Partial Differential Equations and Functional Analysis

Winter 2017/18
Prof. Dr. Stefan Müller
Richard Schubert

Problem Sheet 13.

 Due in class, Friday, January 26, 2018.The points on this sheet are the last ones relevant for the admission to take the exam.

Problem 1. $(2+2+1$ points $)$
Let $U \subset \mathbb{R}^{n}$ be open and bounded and assume that $f \in L^{2}(U)$. For $u \in W_{0}^{1,2}(U)$ let

$$
E(u):=\frac{1}{2} \int_{U}|\nabla u|^{2} \mathrm{~d} \mathcal{L}^{n}-\int_{U} f u \mathrm{~d} \mathcal{L}^{n}
$$

Let $M \subset W_{0}^{1,2}(U)$ be closed, convex and nonempty. Prove the following assertions:
(i) The functional E attains its minimum in M, i.e., there exists $u \in M$ such that

$$
\begin{equation*}
E(u) \leq E(v) \quad \forall v \in M \tag{1}
\end{equation*}
$$

Hint: Use the so-called direct method. Take a sequence $v_{k} \in M$ such that $\lim _{k \rightarrow \infty} E\left(v_{k}\right)=$ $\inf _{v \in M} E(v)$. Prove that the sequence is bounded in $W_{0}^{1,2}(U)$ and extract a weakly convergent subsequence. Then show that the limit is in M and satisfies (1).
(ii) An element $u \in M$ is a minimizer of E if and only if u satisfies the variational inequality

$$
\begin{equation*}
\int_{U} \sum_{i=1}^{n} \partial_{i}(u-v) \partial_{i} u-(u-v) f \mathrm{~d} \mathcal{L}^{n} \leq 0 \quad \forall v \in M \tag{2}
\end{equation*}
$$

Hint: Set $v_{t}=u-t(u-v)$ and show that $\frac{1}{t}\left(E(u)-E\left(u_{t}\right)\right) \leq 0$. Consider $t \rightarrow 0$.
(iii) If M is a closed subspace then (2) is equivalent to the weak form of the Euler-Lagrange equation

$$
\int_{U} \sum_{i=1}^{n} \partial_{i} w \partial_{i} u-w f \mathrm{~d} \mathcal{L}^{n}=0 \quad \forall w \in M
$$

Problem 2. (3+2 points)
Let $U=B(0,1) \subset \mathbb{R}^{n}$ and $1 \leq p<n$.
(i) Define $u_{k}: U \rightarrow \mathbb{R}$ by

$$
u_{k}(x):= \begin{cases}k^{\frac{n-p}{p}}(1-k|x|) & \text { if }|x|<\frac{1}{k} \\ 0 & \text { otherwise }\end{cases}
$$

Prove that $\left\{u_{k}: k \in \mathbb{N}\right\}$ is bounded in $W^{1, p}(U)$ but does not admit a subsequence that converges strongly in $L^{p^{*}}(U)$, where $p^{*}=\frac{n p}{n-p}$.
(ii) Let $u: U \rightarrow \mathbb{R}$ be given by $u(x):=\log \left(\log \left(1+\frac{1}{|x|}\right)\right)$ if $x \in U \backslash\{0\}$, and $u(0)=0$. Prove that $u \in W^{1, n}(U)$ but $u \notin L^{\infty}(U)$.
Hint: You do not need to check that the pointwise derivative is indeed the weak one.

Problem 3. ($1+2+2$ points)
Suppose H is a Hilbert space with orthonormal basis $\left\{e_{i}: i \in \mathbb{N}\right\}$, and let $T \in \mathcal{L}(H)$ be a HilbertSchmidt operator, i.e. such that $\sum_{i=1}^{\infty}\left\|T e_{i}\right\|^{2}<\infty$.
(i) Prove that for every orthonormal basis $\left\{f_{i}: i \in \mathbb{N}\right\}$ of H

$$
\|T\|_{H S}:=\left(\sum_{i=1}^{\infty}\left\|T e_{i}\right\|^{2}\right)^{1 / 2}=\left(\sum_{i=1}^{\infty}\left\|T f_{i}\right\|^{2}\right)^{1 / 2}, \quad \text { and } \quad\|T\| \leq\|T\|_{H S}
$$

(ii) Prove that T is compact.

Hint: Use that T can be approximated by operators of finite dimensional range. How?
(iii) Let $H:=L^{2}([0,1])$, and $K \in L^{2}\left([0,1]^{2}\right)$. Define the integral operator $T \in \mathcal{L}\left(L^{2}([0,1])\right)$ by

$$
T f(x):=\int_{0}^{1} K(x, t) f(t) d t
$$

Prove that T is a Hilbert-Schmidt operator and $\|T\|_{H S}=\|K\|_{L^{2}}$.
Hint: For given $x \in[0,1]$ consider $K(x, \cdot) \in L^{2}([0,1])$ and write down the representation formula.

Problem 4. (5 points)
Let $1<p<\infty$. We denote the terms of a sequence $x: \mathbb{N} \rightarrow l_{p}$ by $x^{(1)}, x^{(2)}, \ldots$ Prove that for a sequence $x: \mathbb{N} \rightarrow l_{p}$ and $x^{*} \in l_{p}$

$$
x^{(n)} \rightharpoonup x^{*} \text { in } l_{p} \quad \Longleftrightarrow \quad x_{j}^{*}=\lim _{n \rightarrow \infty} x_{j}^{(n)} \text { for all } j \in \mathbb{N} \text { and } \sup _{n \in \mathbb{N}}\left\|x^{(n)}\right\|_{l_{p}}<\infty
$$

Hint: For the backward implication use Lemma 8.16.

