Partial Differential Equations and Functional Analysis

Winter 2017/18
Prof. Dr. Stefan Müller
Richard Schubert

Problem Sheet 7.

Due in class, Friday, December 1, 2017.

Problem 1. (5 points)
Suppose $A \subset L^{2}\left(\mathbb{R}^{n}\right)$. For $f \in A$ denote by $\mathcal{F}(f)$ its Fourier transform. Prove that

$$
A \text { is precompact } \Leftrightarrow\left\{\begin{array}{l}
\sup _{f \in A}\|f\|_{L^{2}}<\infty, \text { and } \\
\limsup _{R \rightarrow \infty} \sup _{f \in A} \int_{\mathbb{R}^{n} \backslash B_{R}(0)}|f(x)|^{2} \mathrm{~d} x=0, \text { and } \\
\lim \sup _{R \rightarrow \infty} \sup _{f \in A} \int_{\mathbb{R}^{n} \backslash B_{R}(0)}|\mathcal{F}(f)(k)|^{2} \mathrm{~d} k=0 .
\end{array}\right.
$$

Hint: For the backward implication it is useful to show that for $\varepsilon>0$ there is a decomposition $f=f_{1}+f_{2}$ with $\operatorname{supp} \mathcal{F}\left(f_{1}\right) \subset B_{R}(0)$ for some $R>0$ and $\left\|\mathcal{F}\left(f_{2}\right)\right\|_{L^{2}}<\epsilon$.

Problem 2. ($1+1+3$ points)
Let $\Omega \neq \emptyset$ be a set. Suppose $H \subset\{f: \Omega \rightarrow \mathbb{R}\}$ is a real Hilbert space of functions $\Omega \rightarrow \mathbb{R}$ with inner product (\cdot, \cdot). We call a function $K: \Omega \times \Omega \rightarrow \mathbb{R}$ a reproducing kernel for H if
(A) $K(x, \cdot) \in H$ for all $x \in \Omega$, and
(B) $f(x)=(f, K(x, \cdot))$ for all $f \in H$ and all $x \in \Omega$.
(i) Prove that if a reproducing kernel for H exists, then it is unique.
(ii) Prove that if a reproducing kernel for H exists, then the functionals $\delta_{t}: H \rightarrow \mathbb{R}, f \mapsto f(t)$ are bounded linear functionals for all $t \in \Omega$.

Hint: Cauchy-Schwarz.
Remark: We will see soon that the converse is also true.
(iii) Consider $\Omega=\mathbb{R}$ and set $K(x, y):=\frac{1}{2} e^{-|x-y|}$.
(a) Show that $K(x, \cdot) \in W^{1,2}(\mathbb{R})$ for all $x \in \mathbb{R}$.
(b) Prove that K is reproducing kernel for $W^{1,2}(\mathbb{R})$. Precisely, for $f \in W^{1,2}(\mathbb{R})$ denote by \bar{f} its continuous representative, and show that for all $x \in \mathbb{R}$

$$
\bar{f}(x)=(\bar{f}, K(x, \cdot))_{W^{1,2}(\mathbb{R})}=\int_{\mathbb{R}} \bar{f}(t) K(x, t) d t+\int_{\mathbb{R}} \bar{f}^{\prime}(t) \partial_{2} K(x, t) d t
$$

Hint: Split the second integral into $\int_{-\infty}^{x}+\int_{x}^{\infty}$, and integrate by parts. Recall that $W^{1,2}(\mathbb{R})=W_{0}^{1,2}(\mathbb{R})$ and note carefully that $\partial_{2} K(x, t)$ jumps at $t=x$.

Problem 3. (5 points)
Let two functions $f:\{z \in \mathbb{C}:|z|<R\} \rightarrow \mathbb{C}$ and $g: \mathbb{C} \rightarrow \mathbb{C}$ be given by the power series $f(z)=$ $\sum_{n=0}^{\infty} a_{n} z^{n}$ with convergence radius R, and the power series $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ with convergence radius ∞, and suppose $z=g(f(z))$ for all $z \in \mathbb{C}$ with $|z|<R$. Suppose further that X is a Banach space, and that $T \in \mathcal{L}(X)$ with $\lim \sup _{m \rightarrow \infty}\left\|T^{m}\right\|^{\frac{1}{m}}<R$. Prove that $g(f(T))=T$.
Hint: Let P_{k} und Q_{k} be polynomials and set $R_{k}:=P_{k} \circ Q_{k}$. Show that if $R_{k}(z) \rightarrow z$ uniformly on $\bar{B}(0, \rho)$ and $R_{k}(z)=\sum_{n=0}^{N_{k}} c_{k, n} z^{n}$, then $c_{k, 1} \rightarrow 1, k \rightarrow \infty$ and $\sup _{n \geq 2}\left|c_{k, n}\right| \rho^{n} \leq c_{k} \rightarrow 0, k \rightarrow \infty$ (Cauchy's integral formula).
Remark: Using this result one can show that there is a map $\sqrt{\cdot}: \mathcal{L}(X) \supset B_{1}(\operatorname{Id}) \rightarrow \mathcal{L}(X)$ with the property that $\sqrt{S}^{2}=S$

Problem 4. (3+2 points)
(i) Give an example of $T \in \mathcal{L}\left(l_{2}, l_{2}\right)$ with $\mathcal{R}(T) \neq l_{2}$ but $\overline{\mathcal{R}}(T)=l_{2}$.

Hint: For the latter property it suffices to show that $\mathcal{R}(T)$ contains all sequences for which only finitely many elements are not zero.
(ii) Let X be a Banach space, H a Hilbert space, and $K: X \rightarrow H$ a compact operator. Show that there is a sequence $k \mapsto K_{k}$ of operators $K_{k}: X \rightarrow H$ with finite dimensional range such that $K_{k} \rightarrow K$ in $\mathcal{L}(X, H)$.
Hint: For $k \in \mathbb{N}$ use that $K(B(0,1)) \subset \bigcup_{i=1}^{N(k)} B\left(y_{i}, \frac{1}{k}\right)$ and set $H_{k}:=\operatorname{span}\left\{y_{1}, \ldots, y_{N(k)}\right\}$. Use the orthogonal projection $P_{k}: H \rightarrow H_{k}$.

