Partial Differential Equations and Functional Analysis

Winter 2017/18 Prof. Dr. Stefan Müller Richard Schubert

Problem Sheet 5.

Due in class, Friday, November 17, 2017.

Problem 1. (2+1+2 points)

Suppose $U \subset \mathbb{R}^n$ is open.

(i) Prove that if $u \in W^{1,1}(U)$ then $u^+ \in W^{1,1}(U)$ where $u^+(x) := \max \{u(x), 0\}$, and show that for all $i = 1, \ldots, n$ and a.e. $x \in U$

$$\partial_i u^+(x) = \begin{cases} \partial_i u(x) & \text{if } u(x) > 0\\ 0 & \text{else.} \end{cases}$$

Hint: Lecture notes.

- (ii) Suppose $u, v \in W^{1,1}(U)$. Prove that also the pointwise maximum $\max(u, v) \in W^{1,1}(U)$ and the pointwise minimum $\min(u, v) \in W^{1,1}(U)$, where $\max(u, v)(x) := \max\{u(x), v(x)\}$ and $\min(u, v)(x) := \min\{u(x), v(x)\}$. Compute the weak derivatives.
- (iii) Suppose $E \subset U$ is measurable, $u \in W^{1,1}(U)$ and u = 0 a.e. on E. Prove that $\partial_i u = 0$ a.e. on E for $i \in \{1, \ldots, n\}$.

Problem 2. (2+1+2 points)

(i) Let $p \in [1, \infty)$ and $k \in \mathbb{N}$. Prove that $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$, i.e. $W_0^{k,p}(\mathbb{R}^n) = W^{k,p}(\mathbb{R}^n)$.

Hint: For $f \in W^{k,p}(\mathbb{R}^n)$ consider first $f_j(x) = \varphi(\frac{x}{j})f(x)$ with $\varphi \in C_c^{\infty}(B(0,1))$ and $\varphi = 1$ on $B(0,\frac{1}{2})$.

Define the Fourier transform of a function $f \in L^1(\mathbb{R}^n, \mathbb{C})$ as the function $\mathcal{F}(f) : \mathbb{R}^n \to \mathbb{C}$ given by

$$\mathcal{F}(f)(k) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-ik \cdot x} \,\mathrm{d}x.$$

For functions $f, g \in L^1(\mathbb{R}^n, \mathbb{C}) \cap L^2(\mathbb{R}^n, \mathbb{C})$ we have $(f, g)_{L^2} = (\mathcal{F}(f), \mathcal{F}(g))_{L^2}$ (Parseval's identity). By density \mathcal{F} can be extended to an isometry $\mathcal{F} : L^2(\mathbb{R}^n, \mathbb{C}) \to L^2(\mathbb{R}^n, \mathbb{C})$ and Parseval's identity still holds.

- (ii) Suppose $f \in W^{1,2}(\mathbb{R}^n, \mathbb{C})$. Prove that for $j = 1, \ldots, n$: $(\mathcal{F}(\frac{\partial}{\partial x_j}f))(k) = ik_j(\mathcal{F}(f))(k)$ for a.e. $k \in \mathbb{R}^n$.
- (iii) Suppose $f \in L^2(\mathbb{R}^n, \mathbb{C})$. Prove that $f \in W^{1,2}(\mathbb{R}^n, \mathbb{C})$ if and only if the function $k \mapsto |k|(\mathcal{F}(f))(k)$ is in $L^2(\mathbb{R}^n, \mathbb{C})$. Show that for all $f \in W^{1,2}(\mathbb{R}^n, \mathbb{C})$

$$||f||_{W^{1,2}(\mathbb{R}^n,\mathbb{C})}^2 = \int_{\mathbb{R}^n} \left(1 + |y|^2\right) |\mathcal{F}(f)(y)|^2 \, dy$$

Definition: A normed space $(X, \|\cdot\|)$ is called uniformly convex if for every $\varepsilon > 0$ there is a $\delta > 0$ such that $\|x\| = \|y\| = 1$ and $\left\|\frac{1}{2}(x+y)\right\| > 1 - \delta$ implies $\|x-y\| < \varepsilon$.

Problem 3. (3+2 points)

Let $2 \le p < \infty$.

(i) Prove that for $x, y \in \mathbb{R}$

 $|x+y|^{p} + |x-y|^{p} \le 2^{p-1} (|x|^{p} + |y|^{p}).$

Hint: Show that $(|a|^p + |b|^p)^{1/p} \leq (|a|^2 + |b|^2)^{1/2}$ for $a, b \in \mathbb{R}$, and apply this with a := x + y and b := x - y. To show the inequality for a, b you can assume |a| = 1 (why?) and consider the pth power of the inequality for $c = |b|^2$.

(ii) Suppose $U \subset \mathbb{R}^n$ open. Prove that $L^p(U)$ is uniformly convex.

Problem 4. (1+1+2+1 points)

Let 1 .

(i) Let $h: \mathbb{R} \to \mathbb{R}, h(x) = |x|^p$. Consider g(t) = h(1+t) + h(1-t) - 2h(1) and show that

$$g(t) = \int_0^t (t-s) \left(h''(1+s) + h''(1-s) \right) \mathrm{d}s.$$

Hint: Consider first $h_{\epsilon}(x) := (|x|^2 + \epsilon^2)^{p/2}$.

(ii) Show that there exist constants $c_1, c_2 > 0$ such that

$$g(t) \ge c_1 t^2 \text{ for } 0 \le t \le 2$$

$$g(t) \ge c_2 t^p \text{ for } t \ge 2$$

(iii) Show that there exists $\alpha > 0$ s.t. for all $x, y \in \mathbb{R}$

$$(|x|^{p} + |y|^{p})^{1 - \frac{p}{2}} \left(h(x) + h(y) - 2h\left(\frac{x+y}{2}\right) \right)^{p/2} \ge \alpha |x-y|^{p}$$

Hint: It suffices to consider the case $\left|\frac{x+y}{2}\right| = 1$ *(why?).*

(iv) Suppose $U \subset \mathbb{R}^n$ open. Prove that $L^p(U)$ is uniformly convex.