S4B1 - Graduate Seminar on Analysis Functions of Bounded Variation and Applications

Dr. Kerrek Stinson – kstinson@uni-bonn.de

11/5/2022

Homework

Lemma 0.1. Let (X, μ, σ) be a measure space, with μ a measure on the space X having measurable sets given by σ . Suppose μ is positive and $\mu(X) < \infty$. If $\{U_i\}_{i \in \mathcal{I}} \subset \sigma$ is a collection (countable or uncountable) of disjoint subsets of X only countably many U_i can have nonzero mass, i.e., $\mu(U_i) > 0$.

Proof. For $n \in \mathbb{N}$, as $\mu(X) < \infty$ and the U_i are disjoint, the collection $\{i \in \mathcal{I} : \mu(U_i) > 1/n\}$ must be finite. Consequently,

$$\{i \in \mathcal{I} : \mu(U_i) > 0\} = \bigcup_{n \in \mathbb{N}} \{i \in \mathcal{I} : \mu(U_i) > 1/n\}$$

is countable.

There are surely many tweaks you can make of the above idea. The place this is commonly used, as it was in class, is for a measure μ which is finite on compact sets in \mathbb{R}^N . Then we apply the above lemma to the collection $\{\partial B(0,t)\}_{t>0}$ (boundary of ball centered at 0 with radius t) to find that $\mu(\partial B(0,t)) > 0$ only for countably many t > 0, which implies (as we had wanted) $\mu(\partial B(0,t)) = 0$ for almost every t > 0.