Partial Differential Equations and Functional Analysis

Winter 2017/18
Prof. Dr. Stefan Müller
Richard Schubert

Problem Sheet 5.

Due in class, Friday, November 17, 2017.

Problem 1. ($2+1+2$ points)
Suppose $U \subset \mathbb{R}^{n}$ is open.
(i) Prove that if $u \in W^{1,1}(U)$ then $u^{+} \in W^{1,1}(U)$ where $u^{+}(x):=\max \{u(x), 0\}$, and show that for all $i=1, \ldots, n$ and a.e. $x \in U$

$$
\partial_{i} u^{+}(x)= \begin{cases}\partial_{i} u(x) & \text { if } u(x)>0 \\ 0 & \text { else }\end{cases}
$$

Hint: Lecture notes.
(ii) Suppose $u, v \in W^{1,1}(U)$. Prove that also the pointwise maximum $\max (u, v) \in W^{1,1}(U)$ and the pointwise minimum $\min (u, v) \in W^{1.1}(U)$, where $\max (u, v)(x):=\max \{u(x), v(x)\}$ and $\min (u, v)(x):=\min \{u(x), v(x)\}$. Compute the weak derivatives.
(iii) Suppose $E \subset U$ is measurable, $u \in W^{1,1}(U)$ and $u=0$ a.e. on E. Prove that $\partial_{i} u=0$ a.e. on E for $i \in\{1, \ldots, n\}$.

Problem 2. $(2+1+2$ points $)$
(i) Let $p \in[1, \infty)$ and $k \in \mathbb{N}$. Prove that $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $W^{k, p}\left(\mathbb{R}^{n}\right)$, i.e.
$W_{0}^{k, p}\left(\mathbb{R}^{n}\right)=W^{k, p}\left(\mathbb{R}^{n}\right)$.
Hint: For $f \in W^{k, p}\left(\mathbb{R}^{n}\right)$ consider first $f_{j}(x)=\varphi\left(\frac{x}{j}\right) f(x)$ with $\varphi \in C_{c}^{\infty}(B(0,1))$ and $\varphi=1$ on $B\left(0, \frac{1}{2}\right)$.

Define the Fourier transform of a function $f \in L^{1}\left(\mathbb{R}^{n}, \mathbb{C}\right)$ as the function $\mathcal{F}(f): \mathbb{R}^{n} \rightarrow \mathbb{C}$ given by

$$
\mathcal{F}(f)(k)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} f(x) e^{-i k \cdot x} \mathrm{~d} x .
$$

For functions $f, g \in L^{1}\left(\mathbb{R}^{n}, \mathbb{C}\right) \cap L^{2}\left(\mathbb{R}^{n}, \mathbb{C}\right)$ we have $(f, g)_{L^{2}}=(\mathcal{F}(f), \mathcal{F}(g))_{L^{2}}$ (Parseval's identity). By density \mathcal{F} can be extended to an isometry $\mathcal{F}: L^{2}\left(\mathbb{R}^{n}, \mathbb{C}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}, \mathbb{C}\right)$ and Parseval's identity still holds.
(ii) Suppose $f \in W^{1,2}\left(\mathbb{R}^{n}, \mathbb{C}\right)$. Prove that for $j=1, \ldots, n$: $\left(\mathcal{F}\left(\frac{\partial}{\partial x_{j}} f\right)\right)(k)=i k_{j}(\mathcal{F}(f))(k)$ for a.e. $k \in \mathbb{R}^{n}$.
(iii) Suppose $f \in L^{2}\left(\mathbb{R}^{n}, \mathbb{C}\right)$. Prove that $f \in W^{1,2}\left(\mathbb{R}^{n}, \mathbb{C}\right)$ if and only if the function $k \mapsto$ $|k|(\mathcal{F}(f))(k)$ is in $L^{2}\left(\mathbb{R}^{n}, \mathbb{C}\right)$. Show that for all $f \in W^{1,2}\left(\mathbb{R}^{n}, \mathbb{C}\right)$

$$
\|f\|_{W^{1,2}\left(\mathbb{R}^{n}, \mathbb{C}\right)}^{2}=\int_{\mathbb{R}^{n}}\left(1+|y|^{2}\right)|\mathcal{F}(f)(y)|^{2} d y
$$

Definition: A normed space $(X,\|\cdot\|)$ is called uniformly convex if for every $\varepsilon>0$ there is a $\delta>0$ such that $\|x\|=\|y\|=1$ and $\left\|\frac{1}{2}(x+y)\right\|>1-\delta$ implies $\|x-y\|<\varepsilon$.

Problem 3. ($3+2$ points)
Let $2 \leq p<\infty$.
(i) Prove that for $x, y \in \mathbb{R}$

$$
|x+y|^{p}+|x-y|^{p} \leq 2^{p-1}\left(|x|^{p}+|y|^{p}\right) .
$$

Hint: Show that $\left(|a|^{p}+|b|^{p}\right)^{1 / p} \leq\left(|a|^{2}+|b|^{2}\right)^{1 / 2}$ for $a, b \in \mathbb{R}$, and apply this with $a:=x+y$ and $b:=x-y$. To show the inequality for a, b you can assume $|a|=1$ (why?) and consider the pth power of the inequality for $c=|b|^{2}$.
(ii) Suppose $U \subset \mathbb{R}^{n}$ open. Prove that $L^{p}(U)$ is uniformly convex.

Problem 4. ($1+1+2+1$ points)
Let $1<p<2$.
(i) Let $h: \mathbb{R} \rightarrow \mathbb{R}, h(x)=|x|^{p}$. Consider $g(t)=h(1+t)+h(1-t)-2 h(1)$ and show that

$$
g(t)=\int_{0}^{t}(t-s)\left(h^{\prime \prime}(1+s)+h^{\prime \prime}(1-s)\right) \mathrm{d} s .
$$

Hint: Consider first $h_{\epsilon}(x):=\left(|x|^{2}+\epsilon^{2}\right)^{p / 2}$.
(ii) Show that there exist constants $c_{1}, c_{2}>0$ such that

$$
\begin{aligned}
& g(t) \geq c_{1} t^{2} \text { for } 0 \leq t \leq 2 \\
& g(t) \geq c_{2} t^{p} \text { for } t \geq 2
\end{aligned}
$$

(iii) Show that there exists $\alpha>0$ s.t. for all $x, y \in \mathbb{R}$

$$
\left(|x|^{p}+|y|^{p}\right)^{1-\frac{p}{2}}\left(h(x)+h(y)-2 h\left(\frac{x+y}{2}\right)\right)^{p / 2} \geq \alpha|x-y|^{p} .
$$

Hint: It suffices to consider the case $\left|\frac{x+y}{2}\right|=1$ (why?).
(iv) Suppose $U \subset \mathbb{R}^{n}$ open. Prove that $L^{p}(U)$ is uniformly convex.

