Partial Differential Equations and Functional Analysis

Winter 2017/18 Prof. Dr. Stefan Müller Richard Schubert

Problem sheet 14

These problems are for your preparation for the exam, they need not be handed in.

Problem 1. Let X and Y be Banach spaces and $T \in \mathcal{L}(X, Y)$. We say that T is *completely continuous* if it has the following property:

If
$$x_k \rightharpoonup x_*$$
 then $Tx_k \rightarrow Tx_*$.

- (i) Show that $x_k \rightharpoonup x_*$ in X implies $Tx_k \rightharpoonup Tx_*$ in Y.
- (ii) Show that if T is a compact operator then it is completely continuous.
- (iii) Assume additionally that X is reflexive and show that then T is completely continuous if and only if T is a compact operator.

Problem 2. Define $f_k \in L^{\infty}(\mathbb{R})$ by

$$f_k(x) = \sin(kx).$$

Show that $f_k \stackrel{*}{\rightharpoonup} 0$ but $f_k^2 \stackrel{*}{\rightharpoonup} \frac{1}{2}$.

Problem 3. Let $U \subset \mathbb{R}^3$ be open and bounded and let $f \in L^{\frac{6}{5}}(U)$. Show that there is one and only one $u \in W_0^{1,2}(U)$ solving

$$\int_U \nabla u \cdot \nabla \varphi - \int_U f \varphi = 0 \quad \forall \varphi \in W^{1,2}_0(U).$$

Problem 4. Let $U \subset \mathbb{R}^n$ be open and bounded and let $f \in L^2(U)$. For $u \in W_0^{1,2}(U)$ define

$$I(u) = \int_U |\nabla u|^2 + \sin(u) - fu.$$

- (i) Show that $\inf_{u \in W_0^{1,2}(U)} I(u) > -\infty$.
- (ii) Take a sequence $(u_k)_k \subset W_0^{1,2}(U)$ such that

$$\lim_{k \to \infty} I(u_k) = \inf_{u \in W_0^{1,2}(U)} I(u).$$

Prove that there is a subsequence $(u_{k_l})_l$ and $u_* \in W_0^{1,2}(U)$ such that $u_{k_l} \rightharpoonup u_*$ in $W_0^{1,2}(U)$ and $u_{k_l} \rightarrow u_*$ a.e. in U.

(iii) Prove that $I(u_*) = \inf_{u \in W_0^{1,2}(U)} I(u)$.

Problem 5. Let H be a Hilbert space and $T: H \to H$ linear such that

$$(Tx, y) = (x, Ty)$$
 for all $x, y \in H$.

Prove that T is bounded.