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Problem 1. (2+2+1 points)

Let U ⊂ Rn be open and bounded and assume that f ∈ L2(U). For u ∈W 1,2
0 (U) let

E(u) :=
1

2

∫
U
|∇u|2 dLn −

∫
U
fudLn

Let M ⊂W 1,2
0 (U) be closed, convex and nonempty. Prove the following assertions:

(i) The functional E attains its minimum in M , i.e., there exists u ∈M such that

E(u) ≤ E(v) ∀v ∈M. (1)

Hint: Use the so-called direct method. Take a sequence vk ∈ M such that limk→∞E(vk) =
infv∈M E(v). Prove that the sequence is bounded in W 1,2

0 (U) and extract a weakly convergent
subsequence. Then show that the limit is in M and satisfies (1).

(ii) An element u ∈M is a minimizer of E if and only if u satisfies the variational inequality∫
U

n∑
i=1

∂i(u− v)∂iu− (u− v)fdLn ≤ 0 ∀v ∈M. (2)

Hint: Set vt = u− t(u− v) and show that 1
t (E(u)− E(ut)) ≤ 0. Consider t→ 0.

(iii) If M is a closed subspace then (2) is equivalent to the weak form of the Euler-Lagrange
equation ∫

U

n∑
i=1

∂iw∂iu− wfdLn = 0 ∀w ∈M.

Problem 2. (3+2 points)

Let U = B(0, 1) ⊂ Rn and 1 ≤ p < n.

(i) Define uk : U → R by

uk(x) :=

{
k

n−p
p (1− k|x|) if |x| < 1

k

0 otherwise.

Prove that {uk : k ∈ N} is bounded in W 1,p(U) but does not admit a subsequence that
converges strongly in Lp∗(U), where p∗ = np

n−p .

(ii) Let u : U → R be given by u(x) := log(log(1 + 1
|x|)) if x ∈ U \ {0}, and u(0) = 0. Prove that

u ∈W 1,n(U) but u /∈ L∞(U).

Hint: You do not need to check that the pointwise derivative is indeed the weak one.



Problem 3. (1+2+2 points)

Suppose H is a Hilbert space with orthonormal basis {ei : i ∈ N}, and let T ∈ L(H) be a Hilbert-
Schmidt operator, i.e. such that

∑∞
i=1 ‖Tei‖2 <∞.

(i) Prove that for every orthonormal basis {fi : i ∈ N} of H

‖T‖HS :=

( ∞∑
i=1

‖Tei‖2
)1/2

=

( ∞∑
i=1

‖Tfi‖2
)1/2

, and ‖T‖ ≤ ‖T‖HS .

(ii) Prove that T is compact.

Hint: Use that T can be approximated by operators of finite dimensional range. How?

(iii) Let H := L2([0, 1]), and K ∈ L2([0, 1]2). Define the integral operator T ∈ L(L2([0, 1])) by

Tf(x) :=

∫ 1

0
K(x, t)f(t) dt.

Prove that T is a Hilbert-Schmidt operator and ‖T‖HS = ‖K‖L2 .

Hint: For given x ∈ [0, 1] consider K(x, ·) ∈ L2([0, 1]) and write down the representation
formula.

Problem 4. (5 points)

Let 1 < p < ∞. We denote the terms of a sequence x : N → lp by x(1), x(2), . . . . Prove that for a
sequence x : N→ lp and x∗ ∈ lp

x(n) ⇀ x∗ in lp ⇐⇒ x∗j = lim
n→∞

x
(n)
j for all j ∈ N and sup

n∈N
‖x(n)‖lp <∞.

Hint: For the backward implication use Lemma 8.16.
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