Partial Differential Equations and Functional Analysis

Winter 2017/18 Prof. Dr. Stefan Müller Richard Schubert

Problem Sheet 8.

Due in class, Friday, December 8, 2017.

Problem 1. (2+3 points)

Suppose $U \subset \mathbb{R}^n$ is open and bounded, with smooth boundary ∂U .

(i) Show that for $u \in C_c^{\infty}(U)$

$$\int_{U} |\Delta u|^2 = \sum_{i,j=1}^{n} \int_{U} |\partial_i \partial_j u|^2.$$

(ii) For $f \in L_2(U)$ consider for $u \in C^4(U) \cap C^1(\overline{U})$ the biharmonic equation

$$\begin{aligned} -\Delta^2 u &= f \text{ in } U, \\ u &= 0 \text{ on } \partial U, \\ \nu \cdot \nabla u &= 0 \text{ on } \partial U, \end{aligned}$$

where ν denotes the normal to ∂U . Determine a weak formulation of this boundary value problem in a suitable subspace of $W^{2,2}(U)$, and prove that is has a unique solution.

Problem 2. (5 points)

Let $U \subset \mathbb{R}^n$ be open, bounded with smooth boundary ∂U , and let $f \in L^2(U)$. Denote by $\bar{u} \in W_0^{1,2}(U)$ the unique solution of

$$\int_{U} \nabla \bar{u} \cdot \nabla \phi \, d\mathcal{L}^{n} - \int_{U} f \phi \, d\mathcal{L}^{n} = 0 \text{ for all } \phi \in W_{0}^{1,2}(U)$$

Show that for every finite dimensional subspace $V \subset W_0^{1,2}(U)$ there exists a unique $\bar{v} \in V$ such that

$$\int_{U} \nabla \bar{v} \cdot \nabla \psi \, d\mathcal{L}^{n} - \int_{U} f \psi \, d\mathcal{L}^{n} = 0 \text{ for all } \psi \in V,$$

and that

$$\|\nabla(\bar{u}-\bar{v})\|_{L^2} = \inf_{v\in V} \|\nabla(\bar{u}-v)\|_{L^2}.$$

Conclude that there is constant C that depends only on U such that for every finite dimensional $V \subset W_0^{1,2}(U)$,

$$\|\bar{u} - \bar{v}\|_{W^{1,2}(U)} \le C \inf_{v \in V} \|\bar{u} - v\|_{W^{1,2}(U)}.$$

Hint: Observe that $\int_{U} (\nabla \bar{u} - \nabla \bar{v}) \nabla \psi \, d\mathcal{L}^{n} = 0$ for $\psi \in V$.

Problem 3. (2+3 points)

Let (X, \mathcal{S}, μ) be a σ -finite measure space, and let $\nu : \mathcal{S} \to \mathbb{R}$ be a measure on (X, \mathcal{S}) with $\nu(X) < \infty$ that is absolutely continuous with respect to μ (i.e., $\mu(E) = 0 \Rightarrow \nu(E) = 0$ for all $E \in \mathcal{S}$).

(i) Prove that there is $h \in L^2(\mu + \nu)$ such that for all $g \in L^2(\mu + \nu)$

$$\int_X g \, d\nu = \int_X gh \, d(\mu + \nu).$$

Hint: Show that $|\int_X g \, d\nu| \leq \sqrt{\nu(X)} ||g||_{L^2(\mu+\nu)}$, and apply Riesz' representation theorem.

(ii) Show that there is $f \in L^1(\mu)$ such that for all $E \in \mathcal{S}$

$$\nu(E) = \int_E f d\mu$$

Hint: Use that μ is σ -finite to show that $0 \leq h < 1$ $(\mu + \nu)$ -a.e. Then, for $E \in S$ with $\mu(E) < \infty$ consider $g_k = \frac{1-h^k}{1-h}\chi_E$.

Problem 4. (2+3 points)

Consider $F(u) := \sin(u)$.

- (i) Prove that $F: C([0,1]) \to C([0,1])$ is Frechet differentiable und compute DF(0). *Hint: Consider* $|\sin(u(x) + th(x)) - \sin(u(x)) - \cos(u(x))th(x)|$ and use Taylor expansion.
- (ii) Prove that $F: L^2(0,1) \to L^2(0,1)$ is not Frechet differentiable. *Hint: Assume for the sake of contradiction that there is* T := DF(0) *(see (i) for the candidate). Construct a sequence* $k \mapsto f_k$ *of functions with* $f_k \to 0$ *and* $\lim_{k \to \infty} \frac{\|F(f_k) - T(f_k)\|_{L^2}}{\|f_k\|_{L^2}} \neq 0.$