Partial Differential Equations and Functional Analysis

Winter 2017/18 Prof. Dr. Stefan Müller Richard Schubert

Problem Sheet 9.

Due in class, Friday, December 15, 2017.

Problem 1. (1+2+1+1 points)

Let l_{∞} be the space of bounded sequences $x : \mathbb{N} \to \mathbb{R}$. Let $\tau : l_{\infty}(\mathbb{R}) \to l_{\infty}(\mathbb{R})$ defined by $(\tau x)_n = x_{n+1}$ be the left translation operator. Let $\mathbf{1} = (1, 1, \ldots) \in l_{\infty}(\mathbb{R})$ be the constant sequence. Consider the subspace $A = \{x - \tau x + c\mathbf{1} \mid x \in l_{\infty}(\mathbb{R}), c \in \mathbb{R}\}.$

- (i) Show that for z = x − τx + c1 ∈ A, ||z||_{l∞} ≥ |c| and that the map C : A → ℝ mapping z to c is well-defined and linear.
 Hint: Use the sum 1/N ∑_{i=1}^N z_i for N ∈ ℝ large.
- (ii) Show that there is L ∈ (l_∞(ℝ))' with L = C on A, ||L|| = 1, L1 = 1, and L ∘ τ = L. Show that then if x ∈ l_∞(ℝ) with x_n ≥ 0 for every n ∈ ℕ, then Lx ≥ 0 and that lim inf_{n→∞} x_n ≤ Lx ≤ lim sup_{n→∞} x_n for every x ∈ l_∞(ℝ).
 Hint: For positivity write x = c1 y for some c ∈ ℝ, y ∈ l_∞(ℝ) with ||y|| ≤ |c|, remember that for any ε > 0, there exists N ∈ ℕ such that lim inf x ε ≤ x_n ≤ lim sup x + ε for all n ≥ N.
- (iii) Show that there is no sequence $c \in l_1$ such that $L(x) = \sum_{k=0}^{\infty} c_k x_k$ for all $x \in l_{\infty}$. *Hint: Assume for the sake of contradiction that there is such a sequence c, and compute* $\sum_{k=0}^{\infty} c_k e_k^{(i)}$ and $L(e^{(i)})$ for standard basis vectors, *i.e.*, $e_k^{(i)} = \delta_{ki}$.
- (iv) Compute L(1, 0, 1, 0, 1, 0, ...).

Problem 2. (5 points)

Let X be a real normed space. Prove that if X' is separable then X is separable.

Hint: Let $\{T_n : n \in \mathbb{N}\}$ be dense in X'. Show that there exist $x_n \in X$ with $||x_n|| = 1$ and $T_n(x_n) \ge \frac{1}{2}||T_n||$, and set $Y := \operatorname{span}\{x_n : n \in \mathbb{N}\}$. Assume for the sake of contradiction that $\overline{Y} \neq X$. Prove that then there is $T \in X'$ with ||T|| = 1 and $T|_Y = 0$.

Problem 3. (2+3 points)

- (i) Suppose $U \subset \mathbb{R}^n$ open, $T : C_c^{\infty}(U) \to \mathbb{R}$ such that $|T(f)| \leq K ||f||_{L^2}$ for all $f \in C_c^{\infty}(U)$. Prove that there is one and only one $\overline{T} \in \mathcal{L}(L^2(U); \mathbb{R})$ such that $\overline{T}(f) = T(f)$ for all $f \in C_c^{\infty}(U)$.
- (ii) Suppose a sequence $k \mapsto f_k \in W^{1,2}(U)$ and $f \in L^2(U)$ satisfy $f_k \to f$ in $L^2(U)$, and $\|\partial_i f_k\|_{L^2(U)} \leq K$, i = 1, ..., n. Prove that $f \in W^{1,2}(U)$ and $\|\partial_i f\|_{L^2(U)} \leq K$, i = 1, ..., n. Hint: Consider $T : \phi \mapsto \int_U f \partial_i \phi \, d\mathcal{L}^n$.

Problem 4. (2+1+2 points)

Suppose $(X, \|\cdot\|)$ is a real normed space, and $M \subset X$ is closed, convex and $0 \in M^o$, i.e., there is r > 0 with $B(0, r) \subset M$. For $x \in M$ define

$$p(x) := \inf\{\lambda > 0 : \frac{x}{\lambda} \in M\}.$$

- (i) Show that $p(x) < \infty$ for all $x \in X$, and prove that p is sublinear.
- (ii) Prove that $M = p^{-1}([0, 1])$.
- (iii) Suppose additionally that M is bounded (i.e., there is R > 0 such that $M \subset B(0, R)$), and that M is symmetric with respect to 0, i.e., $x \in M \Rightarrow -x \in M$. Prove that p is a norm on X.