Partial Differential Equations and Functional Analysis

Winter 2017/18 Prof. Dr. Stefan Müller Richard Schubert

Problem Sheet 11.

Due in class, Friday, January 12, 2018.

Problem 1. (3+2 points)

Let X be an infinite dimensional normed \mathbb{R} vector space. One can construct a linear map $S: X \to \mathbb{R}$ which is not bounded. To do this, one uses the fact, that every vector space has a basis \mathcal{B} , and extracts a countable collection of basis vectors $\mathcal{C} = \{e_i : i \in \mathbb{N}\} \subset \mathcal{B}$. Then one defines $S(e_i) = i ||e_i||$ for $e_i \in \mathcal{C}$ and S(b) = 0 for $b \in \mathcal{B} \setminus \mathcal{C}$. By the the property of the basis this defines a linear map uniquely on the whole space X (recall the construction after Lemma 4.1 in the lecture).

- (i) Let X be a Banach space and let $S: X \to \mathbb{R}$ be linear and not bounded. Let $Y = \operatorname{graph} S \subset X \times \mathbb{R}$. Show that the map $T: Y \to X$ given by T((x, Sx)) = x is bijective and continuous, but not open.
- (ii) Let X be a Banach space and let $S: X \to \mathbb{R}$ be linear and not bounded. Let $Y = \operatorname{graph} S$ and define $F: X \to Y$ by Fx = (x, Sx). Show that F is closed, but not continuous.

Problem 2. (1+1+1+2 points)

We say that a sequence x_n in a Banach space X converges weakly to x (notation: $x_n \rightarrow x$) if $x'(x_n) \rightarrow x'(x)$ for all x' in the dual space X'.

(i) Let X and Y be Banach spaces, and consider the Banach space $Z = X \times Y$ with norm $||(x,y)||_Z = ||x||_X + ||y||_Y$. Prove that for every $z' \in Z'$ there is one and only one $x' \in X'$ and one and only one $y' \in Y'$ such that z'((x,y)) = x'(x) + y'(y) for all $x \in X$ and all $y \in Y$. Deduce that

 $(x_n, y_n) \rightharpoonup (x, y)$ in $Z \iff x_n \rightharpoonup x$ in X, and $y_n \rightharpoonup y$ in Y.

(ii) Let X be a Banach space, $Y \subset X$ a closed subspace, and $k \mapsto y_k \in Y$ a sequence. Prove

 $y_k \rightharpoonup y$ in $Y \iff y_k \rightharpoonup y$ in X.

(iii) Let X and Y be Banach spaces, and let $T \in \mathcal{L}(X, Y)$ be invertible. Prove that

$$x_k \rightarrow x$$
 in $X \iff Tx_k \rightarrow Tx$ in Y .

(iv) Let $1 , and <math>U \subset \mathbb{R}^n$ open. Prove that

$$f_k \to f$$
 in $W^{1,p}(U) \Leftrightarrow f_k \to f$ in $L^p(U)$ and $\partial_i f_k \to \partial_i f$ in $L^p(U), i \in \{1, \dots, n\}$.

Hint: Consider a suitable embedding of $W^{1,p}(U)$ into a subspace of $L^p(U) \times \cdots \times L^p(U)$ (n+1 copies), and use (i)-(iii).

- (i) Give an example of a sequence $k \mapsto f_k \in L^2([0,1])$ such that $f_k \to 0$ almost everywhere, $f_k \to 0$ weakly in $L^2([0,1])$, but $f_k \to 0$ strongly in $L^2([0,1])$.
- (ii) Consider a sequence $k \mapsto f_k \in L^{\infty}([0,1])$ such that there exists $f \in L^{\infty}([0,1])$ with $f_k \to f$ almost everywhere and $||f_k||_{L^{\infty}} \leq M$ for all $k \in \mathbb{N}$. Let $h \in L^2([0,1])$. Show that $f_k h \to f h$ in $L^2([0,1])$.
- (iii) Consider sequences $k \mapsto f_k \in L^{\infty}([0,1])$ and $k \mapsto g_k \in L^2([0,1])$ such that there are f, g with $f_k \to f$ almost everywhere, $||f_k||_{L^{\infty}} \leq M$ for all $k \in \mathbb{N}$, and $g_k \rightharpoonup g$ weakly in $L^2([0,1])$. Prove that $f_k g_k \rightharpoonup fg$ in $L^2([0,1])$.

Problem 4. (5 points)

Let X be a set and let $\mathcal{S} \subset 2^X$ and suppose that $\bigcup_{W \in \mathcal{S}} W = X$. Let \mathcal{B} denote the collection of sets obtained by taking finite intersections of sets in \mathcal{S} and let \mathcal{T} denote the collection of sets formed by (arbitrary) union of sets in \mathcal{B} . More formally:

$$\mathcal{B} \coloneqq \left\{ \bigcap_{i=1}^{k} W_i : k \in \mathbb{N} \setminus \{0\}, W_i \in \mathcal{S} \forall i \in \{1, \dots, k\} \right\},$$
$$\mathcal{T} \coloneqq \left\{ \bigcup_{\alpha \in A} V_\alpha : V_\alpha \in \mathcal{B} \forall \alpha \in A \right\}.$$

Show that \mathcal{T} is the coarsest topology containing \mathcal{S} .