Partial Differential Equations and Functional Analysis

Winter 2017/18 Prof. Dr. Stefan Müller Richard Schubert

Problem Sheet 10.

Due in class, Friday, December 22, 2017.

Problem 1. (3+2 points)

(i) Let X be a real vector space, and let $p: X \to \mathbb{R}$ be sublinear. Suppose $S \subset X$ is a subspace, and let $f: S \to \mathbb{R}$ be linear, and such that $f(s) \leq p(s)$ for all $s \in S$. Let G be an Abelian semigroup of linear operators on X with identity element, i.e., $G \subset \mathcal{L}(X)$, $A, B \in G \Rightarrow$ $AB = BA \in G$, and $id \in G$. Suppose that for all $A \in G$ we have $p(Ax) \leq p(x)$ for all $x \in X$, and $s \in S \Rightarrow As \in S$ and f(As) = f(s). Prove that there exists $F: X \to \mathbb{R}$ linear such that

(1) F(s) = f(s) for all $s \in S$,

- (2) $F(x) \le p(x)$ for all $x \in X$, and
- (3) F(Ax) = F(x) for all $x \in X$ and all $A \in G$.

Hint: Set $q(x) := \inf\{\frac{1}{n}(p(A_1x + \dots + A_nx)) : n \in \mathbb{N}, A_i \in G\}$. Show that q is sublinear, and that $q \leq p$. Use Hahn-Banach to obtain a suitable extension F. To see that F(Ax) = F(x), observe that $F(x) - F(Ax) \leq q(x - Ax) \leq \frac{1}{n}p(x - A^{n+1}x) \to 0$ as $n \to \infty$.

(ii) Show that there exists a finitely additive translation-invariant measure μ defined on all bounded subsets of \mathbb{R} such that $\mu(E)$ agrees with the Lebesgue measure for every bounded Lebesgue measurable subset E.

Hint: Let X be the space of compactly supported bounded functions on \mathbb{R} , and let Y be the subset of Lebesgue measurable, compactly supported, bounded functions. Define $T(f) := \int_{\mathbb{R}} f \, d\mathcal{L}$ on Y, and use (i).

Problem 2. (5 points)

Let \mathcal{M}_n denote the Lebesgue measurable subsets of \mathbb{R}^n . For $E \in \mathcal{M}_n$ let $\mathcal{M}_n(E) = \{A \in \mathcal{M}_n : A \subset E\}$ and

ba
$$(E, \mathcal{L}^n)$$
 := $\{\lambda : \mathcal{M}_n(E) \to \mathbb{R} : \lambda \text{ finitely additive, } \|\lambda\|_{\operatorname{var}}(E) < \infty$
 $\mathcal{L}^n(N) = 0 \implies \lambda(N) = 0\}.$

Then for $f \in L^{\infty}(E)$ define the integral $\int_{E} f d\lambda$ as usual by first considering finite linear combinations of characteristic functions. The condition $\mathcal{L}^{n}(N) = 0 \implies \lambda(N) = 0$ guarantees that this integral depends only on the equivalence class of f where $f \sim g$ if $f = g \mathcal{L}^{n}$ a.e. Show that the map $J : \operatorname{ba}(E, \mathcal{L}^{n}) \to (L^{\infty}(E))'$ given by

$$J(\lambda)(f) = \int_E f \, d\lambda$$

is a linear isometry.

Problem 3. (5 points)

Let X be a Banach space, and suppose $T \in \mathcal{L}(X)$ is such that for every $x \in X$ there exists $n \in \mathbb{N}$ with $T^n x = 0$. Prove that there exists $N \in \mathbb{N}$ with $T^N = 0$.

Hint: Note that $X = \bigcup_{n \in \mathbb{N}} \mathcal{N}(T^n)$, and use Baire's theorem to find a candidate for N.

Problem 4. (3+1+1 points)

(i) For $n \in \mathbb{N}$ set

$$M_n := \{ f \in C([0,1]) : \exists 0 \le x^* \le 1 - \frac{1}{n} \text{ s.t. } |f(x^* + h) - f(x^*)| \le nh \text{ for all } 0 < h < 1 - x^* \}.$$

Prove that M_n is closed and nowhere dense in C([0, 1])

Hint: (Closed) If $f_k \to f$, extract a subsequence with $x_{k_\ell}^* \to x^* \in [0, 1 - \frac{1}{n}]$, and observe that $0 < h < 1 - x^*$ implies $0 < h < 1 - x_{k_\ell}^*$ for large ℓ . (Nowhere dense) For $f \in M_n$ and $\epsilon > 0$ construct a continuous function g with $||f - g||_{\infty} < \epsilon$ and $|g'_+| > n$.

(ii) Consider

 $M := \{ f \in C([0,1]) : \text{ there exists } x^* \in [0,1) \text{ such that the right derivative } f'_+(x^*) \text{ exists} \}.$

Prove that M is meagre in C[0, 1].

Hint: Show first that $M \subset \bigcup_{n \in \mathbb{N}} M_n$.

(iii) Prove that there exists a function $f \in C([0,1])$ that is nowhere differentiable.