = [{vg > 0N {n =0} + [{vx >0} N {0 <n <1}
< Hvee >0} NN|+ {0 < n <1},
which, together with , gives
Fa(too, N) = len;ofA(uk,N) < Fa(Voo, N) + {0 < < 1}.

Now, since the set {0 < n < 1} is arbitrary, we get (3.13)) and so, the claim (iii). Note that ug # 0
since this would contradict the non-degeneracy (see [Proposition 3.12]). O

Finally, let us state without proof the convergence of the positivity sets in the Hausdorff-sense.

Definition 3.24 (Local Hausdorff convergence). Suppose that X}, is a sequence of closed sets in R™
and 2 is an open subset of R™. We say that X}, converges locally Hausdorff in 2 to (the closed set)
X, if for every compact set K C € and every open set U, such that K C U C 2, we have

lim diStK,U(Xk,X) =0,
k—o00
where, for any pair of closed subsets (X,Y) of €2, we define

distgu(X,Y) := max{ max dist(z,Y NU), max dist(y, X N U)} .

TeXNK yeEYNK
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Proposition 3.25 (Convergence of the blow-up sequences). Let @ C R™ and let u € H} () be a
local minimizer of Fa in Q. Let xo € 0{u > 0} NQ and let rp — 0 be such ug, , — ugp in the sense
of |Definition 3.21 Then, there is a subsequence such that, for every R > 0, we have:

Q= {ugyr, >0} = {up >0} locally Hausdorff in Bp,

Since we will not use this result in the sequel, we simply refer to [Vel23, Chapter 6.2] for the proof.

3.6. Regular and singular points of the free boundary. As in the study of the obstacle problem,
we decompose the free boundary into regular and singular points, depending on the shape of the blow-
up at at free boundary point.

Definition 3.26 (Decomposition of the free boundary). We say that zo € d{u > 0} is a regular point
if there exists a blow-up limit ug of u at xy of the form

up(z) = VA(z-v), for every z € R,
for some v € S"~1.

We denote the set of all regular points zg € 9{u > 0} N Q by Reg(d{u > 0}), and we define the
singular part of the free boundary as

Sing(9{u > 0}) = (0{u > 0} N Q) \ Reg(o{u > 0}).

Now, there are three natural questions that should be answered in order to give sense to the previous
definition:

(a) Is z — V/A(v - )4 a minimizer of Fp ?
(b) Is it the only minimizer u of Fp with {u > 0} = {z - v > 0}?
(c) Is the regular set non-empty?

One goal of this section is to answer all of these questions positively. In particular, we will answer (c)
by proving that

0"{u > 0} C Reg(0{u > 0}).

Then, as a consequence of results from geometric measure theory, we can deduce that the singular set
is small. Precisely, we will show that

H" 1 (Sing(0{u > 0})) = 0.
First, we prove the following lemma. [We skipped the proof in the lecture since there is a much shorter
way to prove it (see Remark 3.32)).]
Lemma 3.27. Let v € S*" 1. Then, the function x — \/K(l/ )y s a local minimizer of Fa in Bpr
for any R > 0.
Proof. Without loss of generality we set v = e,, and define h(x) = v/A(z,). Suppose that R > 0 and
u € H} (R") is a non-negative function such that v — h € H}(Bg). It is sufficient to prove that

Fa(h,Br) < F(u, BRr).

First, we claim that

Fa(uAh, Br) < F(u, Bg). (3.15)
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To see it, we first compute (using that u A h =0 in {x, < 0})

F(u, Bi) — Fa(u A h, Br) = / Vul? + Al{zn < 0} N {u > 0} N Byl
BRﬁ{xn<0}

+/ (|Vul? — |[Vh[?).
BrN{zn>0}N{u>h}

Since h is harmonic in {z, > 0}, we have after integration by parts, using that 9, h = /A on
{z, =0},

/ (I5uf? = 74P
Br{zp>0}N{u>h}
=/ |V(u—h)>+2Vh-V(u—h),
BrM{zn>0}n{u>h}
:/ V(u— )2 - 2VA "
Brn{zn>0}N{u>h} {zn=0}
Moreover, note that any function v € H'({z,, < 0}) satisfies
/ Vul? + Al{wn < 0} 1 {u > 0} > 2VA " (3.16)
{xn<0} {zn=0}
Hence, if we combine the previous three estimates, we end up with
Flu, Br) = Falun b, Br) = [ V(u—h) >0,
Brn{zn>0}N{u>h}

which proves (3.15)).

Let us exlain the proof of (3.16]) in 1D. The general version follows by integrating in the other coor-
dinates (for u, we can always assume without loss of generality that v = 0 in {x,, < 0} \ Bgr). Note
that if f € H'(R) is non-negative such that f(a) = 0 for some a < 0, then we have

0 0 1/2
50)= [ PO <I(f > 0hn{a << 0} ( / If’(t)|2dt>

0 0
<3 [ FOa<Hr>0nta< <o+ [P

By (3.15), we may suppose that v < h. In particular, this means that v = 0 = h in {z,, < 0}, and
therefore

[{u >0} N Bg| — [{h > 0} N Bg| = [{u =0} {h >0} Bg| = |{u=0}N Bg|

Moreover, since h is harmonic in {z,, > 0}, we get

/ V2 —/ Vh? = 2/ VAV (u— h) +/ V(- B)? = / V(= h)[2.
Br Br BRﬂ{Z‘n>O} Br BRﬁ{a:n>0}

Altogether,

Fa(u, Br) — Falh, Br) = /{ [T W= Al > 0} 0 fu =0}

:/ |V (u— h)[*dx >0,
{zn>0}N{u>0}
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where the last equality is due to the fact that on the set {u = 0} [recall that for H! functions, Vu = 0
a.e. on {u = 0}],

|V(u—h)| = |Vh| = VA.
The proof is complete. O]

The following lemma is crucial in order to answer question (b).

Lemma 3.28. Let u =/ \(x,)4 be a local minimizer of Fa in Bg for any R > 0. Then, A = A.

To prove the result, we first need the following lemma.

Lemma 3.29. Let U : R"! — R be a non-negative function, U € H} (R"™') and let u : R™ — R be
the function defined by

uw(x) =U(z') for every == (2,2,) € R™.
Then, U a local minimizer of Fa in R™™1 if and only if u a local minimizer of Fy in R™.

Proof. Suppose first that u is not a local minimizer of F5. Then, there is a function v : R” — R such
that u = v outside the cylinder Cg := B}y x (—R, R) C R"~! x R and such that Fj (u,Cg) > Fa(v,Cr).

Fa(U, By) = /

. |V U?da' + A By N {U > 0}

R

1 9 1

=5k </CR |Vu|*dx + A|Cr N {u > O}\) = —QR}"A(U,CR)
1 1 )
e = — A

> 2R]-"A(U,CR) 5B (/CR |Vu|*dz + A|Cr N {v > 0}|>

1 R
>
255 ),

> / \Vev(a!, t)[>da’ + A By 0 {v(-,t) > 0},
Bl

R

|Vav(@',zn) 2 de’ + A | By 0 {v(-, 2,) > 0}|> dxy,

/
R

for some ¢t € (—R, R), which exists due to the mean-value theorem. Thus, also U is not a local
minimizer of Fjy.

Conversely, suppose that U is not a local minimizer of 5. Then, there is a function V : R»~! — R
such that U = V outside a ball Bj, C R"! and
Fa(U, B}%) > Fa(V, B}%)
We now define the function
v(a!,zn) = V(@) (),
where for any ¢ > 0, we set ¢, : R — [0, 1] as

1 if |z <t

0 |zn| >t +1,

o +t+1 i —t—1<gz, <t
—xptt—1 if t<az,<t+1

—
=

th(xn) =
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Then, for Crt := Bj x (—t,t),
|V1}|2 < |Vm/V|2 + V21CR,t+1\CR,t’
ICrit1 N {v >0} =2(t+1)|Br N {V > 0},

Thus, we have

Fa(v,Crist) :/ Vo2 de + AlCiia N {v > 0}

CRr,t+1

< (2t +2)Fa(V,BR)+2 [ VZdd'
By

Choosing t large enough, by the contradiction assumption, we have that

(2t + 2)FA(V, BR) +2 / VZda' < 2tFp(U,BR).

By
Since,
Fa(u,Criy1) = 2(t + 1)Fa(U, By),
we get that
Fa(v,Crit1) < 2tFA(U,By) = m]:A(U,CR,tH) < Fa(u,Cri41),
which concludes the proof. U

Proof of[Lemma 3.28 By|Lemma 3.29L we get that U(t) = v/ Aty is a local minimizer of Fy in (=R, R)
for any R > 0. To see that A = A, we take R = 1 and we compute

FaUs; (~1,1)) = /_11 U (#)2dt + A[{U > 0} N (=1,1)] = A + A.

Let us consider a competitor V; for U in (—1,1), i.e. a function such that V.(—1) = 0 and V.(1) = V/\.
We define

Vo(t) = 0 in (—1,¢),
T2 4122 in (e, 1),

Then, it holds

A

1
J-“A(V;(—l,l)):/ (1_E)2+A(1—5):1i5+A(1—5).

For U to be a minimizer, we clearly need for any € > 0:

A+AL %_(g%—A(l—e) =: f(e),
which is equivalent to f/(0) = 0, which in turn yields the condition A = A. O
Remark 3.30. The competitors that we construced in the previous proof in order to deduce that
A = A are also known as ”inner variations“ or ”domain variations*. The idea is to perturb the input

variables x rather than the function u(z) to produce a competitor. In general, inner variations are
given as

uy(x) = u(z +1(x))



76 MARVIN WEIDNER

for suitable functions 7. By using them in a more general context, one can actually prove directly that
any minimizer of F, in a domain (2 satisfies

IVu| = VA on d{u>0}NQ

whenever the free boundary is C'' (which we don’t know yet, of course!).

Next, we have the following lemma, which states that the regular set contains the reduced boundary.
In particular, it yields (c¢). This result will also become crucial later, when we classify blow-ups in 2D.

Lemma 3.31. Let Q be a bounded open set in R™ and u be a minimizer of Fp in Q. Let g € 0{u >
0} N Q be a free boundary point, for which there exist v € S*~! and r, — 0 such that

lg, — 1y, in Bg for every R >0, (3.17)

where Qy, = i(—xo +{u>0}) and H, :={x € R" : x-v > 0}. Then, xo € Reg(d{u > 0}).
In particular, it holds 0*{u > 0} C Reg(9{u > 0}).

Remark 3.32. Note that gives another proof of the fact that z +— v/A(z,) is a global
minimizer of F. Indeed, since 0 < Per({u > 0}) = H"1(0*{u > 0}) < oo, the reduced boundary
is non-empty, and therefore, the set of free boundary points to which is applicable is
non-empty. Hence, the claim now follows from [Proposition 3.23((iii), which implies that blow-ups are
minimizers to Fj.

Proof of[Lemma 3.31] Let ug be the blow-up sequence ug(x) = ug, . () = iu(mo + rgz). Notice
that Q = {ur > 0}.

By [Proposition 3.23] we have that, up to a subsequence and for every R > 0, uy — ug locally uniformly
in Br and strongly in H'. Moreover, ug > 0 and ug € Cloo’cl (R™) is a global minimizer of F, in R".

Moreover, we have 1g, — Ty,,>0} in LY(Bg). In particular, this implies that {ug > 0} = H, almost
everywhere.

Now, the minimality of ug and the fact that [{ug = 0} N H,| = 0 implies that g is harmonic in H,
[This is the same argument as in the proof of Step la in the proof of We can take as a
competitor the harmonic function v in any set B C H, such that v = v on B, but by minimality of
u and the assumption on {ug = 0}, the Dirichlet energy of u is smaller than the one of v].

By the maximum principle, we get that
{UO > 0} =H,.

Thus, ug is C* up to the boundary 0H,, (where it vanishes). Let us assume from now on that v = e,,.
We will prove that

uy = VA(z-v)y. (3.18)

To be continued... O
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