
ADVANCED TOPICS LECTURE: FREE BOUNDARY PROBLEMS

MARVIN WEIDNER

The goal of this lecture is to give an introduction to free boundary problems. These are partial
differential equations which exhibit an a priori unknown interface. A prototype example is given by
the melting of ice in water, but free boundary problems also exist in various other contexts such as,
physics, material sciences, biology, finance, etc.

Typical questions:

• optimal regularity of solutions (across the free boundary)
• regularity of the free boundary
• singular free boundary points

(1) Basic properties of harmonic functions
– mean value property, maximum principle
– basic regularity results

(2) The obstacle problem [FRRO22, PSU12]
– optimal regularity
– Caffarelli’s dichotomy: regular and singular points
– C1,α regularity of the free boundary near regular points
– higher regularity of the free boundary
– properties of singular points
– outlook

(3) The Alt-Caffarelli problem [Vel23, CS05]
– optimal regularity
– improvement of flatness
– higher regularity of the free boundary
– singular points
– outlook

(4) Further topics
– thin obstacle problem and nonlocal operators
– time-dependent free boundary problems
– free boundary problems with multiple phases
– ...

1. Basic properties of harmonic functions

The Dirichlet problem for the Laplace equation is given as follows{
−∆u = f in Ω,

u = g in ∂Ω,
(1.1)
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where the boundary condition g and the source term f are given and Ω ⊂ Rn is a bounded (Lips-
chitz) domain. There are different ways to make sense of solutions to this problem. Under suitable
assumptions on f, g, there exists a unique solution.

From now on, let Ω ⊂ Rn be a bounded Lipschitz domain. We recall several important facts and
definitions.

• We have the following function space

H1(Ω) = {u ∈ L2(Ω) : ∂iu ∈ L2(Ω) for i ∈ {1, . . . , n}},

where ∂iu are the weak partial derivatives of u and ∇u = (∂1u, . . . , ∂nu).
• When equipped with the following scalar product, H1(Ω) is a Hilbert space

(u, v)H1(Ω) =

∫
uv dx+

∫
∇u∇v dx, (u, u)H1(Ω) = ∥u∥2H1(Ω).

• Recall the following integration by parts formula: if u, v ∈ H1(Ω), then∫
Ω
∂iuv dx = −

∫
Ω
u∂iv dx+

∫
∂Ω
uvνi dx, i = 1, . . . , n,

where ν ∈ Sn−1 is the unit outward normal vector to ∂Ω.
• There is a compact trace operator Tr : H1(Ω) → L2(∂Ω), such that Tru = u|∂Ω whenever
u ∈ H1(Ω) ∩ C(Ω). We define

H1
0 (Ω) := C∞

c (Ω)H1(Ω)

as the closure of C∞
c (Ω) with respect to ∥ · ∥H1(Ω). It holds

H1
0 (Ω) = {u ∈ H1(Ω) : Tr(u) = 0}.

• Sobolev embedding

H1(Ω) ⊂ L
2n
n−2 (Ω), if 2 < n,

Moreover, the embedding H1(Ω) ⋐ Lq(Ω) is compact, whenever q < 2n
n−2 . In particular,

H1(Ω) ⋐ L2(Ω).
• Poincaré inequality: for any u ∈ H1(Ω) it holds∫

Ω
|u− (u)Ω|2 dx ≤ C1

∫
Ω
|∇u|2 dx,∫

Ω
|u|2 dx ≤ C2

∫
Ω
|∇u|2 dx+

∫
∂Ω

|Tru|2 dx.

The constants C1, C2 only depend on n,Ω.
• Hölder spaces: Let α ∈ (0, 1]. We define for u ∈ C(Ω)

[u]C0,α(Ω) = sup
x,y∈Ω

|u(x)− u(y)|
|x− y|α

, ∥u∥C0,α(Ω) = ∥u∥L∞(Ω) + [u]C0,α(Ω).

Moreover, for k ∈ N ∪ {0}, we set

∥u∥Ck,α(Ω) = ∥u∥Ck(Ω) + [Dku]C0,α(Ω), ∥u∥Ck(Ω) =

k∑
j=1

∥Dju∥L∞(Ω).



ADVANCED TOPICS LECTURE: FREE BOUNDARY PROBLEMS 3

Note that by Hölder interpolation, it holds

∥u∥Ck,α(Ω) ≍ ∥u∥L∞(Ω) + [Dku]C0,α(Ω), ∥u∥Ck,1(Ω) ≍ ∥u∥L∞(Ω) + ∥Dk+1u∥L∞(Ω).

We define the spaces

Ck,α(Ω) = {u ∈ C(Ω) : ∥u∥Ck,α(Ω) <∞}.

Sometimes, when 0 < k + α = β ̸∈ N, we define Cβ(Ω) := Ck,α(Ω). Note

C∞(Ω) ⊂ · · · ⊂ Ck,α(Ω) ⊂ C1,α(Ω) ⊂ C1(Ω) ⊂ C0,1(Ω) ⊂ C0,α(Ω) ⊂ C(Ω).

• Arzelà-Ascoli’s theorem: Given a sequence (fi)i ⊂ Ck,α(Ω) for some α ∈ (0, 1] and k ∈ N∪{0}
satisfying ∥fi∥Ck,α(Ω) ≤ C for some C > 0. Then, there exists a subsequence (fij )j ⊂ (fi)i

which converges uniformly (if k = 0) and in Ck(Ω) (if k ∈ N) to some f ∈ Ck,α(Ω) and
∥f∥Ck,α(Ω) ≤ C.

Literature recommendation: [Eva10]. Also recall functional analysis and PDE lecture.

Definition 1.1. Let f ∈ L2(Ω). We say that u satisfies −∆u = f in Ω in the weak sense whenever
u ∈ H1(Ω) and ∫

Ω
∇u · ∇v dx =

∫
Ω
fv for all v ∈ H1

0 (Ω). (1.2)

Let g ∈ L2(∂Ω). We say that u is a weak solution of the Dirichlet problem (1.1) if u ∈ H1(Ω) satisfies
Tru = g, and (1.2).

We say that u is weakly superharmonic (resp. weakly subharmonic) in Ω, or satisfies −∆u ≥ 0 in Ω
in the weak sense (resp. −∆u ≤ 0 in the weak sense) if∫

Ω
∇u · ∇v dx ≥ 0 resp.

∫
Ω
∇u · ∇v dx ≤ 0 for all v ∈ H1

0 (Ω), v ≥ 0.

We say that u ≥ g on ∂Ω if Tru ≥ g on ∂Ω.

Remark 1.2. If u ∈ C2(Ω), then it holds −∆u = f in Ω in the classical sense, if and only if it holds
in the weak sense. Proof: integration by parts.

1.1. Regularity of solutions and the maximum principle. Throughout this section, whenever
we say that Ω ⊂ Rn is a domain, we mean that Ω is a connected, bounded, open set with ∂Ω ∈ C0,1.
The latter assumption can usually be relaxed, but we assume it here for simplicity in order to have a
well-defined trace operator.

Theorem 1.3 (Existence and uniqueness of weak solutions). Let Ω ⊂ Rn be a domain, f ∈ L2(Ω)
and

{w ∈ H1(Ω) : Trw = g} ≠ ∅. (1.3)

Then, there exists a unique weak solution to the Dirichlet problem (1.1).

Proof. Lax Milgram. (We expect this to be well-known.) □

Remark 1.4. • A sufficient condition for (1.3) to hold true is if g ∈ C0,1(∂Ω).
• (1.3) holds true if and only if there exists G ∈ H1(Ω) such that TrG = g. One can show that

this is the case if and only if g ∈ H1/2(∂Ω).
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The unique weak solution to the Dirichlet problem in a ball is explicit:{
∆u = 0 in B1

u = g on ∂B1
=⇒ u(x) = ωn−1

∫
∂B1

(1− |x|2)g(y)
|x− y|n

dy,

where ωn−1 = |Sn−1|.
By a rescaling argument, a similar formula holds in any ball Br(x0) ⊂ Rn. Thus, we deduce that for
any harmonic function ∆u = 0 in Ω, with Br(x0) ⊂ Ω, we have (Poisson kernel representation)

u(x) = ωn−1r
−1

∫
∂Br(x0)

(r2 − |x− x0|2)u(y)
|x− y|n

dy. (1.4)

An immediate consequence of (1.4) is the following result.

Corollary 1.5. Let Ω ⊂ Rn be any open set, and u ∈ H1(Ω) be any function satisfying ∆u = 0 in Ω
in the weak sense. Then, u is C∞ inside Ω and u is a classical solution.

Moreover, if u is bounded and ∆u = 0 in B1 in the weak sense, then we have the estimates

∥u∥Ck(B1/2)
≤ Ck∥u∥L∞(B1), (1.5)

for all k ∈ N, and for some constant Ck depending only on k and n.

Proof. For any ball Br(x0) ⊂ Ω it holds (1.4). By differentiating this formula it is immediate to see
that u ∈ C∞(Br/2(x0)) and that (1.5) holds. Since this can be done for any ball Br(x0) ⊂ Ω, we
deduce that u is C∞ inside Ω. □

Next, we prove the maximum principle for weak solutions.

Proposition 1.6. Let Ω ⊂ Rn be a domain. Assume that u ∈ H1(Ω) satisfies, in the weak sense,{
−∆u ≥ 0 in Ω

u ≥ 0 on ∂Ω.

Then, u ≥ 0 in Ω.

Proof. Notice that since −∆u ≥ 0 in Ω we have∫
Ω
∇u · ∇v dx ≥ 0 for all v ≥ 0, v ∈ H1

0 (Ω). (1.6)

Let us consider u− := max{−u, 0} and u+ := max{u, 0}, so that u = u+−u−. It is easy to check that
u± ∈ H1(Ω) whenever u ∈ H1(Ω), and that u− ∈ H1

0 (Ω) since Tru ≥ 0 on ∂Ω. Hence we can choose
v = u− ≥ 0 in (1.6). Then, using that ∇u = ∇u+ −∇u− and ∇u+ · ∇u− = 0, we get

0 ≤
∫
Ω
∇u · ∇u− dx =

∫
Ω
∇u+ · ∇u− dx−

∫
Ω
|∇u−|2 dx = −

∫
Ω
|∇u−|2 dx.

Hence, ∇u− ≡ 0 in Ω. Since Tru− ≡ 0 this implies u− ≡ 0 in Ω, that is, u ≥ 0 in Ω. □

Remark 1.7. • comparison principle: If −∆u ≥ −∆v in Ω and u ≥ v on ∂Ω, then u ≥ v in Ω.
• in particular, superharmonic functions have their minimum on the boundary.
• Analogously, if −∆u ≤ 0 in Ω and u ≤ 0 on ∂Ω, then u ≤ 0 in Ω.

A useful consequence of the maximum principle is the following.
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Lemma 1.8. Let Ω ⊂ Rn be a domain. Let u be any weak solution of{
−∆u = f in Ω

u = g on ∂Ω.

Then,

∥u∥L∞(Ω) ≤ C∥f∥L∞(Ω) + ∥g∥L∞(∂Ω),

for a constant C depending only on the diameter of Ω.

Proof. Let us consider the function

ũ(x) := u(x)/(∥f∥L∞(Ω) + ∥g∥L∞(∂Ω)).

We want to prove that |ũ| ≤ C in Ω. Notice that ũ solves{
−∆ũ = f̃ in Ω

ũ = g̃ on ∂Ω,

with |g̃| ≤ 1 and |f̃ | ≤ 1.

Let us choose R large enough so that BR ⊃ Ω; after a translation, we can take R = 1
2diam(Ω). In BR,

let us consider the function

w(x) =
R2 − |x|2

2
+ 1.

The function w satisfies {
−∆w = 1 in Ω

w ≥ 1 on ∂Ω.

Therefore, by the comparison principle, we deduce that

ũ ≤ w in Ω.

Since w ≤ C (with C depending only on R), we deduce that ũ ≤ C in Ω. Finally, repeating the same
argument with −ũ instead of ũ, we find that |ũ| ≤ C in Ω, and thus we are done. □

The following result follows from the maximum principle and states how solutions to the Dirichlet
problem behave near the boundary.

We say that Ω satisfies the interior ball condition whenever there exists ρ0 > 0 such that every point
on ∂Ω can be touched from inside with a ball of radius ρ0 contained in Ω. That is, for any x0 ∈ ∂Ω
there exists Bρ0(y0) ⊂ Ω with x0 ∈ ∂Bρ0(y0). It is not difficult to see that any C2 domain satisfies
such condition, and also any domain which is the complement of a convex set.

Lemma 1.9 (Hopf lemma). Let Ω ⊂ Rn be a domain satisfying the interior ball condition. Let
u ∈ C(Ω) be a positive weakly superharmonic function in Ω ∩ B2, with u ≥ 0 on ∂Ω ∩ B2. Then,
u ≥ c0d in Ω ∩B1 for some c0 > 0, where d(x) := dist(x,Ωc).

Note that c0 in general depends on u!

Proof. Since u is positive and continuous in Ω ∩B2, we have that

u ≥ c1 > 0 in {d ≥ ρ0/2} ∩B3/2
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for some c1 > 0. Let us consider the solution of
−∆w = 0 in Bρ0 \Bρ0/2,

w = 0 on ∂Bρ0 ,

w = 1 on ∂Bρ0/2.

One can check

w(x) =
|x|2−n − ρ2−n

0

(ρ0/2)2−n − ρ2−n
0

if n ≥ 3,

w(x) =
ln(ρ0/|x|)

ln 2
if n = 2,

w(x) = max
{
1,

2

ρ0
(ρ0 − |x|)

}
if n = 1.

In particular, it is immediate to check that w ≥ c2(ρ0 − |x|) in Bρ0 for some c2 > 0.

Let us take x0 ∈ ∂Ω, and apply the comparison principle to the functions u and c1w(y0 + x) in(
Bρ0(y0) \ Bρ0/2(y0)

)
⊂ Ω ∩ B3/2, where y0 is from the definition of the interior ball condition. (We

are using that u ∈ C(Ω) to guarantee u ≥ 0 on ∂Bρ0(y0)). Hence, we deduce that

u(x) ≥ c1w(y0 + x) ≥ c1c2(ρ0 − |x− y0|) ≥ c1c2d(x) in Bρ0(y0).

Setting c0 = c1c2 and using the previous inequality for x0 ∈ ∂Ω and the corresponding ball Bρ0(y0) ⊂
Ω ∩B3/2, the result follows. □

If Ω satisfies the exterior ball condition, i.e. there exists ρ0 > 0 such that every point on ∂Ω can be
touched from outside with a ball of radius ρ0 contained in Ω, we also have the following result:

Lemma 1.10. Let Ω ⊂ Rn be a domain satisfying the exterior ball condition. Let u ∈ C(Ω) be a
harmonic function in Ω∩B2, with u = 0 on ∂Ω∩B2. Then, u ≤ c0d in Ω∩B1 for some c0 > 0, where
d(x) := dist(x,Ωc).

Proof. We employ a similar barrier argument as before. □

Remark 1.11. In particular, in nice domains (i.e. those satisfying the interior and exterior ball
condition, e.g. if ∂Ω ∈ C1,1), harmonic functions with u = 0 on ∂Ω behave like linear functions near
the boundary, i.e.

c1d ≤ u ≤ c2d close to ∂Ω

This property remains true in domains with ∂Ω ∈ C1,α. However, it is dramatically different in bad
domains. For instance,

u1(x) = x1x2 solves −∆u1 = 0 in Ω1 = {x1x2 > 0} with u1 = 0 on ∂Ω1,

u2(x) = r2/3 sin(2ϕ/3) solves −∆u2 = 0 in Ω2 = {x1 < 0 or x2 < 0} with u2 = 0 on ∂Ω2.

More generally, for any α > 0, the function uα(x) = rα sin(αϕ) is harmonic in R2 \ {0} and satisfies
uα = 0 on ∂{(r cosϕ, r sinϕ) : ϕ ∈ [0, π/α]}.
Hence, in free boundary problems (where the boundary of the solution domain is unknown), it is a
delicate question to analyze the behavior of the solution close to the boundary.

Remark 1.12. One can prove that solutions to the Dirichlet problem in Ω (1.1) always satisfy
u ∈ C(Ω) if Ω satisfies the interior or exterior ball condition.
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1.2. The mean value property.

Lemma 1.13. Let Ω ⊂ Rn be any open set. If −∆u = 0 in Ω, then

u(x) =

∫
∂Br(x)

u(y) dy =

∫
Br(x)

u(y) dy for any ball Br(x) ⊂ Ω. (1.7)

Moreover, it holds for any weakly superharmonic (subharmonic) function u ∈ H1(Ω),

r 7→
∫
Br(x)

u(y)dy is monotone non-increasing (non-decreasing) for r ∈ (0, dist(x, ∂Ω)). (1.8)

The property in (1.7) is called the mean value property.

Proof. If u is harmonic, the first equality in the mean value property follows by setting x0 = x in
(1.4). The second equality follows by integrating the first one, namely∫

Br(x)
u(y) dy = nr−n

∫ r

0
ρn−1

∫
Bρ(x)

u(y) dy dρ.

The claim for weakly subharmonic functions goes as follows. Fix 0 < ρ < r such that Br(x) ⊂ Ω. Let
v be the solution to −∆v = 0 in Br(x) with v = u on ∂Br(x). Then, by the maximum principle u ≤ v
in Br(x). Hence, by the mean value property

S(ρ) :=

∫
∂Bρ(x)

u(y) dy ≤
∫
∂Bρ(x)

v(y) dy = v(x) =

∫
∂Br(x)

v(y) dy =

∫
∂Br(x)

u(y) dy = S(r).

Then, by integrating over (0, r),

A(r) :=

∫
Br(x)

u(y) dy = nr−n

∫ r

0
ρn−1S(ρ) dρ ≤ S(r)nr−n

∫ r

0
ρn−1 dρ = S(r).

However, this yields

A′(r) = −n2rn−1

∫ r

0
ρn−1S(ρ) dρ+ nr−nS(r)rn−1 =

n

r
(S(r)−A(r)) ≥ 0,

as desired. □

The following two lemmas yield the Harnack inequality for harmonic functions.

Lemma 1.14 (Weak Harnack inequality for weak supersolutions). Let u ∈ C(B1). Then,{
−∆u ≥ 0 in B1

u ≥ 0 in B1
=⇒ inf

B1/2

u ≥ c∥u∥L1(B1/2)
,

for some c > 0 depending only on n.

Proof. By the Lebesgue differentiation theorem and (1.8), we have for any x0 ∈ B1/3

u(x0) ≥
1

|B2/3|

∫
B2/3(x0)

u = c∥u∥L1(B2/3(x0)) ≥ c∥u∥L1(B1/3)

for some c = c(n) > 0, so that we have proved the property in a ball of radius 1/3.

To prove it in B1/2, consider x̄0 ∈ ∂B1/3 and the ball B1/6(x̄0). We can repeat the previous steps to
derive

inf
B1/6(x̄0)

u ≥ c∥u∥L1(B1/6(x̄0)).
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Moreover, if we denote B := B1/3 ∩B1/6(x̄0), then

inf
B1/6(x̄0)

u ≥ c∥u∥L1(B1/6(x̄0)) ≥ c

∫
B
u ≥ |B| inf

B
u ≥ c inf

B1/3

u.

This implies

inf
B1/2

u ≥ inf
B1/3

u ∧ inf
x0∈∂B1/3

inf
B1/6(x̄0)

u ≥ c inf
B1/3

u.

Similarly,

∥u∥L1(B1/2)
≤ ∥u∥L1(B1/3)

+ c max
x0∈∂B1/3

∥u∥L1(B1/6(x̄0)) ≤ c∥u∥L1(B1/3)
.

Altogether, from the first result in this proof, we can conclude

inf
B1/2

u ≥ c1 inf
B1/3

u ≥ c2∥u∥L1(B1/3)
≥ c3∥u∥L1(B1/2)

for some c3 = c3(n) > 0. In the last step we have used again (1.8). □

Lemma 1.15 (L∞ bound for weak subsolutions). Let u ∈ C(B1). Then,

−∆u ≤ 0 in B1 =⇒ sup
B1/2

u ≤ C∥u∥L1(B3/4)
,

for some C depending only on n.

We will see later that the L1 norm in this estimate can be replaced by the Lε norm for any ε > 0.
This follows from Young’s inequality and a covering argument.

Proof. The result follows from the the mean value property (1.8) in the same way as Lemma 1.14. □

Theorem 1.16 (Harnack inequality). Let u ∈ C(B1).{
−∆u = 0 in B1

u ≥ 0 in B1
=⇒ sup

B1/2

u ≤ c inf
B1/2

u,

for some c > 0 depending only on n.

Proof. Combine Lemma 1.15 and Lemma 1.14. □

Remark 1.17. In particular, we have the following strict maximum principle: If −∆u ≥ 0 in Ω with
u ≥ 0 in Ω and u ̸≡ 0, then u > 0 in Ω.

We end this subsection with three auxiliary lemmas that all follow from the mean value property and
that will be used later in the lecture.

The first lemma says that the pointwise limit of a sequence of superharmonic uniformly bounded
functions is superharmonic (in the sense that (1.8) holds).

Lemma 1.18. Let Ω ⊂ Rn, and let (wk)k be a sequence of uniformly bounded functions wk : Ω → R
satisfying (1.8), converging pointwise to some w : Ω → R. Then w satisfies (1.8).

Proof. The proof is immediate. In fact, let w∞ := w and let us define for k ∈ N ∪ {∞}, ϕx,k(r) :=∫
Br(x)

wk. Notice that ϕx,k(r) is non-increasing in r for all k ∈ N. In particular, given 0 < r1 <

r2 < Rx, we have that ϕx,k(r1) ≥ ϕx,k(r2) for k ∈ N. Now we let k → ∞ and use that wk → w
pointwise to deduce, by the dominated convergence theorem (notice that wk are uniformly bounded),
that ϕx,∞(r1) ≥ ϕx,∞(r2). That is, w∞ = w satisfies (1.8). □
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The second lemma shows that superharmonic functions are lower semicontinuous.

Lemma 1.19. Let us assume that w ∈ L1
loc(Ω) and satisfies (1.8) in Ω ⊂ Rn. Then, up to changing

w in a set of measure 0, w is lower semicontinuous in Ω.

Proof. We define w0(x) := limr↓0
∫
Br(x)

w (which is well defined, since the average is monotone non-

increasing). Then w0(x) = w(x) if x is a Lebesgue point, and thus w0 = w almost everywhere in
Ω. Let us now consider x0 ∈ Ω, and let xk → x0 as k → ∞. Then, by the dominated convergence
theorem, ∫

Br(x0)
w = lim

k→∞

∫
Br(xk)

w ≤ lim inf
k→∞

w0(xk) (1.9)

for 0 < r < 1
2dist(x0, ∂Ω). Now, by letting r ↓ 0 on the left-hand side, we reach that

w0(x0) ≤ lim inf
k→∞

w0(xk), (1.10)

that is, w0 is lower semi-continuous at x0. □

The next result yields a classification of global harmonic functions.

Theorem 1.20 (Liouville’s theorem). Any bounded solution of ∆u = 0 in Rn is constant.

Proof. Let u be any global bounded solution of ∆u = 0 in Rn. Since u is smooth (by Corollary 1.5),
each derivative ∂iu is well-defined and is harmonic. Thus, thanks to the mean-value property and the
divergence theorem, for any x ∈ Rn and R ≥ 1 we have

|∂iu(x)| =

∣∣∣∣∣ cnRn

∫
BR(x)

∂iu

∣∣∣∣∣ =
∣∣∣∣∣ cnRn

∫
∂BR(x)

u(y)
yi
|y|
dy

∣∣∣∣∣ ≤ C

Rn

∫
∂BR(x)

|u|. (1.11)

Thus, using that |u| ≤M in Rn, we find

|∂iu(x)| ≤
cn
Rn

|∂BR(x)|M =
cn
Rn

|∂B1|Rn−1M =
c′nM

R
→ 0, as R→ ∞. (1.12)

Therefore, ∂iu(x) = 0 for all x ∈ Rn, and u is constant. □

2. The obstacle problem

In this chapter, we deal with our first free boundary problem: the obstacle problem.

There is a wide variety of problems in physics, industry, biology, finance, and other areas which can be
described by PDEs that exhibit free boundaries. Many of such problems can be written as variational
inequalities, for which the solution is obtained by minimizing a constrained energy functional. The
obstacle problem is one of the most important and canonical examples.

Given smooth functions ϕ : Ω → R and g : ∂Ω → R, the obstacle problem is the following:

minimize
1

2

∫
Ω
|∇v|2 dx among all functions v ≥ ϕ in Ω with v = g on ∂Ω.

• Interpretation: we look for the least energy function v, but the set of admissible functions
consists only of functions that are above a certain “obstacle” ϕ.

• in 2D: Think of v as an elastic membrane that is constrained to be above ϕ
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• We will see that the Euler-Lagrange equation is given as follows:
v ≥ ϕ in Ω

−∆v ≥ 0 in Ω

−∆v = 0 in the set {v > ϕ},

Intuition: Maybe you already know that the unconstrained problem leads to harmonic func-
tions! Hence, if we denote E(v) = 1

2

∫
Ω |∇v|2dx, then we will have E(v+ εη) ≥ E(v) for every

ε ≥ 0 and η ≥ 0, η ∈ C∞
c (Ω), which yields −∆v ≥ 0 in Ω. That is, we can perturb v with

nonnegative functions (εη) and we always get admissible functions (v + εη). However, due to
the constraint v ≥ ϕ, we cannot perturb v with negative functions in all of Ω, but only in the
set {v > ϕ}. This is why we get −∆v ≥ 0 everywhere in Ω, but −∆v = 0 only in {v > ϕ}.
(We will show later that any minimizer v is continuous, so that {v > ϕ} is open.

• Short form of the Euler-Lagrange equation:

min{−∆v, v − ϕ} = 0 in Ω.

• Consider u := v − ϕ. Then, the obstacle problem is equivalent to
u ≥ 0 in Ω

∆u ≤ f in Ω

∆u = f in the set {u > 0},

where f := −∆ϕ. This way, we can assume without loss of generality that the obstacle is zero.

• The previous problem is the Euler-Lagrange equation associated to the following minimization
problem:

minimize

∫
Ω

1

2
|∇u|2 + fu dx among all functions u ≥ 0 with u = g − ϕ on ∂Ω.

• A key feature of the obstacle problem is that it has two unknowns:

the solution u, and the contact set {u = 0}.

In other words, there are two regions in Ω, characterized by the minimization problem:

one in which u = 0, and one in which −∆u = f.

Moreover, we denote the free boundary by

Γ := ∂{u > 0} ∩ Ω,

• We will see that since u is a nonnegative supersolution, it will hold ∇u = 0 on Γ, that is, we
will have that u ≥ 0 solves 

∆u = f in {u > 0}
u = 0 on Γ

∇u = 0 on Γ.

This is yet another way to write the Euler Lagrange equation (this time explicitly including
the interface Γ).
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• We see that we have both Dirichlet and Neumann conditions on Γ. This would usually be
an over-determined problem (too many boundary conditions on Γ, recall Lax-Milgram), but
since Γ is also free, it turns out that the problem has a unique solution (where Γ is part of the
solution).

Some applications of the obstacle problem

• Dam problem,
• Stefan problem,
• Hele-Shaw flow,
• optimal stopping, finance,
• interacting particle systems,
• elasticity

2.1. Well-posedness and the Euler Lagrange equation. Existence and uniqueness of solutions
follows easily from the fact that the functional

∫
Ω |∇v|2dx is convex, and that we want to minimize

it in the closed convex set {v ∈ H1(Ω) : v ≥ ϕ}. The following proof is standard in the calculus of
variations

Proposition 2.1 (Existence and uniqueness). Let Ω ⊂ Rn be a Lipschitz domain, and let g : ∂Ω → R
and ϕ ∈ H1(Ω) be such that

C = {w ∈ H1(Ω) : w ≥ ϕ in Ω,Trw = g} ≠ ∅.

Then, there exists a unique minimizer of

E(v) :=

∫
Ω
|∇v|2 dx among all v ∈ C. (2.1)

Proof. Let us define

θ0 := inf

{
E(w) :=

1

2

∫
Ω
|∇w|2 dx : w ∈ K

}
,

that is, the infimum value of E(w) among all admissible functions w ∈ C. Let us take a sequence of
functions {vk} such that

(i) vk ∈ H1(Ω),
(ii) Tr vk = g and vk ≥ ϕ in Ω,
(iii) E(vk) → θ0 as k → ∞.

By (i), ∥vk∥L2(Ω) is uniformly bounded, and by the Poincaré inequality,

∥vk∥L2(Ω) ≤ C∥∇vk∥L2(Ω) + ∥g∥L2(∂Ω),

i.e., the sequence {vk} is uniformly bounded in H1(Ω). Therefore, a subsequence {vkj} will converge

to a certain function v strongly in L2(Ω) and weakly in H1(Ω).

Moreover, by compactness of the trace operator Tr : H1(Ω) → L2(∂Ω), we will have Tr vkj → Tr v in

L2(∂Ω), so that Tr v = g.

Furthermore, v satisfies (weak lower semi-continuity of ∥ · ∥H1(Ω) and compactness of H1(Ω) ⊂ L2(Ω))

∥v∥H1(Ω) ≤ lim inf
j→∞

∥vj∥H1(Ω), ∥v∥L2(Ω) = lim
j→∞

∥vj∥L2(Ω),
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and therefore,

E(v) =
1

2
[v]H1(Ω) ≤

1

2
lim inf
j→∞

[vj ]H1(Ω) = lim inf
j→∞

E(vkj ).

Hence, v is a minimizer of the energy functional. Since vkj ≥ ϕ in Ω and vkj → v in L2(Ω), we have
v ≥ ϕ in Ω. Thus, we have proved the existence of a minimizer v.

The uniqueness of the minimizer follows from the strict convexity of the functional E(v), as follows:

First, observe that the set C is convex, i.e. if u, v ∈ C are both minimizers, then for t ∈ (0, 1), we have

wt := tu+ (1− t)v ∈ C.
By minimality of u and v,

E(u) = E(v) ≤ E(wt). (2.2)

On the other hand, for the gradients we have the identity

|∇wt|2 = t2|∇u|2 + (1− t)2|∇v|2 + 2t(1− t)∇u∇v
= t2|∇u|2 + (1− t)2|∇v|2 − t(1− t)

(
|∇u−∇v|2 − |∇u|2 − |∇v|2

)
= t|∇u|2 + (1− t)|∇v|2 − t(1− t)|∇u−∇v|2.

Integrating over Ω yields

E(wt) = tE(u) + (1− t)E(v)− 1

2
t(1− t)

∫
Ω
|∇u−∇v|2 dx.

Since E(u) = E(v), this simplifies to

E(wt) = E(u)− 1

2
t(1− t)

∫
Ω
|∇u−∇v|2 dx ≤ E(u). (2.3)

Combining (2.2) and (2.3) gives equality, and therefore it must be,∫
Ω
|∇u−∇v|2 dx = 0. (2.4)

Therefore ∇u = ∇v a.e. in Ω, so u− v is constant a.e. Since u− v = 0 on ∂Ω, the constant must be
zero. Hence u = v. □

From now on, we will always assume that ϕ ∈ C∞(Ω) for simplicity. One gets analogous results under
much weaker regularity assumptions on ϕ, but the proofs might be more technical.

Our goal is to derive the Euler-Lagrange equation for minimizers v of (2.1).

We start with the following lemma.

Lemma 2.2. Let Ω ⊂ Rn be a Lipschitz domain, ϕ ∈ C∞(Ω), and v ∈ H1(Ω) be any minimizer of
(2.1). Then, −∆v ≥ 0 in Ω.

Proof. Since v minimizes E among all functions above the obstacle ϕ (and with fixed boundary con-
ditions on ∂Ω), we have that

E(v + εη) ≥ E(v) for every ε ≥ 0 and η ≥ 0, η ∈ C∞
c (Ω).

This yields

ε

∫
Ω
∇v · ∇η + ε2

2

∫
Ω
|∇η|2dx ≥ 0 for every ε ≥ 0 and η ≥ 0, η ∈ C∞

c (Ω),
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and thus ∫
Ω
∇v · ∇η ≥ 0 for every η ≥ 0, η ∈ C∞

c (Ω).

This means that −∆v ≥ 0 in Ω in the weak sense, as desired. □

From here, by showing first that {v > ϕ} is open, we obtain the Euler-Lagrange equations for the
functional:

Proposition 2.3. Let Ω ⊂ Rn be a Lipschitz domain, ϕ ∈ C∞(Ω), and v ∈ H1(Ω) be any minimizer
of (2.1). Then, v ∈ Cloc(Ω) and it holds

v ≥ ϕ in Ω

−∆v ≥ 0 in Ω

∆v = 0 in {v > ϕ} ∩ Ω.

(2.5)

Proof. By construction, we already know that v ≥ ϕ in Ω and, thanks to Lemma 2.2, −∆v ≥ 0 in Ω,
i.e, v is (weakly) superharmonic. Up to replacing v in a set of measure zero, we may also assume that
v is lower semi-continuous (by Lemma 1.19). Thus, we only need to prove that ∆v = 0 in {v > ϕ}∩Ω
and that v is continuous.

First, we show that {v > ϕ} ∩ Ω is open. Let x0 ∈ {v > ϕ} ∩ Ω be such that v(x0)− ϕ(x0) > ε0 > 0.
Since v is lower semi-continuous and ϕ is continuous, there exists some δ > 0 such that

v(x)− ϕ(x) > ε0/2 ∀x ∈ Bδ(x0).

Hence Bδ(x0) ⊂ {v > ϕ}. Since x0 was arbitrary, this means that {v > ϕ} is open.

This implies, also, that ∆v = 0 weakly in {v > ϕ} ∩ Ω. Indeed, for any x0 ∈ {v > ϕ} and η ∈
C∞
c (Bδ(x0)) with |η| ≤ 1, we have v ± εη ≥ ϕ in Ω for all |ε| < ε0/2, and therefore it is an admissible

competitor. Thus, we have

E(v + εη) ≥ E(v) ∀|ε| < ε0.

In particular, the map ε→ E(v + εη) has a critical point at ε = 0, i.e.

d

dε
E(v + εη)|ε=0 = 0.

Equivalently,

0 =
d

dε
|ε=0

∫
Ω
|∇(v + εη)|2 dx

=
d

dε
|ε=0

∫
Ω
|∇v|2 + ε2|∇η|2 + 2ε∇v∇η dx

= 2

∫
Ω
∇v∇η dx,

i.e. v is weakly harmonic in Bδ(x0). Hence, we deduce that v is harmonic in {v > ϕ} ∩ Ω.

Finally, let us show that v is continuous. We already know, by the regularity of harmonic functions
(see Corollary 1.5), that v is continuous in {v > ϕ} ∩ Ω. Let us now show that v is continuous in
{v = ϕ} ∩ Ω, as well.

Let y0 ∈ {v = ϕ} ∩ Ω, and let us argue by contradiction. Since v is lower semi-continuous, it suffices
to assume that there is a sequence yk → y0 such that

v(yk) → v(y0) + ε0 = ϕ(y0) + ε0
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for some ε0 > 0.

Since ϕ is continuous, we may assume also that yk ∈ {v > ϕ}. Let us denote by zk the projection of
yk towards {v = ϕ}, so that δk := |zk − yk| ≤ |y0 − yk| ↓ 0 and

v(zk) → v(y0) = ϕ(y0). (2.6)

Now, since v is superharmonic, by (1.8),

v(zk) ≥
∫
B2δk

(zk)
v = (1− 2−n)

∫
B2δk

(zk)\Bδk
(yk)

v + 2−n

∫
Bδk

(yk)
v = I1 + I2.

For the first equality, we used that Bδk(yk) ⊂ B2δk(zk). Observe that, for I1, since v is lower semi-
continuous and δk ↓ 0, we can assume that, for k large enough, v ≥ ϕ(y0) − 2−nε0 in B2δk(zk), so
that

I1 ≥ (1− 2−n)[ϕ(y0)− 2−nε0].

On the other hand, since v is harmonic in Bδk(yk), we have by the mean-value property that

I2 = 2−nv(yk).

Combining everything, we get

v(zk) ≥ (1− 2−n)[ϕ(y0)− 2−nε0] + 2−nv(yk) → ϕ(y0) + 2−2nε0,

which contradicts (2.6). Hence, v is continuous in Ω. □

Remark 2.4. As in the case of harmonic functions, it is easy to show that if a function v satisfies
v ≥ ϕ in Ω,

∆v ≤ 0 in Ω,

∆v = 0 in the set {v > ϕ},
then it must actually be a minimizer of (2.1).

We next prove the following result, which says that v can be characterized as the least supersolution
above the obstacle.

Proposition 2.5 (Least supersolution). Let Ω ⊂ Rn be a Lipschitz domain, ϕ ∈ H1(Ω), and v ∈
H1(Ω) be any minimizer of (2.1). Then, for any function w satisfying −∆w ≥ 0 in Ω, w ≥ ϕ in Ω,
and Trw ≥ Tr v, we have w ≥ v in Ω. In other words, if w is any supersolution above the obstacle ϕ,
then w ≥ v.

Proof. If w is any function satisfying −∆w ≥ 0 in Ω, w ≥ ϕ in Ω, and Trw ≥ Tr v, it simply follows
from the maximum principle that w ≥ v. Indeed, we have −∆w ≥ −∆v in Ω ∩ {v > ϕ}, and on the
boundary of Ω we have Trw ≥ Tr v and w ≥ ϕ = v on {v = ϕ}. □

2.2. Optimal regularity of solutions. Thanks to Proposition 2.3, we know that any minimizer of
(2.1) is continuous and solves (2.5).

From now on, we will restrict our study to solutions of the Euler Lagrange equation without any
boundary conditions on ∂Ω. This means, we localize the problem and study it in a ball:

For ϕ ∈ C∞(B1), we consider 
v ≥ ϕ in B1,

−∆v ≥ 0 in B1,

−∆v = 0 in {v > ϕ} ∩B1.

(2.7)
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Our next goal is to answer the following question:

Question: What is the optimal regularity of solutions?

Remark 2.6. Notice that in the set {v > ϕ} we have ∆v = 0, while in the interior of the set {v = ϕ}
we have ∆v = ∆ϕ (since v = ϕ there). Thus, since ∆ϕ is in general not zero, ∆v is discontinuous
across the free boundary ∂{v > ϕ} in general. In particular, v /∈ C2.
Example: in 1D, consider v(x) = −x2+, which solves (2.7) in (−1, 1) with ϕ = −x2.

We will now prove that any minimizer of (2.1) is actually C1,1, which by the previous remark is the
optimal regularity.

Theorem 2.7 (Optimal regularity). Let ϕ ∈ C∞(B1), and v be any solution to (2.7). Then, v is
C1,1(B1/2), with the estimate

∥v∥C1,1(B1/2)
≤ C∥v∥L∞(B3/4) + ∥ϕ∥C1,1(B3/4)

.

The constant C depends only on n.

To prove this, the main step is the following lemma, which establishes that solutions detach at most
quadratically from the free boundary.

Lemma 2.8. Let ϕ ∈ C∞(B1), and v be any solution to (2.7). Let x0 ∈ B1/2 be any point on {v = ϕ}.
Then, for any r ∈ (0, 1/4) we have

0 ≤ sup
Br(x0)

(v − ϕ) ≤ C∥ϕ∥C1,1(B3/4)
r2,

with C depending only on n.

In particular, Lemma 2.8 implies that v ∈ L∞(B3/4).

Proof. After dividing v by a constant if necessary, we may assume that ∥ϕ∥C1,1(B1) ≤ 1. Let

ℓ(x) := ϕ(x0) +∇ϕ(x0) · (x− x0)

be the linear part of ϕ at x0. Let r ∈ (0, 1/4). Then, by the C1,1 regularity of ϕ, in Br(x0) we have

ℓ(x)− r2 ≤ ϕ(x) ≤ v(x). (2.8)

Next, we consider

w(x) := v(x)− ℓ(x) + r2.

Our goal is to show that in the ball Br(x0), we have

w ≤ Cr2.

This function w satisfies w ≥ 0 in Br(x0) by (2.8), and −∆w = −∆v ≥ 0 in Br(x0). Let us split w
into w = w1 + w2, with{

−∆w1 = 0 in Br(x0)

w1 = w on ∂Br(x0)
and

{
−∆w2 ≥ 0 in Br(x0)

w2 = 0 on ∂Br(x0).

Notice that by the maximum principle, 0 ≤ w1 ≤ w and 0 ≤ w2, and hence 0 ≤ w2 ≤ w.

Moreover, note that

w1(x0) ≤ w(x0) = v(x0)− ℓ(x0) + r2 = r2,
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and thus by the Harnack inequality (see Theorem 1.16),

∥w1∥L∞(Br/2(x0)) ≤ Cr2.

For w2, notice that −∆w2 = −∆v, and in particular −∆w2 = 0 in {v > ϕ}. This means that w2

attains its maximum on {v = ϕ}. But in the set {v = ϕ} we have

w2 ≤ w = ϕ− ℓ+ r2 ≤ Cr2,

and therefore we deduce that

∥w2∥L∞(Br(x0)) ≤ Cr2.

Combining the bounds for w1 and w2, we get

∥w∥L∞(Br(x0)) ≤ Cr2,

as desired. Recalling the definition of w, and using that ∥ϕ∥C1,1(B1) ≤ 1, we find by (2.8),

v − ϕ = w + ℓ− ϕ+ r2 ≤ Cr2 in Br/2(x0),

as desired. □

As shown next, the previous lemma easily implies the C1,1 regularity.

Proof of Theorem 2.7. Dividing v by a constant if necessary, we may assume that

∥v∥L∞(B3/4) + ∥ϕ∥C1,1(B3/4)
≤ 1.

We already know that v ∈ C∞
loc({v > ϕ}), since v is harmonic there. Moreover, v is C∞({v = ϕ}),

since ϕ ∈ C∞. Hence, it remains to show smoothness of v across the interface Γ = ∂{v > ϕ}. For
this, we will use Lemma 2.8.

Let x1 ∈ {v > ϕ} ∩ B1/2, and let x0 ∈ Γ be the closest free boundary point. Denote ρ = |x1 − x0|.
Then, we have −∆v = 0 in Bρ(x1), and thus we have also −∆(v − ℓ) = 0 in Bρ(x1), where ℓ is the
linear part of ϕ at x0. By estimates for harmonic functions (see Corollary 1.5), the quadratic growth
from Lemma 2.8, and since ϕ ∈ C1,1 (arguing as in (2.8)), we find

∥D2v∥L∞(Bρ/2(x1)) = ∥D2(v − ℓ)∥L∞(Bρ/2(x1)) ≤
C

ρ2
∥v − ℓ∥L∞(Bρ(x1))

≤ C

ρ2
∥v − ϕ∥L∞(Bρ(x1)) +

Cρ2

ρ2
≤ Cρ2

ρ2
= C.

[The factor ρ−2 in the second step comes from rescaling Corollary 1.5, i.e. applying it to vρ(x) := v(ρx)
and using that ∥D2v∥L∞(Bρ/2) = ρ−2∥D2vρ∥L∞(B1/2)].

In particular, |D2v(x1)| ≤ C. We can do this for all x1 ∈ {v > ϕ}∩B1/2. Moreover, for x1 ∈ ∂{v > ϕ},
we deduce |D2v(x1)| ≤ C from Lemma 2.8. Altogether, it follows ∥v∥C1,1(B1/2)

≤ C, as desired. □

2.3. Nondegeneracy. Next, we want to prove that, at all free boundary points, v separates from ϕ
at least quadratically (we already know at most quadratically). That is, we want

0 < cr2 ≤ sup
Br(x0)

(v − ϕ) ≤ Cr2 (2.9)

for all free boundary points x0 ∈ ∂{v > ϕ}. This property is essential in order to study the free
boundary later.

We will prove it under an additional assumption:
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Assumption: The obstacle ϕ satisfies

−∆ϕ ≥ c0 > 0 in B1. (2.10)

Remark 2.9. The assumption (2.10) is quite mild.

• Since −∆v ≥ 0 everywhere, it is clear that if x0 ∈ ∂{v > ϕ}, then −∆ϕ(x0) ≥ 0.
In fact, if −∆ϕ(x0) < 0, then, since v touches ϕ from above at x0, the function v − ϕ has a
global minimum there, i.e. (−∆)(v − ϕ) ≤ 0, i.e.−∆v(x0) < 0, a contradiction).

• It can be proved that, in fact, if ∆ϕ and ∇∆ϕ do not vanish simultaneously, then −∆ϕ > 0
near all free boundary points [Caf98].

• The assumption (2.10) is somewhat necessary. Without it, the lower bound in (2.9) actually
fails and one can construct counterexamples in which the free boundary is a fractal set with
infinite perimeter (see [Caf98]).
Idea: Just choose u = 0 and note that given any fractal set, we can find ϕ such that {ϕ = 0}
is this set. Then, u = 0 solves the obstacle problem with obstacle ϕ.

Proposition 2.10 (Nondegeneracy). Let ϕ ∈ C∞(B1), and v be any solution to (2.7). Assume that
ϕ satisfies −∆ϕ ≥ c0 > 0 in B1. Then, for every free boundary point x0 ∈ ∂{v > ϕ} ∩B1/2, we have

0 < cr2 ≤ sup
Br(x0)

(v − ϕ) ≤ Cr2 for all r ∈ (0, 1/4),

with a constant c > 0 depending only on n and c0.

Proof. Let x1 ∈ {v > ϕ} be any point close to x0 (we will let x1 → x0 at the end of the proof).
Consider the function [we will see that the r2 essentially comes from the fact that ∆(|x− x1|2) = 2n.]

w(x) := v(x)− ϕ(x)− c0
2n

|x− x1|2.

Then, in {v > ϕ} ∩Br(x1), we have

−∆w = −∆v +∆ϕ+ c0 = ∆ϕ+ c0 ≤ 0,

Moreover, w(x1) > 0. Hence, by the maximum principle, w attains a positive maximum on ∂({v >
ϕ} ∩ Br(x1)). But on the free boundary ∂{v > ϕ} we clearly have w < 0. Therefore, there is a point
on ∂Br(x1) at which w > 0. In other words,

0 < sup
∂Br(x1)

w = sup
∂Br(x1)

(v − ϕ)− c0
2n
r2.

Letting now x1 → x0, we find sup∂Br(x0)(v − ϕ) ≥ cr2 > 0, as desired. □

Remark 2.11. Note that we have used the fact that −∆v ≥ 0 in B1 only for continuity of v in the
proof of the nondegeneracy!

This ends the study of basic properties of the obstacle problem. Before we continue, let us quickly
summarize:

Summary of basic properties. Let ϕ ∈ C∞(B1) and v be any solution to the obstacle problem
v ≥ ϕ in B1

−∆v ≥ 0 in B1

∆v = 0 in {v > ϕ} ∩B1.

Then, we have:

• Optimal regularity: ∥v∥C1,1(B1/2)
≤ C(∥v∥L∞(B1) + ∥ϕ∥C1,1(B1)).
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• Quadratic growth: If −∆ϕ ≥ c0 > 0, then

0 < cr2 ≤ sup
Br(x0)

(v − ϕ) ≤ Cr2 for all r ∈ (0, 1/2)

at all free boundary points x0 ∈ ∂{v > ϕ} ∩B1/2.

2.4. An alternative way to formulate the obstacle problem. Recall the obstacle problem (2.7)
problem 

v ≥ ϕ in B1,

∆v ≤ 0 in B1,

∆v = 0 in {v > ϕ} ∩B1

for some ϕ ∈ C∞(B1) with −∆ϕ ≥ c0 > 0. Clearly, this problem is equivalent to
u ≥ 0 in B1,

∆u ≤ f in B1,

∆u = f in {u > 0} ∩B1,

(2.11)

where f = −∆ϕ ≥ c0 > 0.

Let us quickly explain that this problem arises as the Euler-Lagrange equation of an alternative energy
functional, without going into too much detail.

Proposition 2.12 (An alternative energy functional). Let Ω ⊂ Rn be any bounded Lipschitz domain,
and let g : ∂Ω → R be such that

C = {u ∈ H1(Ω) : u ≥ 0 in Ω, u|∂Ω = g} ≠ ∅.

Then, for any f ∈ L2(Ω) with f ≥ 0 there exists a unique minimizer of

1

2

∫
Ω
|∇u|2dx+

∫
Ω
fu (2.12)

among all functions u ∈ C.
Moreover, the following are equivalent.

(i) u minimizes 1
2

∫
Ω |∇u|2 +

∫
Ω fu among all functions satisfying u ≥ 0 in Ω and Tru = g.

(ii) u minimizes 1
2

∫
Ω |∇u|2 +

∫
Ω fu

+ among all functions satisfying Tru = g.

Proof. We skip the proof of the existence and uniqueness. The equivalence of (i) and (ii) follows once
we show that minimizers to (ii) are nonnegative. (Note that C ̸= ∅ implies that g ≥ 0 on ∂Ω.)
To show this, recall that |∇u|2 = |∇u+|2 + |∇u−|2, and therefore, since f ≥ 0 in Ω,

1

2

∫
Ω
|∇u+|2 +

∫
Ω
fu+ ≤ 1

2

∫
Ω
|∇u|2 +

∫
Ω
fu+,

with strict inequality unless u = u+. Hence, any minimizer u of the functional in (ii) must be
nonnegative. □

The equivalence of (i) and (ii) will help us understand the connection between the obstacle problem
and the Alt-Caffarelli free boundary problem later.

The Euler-Lagrange equation associated to (2.12) is given as follows:
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Proposition 2.13. Let Ω ⊂ Rn be any bounded Lipschitz domain, f ∈ C∞(Ω), and u ∈ H1(Ω) be
any minimizer of (2.12) subject to the boundary conditions Tru = g. Then, u solves{

∆u = fχ{u>0} in Ω,

u ≥ 0 in Ω

in the weak sense.

Proof. Notice that, by Proposition 2.12, u is actually a minimizer of

E(u) =
1

2

∫
Ω
|∇u|2 +

∫
Ω
fu+

subject to the boundary conditions Tru = g. Hence, for any η ∈ H1
0 (Ω) and ε > 0 we have

E(u+ εη) ≥ E(u).

In particular, we obtain

0 ≤ lim
ε↓0

E(u+ εη)− E(u)

ε
=

∫
Ω
∇u · ∇η + lim

ε↓0

∫
Ω
f
(u+ εη)+ − u+

ε
.

Notice that

lim
ε↓0

(u+ εη)+ − u+

ε
=

{
η in {u > 0},
η+ in {u = 0},

so that we have ∫
Ω
∇u · ∇η +

∫
Ω
fηχ{u>0} +

∫
Ω
fη+χ{u=0} ≥ 0 for all η ∈ H1

0 (Ω).

Assume first that η ≥ 0, so that∫
Ω
∇u · ∇η +

∫
Ω
fη ≥ 0 for all η ∈ H1

0 (Ω), η ≥ 0,

which implies that ∆u ≤ f in the weak sense. On the other hand, if η ≤ 0, then∫
Ω
∇u · ∇η +

∫
Ω
fηχ{u>0} ≥ 0 for all η ∈ H1

0 (Ω), η ≤ 0,

which implies that ∆u ≥ fχ{u>0} in the weak sense. Hence, (recall that f ≥ 0),

fχ{u>0} ≤ ∆u ≤ f in Ω.

In particular, notice that ∆u = f in {u > 0}.
Now, since f is smooth, this implies that ∆u ∈ L∞

loc(Ω). One can show (elliptic regularity theory

and Calderón-Zygmund estimates) that this implies u ∈ C1,1−ε
loc (Ω) ∩W 2,2

loc (Ω). Thus, ∆u = 0 almost
everywhere in the level set {u = 0} and we have

∆u = fχ{u>0} a.e. in Ω.

From here, one can easily deduce that ∆u = fχ{u>0} in Ω in the weak sense. □

As we mentioned before, the formulation of the obstacle problem (2.12) is equivalent to the one from
(2.1). One can also deduce the C1,1 regularity and nondegeneracy from the Euler-Lagrange equation
in Proposition 2.13. This is a little shorter, however, more complicated tools like Schauder theory
and the Harnack inequality for equations of the form −∆u = f have to be used. For more details see
[FRRO22].
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Summary of basic properties. Let f ∈ C∞(B1) and u be any solution to the obstacle problem{
u ≥ 0 in B1,

∆u = fχ{u>0} in B1.

Then, we have:

• Optimal regularity: ∥u∥C1,1(B1/2)
≤ C(∥u∥L∞(B1) + ∥f∥C0,1(B1)).

• Quadratic growth: If f ≥ c0 > 0, then

0 < cr2 ≤ sup
Br(x0)

u ≤ Cr2 for all r ∈ (0, 1/2)

at all free boundary points x0 ∈ ∂{u > 0} ∩B1/2.

2.5. Regularity of free boundaries: an overview. The next goal of this chapter is to understand
properties of the free boundary in the obstacle problem.

We will from now on consider solutions to


u ∈ C1,1(B1),

u ≥ 0 in B1,

∆u = f in {u > 0} ∩B1,

(2.13)

with

f ≥ c0 > 0 and f ∈ C∞(B1).

Note that all of these properties are in particular satisfied by solutions to the obstacle problem, as we
have seen before.

Remark 2.14. Several remarks are in order:

• Note that on the interface

Γ = ∂{u > 0} ∩B1,

since u ∈ C1,1 and u ≥ 0, we have that

u = 0 on Γ, ∇u = 0 on Γ.

(if ∇u ̸= 0 on Γ, there would be a sign change).
• Due to Remark 2.11, the nondegeneracy from Proposition 2.10 still holds true. Hence, under
(2.13), we still have for some 0 < c < C (now with C depending on ∥u∥C1,1(B1)),

0 < cr2 ≤ sup
Br(x0)

u ≤ Cr2 ∀x0 ∈ ∂{u > 0}. (2.14)

• Since u ∈ C1,1, we have that ∆u ∈ L∞, i.e. it holds ∆u = f a.e. in {u > 0} ∩ B1. Moreover,
since u ∈ C1,1, we have that ∇u ∈ H1, it holds that ∆u = 0 a.e. on {∇u = 0} ⊃ {u = 0} (It
is a general fact that derivatives of an H1 function v vanish a.e. on {v = 0}, and it follows
from the fact that ∇v = ∇v+−∇v− a.e.). From here, we can deduce that for any η ∈ C∞

c (B)
and B ⋐ B1, ∫

B
∇u∇η = −

∫
B
∆uη +

∫
∂B
∂νuη = −

∫
B
fχ{u>0}η dx,
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i.e. u solves in the weak sense

∆u = fχ{u>0} in B1.

For simplicity, we will assume from now on that

f ≡ 1,

i.e. we will consider solutions u to 
u ∈ C1,1(B1),

u ≥ 0 in B1,

∆u = 1 in {u > 0} ∩B1,

(2.15)

It is also possible to study the problem with a general f ∈ C∞, but it is more technically involved.

The central mathematical challenge in the obstacle problem is to understand the geometry/regularity
of the free boundary Γ. Clearly, despite knowing that u ∈ C1,1, Γ could still be a very irregular object,
even a fractal set with infinite perimeter.

Our goal will be to prove Caffarelli’s dichotomy, which splits the free boundary Γ into a set of regular
points and a set of singular points. We will show that

(i) Γ is C∞ near regular points
(ii) Characterize the set of singular points and prove that they are contained in an (n − 1)-

dimensional C1 manifold.

These are the main and most important result in the obstacle problem. (i) was proved by Caffarelli
in 1977 (see [Caf77]), and it is one of the major results for which he received the Wolf Prize in 2012,
the Shaw Prize in 2018, and the Abel Prize in 2023.

Definition 2.15 (blow-up). We say that u0 is a blow-up of u (satisfying (2.15)) at x0 ∈ ∂{u > 0}∩B1,
if there is a sequence rk ↘ 0 such that

urk,x0(x) :=
u(x0 + rkx)

r2

satisfies

urk → u0 in C1
loc(Rn).

If x0 = 0, we denote urk,x0 = urk .

Clearly, blow-ups always exist by Arzelà-Ascoli’s theorem and the C1,1 regularity of u. Moreover, it
is not difficult to see that they are global solutions to the obstacle problem (2.15).

Overview of the strategy.

• Given any free boundary point x0, one considers the rescalings urk,x0 (“zooming in” at a free
boundary point).

• By C1,1 estimates, a subsequence of urk → u0 (blow-up) in C1
loc(Rn) as rk → 0.

• Main issue: classify blow-ups:
– either u0(x) =

1
2(x · e)2+ (regular points)

– or u0(x) =
1
2x

TAx (singular points).

Here, e ∈ Sn−1 and A ≥ 0 is a positive semi-definite matrix satisfying trA = 1.
• transfer information from u0 to u:
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– free boundary is C1,α near regular points (for some small α > 0).
– C1,α implies C∞ (reminiscent of Hilbert’s XIX problem).

2.6. Classification of blow-ups. The aim of this section is to classify all possible blow-ups u0. For
this, we proceed in three steps:

• prove that blow-ups are 2-homogeneous, i.e. u0(λx) = λ2u0(x) for all λ ≥ 0.
• prove that blow-ups are convex, i.e. D2u0 ≥ 0.
• complete classification of blow-ups

Proposition 2.16 (Homogeneity of blow-ups). Let u be any solution to (2.15) with 0 ∈ ∂{u > 0}.
Then, any blow-up of u at 0 is 2-homogeneous.

Remark 2.17. Note that not all global solutions to the obstacle problem in Rn are homogeneous.
There exist global solutions u0 that are convex, C1,1, and whose contact set {u0 = 0} is an ellipsoid.
In fact, it was shown recently in [EFW25] (it was a conjecture for more than 90 years) that the
coincidence set of a global solution with non-empty interior has to be either a half-space, an ellipsoid,
a paraboloid, or a cylinder with an ellipsoid or paraboloid as base.
The result Proposition 2.16 says that such non-homogeneous solutions cannot appear as blow-ups.

Our proof uses a very important tool in the theory of free boundaries, namely a monotonicity formula.

Theorem 2.18 (Weiss’ monotonicity formula). Let u be any solution to (2.15) with 0 ∈ ∂{u > 0}.
Then, the quantity

Wu(r) :=
1

rn+2

∫
Br

(
1

2
|∇u|2 + u

)
− 1

rn+3

∫
∂Br

u2 (2.16)

is monotone in r, i.e.

d

dr
Wu(r) =

1

rn+4

∫
∂Br

(x · ∇u− 2u)2dx ≥ 0 ∀r ∈ (0, 1).

Proof. Let ur(x) = r−2u(rx), and observe that by scaling

Wu(r) =

∫
B1

(
1

2
|∇ur|2 + ur

)
−
∫
∂B1

u2r . (2.17)

Using this, together with d
dr (∇ur) = ∇ d

drur, we find

d

dr
Wu(r) =

∫
B1

∇ur · ∇
d

dr
ur +

d

dr
ur − 2

∫
∂B1

ur
d

dr
ur.

Now, integrating by parts we get∫
B1

∇ur · ∇
d

dr
ur = −

∫
B1

∆ur
d

dr
ur +

∫
∂B1

∂ν(ur)
d

dr
ur.

Now, note that

d

dr
ur = −2r−3u(rx) + r−2x · ∇u(rx) = 1

r
{x · ∇ur − 2ur}. (2.18)

Thus, d
drur = 0 in {ur = 0} (recall that ∇ur = ur = 0 on {ur = 0} by Remark 2.14). Moreover, since

∆ur = 1 in {ur > 0}, we have∫
B1

∇ur · ∇
d

dr
ur = −

∫
B1

d

dr
ur +

∫
∂B1

∂ν(ur)
d

dr
ur.
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Thus, we deduce, using also that ∂ν = x · ∇ on ∂B1 together with (2.18)

d

dr
Wu(r) =

∫
∂B1

∂ν(ur)
d

dr
ur − 2

∫
∂B1

ur
d

dr
ur

=

∫
∂B1

x · ∇urr−1{x · ∇ur − 2ur} − 2

∫
∂B1

urr
−1{x · ∇ur − 2ur}

=
1

r

∫
∂B1

(x · ∇ur − 2ur)
2,

which gives the desired result after scaling back from ur to u. □

Proof of Proposition 2.16. Let ur(x) = r−2u(rx), and notice that we have the scaling property

Wur(ρ) =Wu(ρr),

for any r, ρ > 0. Indeed,

Wur(ρ) = ρ−n−2

∫
Bρ

(
1

2
|∇ur|2 + ur

)
− ρ−n−3

∫
∂Bρ

u2r

= ρ−n−2r−2

∫
Bρ

(
1

2
|∇u|2 + u

)
− ρ−n−3r−4

∫
∂Bρ

u2

= (rρ)−n−2

∫
Brρ

(
1

2
|∇u|2 + u

)
− (rρ)−n−3

∫
∂Brρ

u2 =Wu(rρ).

If u0 is any blow-up of u at 0 then there is a sequence rj → 0 satisfying urj → u0 in C1
loc(Rn). Thus,

for any ρ > 0 we have

Wu0(ρ) = lim
rj→0

Wurj
(ρ) = lim

rj→0
Wu(ρrj) =Wu(0+). (2.19)

Notice that the limitWu(0+) := limr→0Wu(r) exists by monotonicity ofW and since u ∈ C1,1 implies
Wu(r) ≥ −C for all r ≥ 0. Moreover, the second equality follows by scaling (see (2.17)).

Hence, the function Wu0(ρ) is constant in ρ. However, by Theorem 2.18 this yields that

x · ∇u0 − 2u0 = 0 in Rn,

and therefore u0 is 2-homogeneous. (Note that u0 is a global solution to (2.15), and therefore we can
take any r > 0 in Theorem 2.18.) Indeed, this property implies that

ψ(λ) = λ−2u0(λx)

satisfies

ψ′(λ) = λ−3(−2u0(λx) + (λx) · ∇u0(λx)) = 0 ∀λ ≥ 0,

which implies that

λ−2u0(λx) = ψ(λ) = ψ(1) = u0(x).

□
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