## Partial Differential Equations and Functional Analysis

Winter 2017/18 Prof. Dr. Stefan Müller Richard Schubert



## Problem Sheet 4.

Due in class, Friday, November 10, 2017.

**Problem 1.** (1+1+1+2 points)

Let  $f_1 = \chi_{(-\frac{1}{2},\frac{1}{2})}$ . We define  $f_k : \mathbb{R} \to \mathbb{R}$  for  $k \ge 2$  recursively by  $f_{k+1} = f_1 * f_k$ .

- (i) Compute  $f_2$  and  $f_3$ .
- (ii) Show that  $g \in C_c(\mathbb{R})$  implies  $f_1 * g \in C_c^1(\mathbb{R})$  and determine  $(f_1 * g)'$ .
- (iii) Show  $f_k \in C_c^{k-2}$  for  $k \ge 2$ .
- (iv) Compute  $\int_{\mathbb{R}} x f_k(x) dx$  and  $\int_{\mathbb{R}} x^2 f_k(x) dx$  for k = 1, 2, 3 (if you want you can first derive a general formula for  $\int_{\mathbb{R}} x(f * g)(x) dx$  and  $\int_{\mathbb{R}} x^2(f * g)(x) dx$  by using the change of variables x = x' + y', y = y').

Problem 2. (5 points)

For which  $\alpha > 0$  and  $p \in [1, \infty)$  is

$$f(x) = \frac{1}{|x|^{\alpha}}$$

in  $W^{1,p}(B(0,1))$ ? Hint: Consider first the expression  $\int_{B(0,1)\setminus B(0,\varepsilon)} f\partial_i \varphi$  for  $\varphi \in C_c^{\infty}(B(0,1))$  and let  $\varepsilon \searrow 0$ .

## Problem 3. (5 points)

Let L > 0,  $p \in [1, \infty)$  and suppose that  $U \subset \mathbb{R}^n$  is open, and  $U \subset \mathbb{R}^{n-1} \times (0, L)$ . Prove that for all  $u \in C_c^{\infty}(U) \cap W^{1,p}(U)$ 

$$\int_{U} |u(x)|^{p} \, \mathrm{d}x \leq \frac{L^{p}}{p} \int_{U} |\nabla u(x)|^{p} \, \mathrm{d}x.$$

*Hint: Show first that for* q *with*  $\frac{1}{p} + \frac{1}{q} = 1$ *, for every*  $x = (x', x_n) \in U$ *,*  $x' \in \mathbb{R}^{n-1}$ *,* 

$$\left|u(x',x_n)\right|^p \le x_n^{p/q} \int_0^L \left|\frac{\partial}{\partial x_n}u(x',t)\right|^p \mathrm{d}t.$$

Problem 4. (1+3+1 points)

Let  $g \in L^1((0,1))$ . Define  $f(x) = \int_0^x g(t) dt$ .

- (i) Show that  $f \in W^{1,1}((0,1))$  with weak derivative f' = g. Hint: Start from  $\int_0^1 f(x)\varphi'(x)dx$  and use Fubini.
- (ii) Let  $h \in W^{1,1}((0,1))$  with weak derivative  $h' \in L^1((0,1))$ . Show that there is  $c \in \mathbb{R}$ , s.t.  $h(x) = \int_0^x h'(t) dt + c$  almost everywhere. In particular h has a continuous representative. *Hint: Show first that* h' = 0 *implies that* h *is constant a.e.*.
- (iii) Let  $h \in W^{1,p}((0,1))$  with  $p \in (1,\infty]$ . Show that h has a representative in  $C^{0,1-1/p}([0,1])$ . Hint: Use Hölder's inequality.