Partial Differential Equations and
 Functional Analysis

Winter 2017/18
Prof. Dr. Stefan Müller
Richard Schubert

Problem Sheet 8.

Due in class, Friday, December 8, 2017.

Problem 1. ($2+3$ points)
Suppose $U \subset \mathbb{R}^{n}$ is open and bounded, with smooth boundary ∂U.
(i) Show that for $u \in C_{c}^{\infty}(U)$

$$
\int_{U}|\Delta u|^{2}=\sum_{i, j=1}^{n} \int_{U}\left|\partial_{i} \partial_{j} u\right|^{2}
$$

(ii) For $f \in L_{2}(U)$ consider for $u \in C^{4}(U) \cap C^{1}(\bar{U})$ the biharmonic equation

$$
\begin{aligned}
-\Delta^{2} u & =f \text { in } U \\
u & =0 \text { on } \partial U, \\
\nu \cdot \nabla u & =0 \text { on } \partial U,
\end{aligned}
$$

where ν denotes the normal to ∂U. Determine a weak formulation of this boundary value problem in a suitable subspace of $W^{2,2}(U)$, and prove that is has a unique solution.

Problem 2. (5 points)

Let $U \subset \mathbb{R}^{n}$ be open, bounded with smooth boundary ∂U, and let $f \in L^{2}(U)$. Denote by $\bar{u} \in$ $W_{0}^{1,2}(U)$ the unique solution of

$$
\int_{U} \nabla \bar{u} \cdot \nabla \phi d \mathcal{L}^{n}-\int_{U} f \phi d \mathcal{L}^{n}=0 \text { for all } \phi \in W_{0}^{1,2}(U)
$$

Show that for every finite dimensional subspace $V \subset W_{0}^{1,2}(U)$ there exists a unique $\bar{v} \in V$ such that

$$
\int_{U} \nabla \bar{v} \cdot \nabla \psi d \mathcal{L}^{n}-\int_{U} f \psi d \mathcal{L}^{n}=0 \text { for all } \psi \in V
$$

and that

$$
\|\nabla(\bar{u}-\bar{v})\|_{L^{2}}=\inf _{v \in V}\|\nabla(\bar{u}-v)\|_{L^{2}}
$$

Conclude that there is constant C that depends only on U such that for every finite dimensional $V \subset W_{0}^{1,2}(U)$,

$$
\|\bar{u}-\bar{v}\|_{W^{1,2}(U)} \leq C \inf _{v \in V}\|\bar{u}-v\|_{W^{1,2}(U)}
$$

Hint: Observe that $\int_{U}(\nabla \bar{u}-\nabla \bar{v}) \nabla \psi d \mathcal{L}^{n}=0$ for $\psi \in V$.

Problem 3. ($2+3$ points)

Let (X, \mathcal{S}, μ) be a σ-finite measure space, and let $\nu: \mathcal{S} \rightarrow \mathbb{R}$ be a measure on (X, \mathcal{S}) with $\nu(X)<\infty$ that is absolutely continuous with respect to μ (i.e., $\mu(E)=0 \Rightarrow \nu(E)=0$ for all $E \in \mathcal{S}$).
(i) Prove that there is $h \in L^{2}(\mu+\nu)$ such that for all $g \in L^{2}(\mu+\nu)$

$$
\int_{X} g d \nu=\int_{X} g h d(\mu+\nu)
$$

Hint: Show that $\left|\int_{X} g d \nu\right| \leq \sqrt{\nu(X)}\|g\|_{L^{2}(\mu+\nu)}$, and apply Riesz' representation theorem.
(ii) Show that there is $f \in L^{1}(\mu)$ such that for all $E \in \mathcal{S}$

$$
\nu(E)=\int_{E} f d \mu
$$

Hint: Use that μ is σ-finite to show that $0 \leq h<1(\mu+\nu)$-a.e. Then, for $E \in \mathcal{S}$ with $\mu(E)<\infty$ consider $g_{k}=\frac{1-h^{k}}{1-h} \chi_{E}$.

Problem 4. ($2+3$ points)
Consider $F(u):=\sin (u)$.
(i) Prove that $F: C([0,1]) \rightarrow C([0,1])$ is Frechet differentiable und compute $D F(0)$.

Hint: Consider $|\sin (u(x)+\operatorname{th}(x))-\sin (u(x))-\cos (u(x)) t h(x)|$ and use Taylor expansion.
(ii) Prove that $F: L^{2}(0,1) \rightarrow L^{2}(0,1)$ is not Frechet differentiable.

Hint: Assume for the sake of contradiction that there is $T:=D F(0)$ (see (i) for the candidate). Construct a sequence $k \mapsto f_{k}$ of functions with $f_{k} \rightarrow 0$ and $\lim _{k \rightarrow \infty} \frac{\left\|F\left(f_{k}\right)-T\left(f_{k}\right)\right\|_{L^{2}}}{\left\|f_{k}\right\|_{L^{2}}} \neq 0$.

