Partial Differential Equations and
 Functional Analysis

Winter 2017/18
Prof. Dr. Stefan Müller
Richard Schubert

Problem Sheet 6.

Due in class, Friday, November 24, 2017.

Problem 1. ($1+2+2$ points)
State whether or not there is a solution to the minimization problem

$$
\min \left\{\sup _{x \in[0,1]}|g(x)-f(x)|: f \in M_{i}\right\}, i=1,2,3
$$

for an arbitrary $g \in C([0,1])$, and prove your statement. The sets M_{i} are given by
(i) $M_{1}:=\left\{f \in C([0,1])\left|\sup _{x \in[0,1]}\right| f(x) \mid \leq 1\right\}$
(ii) $M_{2}:=\left\{f \in C([0,1]) \mid \int_{0}^{1} f(x) x^{2} d x=0\right\}$

Hint: Set $d:=\int_{0}^{1} g(x) x^{2} d x$. Note that $d=\int_{0}^{1}(g-f)(x) x^{2} d x$ for $f \in M_{2}$, and use this to derive first a lower bound for $\inf _{f \in M_{2}}\|f-g\|_{L^{\infty}([0,1])}$.
(iii) $M_{3}:=\left\{f \in C([0,1]) \left\lvert\, \int_{0}^{1} f(x)\left(x-\frac{1}{2}\right) d x=0\right.\right\}$.

Hint: similar idea as for (ii).

Problem 2. ($2+2+1$ points)
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex and continuous.
(i) Show that $f=\sup \left\{g(x) \mid g: \mathbb{R}^{n} \rightarrow \mathbb{R}\right.$ affine, $\left.g \leq f\right\}$.

Hint: Show first that the epigraph $\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R} \mid y \geq f(x)\right\}$ is closed and convex.
(ii) Show that the subdifferential $\partial^{-} f(x)=\left\{a \in \mathbb{R}^{n} \mid f(y) \geq f(x)+a \cdot(y-x)\right.$ for all $\left.y \in \mathbb{R}^{N}\right\}$ is nonempty for all $x \in \mathbb{R}^{n}$.
Hint: You can assume $x=0$ (why?). Consider a sequence of affine functions g_{k} such that $g_{k}(x) \rightarrow f(x)$ from (i) and show compactness of the coefficients.
(iii) Let $(\Omega, \mathcal{A}, \mu)$ be a probability space, i.e. a measure space with $\mu(\Omega)=1, X: \Omega \rightarrow \mathbb{R}^{n}$ a Borel measurable map with $\int_{\Omega}|X| d \mu<\infty$. Show that

$$
f\left(\int_{\Omega} X d \mu\right) \leq \int_{\Omega} f(X) d \mu
$$

This is Jensen's inequality.

Problem 3. ($2+3$ points $)$
(i) Let $T: C([0,1]) \rightarrow C([0,1])$ be given by

$$
T f(x)=\int_{0}^{x} f(y) \mathrm{d} y
$$

Show that $T(\bar{B}(0,1))$ is precompact.
(ii) Let $X, Y \subset \mathbb{R}^{n}$ be compact. Let $K \in C(X \times Y ; \mathbb{R})$. Define $T: C(Y) \rightarrow C(X)$ by

$$
T(f)(x)=\int_{Y} K(x, y) f(y) \mathrm{d} y \quad \text { for } f \in C(Y) \text { and } x \in X
$$

Consider the closed unit ball $\bar{B}(0,1) \subset C(Y)$. Prove that $T(\bar{B}(0,1)) \subset C(X)$ is precompact in $C(X)$.
Hint: Arzela-Ascoli. Note that K is uniformly continuous on $X \times Y$.

Problem 4. (3+2 points)
(i) For $c>0$ define

$$
M_{c}:=\left\{f \in C^{1}([0,1]): \int_{0}^{1}|f(x)|^{2} d x+\int_{0}^{1}\left|f^{\prime}(x)\right|^{2} d x \leq c\right\}
$$

Prove that \bar{M}_{c} is compact in $C([0,1])$.
Hint: Arzela-Ascoli.
(ii) Suppose E is a closed linear subspace of $C^{1}([0,1])$ such that there is $C>0$ with

$$
\int_{0}^{1}\left|f^{\prime}(x)\right|^{2} d x \leq C \int_{0}^{1}|f(x)|^{2} d x \quad \text { for all } f \in E
$$

Prove that E is finite dimensional.
Hint: Use (i) to show that the closure of the unit ball in the C^{0}-norm is compact.

