ADVANCED TOPICS LECTURE: FREE BOUNDARY PROBLEMS

MARVIN WEIDNER

The goal of this lecture is to give an introduction to free boundary problems. These are partial
differential equations which exhibit an a priori unknown interface. A prototype example is given by
the melting of ice in water, but free boundary problems also exist in various other contexts such as,
physics, material sciences, biology, finance, etc.

Typical questions:

e optimal regularity of solutions (across the free boundary)
e regularity of the free boundary
e singular free boundary points

(1) Basic properties of harmonic functions
— mean value property, maximum principle
— basic regularity results
(2) The obstacle problem [FRRO22), [PSU12]
— optimal regularity
— Caffarelli’s dichotomy: regular and singular points
— O regularity of the free boundary near regular points
— higher regularity of the free boundary
— properties of singular points
— outlook
(3) The Alt-Caffarelli problem [Vel23] [CS05]
— optimal regularity
— improvement of flatness
— higher regularity of the free boundary
— singular points
— outlook
(4) Further topics
— thin obstacle problem and nonlocal operators
— time-dependent free boundary problems
— free boundary problems with multiple phases

1. BASIC PROPERTIES OF HARMONIC FUNCTIONS

The Dirichlet problem for the Laplace equation is given as follows

—Au = f in
U =g in 09,

1



2 MARVIN WEIDNER

where the boundary condition g and the source term f are given and 2 C R™ is a bounded (Lips-
chitz) domain. There are different ways to make sense of solutions to this problem. Under suitable
assumptions on f, g, there exists a unique solution.

From now on, let 2 C R™ be a bounded Lipschitz domain. We recall several important facts and
definitions.

e We have the following function space
HY(Q) = {u e L*(Q) : du € L*(Q) for i € {1,...,n}},

where Q;u are the weak partial derivatives of uw and Vu = (01, ..., 0hu).
e When equipped with the following scalar product, H'(Q) is a Hilbert space

(u, ) () = /uvdx+/Vqud:c, (u, ) () = ||u||%11(9).

e Recall the following integration by parts formula: if u,v € H'(), then

/@uvdxz—/u@wdx—l—/ uvy; do, i=1,...,n,
Q Q o0

where v € S"7! is the unit outward normal vector to 9.
e There is a compact trace operator Tr : HY(Q) — L?(99), such that Tru = u|sn whenever
u € HY(Q)NCO(). We define

Hy(2) := C2(Q) 1.0
as the closure of C°(Q) with respect to || - [| 1(q). It holds
Hy(Q) = {u € H'(Q) : Tr(u) = 0}.
e Sobolev embedding
HY(Q) C La2(Q), if2<n,

Moreover, the embedding H!(Q) € L%(Q) is compact, whenever ¢ < 712% In particular,

2
HY(Q) € L*(Q).
e Poincaré inequality: for any u € H*(f) it holds

/|u u)ol? dx<C'1/ |Vul|? d,
/]u\degCg/ \Vu|2da:+/ | Trul? dz.
) Q 09

The constants C1, Cy only depend on n, 2. -
e Holder spaces: Let o € (0,1]. We define for u € C(Q)

s [042) = )
x’yeﬁ | - y‘

Moreover, for k € NU {0}, we set

[U]co,a(ﬁ) = ’ ||U”co,a(§) = ||lull e (o) + [u]oma(ﬁ)-

b

ullgra ey = lullery + [P ulgo.0 @y l[ullex Z |1 D7ul| oo )



ADVANCED TOPICS LECTURE: FREE BOUNDARY PROBLEMS 3

Note that by Holder interpolation, it holds
lulloray = Nl o) + [P ulpoags — lulloragy = ull gy + 1D ull oo 0)-
We define the spaces
P (@) = {u € C(Q) : ||ull crog < 00}

Sometimes, when 0 < k 4+ o = 8 ¢ N, we define C8(Q) := C**(Q2). Note

C*@Q)c---cCPQ) cch@) c @) c c¥HQ) c ¢ Q) c C(Q).
e Arzela-Ascoli’s theorem: Given a sequence (f;); C C**(Q) for some a € (0,1] and k£ € NU{0}
satisfying | fill or.oy < C for some €' > 0. Then, there exists a subsequence (fi;); C (fi):
which converges uniformly (if & = 0) and in C¥(Q) (if k& € N) to some f € C**(Q) and

[ Fllena ($2) < €.
Literature recommendation: [Eval0]. Also recall functional analysis and PDE lecture.

Definition 1.1. Let f € L?(Q). We say that u satisfies —Au = f in € in the weak sense whenever
u € HY(Q) and

/ Vu-Vodr = / fv forall v € H}(R). (1.2)
Q Q

Let g € L?(09). We say that u is a weak solution of the Dirichlet problem (T.1)) if u € H'(Q) satisfies
Tru = g, and (1.2).

We say that u is weakly superharmonic (resp. weakly subharmonic) in €2, or satisfies —Au > 0 in Q
in the weak sense (resp. —Awu < 0 in the weak sense) if

/Vu-VvdacZO resp. /Vu-VdeSO for all v € HL(Q),v > 0.
Q Q

We say that w > g on 9Q if Tru > g on 0f).

Remark 1.2. If u € C?(Q), then it holds —Awu = f in  in the classical sense, if and only if it holds
in the weak sense. Proof: integration by parts.

1.1. Regularity of solutions and the maximum principle. Throughout this section, whenever
we say that  C R” is a domain, we mean that €2 is a connected, bounded, open set with 9Q € C%1.
The latter assumption can usually be relaxed, but we assume it here for simplicity in order to have a
well-defined trace operator.

Theorem 1.3 (Existence and uniqueness of weak solutions). Let Q C R” be a domain, f € L?(£2)
and

{we HY(Q) : Trw = g} # 0. (1.3)
Then, there exists a unique weak solution to the Dirichlet problem (1.1).

Proof. Lax Milgram. (We expect this to be well-known.) O
Remark 1.4. e A sufficient condition for (1.3)) to hold true is if g € C%1(09).

e ([1.3) holds true if and only if there exists G € H'(Q) such that Tr G = g. One can show that
this is the case if and only if g € H'/2(99).
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The unique weak solution to the Dirichlet problem in a ball is explicit:

_ : 2
Au=0 in By N u(x):wn_l/ (- J2[7)g(y)
U=y on 0B, oB, |z —yl"

where w1 = |S"7L].

By a rescaling argument, a similar formula holds in any ball B, (xg) C R™. Thus, we deduce that for
any harmonic function Au = 0 in ©, with B, (xg) C 2, we have (Poisson kernel representation)

2 2
9B (o) |z =yl

An immediate consequence of (1.4 is the following result.

Corollary 1.5. Let Q C R" be any open set, and u € H*(Q) be any function satisfying Au = 0 in Q
in the weak sense. Then, u is C™° inside  and w is a classical solution.

Moreover, if u is bounded and Au = 0 in By in the weak sense, then we have the estimates
HUHck(Bl/Q) < CkHUHL‘”(Bl)v (1.5)

for all k € N, and for some constant Cy, depending only on k and n.

Proof. For any ball B,(z9) C € it holds (1.4). By differentiating this formula it is immediate to see
that u € C°°(B, 2(z0)) and that (L.5) holds. Since this can be done for any ball B.(zo) C €, we
deduce that u is C*° inside (2. O

Next, we prove the maximum principle for weak solutions.
Proposition 1.6. Let Q C R" be a domain. Assume that u € H'() satisfies, in the weak sense,

—Au>0 inQ
u>0 on 0f.

Then, u > 0 in €.
Proof. Notice that since —Awu > 0 in  we have

/Vu'Vvdx>O for all v > 0, ’UEH&(Q). (1.6)
Q

Let us consider ™ := max{—wu,0} and vt := max{u, 0}, so that u = v —u~. It is easy to check that
ut € HY(Q) whenever u € H'(Q), and that v~ € H}(Q) since Tru > 0 on 9). Hence we can choose
v=u" > 0in (L.6). Then, using that Vu = Vu™ — Vu~ and Vu' - Vu~ = 0, we get

0§/Vu-Vudm=/Vu+~Vudx—/\Vu\Qd:z::—/Vude.
Q Q Q Q

Hence, Vu~™ =0 in . Since Tru~™ = 0 this implies v~ = 0 in §2, that is, « > 0 in . O

Remark 1.7. e comparison principle: If —Au > —Aw in Q and v > v on 912, then u > v in Q.
e in particular, superharmonic functions have their minimum on the boundary.
e Analogously, if —Au <0in  and u < 0 on 92, then © < 0 in .

A useful consequence of the maximum principle is the following.
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Lemma 1.8. Let Q C R" be a domain. Let u be any weak solution of
{—Au =f inQ
U=y on Of).
Then,
lull oo ) < Cll fllzoe () + 191l e (902)

for a constant C' depending only on the diameter of €.

Proof. Let us consider the function
w(x) = u(@)/(1fll o) + 119l Lo 00))-
We want to prove that |a| < C in . Notice that @ solves
—Ai=f inQ
U=g on 0f),
with [g] < 1 and || < 1.

Let us choose R large enough so that Br D §2; after a translation, we can take R = %diam(Q). In Bg,
let us consider the function
R? — |x|?

1.
5 +

w(z) =
The function w satisfies
{—Aw =1 inQ
w>1 on O0f).
Therefore, by the comparison principle, we deduce that
u<w in Q.

Since w < C' (with C' depending only on R), we deduce that & < C in Q. Finally, repeating the same
argument with —u instead of @, we find that |a| < C in Q, and thus we are done. O

The following result follows from the maximum principle and states how solutions to the Dirichlet
problem behave near the boundary.

We say that €2 satisfies the interior ball condition whenever there exists pg > 0 such that every point
on 0N can be touched from inside with a ball of radius pg contained in 2. That is, for any zg € 92
there exists B, (yo) C Q with zg € 9B,,(yo). It is not difficult to see that any C? domain satisfies
such condition, and also any domain which is the complement of a convex set.

Lemma 1.9 (Hopf lemma). Let Q@ C R™ be a domain satisfying the interior ball condition. Let

u € C() be a positive weakly superharmonic function in Q N By, with w > 0 on 0Q N By. Then,
u > cod in QN By for some ¢y > 0, where d(z) = dist(x, Q°).

Note that ¢y in general depends on u!

Proof. Since u is positive and continuous in 2 N By, we have that

uw>c1 >0 in{d>po/2} N By
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for some ¢; > 0. Let us consider the solution of

—Aw =0 in BPO\BPO/27

w =0 on dB,,,
w =1 on dB, .
One can check
2—n _ 2-n
w(zr) = i Po if n >3,

(po/2)2~" — pg ™"

w(z) = max{l, pzo(po - |x|)} ifn=1.

In particular, it is immediate to check that w > ca(po — |z|) in B, for some ¢z > 0.

if n =2,

Let us take xg € 01, and apply the comparison principle to the functions v and cjw(yo + z) in
(Boo(10) \ By 2(30)) € QN By, where yq is from the definition of the interior ball condition. (We

are using that v € C'(§2) to guarantee u > 0 on 9B, (yo)). Hence, we deduce that
u(z) = crw(yo + ) = crcz(po — |z — yol) = crcad(x)  in Bpy(yo)-

Setting cy = cico and using the previous inequality for zg € 0€2 and the corresponding ball B, (yo) C
2N Bs/z, the result follows.

If Q satisfies the exterior ball condition, i.e. there exists pg > 0 such that every point on 92 can be
touched from outside with a ball of radius py contained in €2, we also have the following result:

Lemma 1.10. Let Q C R™ be a domain satisfying the exterior ball condition. Let u € C(Q2) be a
harmonic function in QN By, with u =0 on 0QN By. Then, u < cod in QN By for some cg > 0, where
d(x) := dist(z, Q°).

Proof. We employ a similar barrier argument as before. O

Remark 1.11. In particular, in nice domains (i.e. those satisfying the interior and exterior ball
condition, e.g. if 92 € C11), harmonic functions with u = 0 on 9Q behave like linear functions near
the boundary, i.e.

cad <u<cod -closeto 99

This property remains true in domains with 9Q € C1“. However, it is dramatically different in bad
domains. For instance,

uip(x) = x1x9 solves —Au; =0 in Q) = {z122 >0} withu; =0 on 98y,

up(z) = r?3sin(2¢/3) solves —Aug =0 inQy ={z; <0 orzy <0} withup =0 on Qy.
More generally, for any o > 0, the function u,(x) = r®sin(a¢) is harmonic in R? \ {0} and satisfies
uq =0 on O{(rcosg,rsing) : ¢ € [0,7/a]}.

Hence, in free boundary problems (where the boundary of the solution domain is unknown), it is a
delicate question to analyze the behavior of the solution close to the boundary.

Remark 1.12. One can prove that solutions to the Dirichlet problem in Q (1.1) always satisfy

u € C(9) if €2 satisfies the interior or exterior ball condition.
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1.2. The mean value property.

Lemma 1.13. Let Q2 C R” be any open set. If —Au =0 in €2, then

u(z) = ][ u(y)dy = ][ u(y)dy  for any ball B,(x) C Q. (1.7)
OBr(x) By (x)
Moreover, it holds for any weakly superharmonic (subharmonic) function v € H'(Q),
r— u(y)dy is monotone non-increasing (non-decreasing) for r € (0, dist(x,09)).  (1.8)
By ()

The property in (1.7)) is called the mean value property.

Proof. If u is harmonic, the first equality in the mean value property follows by setting x¢o = x in
(1.4). The second equality follows by integrating the first one, namely

][ u(y) dy:m‘”/ pnl][ u(y) dy dp.
By () 0 B,(x)

The claim for weakly subharmonic functions goes as follows. Fix 0 < p < r such that B,(z) C Q. Let
v be the solution to —Av = 0 in B,(z) with v = v on 0B, (x). Then, by the maximum principle u < v
in B,(x). Hence, by the mean value property

S(p) = fa ICOLTE ]{9 0 =0() = ]é o = fa o My =50

Then, by integrating over (0,7),
A = updy = [ S dp < Sy [ dp = S0,
By () 0 0
However, this yields

Alr) = —n2r”_1/ p"1S(p)dp + nr S (r)rm Tt =
0

as desired. H

(S(r) = A(r)) = 0,

The following two lemmas yield the Harnack inequality for harmonic functions.

Lemma 1.14 (Weak Harnack inequality for weak supersolutions). Let u € C(By). Then,

—Auz0 i B e s ol
u >0 in B By s - Ll(Bl/2)7

for some ¢ > 0 depending only on n.
Proof. By the Lebesgue differentiation theorem and (1.8, we have for any z¢ € B3

u(o) > —

= 1By u = cllullr > ef|ull
| B3] By3(w0) L(Byy3(20)) LY(Bys)

for some ¢ = ¢(n) > 0, so that we have proved the property in a ball of radius 1/3.

To prove it in B /5, consider Zg € 9By /3 and the ball By 5(Zo). We can repeat the previous steps to
derive

inf u>c|u Z0))-
31/6(9?0) - H HLI(Bl/ﬁ( o))
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Moreover, if we denote B := By /3N By /6(Zo), then
s inf > cHu||L1(Bl/6(f0)) > c/ u > |B| i%fu > ¢ inf w.
1/6\Z0 B 1/3
This implies

inf w> inf u A inf inf wu > cinf u.
By 2 By /3 z0€0B) 3 By 6(Z0) By/3

Similarly,

lullpr (B, ) < Nullzis,,,) +¢ max lullpip, @) < cllullzis, ,)-

$0€831/3

Altogether, from the first result in this proof, we can conclude

é?/i u>c é?/fg u 2 eollullpis, ) 2 esllullLis, )

for some c3 = ¢3(n) > 0. In the last step we have used again (1.8).
Lemma 1.15 (L* bound for weak subsolutions). Let u € C(By). Then,

-Au<0 inB = supu< CHu|]L1(33/4),
1/2

for some C' depending only on n.

We will see later that the L' norm in this estimate can be replaced by the L norm for any € > 0.

This follows from Young’s inequality and a covering argument.

Proof. The result follows from the the mean value property (|1.8]) in the same way as|[Lemma 1.14, O

Theorem 1.16 (Harnack inequality). Let u € C(By).

{ —Au=0 1in B

. — supu <cinf u
u>0 n B P = ’

By s By /s

for some ¢ > 0 depending only on n.

Proof. Combine |Lemma 1.15| and [Lemma 1.14!

O

Remark 1.17. In particular, we have the following strict maximum principle: If —Awu > 0 in  with

u>01in Q and u # 0, then v > 0 in Q.

We end this subsection with three auxiliary lemmas that all follow from the mean value property and

that will be used later in the lecture.

The first lemma says that the pointwise limit of a sequence of superharmonic uniformly bounded

functions is superharmonic (in the sense that (1.8 holds).

Lemma 1.18. Let Q C R", and let (wg)r be a sequence of uniformly bounded functions wy : @ — R

satisfying (L.8]), converging pointwise to some w : Q — R. Then w satisfies (1.8)).

Proof. The proof is immediate. In fact, let wo := w and let us define for £k € N U {oo}, ¢, x(r) :
J[B,,(x) wy. Notice that ¢, ,(r) is non-increasing in r for all & € N. In particular, given 0 < rq
ry < Ry, we have that ¢y (r1) > ¢y k(r2) for £ € N. Now we let & — oo and use that w; —
pointwise to deduce, by the dominated convergence theorem (notice that wy are uniformly bounded

that ¢z.00(71) > ¢z.00(r2). That is, wee = w satisfies (|1.8)).

g A

~—

)

O
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The second lemma shows that superharmonic functions are lower semicontinuous.

Lemma 1.19. Let us assume that w € L}OC(Q) and satisfies (L1.8)) in Q@ C R™. Then, up to changing
w in a set of measure 0, w is lower semicontinuous in §2.

Proof. We define wo(z) := lim, g fBT () W (which is well defined, since the average is monotone non-
increasing). Then wg(z) = w(zx) if x is a Lebesgue point, and thus wy = w almost everywhere in
Q. Let us now consider xy € €2, and let z; — ¢ as k — o0o. Then, by the dominated convergence
theorem,

][ w = lim w < lim inf wo(xy) (1.9)
Br($0) k—oo Br(wk) ko0
for 0 <r < %dist(mo, 09). Now, by letting r | 0 on the left-hand side, we reach that
wo(xo) < liminf wg(xy), (1.10)
k—o00
that is, wg is lower semi-continuous at xg. O

The next result yields a classification of global harmonic functions.

Theorem 1.20 (Liouville’s theorem). Any bounded solution of Au =0 in R™ is constant.

Proof. Let u be any global bounded solution of Au = 0 in R™. Since w is smooth (by |Corollary 1.5)),
each derivative 0;u is well-defined and is harmonic. Thus, thanks to the mean-value property and the
divergence theorem, for any x € R” and R > 1 we have

c
- O;u
Rrn /BR(I)

Thus, using that |u| < M in R™, we find

Cn Yi c
=|—= u(y)-—dy S/ ul. 1.11
R" /aBR(m) ( )|y! ‘ R" BBR(x)| | (L11)

|Oiu()| =

c M

/
n

c c _
|Ou(z)| < R—Z\&BR(@\M = R—7;L|8B1\R" M= — 0, as R— oo. (1.12)
Therefore, 0;u(z) = 0 for all z € R™, and w is constant. O

2. THE OBSTACLE PROBLEM

In this chapter, we deal with our first free boundary problem: the obstacle problem.

There is a wide variety of problems in physics, industry, biology, finance, and other areas which can be
described by PDEs that exhibit free boundaries. Many of such problems can be written as variational
inequalities, for which the solution is obtained by minimizing a constrained energy functional. The
obstacle problem is one of the most important and canonical examples.

Given smooth functions ¢ : 2 — R and g : 92 — R, the obstacle problem is the following;:

1
minimize 3 / |Vv|?dz  among all functions v > ¢ in Q withv =g on 9Q.
Q

e Interpretation: we look for the least energy function v, but the set of admissible functions
consists only of functions that are above a certain “obstacle” ¢.

e in 2D: Think of v as an elastic membrane that is constrained to be above ¢
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o We will see that the Euler-Lagrange equation is given as follows:

UZ¢ in
—Av>0 inQ
—A'U =0 1in the set {U > ¢}7

Intuition: Maybe you already know that the unconstrained problem leads to harmonic func-
tions! Hence, if we denote E(v) = 3 [, [Vv|?dz, then we will have E(v +en) > E(v) for every
e>0and n>0,n e CX(Q), which yields —Av > 0 in Q. That is, we can perturb v with
nonnegative functions (en) and we always get admissible functions (v 4 en). However, due to
the constraint v > ¢, we cannot perturb v with negative functions in all of €2, but only in the
set {v > ¢}. This is why we get —Av > 0 everywhere in Q, but —Av = 0 only in {v > ¢}.
(We will show later that any minimizer v is continuous, so that {v > ¢} is open.

Short form of the Euler-Lagrange equation:
min{—Av,v — ¢} =0 in Q.

Consider u := v — ¢. Then, the obstacle problem is equivalent to

u>0 in Q
Au<f inQ
Au = f in the set {u > 0},

where f := —A¢p. This way, we can assume without loss of generality that the obstacle is zero.

The previous problem is the Euler-Lagrange equation associated to the following minimization
problem:

1
minimize / i\VuIQ + fu dx among all functions u >0 withu=g—¢ on 9.
Q

A key feature of the obstacle problem is that it has two unknowns:
the solution u, and the contact set {u = 0}.
In other words, there are two regions in €2, characterized by the minimization problem:
one in which v = 0, and one in which — Au = f.
Moreover, we denote the free boundary by
I':=0{u>0}NQQ,

We will see that since u is a nonnegative supersolution, it will hold Vu = 0 on I, that is, we
will have that © > 0 solves

Au=f in{u>0}

u=0 onT

Vu=0 onl.

This is yet another way to write the Euler Lagrange equation (this time explicitly including
the interface T').
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e We see that we have both Dirichlet and Neumann conditions on I'. This would usually be
an over-determined problem (too many boundary conditions on I', recall Lax-Milgram), but
since I is also free, it turns out that the problem has a unique solution (where I' is part of the
solution).

Some applications of the obstacle problem

Dam problem,

Stefan problem,

Hele-Shaw flow,

optimal stopping, finance,
interacting particle systems,
elasticity

2.1. Well-posedness and the Euler Lagrange equation. Existence and uniqueness of solutions
follows easily from the fact that the functional [, [Vv|*dz is convex, and that we want to minimize
it in the closed convex set {v € H'(2) : v > ¢}. The following proof is standard in the calculus of
variations

Proposition 2.1 (Existence and uniqueness). Let Q C R" be a Lipschitz domain, and let g : 02 — R
and ¢ € HY () be such that

C={we H Q) :w>¢inQTrw= g} #0.

Then, there exists a unique minimizer of

E(v) = / |Vol>dz  among all v € C. (2.1)
Q

Proof. Let us define

1
o = inf{E(w) = 2/ Vw|*dz : w € K},
Q

that is, the infimum value of E(w) among all admissible functions w € C. Let us take a sequence of
functions {vy} such that

(i) vy € H'(Q),
(ii)) Trox = g and v > ¢ in Q,
(iii) E(vg) — 6p as k — oo.

By (i), ||kl z2(q) is uniformly bounded, and by the Poincaré inequality,
vkllz2) < ClIVllz2) + 9]l 200

i.e., the sequence {vy,} is uniformly bounded in H*(€). Therefore, a subsequence {vy,} will converge
to a certain function v strongly in L2(Q) and weakly in H' ().

Moreover, by compactness of the trace operator Tr : H'(Q) — L?(8€2), we will have Trv;, — Tro in
L2(09), so that Trv = g.

Furthermore, v satisfies (weak lower semi-continuity of || - | 1) and compactness of H'(Q) C L*(Q2))

vl () < hjfggolf il 71 ()5 vl p2) = jlggo 5]l 20
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and therefore,

1 1. . .
E(v) = Sllm@ <5 hjrgg)lf[vj]Hl(Q) = hjfgg)le(vkj)-

Hence, v is a minimizer of the energy functional. Since vg; > ¢ in  and vg; — v in L?(€2), we have
v > ¢ in ). Thus, we have proved the existence of a minimizer v.

The uniqueness of the minimizer follows from the strict convexity of the functional E(v), as follows:
First, observe that the set C is convex, i.e. if u,v € C are both minimizers, then for ¢ € (0,1), we have
w:=tu+ (1 —t)v €C.

By minimality of v and v,
E(u) = E(v) < E(wy). (2.2)
On the other hand, for the gradients we have the identity
|Vw|* = 2| Vul? + (1 — t)*|Vu|* + 2t(1 — t)VuVo
= *|Vul® + (1 — t)*|Vu]* = t(1 — t) (|Vu — Vov]* = |[Vul* — [Vv]?)
= t|Vul> + (1 — t)|Vo]? — t(1 — t)|Vu — Vu|2.
Integrating over 2 yields

1
Blw) = tB(w) + (1~ )E@) — 111 - t)/ IV — Vol da.
Q
Since E(u) = E(v), this simplifies to

E(w;) = E(u) — %t(l —t) /Q \Vu — Vo> de < E(u). (2.3)

Combining (2.2)) and (2.3) gives equality, and therefore it must be,
/ |Vu — Vo> dz = 0. (2.4)
Q

Therefore Vu = Vv a.e. in §2, so u — v is constant a.e. Since u — v = 0 on 052, the constant must be
zero. Hence u = v. 0

From now on, we will always assume that ¢ € C*°(Q2) for simplicity. One gets analogous results under
much weaker regularity assumptions on ¢, but the proofs might be more technical.

Our goal is to derive the Euler-Lagrange equation for minimizers v of ([2.1).

We start with the following lemma.

Lemma 2.2. Let Q C R" be a Lipschitz domain, ¢ € C*(Q), and v € H* () be any minimizer of
(2.1). Then, —Av >0 in Q.

Proof. Since v minimizes F among all functions above the obstacle ¢ (and with fixed boundary con-
ditions on 012), we have that

E(v+en) > E(v) forevery e >0and n>0,ne C(Q).
This yields

2
€/VU~V77—|—€2/]V77|2da:20 for every ¢ > 0 and n > 0,1 € C°(92),
Q Q
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and thus
/ Vu-Vn>0 foreveryn>0,neCr(Q).
Q

This means that —Av > 0 in  in the weak sense, as desired. O

From here, by showing first that {v > ¢} is open, we obtain the Euler-Lagrange equations for the
functional:

Proposition 2.3. Let Q C R" be a Lipschitz domain, ¢ € C®(Q), and v € H'(Q) be any minimizer
of (2.1)). Then, v € Cj,.() and it holds
v >¢ inf)
—Av >0 inQ (2.5)
Av =0 inf{v>¢}nQ.

Proof. By construction, we already know that v > ¢ in Q and, thanks to —Av >0in Q,
i.e, v is (weakly) superharmonic. Up to replacing v in a set of measure zero, we may also assume that
v is lower semi-continuous (by [Lemma 1.19). Thus, we only need to prove that Av =0 in {v > ¢} NQ

and that v is continuous.

First, we show that {v > ¢} N Q is open. Let zg € {v > ¢} N Q be such that v(zg) — ¢(zo) > o > 0.
Since v is lower semi-continuous and ¢ is continuous, there exists some § > 0 such that

v(x) — P(x) > e0/2 Vr € Bs(xo).
Hence Bj(zg) C {v > ¢}. Since xy was arbitrary, this means that {v > ¢} is open.

This implies, also, that Av = 0 weakly in {v > ¢} N Q. Indeed, for any zy € {v > ¢} and n €
C°(Bs(xo)) with |n| < 1, we have v £en > ¢ in Q for all |¢| < £0/2, and therefore it is an admissible
competitor. Thus, we have

E(v+en) > E(v) Vel < eo.

In particular, the map € — E(v + en) has a critical point at ¢ = 0, i.e.

d
%E(v +en)|e=o = 0.

Equivalently,
d
0= dELso/Q V(v +en)|? da

d
= d5|€=°/ (Vo|? + 2| Vn|? + 2e VoV dz
Q

:2/ VuVnde,
Q

i.e. v is weakly harmonic in Bjs(zg). Hence, we deduce that v is harmonic in {v > ¢} N Q.

Finally, let us show that v is continuous. We already know, by the regularity of harmonic functions

(see |Corollary 1.5)), that v is continuous in {v > ¢} N Q. Let us now show that v is continuous in
{v=09¢}NQ, as well.

Let yo € {v = ¢} NQ, and let us argue by contradiction. Since v is lower semi-continuous, it suffices
to assume that there is a sequence y; — 3o such that

v(yr) — v(yo) + €0 = ¢(yo) + €0
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for some g¢ > 0.

Since ¢ is continuous, we may assume also that y; € {v > ¢}. Let us denote by zj the projection of
yr towards {v = ¢}, so that o := |zx — yx| < |yo — yk| 4 0 and

v(zx) = v(yo) = ¢(vo)- (2.6)

Now, since v is superharmonic, by (1.8)),

fu(zk)z][ v:(1—2”)f v—|—2"f v=1I1+1I.
Bas,, (21) Bas), (21)\Bs,, (Yk) Bs, (yk)

For the first equality, we used that Bj, (yx) C Bas, (21). Observe that, for I, since v is lower semi-
continuous and d; | 0, we can assume that, for k large enough, v > ¢(yo) — 27 "¢o in Bas, (21), so
that

I = (1=27")[¢(yo) — 27 "e0]-
On the other hand, since v is harmonic in B, (yj), we have by the mean-value property that
I = 27"v(yk).
Combining everything, we get
v(zk) = (1=27")[b(yo) — 27 "e0] + 270 (yr) — ¢(yo) +27*"<o,

which contradicts (2.6). Hence, v is continuous in €. O
Remark 2.4. As in the case of harmonic functions, it is easy to show that if a function v satisfies

v>¢ in Q,

Av <0 in €,

Av =0 in the set {v > ¢},
then it must actually be a minimizer of .

We next prove the following result, which says that v can be characterized as the least supersolution
above the obstacle.

Proposition 2.5 (Least supersolution). Let Q C R” be a Lipschitz domain, ¢ € H'(Q), and v €
HY(Q) be any minimizer of (2.1). Then, for any function w satisfying —Aw > 0 in Q, w > ¢ in Q,
and Trw > Trv, we have w > v in Q. In other words, if w is any supersolution above the obstacle ¢,
then w > v.

Proof. If w is any function satisfying —Aw > 0in Q, w > ¢ in Q, and Trw > Trw, it simply follows
from the maximum principle that w > v. Indeed, we have —Aw > —Av in QN {v > ¢}, and on the
boundary of Q we have Trw > Trv and w > ¢ = v on {v = ¢}. O

2.2. Optimal regularity of solutions. Thanks to [Proposition 2.3 we know that any minimizer of
(2.1)) is continuous and solves ([2.5).

From now on, we will restrict our study to solutions of the Euler Lagrange equation without any
boundary conditions on 9€). This means, we localize the problem and study it in a ball:

For ¢ € C*°(By), we consider

v > ¢ in B17
“Av >0 in B, (2.7)
—Av =0 in{v>¢}NB.
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Our next goal is to answer the following question:

Question: What is the optimal regularity of solutions?

Remark 2.6. Notice that in the set {v > ¢} we have Av = 0, while in the interior of the set {v = ¢}
we have Av = A¢ (since v = ¢ there). Thus, since A¢ is in general not zero, Av is discontinuous

across the free boundary d{v > ¢} in general. In particular, v ¢ C2.
Example: in 1D, consider v(z) = —xi, which solves (2.7) in (—1,1) with ¢ = —22.

We will now prove that any minimizer of (2.1)) is actually C''', which by the previous remark is the
optimal regularity.

Theorem 2.7 (Optimal regularity). Let ¢ € C°°(By), and v be any solution to (2.7). Then, v is
01’1(31/2), with the estimate

[ollcri(s, y) < Cllvlie sy, + 10llcras,,,)-
The constant C' depends only on n.

To prove this, the main step is the following lemma, which establishes that solutions detach at most
quadratically from the free boundary.

Lemma 2.8. Let ¢ € C*°(B1), and v be any solution to (2.7)). Let xo € By o be any point on {v = ¢}.
Then, for any r € (0,1/4) we have

0< sup (v— ) < Clllleri (s,

Br (IO

with C depending only on n.

In particular, implies that v € L>°(Bsg4).

Proof. After dividing v by a constant if necessary, we may assume that [|¢[|c11(p,) < 1. Let
U(z) := ¢(x0) + Vo(zo) - (z — x0)

be the linear part of ¢ at zg. Let r € (0,1/4). Then, by the C! regularity of ¢, in B,(x) we have

U(x) — 1% < p(z) < v(x). (2.8)
Next, we consider

w(z) = v(z) — (x) + 72
Our goal is to show that in the ball B, (x(), we have

w < Cr?.

This function w satisfies w > 0 in B, (zg) by , and —Aw = —Av > 0 in B,(z9). Let us split w

into w = wy + ws, with

{—Aw1 =0 in B,(x0) and {—Awg >0 in B(x0)

w, = w on 0B, (zo) wy =0 on B, (xp).

Notice that by the maximum principle, 0 < w; < w and 0 < ws, and hence 0 < wy < w.
Moreover, note that

wi(20) < w(zp) = v(wo) — (o) + 72 =17,
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and thus by the Harnack inequality (see [Theorem 1.16)),

[will Los (B, 5 (@o)) < CT.

For wy, notice that —Awy = —Aw, and in particular —Awy = 0 in {v > ¢}. This means that ws
attains its maximum on {v = ¢}. But in the set {v = ¢} we have

W §w:¢f€+r2 SCT2,

and therefore we deduce that

lwall Lo (B, (o)) < CT°-
Combining the bounds for w; and we, we get

| o (B, (20)) < CT2,
as desired. Recalling the definition of w, and using that [[¢[|c1.1(p,) < 1, we find by (2.8)),

v—¢=w+{l—¢+7r><Cr’ in B,js(z0),

as desired. O

As shown next, the previous lemma easily implies the C'*! regularity.

Proof of [Theorem 2.7, Dividing v by a constant if necessary, we may assume that
HUHLW(B3/4) + ||¢H(1171(33/4) <L

We already know that v € C.({v > ¢}), since v is harmonic there. Moreover, v is C*({v = ¢}),
since ¢ € C*°. Hence, it remains to show smoothness of v across the interface I' = 0{v > ¢}. For

this, we will use

Let z1 € {v > ¢} N By/y, and let 29 € I' be the closest free boundary point. Denote p = |21 — 2o|.
Then, we have —Av = 0 in B,(z1), and thus we have also —A(v — ¢) = 0 in B,(x1), where £ is the
linear part of ¢ at xg. By estimates for harmonic functions (see |Corollary 1.5), the quadratic growth
from and since ¢ € Cb! (arguing as in (2.8))), we find

C
100l 8, o) = D% = Ol (8, o) < g0 = Elios (5, o1
C CP2 sz
= ﬁ”v n quLoo(Bp(xl)) + 7 < pT =C.

[The fa.ctor p~2in t2he second step coZmeSerom rescaling|Corollary 1.5, i.e. applying it to v,(z) := v(px)
and using that || D%v||p=(p,,,) = p~ "Dl (B, )]

In particular, | D?v(z1)| < C. We can do this for all 21 € {v > ¢}N By 5. Moreover, for z1 € d{v > ¢},
we deduce |D?v(z1)| < C from Altogether, it follows ||’UHCI,1(31/2) < C, as desired. O

2.3. Nondegeneracy. Next, we want to prove that, at all free boundary points, v separates from ¢
at least quadratically (we already know at most quadratically). That is, we want

0<er?< B51(1p)(v —¢) < Cr? (2.9)
L0

for all free boundary points zy € d{v > ¢}. This property is essential in order to study the free
boundary later.

We will prove it under an additional assumption:
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Assumption: The obstacle ¢ satisfies
—A¢p>cy>0 in By. (2.10)
Remark 2.9. The assumption (2.10]) is quite mild.

e Since —Awv > 0 everywhere, it is clear that if g € 9{v > ¢}, then —A¢p(zo) > 0.

In fact, if —A¢(zg) < 0, then, since v touches ¢ from above at z¢, the function v — ¢ has a
global minimum there, i.e. (—A)(v—¢) <0, i.e.—Av(xg) < 0, a contradiction).

e It can be proved that, in fact, if A¢ and VA¢ do not vanish simultaneously, then —A¢ > 0
near all free boundary points [Caf98].

e The assumption is somewhat necessary. Without it, the lower bound in actually
fails and one can construct counterexamples in which the free boundary is a fractal set with
infinite perimeter (see [Caf98]).

Idea: Just choose u = 0 and note that given any fractal set, we can find ¢ such that {¢ = 0}
is this set. Then, u = 0 solves the obstacle problem with obstacle ¢.

Proposition 2.10 (Nondegeneracy). Let ¢ € C*°(By), and v be any solution to (2.7). Assume that
¢ satisfies —A¢p > co > 0 in By. Then, for every free boundary point xo € 0{v > ¢} N By /9, we have

0<er?< sup (v—¢) <Cr® forallr € (0,1/4),
By (zo)

with a constant ¢ > 0 depending only on n and cq.

Proof. Let x1 € {v > ¢} be any point close to z¢ (we will let 1 — z¢ at the end of the proof).
Consider the function [we will see that the r? essentially comes from the fact that A(|x — z1|?) = 2n.]

— _ _ G0 2
w(z) :=v(r) — ¢(x) 2n|x x|

Then, in {v > ¢} N B, (x1), we have
—Aw=—-Av+A¢p+cy=A¢+ ¢y <0,

Moreover, w(z1) > 0. Hence, by the maximum principle, w attains a positive maximum on d({v >
¢} N By(x1)). But on the free boundary d{v > ¢} we clearly have w < 0. Therefore, there is a point
on 0B, (z1) at which w > 0. In other words,

0< sup w= sup (v—gb)—ﬂr?
9B (1) 9B, (1) 2n
Letting now 1 — xo, we find supyp, ()(v — ¢) > er® > 0, as desired. O

Remark 2.11. Note that we have used the fact that —Awv > 0 in B; only for continuity of v in the
proof of the nondegeneracy!

This ends the study of basic properties of the obstacle problem. Before we continue, let us quickly
summarize:
Summary of basic properties. Let ¢ € C°°(Bp) and v be any solution to the obstacle problem

v Z (b in B1

—Av>0 in By

Av=0 in{v>¢}NB.

Then, we have:

e Optimal regularity: [[v]c11(s, ,) < C([[v]lz=B,) + 19llcris,))-
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e Quadratic growth: If —A¢ > ¢y > 0, then

0<er?< sup (v—¢) <Cr? forall re (0,1/2)
BT(LI:())

at all free boundary points xg € 9{v > ¢} N By /5.

2.4. An alternative way to formulate the obstacle problem. Recall the obstacle problem ({2.7)
problem

v = ¢ in Bb
Av <0 in Bl,
Av=0 in{v>¢}NDB;
for some ¢ € C*°(B1) with —A¢ > ¢y > 0. Clearly, this problem is equivalent to
u Z 0 in Bl,
Au < f in By, (2.11)
Au=f in{u>0}NBy,
where f = —A¢ > ¢y > 0.

Let us quickly explain that this problem arises as the Euler-Lagrange equation of an alternative energy
functional, without going into too much detail.

Proposition 2.12 (An alternative energy functional). Let Q@ C R™ be any bounded Lipschitz domain,
and let g : 9Q — R be such that

C={uec HY(Q) :u>0inQulsq = g} # 0.

Then, for any f € L?(Q) with f > 0 there exists a unique minimizer of

1
2/§2\Vu|2dx+/gfu (2.12)

among all functions u € C.
Moreover, the following are equivalent.

(i) w minimizes %fQ |Vul? + Jq fu among all functions satisfying u > 0 in Q and Tru = g.
(ii) w minimizes %fQ |Vul? + Jo fuT among all functions satisfying Tru = g.

Proof. We skip the proof of the existence and uniqueness. The equivalence of (i) and (ii) follows once
we show that minimizers to (ii) are nonnegative. (Note that C # () implies that g > 0 on 912.)
To show this, recall that |Vu|? = |[Vut|? + |Vu~|?, and therefore, since f > 0 in €,

1/ |Vu+|2+/fu+ < 1/ \Vu!2+/fu+,
2 Jo Q 2 Jo Q

with strict inequality unless v = u". Hence, any minimizer u of the functional in (ii) must be

nonnegative. O

The equivalence of (i) and (ii) will help us understand the connection between the obstacle problem
and the Alt-Caffarelli free boundary problem later.

The Euler-Lagrange equation associated to (2.12)) is given as follows:
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Proposition 2.13. Let Q C R" be any bounded Lipschitz domain, f € C®(Q), and u € H*(2) be
any minimizer of (2.12)) subject to the boundary conditions Tru = g. Then, u solves

Au = fX{us0y €,
U >0 mn Q

in the weak sense.

Proof. Notice that, by [Proposition 2.12| u is actually a minimizer of

=5 [1vul+ [ pet

subject to the boundary conditions Tru = g. Hence, for any n € H(Q2) and ¢ > 0 we have
E(u+en) > E(u).

In particular, we obtain

E . + _
0 < lim 20 En) = B :/Vu~V77+lim/f(u+€n)
€l0 15 Q el0 Jo S

Notice that

lim (u+en)t —ut _Jn in {u > 0},
€0 € nt in {u = 0},

so that we have

/Vu-Vn+/ f77><{u>0}+/ S Xquzoy = 0 for all n € Hy(9).
Q Q Q

Assume first that n > 0, so that

/Vu-Vn—l—/fnZO for all n € Hy (), > 0,
Q Q

which implies that Au < f in the weak sense. On the other hand, if n < 0, then

/ Vu-Vn +/ fXgus0y =0 forallne H}(Q),n <0,
Q Q

which implies that Au > fx (>0} in the weak sense. Hence, (recall that f > 0),
fXfus0y CAu < fin Q.

In particular, notice that Au = f in {u > 0}.

Now, since f is smooth, this implies that Au € L{* (£2). One can show (elliptic regularity theory
and Calderén-Zygmund estimates) that this implies u € C’lloc1 ()N VVli 02 (©). Thus, Au = 0 almost
everywhere in the level set {u = 0} and we have

Au = fx{us0} a.e. in (2

From here, one can easily deduce that Au = fx(,~0y in © in the weak sense. O

As we mentioned before, the formulation of the obstacle problem ([2.12)) is equivalent to the one from
([2.1). One can also deduce the C*! regularity and nondegeneracy from the Euler-Lagrange equation
in [Proposition 2.13] This is a little shorter, however, more complicated tools like Schauder theory

and the Harnack inequality for equations of the form —Awu = f have to be used. For more details see
[FRRO22].
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Summary of basic properties. Let f € C°°(B) and u be any solution to the obstacle problem
u>0 in By,
Au = fX{u>0} in Bl.
Then, we have:
e Optimal regularity: ”UHCM(BW) < C([lullpee(syy + I fllcor(my))-
e Quadratic growth: If f > ¢y > 0, then

0<er?< sup u<Cr? forallre(0,1/2)
Br(zo0)

at all free boundary points xg € d{u > 0} N By /.

2.5. Regularity of free boundaries: an overview. The next goal of this chapter is to understand
properties of the free boundary in the obstacle problem.

We will from now on consider solutions to

u e Cl’l(Bl),
w>0in By, (2.13)
Au= fin {u >0} N By,
with
f>co>0 and fe€C®(B).

Note that all of these properties are in particular satisfied by solutions to the obstacle problem, as we
have seen before.

Remark 2.14. Several remarks are in order:
e Note that on the interface
I'=0{u> 0} N By,
since v € C1! and u > 0, we have that
u=0onT, Vu=0onT.

(if Vu # 0 on I', there would be a sign change).
e Due to the nondegeneracy from [Proposition 2.10]still holds true. Hence, under
(2.13), we still have for some 0 < ¢ < C (now with C' depending on |[u[|c1.1(p,)),

0<cer? < sup u<Cr? Vag € 0{u > 0}. (2.14)
By (z0)

e Since u € C1!, we have that Au € L®, i.e. it holds Au = f a.e. in {u > 0} N B;. Moreover,
since u € CH!, we have that Vu € H!, it holds that Au = 0 a.e. on {Vu = 0} D {u = 0} (It
is a general fact that derivatives of an H' function v vanish a.e. on {v = 0}, and it follows
from the fact that Vo = Vo — Vo~ a.e.). From here, we can deduce that for any n € C2°(B)

and B € Bj,
/ VuVn = —/ Aun + oyun = —/ IX{us0yndz,
B B oB B
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i.e. u solves in the weak sense
Au = fX{u>0} in Bl.

For simplicity, we will assume from now on that
f=1
i.e. we will consider solutions u to
u € CHY(By),
u > 0in By, (2.15)
Au=11in {u >0} N By,

It is also possible to study the problem with a general f € C°°, but it is more technically involved.

The central mathematical challenge in the obstacle problem is to understand the geometry/regularity
of the free boundary I'. Clearly, despite knowing that u € C1!, T' could still be a very irregular object,
even a fractal set with infinite perimeter.

Our goal will be to prove Caffarelli’s dichotomy, which splits the free boundary I' into a set of regular
points and a set of singular points. We will show that

(i) T" is C*° near regular points
(ii) Characterize the set of singular points and prove that they are contained in an (n — 1)-
dimensional C' manifold.

These are the main and most important result in the obstacle problem. (i) was proved by Caffarelli
in 1977 (see [Caf77]), and it is one of the major results for which he received the Wolf Prize in 2012,
the Shaw Prize in 2018, and the Abel Prize in 2023.

Definition 2.15 (blow-up). We say that ug is a blow-up of u (satisfying (2.15))) at ¢ € 9{u > 0} By,
if there is a sequence r; \, 0 such that
u(xo + r17)
o) = D)
satisfies

Up, — ug  in OL(R™).

If zog = 0, we denote u, 4o = Ur,

Clearly, blow-ups always exist by Arzela-Ascoli’s theorem and the C'! regularity of u. Moreover, it
is not difficult to see that they are global solutions to the obstacle problem (2.15]).

Overview of the strategy.

e Given any free boundary point zp, one considers the rescalings u,, », (“zooming in” at a free
boundary point).
e By C!! estimates, a subsequence of u,, — ug (blow-up) in C} (R") as rj, — 0.
e Main issue: classify blow-ups:
— either ug(z) = £(z - )2 (regular points)
— or ug(z) = 12T Az (singular points).
Here, e € S* ! and A > 0 is a positive semi-definite matrix satisfying trA = 1.
e transfer information from ug to u:
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— free boundary is C'h* near regular points (for some small a > 0).
— CH* implies C* (reminiscent of Hilbert’s XIX problem).

2.6. Classification of blow-ups. The aim of this section is to classify all possible blow-ups ug. For
this, we proceed in three steps:

e prove that blow-ups are 2-homogeneous, i.e. ug(Ax) = A\2ug(z) for all A > 0.
e prove that blow-ups are convex, i.e. D?ug > 0.
e complete classification of blow-ups

Proposition 2.16 (Homogeneity of blow-ups). Let u be any solution to (2.15|) with 0 € 0{u > 0}.
Then, any blow-up of u at 0 is 2-homogeneous.

Remark 2.17. Note that not all global solutions to the obstacle problem in R"™ are homogeneous.
There exist global solutions ug that are convex, C!, and whose contact set {ug = 0} is an ellipsoid.
In fact, it was shown recently in [EFW25| (it was a conjecture for more than 90 years) that the
coincidence set of a global solution with non-empty interior has to be either a half-space, an ellipsoid,
a paraboloid, or a cylinder with an ellipsoid or paraboloid as base.

The result |Proposition 2.16| says that such non-homogeneous solutions cannot appear as blow-ups.

Our proof uses a very important tool in the theory of free boundaries, namely a monotonicity formula.

Theorem 2.18 (Weiss’ monotonicity formula). Let u be any solution to (2.15|) with 0 € d{u > 0}.
Then, the quantity
1 1 1 )

d 1

ar V) =

is monotone in r, i.e.

/ (z - Vu—2u)?dz >0 Yre (0,1).
0B,

Proof. Let u,(z) = r~2u(rz), and observe that by scaling

Wa(r) :/31 (;|Vur|2+ur> /331 w2, (2.17)

Using this, together with %(VUT) = V%u,«, we find

d d d d
7Wu = r'vir 7r_2 r 5 Up.
dr (r) By vu dr " + dr /831 Y
Now, integrating by parts we get
d d d
Vu, - V—u, = — Aty —u, + Oy (Uy ) —uy.
B d?" B d’l" 8B d?"
Now, note that
d 1
ol = —2r3u(ra) + r 2z - Vu(rz) = ;{x -V, — 2u, }. (2.18)

Thus, d%ur = 0 in {u, = 0} (recall that Vu, = u, = 0 on {u, = 0} by [Remark 2.14)). Moreover, since

Au, = 1in {u, > 0}, we have

d d d
Vi, - V—u, = —/ —uy; + Oy (uy) — .
/Bl dr B, dr 9B, ( )dr
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Thus, we deduce, using also that 9, = x -V on 9B together with (2.18)

d d d
T U = 81/ r T r—2 TT T
TW (r) - (uy) o /8 1u U

= / T - Vurr_l{x -Vu, — 2u,} — 2/ uf,m_l{a: -Vu, — 2u,}
0B;

0B;
1 2
= - (x - Vu, — 2u,)?,
T JoB,
which gives the desired result after scaling back from u, to wu. O

Proof of [Proposition 2.16. Let u,(z) = r~2u(rz), and notice that we have the scaling property

W, (p) = Wu(pr),

for any 7, p > 0. Indeed,

e 1 I
Wur(p):p " 2/ <2‘VUT’2+UT) —p " 3/ U
B, 0B,
1
:p—n—QT—Q/ <|Vu]2+u> _p—n—3r—4/ u?
B, \2 0B,

P

o [ ) (517 +u) = o [ = W)

SN

If ug is any blow-up of u at 0 then there is a sequence r; — 0 satisfying u,; — g in Clloc(R"). Thus,
for any p > 0 we have
Wayo(p) = lim Wy, (p) = lim W (pr;) = Wy (0+). (2.19)
Tj-}O J T‘j—)O

Notice that the limit W, (0+) := lim,_,o W, (r) exists by monotonicity of W and since u € C! implies
Wy (r) > —C for all » > 0. Moreover, the second equality follows by scaling (see (2.17)).

Hence, the function W,,,(p) is constant in p. However, by [Theorem 2.18| this yields that
z-Vug—2ug =0 in R"”,

and therefore ug is 2-homogeneous. (Note that wug is a global solution to (2.15)), and therefore we can
take any r > 0 in [Theorem 2.18]) Indeed, this property implies that

P(\) = A 2up(\x)
satisfies
Y'(N) = A3 (=2up(\x) + (Az) - Vug(Az)) =0 VA >0,
which implies that
A Pug(Ax) = 9(A) = $(1) = up(x).
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