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Problem 1. (2+1+2 points)

Suppose U ⊂ Rn is open.

(i) Prove that if u ∈W 1,1(U) then u+ ∈W 1,1(U) where u+(x) := max {u(x), 0}, and show that
for all i = 1, . . . , n and a.e. x ∈ U

∂iu
+(x) =

{
∂iu(x) if u(x) > 0

0 else.

Hint: Lecture notes.

(ii) Suppose u, v ∈ W 1,1(U). Prove that also the pointwise maximum max(u, v) ∈ W 1,1(U) and
the pointwise minimum min(u, v) ∈ W 1.1(U), where max(u, v)(x) := max{u(x), v(x)} and
min(u, v)(x) := min{u(x), v(x)}. Compute the weak derivatives.

(iii) Suppose E ⊂ U is measurable, u ∈ W 1,1(U) and u = 0 a.e. on E. Prove that ∂iu = 0 a.e. on
E for i ∈ {1, . . . , n}.

Problem 2. (2+1+2 points)

(i) Let p ∈ [1,∞) and k ∈ N. Prove that C∞c (Rn) is dense in W k,p(Rn), i.e.

W k,p
0 (Rn) = W k,p(Rn).

Hint: For f ∈W k,p(Rn) consider first fj(x) = ϕ(xj )f(x) with ϕ ∈ C∞c (B(0, 1)) and ϕ = 1 on

B(0, 12).

Define the Fourier transform of a function f ∈ L1(Rn,C) as the function F(f) : Rn → C given by

F(f)(k) =
1

(2π)n/2

∫
Rn

f(x)e−ik·x dx.

For functions f, g ∈ L1(Rn,C)∩L2(Rn,C) we have (f, g)L2 = (F(f),F(g))L2 (Parseval’s identity).
By density F can be extended to an isometry F : L2(Rn,C) → L2(Rn,C) and Parseval’s identity
still holds.

(ii) Suppose f ∈ W 1,2(Rn,C). Prove that for j = 1, . . . , n: (F( ∂
∂xj

f))(k) = ikj(F(f))(k) for a.e.

k ∈ Rn.

(iii) Suppose f ∈ L2(Rn,C). Prove that f ∈ W 1,2(Rn,C) if and only if the function k 7→
|k|(F(f))(k) is in L2(Rn,C). Show that for all f ∈W 1,2(Rn,C)

‖f‖2W 1,2(Rn,C) =

∫
Rn

(
1 + |y|2

)
|F(f)(y)|2 dy.



Definition: A normed space (X, ‖·‖) is called uniformly convex if for every ε > 0 there is a δ > 0
such that ‖x‖ = ‖y‖ = 1 and

∥∥1
2(x+ y)

∥∥ > 1− δ implies ‖x− y‖ < ε.

Problem 3. (3+2 points)

Let 2 ≤ p <∞.

(i) Prove that for x, y ∈ R

|x+ y|p + |x− y|p ≤ 2p−1 (|x|p + |y|p) .

Hint: Show that (|a|p + |b|p)1/p ≤ (|a|2 + |b|2)1/2 for a, b ∈ R, and apply this with a := x+ y
and b := x − y. To show the inequality for a, b you can assume |a| = 1 (why?) and consider
the pth power of the inequality for c = |b|2.

(ii) Suppose U ⊂ Rn open. Prove that Lp(U) is uniformly convex.

Problem 4. (1+1+2+1 points)

Let 1 < p < 2.

(i) Let h : R→ R, h(x) = |x|p. Consider g(t) = h(1 + t) + h(1− t)− 2h(1) and show that

g(t) =

∫ t

0
(t− s)

(
h′′(1 + s) + h′′(1− s)

)
ds.

Hint: Consider first hε(x) := (|x|2 + ε2)p/2.

(ii) Show that there exist constants c1, c2 > 0 such that

g(t) ≥ c1t2 for 0 ≤ t ≤ 2

g(t) ≥ c2tp for t ≥ 2

(iii) Show that there exists α > 0 s.t. for all x, y ∈ R

(|x|p + |y|p)1−
p
2

(
h(x) + h(y)− 2h

(
x+ y

2

))p/2
≥ α|x− y|p.

Hint: It suffices to consider the case
∣∣x+y

2

∣∣ = 1 (why?).

(iv) Suppose U ⊂ Rn open. Prove that Lp(U) is uniformly convex.
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