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[11.10. 2017, Lecture 1]

1 Structures

We consider the following increasingly richer structures on a set or a vector
space.

e Neighbourhoods and convergence (topological spaces)
e Distance (metric spaces)
e Length in a vector space (normed spaces, Banach spaces)

e Length and angle/ scalar product in a vector space (Pre-Hilbert spaces,
Hilbert spaces)

In these notes all vector spaces will be vector spaces of the fields

K=R orK=C. (1.1)

1.1 Topological spaces

Let X be a set. Then 2% denotes the set of all subsets of X (including the
empty set).

Definition 1.1. A topological space (X,T) is pair consisting of a set X and
a subset T of 2% with the following properties.

(1)) VeT, XeT.
(i) IfUeT,VeT thenUNVeT.
(iii) If A is an arbitrary set and Uy € T for all X € A then |Jycpa Ur € T .

The set T is called a topology on X. If 77 and 72 are topologies on X
then 7; is called finer (or stronger) than T3 if 73 O 7. In this case T3 is
called coarser (or weaker) than 7;.

A set A C X is called openif A € T. It is called closed if the complement
A°:= X\ Ais open. By definition of a topological space a finite intersection
and an arbitrary union of open sets is open. It follows from the formula
(Maca Ar)¢ = Uyen A that a finite union and an arbitrary intersection of
closed sets is closed.

Example 1.2. (i) (finest topology) T = 2% is a topology on X.

(ii) (coarsest topology) T = {0, X} is a topology on X.
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(iii) (standard topology on R) Let X = R. The standard topology on R is
defined by U € T4 if and only if for each x € U there exists an € > 0
such that (x —e,x +¢) C U. If nothing else is said we consider
in the following the standard topology on R.

(iv) Let X =R. Then
T={UCR:U=0orR\U countable } (1.2)

is a topology on X (exercise).
Here we say that a set A is ’countable’ if A is empty or finite or if
there exists a bijective map j: N — A.

(v) (relative topology) If A C X, if T is a topology on X and if Ty =
{UNA:U €T} then Ty is a topology on A.

(vi) (intersection of topologies) If B is a set and Tg is a topology on X for
all B € B then (\gep Tp is a topology on X (exercise).
In particular given any set S C 2% then

T = N u (1.3)
U topology on X, u>S8
is a topology on X, namely the coarsest topology which contains S.
(vii) (product topology) Let (X, Tx) and (Y,Ty) be topological spaces, let

S={UxY:UeTx}U{X xV:VeTy} (1.4)

and let T be the coarsest topology on X X Y which contains S. In
particular T contains all sets of the form U x V, with U € Tx and
VeTly.

Definition 1.3. Let (X,7T) be a topological space and let A C X. The
interior A°, the closure A and the boundary OA are defined by

A= ) U A= () K = 0A:=A4\A (1.5)
UCAUEeT KDA,KeeT

By the definition of a topology A° is open, in fact A° is the largest open
set contained in A. Similarly A is closed and is the smallest closed set which
contains A. The boundary is also closed since it is the intersection of A and
X\ A°.

Definition 1.4. Let (X, T) be a topological space. A set A C X is called
dense, if A= X. The space X is separable if there exists a countable dense
subset.
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Definition 1.5. Let (X,7T) be a topological space and let v € X. A set
U C X is an open neighbourhood of x if U € T and x € U.

Definition 1.6 (Continuous maps). Let (X, Tx) and (Y, Ty) be topological
spaces and let f be a map from X toY. Then f is continuous if

Vely = [TH(V)eTx, (1.6)

i.e. if the preimage of every open set is open.

The map f is continuous at a point x € X if for every open neighbourhood
V of f(z) € Y there exists an open neighbourhood U of x € X such that
f(U)cVv.

The map f is called a homeomorphism if f is bijective and f and f~' are
continuous.

Notation f~1(V):={x € X : f(x) € V}. Note the properties

FHAUB) = fFHA)UFHB), fTHANB) =1 (AN fH(B),

. 4 (1.7)

fTY\A) =X\ [T (A).
Remark. It follows directly from the definition that the composition of
continuous maps is continuous: if f; is continuous from (Xi,77) to (X2, 72)
and fo is continuous from (Xs, 72) to (X3, 73) then fyo fi is continuous from

(Xla 71) to (X3a 7?3)

Remark. The map f is continuous if and only if it is continuous at every
x € X (exercise).

If Tx = 2% then every map f: X — Y is continuous.
If Tx = {0, X} then the constant map is continuous. If, in addition, (Y, Ty)
is a Hausdorff space (see below) then the constant map is the only continuous
map.
If f is a continuous map from (X, 7Tx) to (Y, Ty), if A C X and if T4 is the
relative topology on A (see Example 1.2 (v)), the fj4 is a continuous map
from (A, Ta) to (Y, Ty).
The finer the topology on X the more continuous maps exist.

Definition 1.7 (convergence). Let (X,T) be a topological space. We say
that a sequence x : N — X converges to x* (notation: xp — x*) if and only
if for every open neighbourhood U of x* the set {k € N : z;, € X \ U} is
finite. The point x* is called a limit point of the sequence.

Examples. If T is the standard topology on R this agrees with the defi-
nition of convergence in Analysis 1.
If 7 = 2% then only sequences which are constant, up to finitely many
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terms, are convergent.
If 7 = {0,X} then every sequence is convergent and every x* is a limit
point.

Definition 1.8 (Hausdorff space). A topological space (X, T) is called Haus-
dorff if sets consisting of a single point are closed and for different points
there exist disjoint open neighbourhoods, i.e.,

r#y == 3U,,Uy €T suchthat x € Uy,y € Uy and U, NU, = 0. (1.8)
An immediate consequence is

Proposition 1.9. If (X,T) is a Hausdorff space then every sequence has
at most one limit point.

Notation If (X,7) is a Hausdorff space and the sequence z : N — X
converges to x* we write z* = limg_, oo Tp -

[11.10. 2017, Lecture 1]
[13.10. 2017, Lecture 2]

Definition 1.10 (Compactness). A subset K of a toplogical space is compact
if every cover of K by open sets contains a finite subcover. The space (X, T)
s called a compact topological space if X is compact.

More explicitely this definition reads as follows: if A is any index set, if
Uy € T for each A € A and K C UycpU, then there exists a finite subset
A’ C A such that K C Uyea/U,.

Lemma 1.11. Assume that f : (X1,7T1) — (X2, 72) is continuous and K C
X1 is compact. Then f(K) C Xa is compact.

Proof. This follows directly from the definitions of continuity and compact-
ness (exercise). O

Theorem 1.12. Let f: (X,T) — R be continuous and K C X be compact.
Then f attains its mazimum and minimum on K, i.e. there exist a,b € K
such

fla) < f(x) < f(b) VzeK.

Proof. Exercise. One possibility is to show that every compact set K/ C R
is bounded and the infimum m = inf{z : x € K’} and the supremum
M = sup{z : 2 € K'} belong to K. O

Definition 1.13 (Connectedness). Let (X, T) be a topological space. Then
X is connected if X cannot be written as a non-trivial disjoint union of two
open sets, i.e., if

UeT and X\UeT =U=0o0orU=X. (1.9)
A subset A C X is connected if the topological space (A, Ta) is connected.
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Theorem 1.14 (Intermediate value theorem). Let (X,T) be a connected
topological space and let f : X — R be continuous (where R is equipped with
the standard topology). Suppose that there exist x,y € X with f(x) < 0 <
f(y). Then there exists z € X with f(z) = 0.

Proof. Assume that 0 ¢ f(X) and set U = f~1(0,00). By the continuity of
f the set U is open and by assumption U is not empty. Moreover

X\U = fHR\ (0,00)) = f7H((~00,0)) (1.10)

is also open and not empty. This contradicts the assumption that X is
connected. O

1.2 Metric spaces
1.2.1 Definition and examples

Definition 1.15. A pair (X, d) is called a metric space if d : X x X — [0, 00)
has the following properties.

(i) (definiteness) d(z,y) =0 x =y
(ii) (symmetry)  d(y,x) = d(z,y) Yo,y € X
(111) (triangle inequality) d(z,y) < d(z,z) +d(z,y) Vz,y,z € X

A map d: X x X — [0,00) with the above properties is called a metric on
X.

If A C X and if d4 denotes the restriction of d to A x A then (A, d4) is
again a metric space.

Ifd: X xX — [0,00) satisfies only (ii), (iii) and d(z,z) = 0 for all
x € X, then d is called a semimetric (or pseudometric). If d is a semimetric
one can define an equivalence relation by x ~ y if and only if d(z,y) = 0.
The quotient space X := X/ ~ consists of equivalence classes [z] := {z €
X:x~zh={z€ X :d(z,z) = 0}. It follows from the triangle inequality
that the expression d([z], [y]) := d(x,y) is well-defined. Moreover one easily
sees that d is a metric (not just a semimetric) on X. In this way one can
improve every semimetric to a metric by passing to equivalence classes. This
idea was e.g. used in the definition of the Lebesgue spaces LP(X, u) which
consist of equivalence classes of functions that only differ on sets of measure
Z€ero.

The notion of metric is very flexible.

Lemma 1.16. Assume that ¢ : [0,00) — [0,00) is continuous, nondecreas-
ing, concave and satisfies ¥ (0) = 0, ¥(x) > 0 for x > 0. If d is a metric,
then Y od is also a metric. If d is a semimetric, then ¥ od is a semimetric.
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Proof. We only need to verify the triangle inequality. This follows from the
estimate ¥(a + b) < 1¥(a) + ¢(b) for all a,b > 0 whose proof is left as an
exercise. O

A function ¥ € C([0,00)) N C%((0,00) is nondecreasing and concave if
and only if ¢/ > 0 and ¢" < 0. In particular ¥(t) = %th =1- %th satisfies
the assumptions of Lemma 1.16.

Examples. (i) Let X = R", doo(x,y) = maxj=1,.n |z — yil-

(i) X = R, 1 < p < 0o dyla,y) = (2 las — i)' /P. For p = 2 we
obtain the standard Euclidean metric on R".

(iii) Let 1 < p < 00, lp :=={a: N = R : Y2 |ap|P < oo}, dp(x,y) =
O ono ok — yk|p)1/p. Then (l,,dp) is a metric space.

(iv) Let ls be the space of bounded sequences a : N — R and doo(z,y) =
supgen |k — Yk|- Then (I, d) is a metric space.

(v) X =R, d(z,y) = 12 (see Lemma 1.16 ),

(vi) Denote by RY the space of all sequences a : N — R. Then d(z,y) =

>orto 2_1“% is a metric on RY,

(vii) (Pull-back metric) Let X be set, let (Y, dy) be a metric space and let
f: X =Y be injective. Then dx(x1,x2) := dy(f(x1), f(x2)) is a metric on
X.

(viii) Let X = RU{—o0} U {o0} = [—00, 0], define f : X — [—1,1] by

-1 if z=-
f(z) = %\zl it zeR (1.11)
1 if =00

and set dx(z1,x2) = |f(x1) — f(x2)|. By (vii) the pair (X,dx) is a metric
space.

(ix) Let V' be a finite set, let E C V x V be a symmetric set and consider
the graph I' = (V,E). A curve in I' is a map v : {0,1,...k} — V with
(v(4),7(j+1)) € E and k is called the length of 7. The graph is called con-
nected if for every two points in z,y € V there exists a curve with v(0) =z
and v(k) = y. We define d(z,z) = 0 and for x # y we define d(z,y) be
the length of the shortest curve from z to y. Then d is a metric on V. By
Lemma 1.16 d = d/(1+d) is another metric on V. If (V, E) is not connected
we can define a metric on V by d(z,y) = d(z,y) if a curve from z to y exists
and d(z,y) = 1 otherwise.

Let (X, d) be a metric space, let Ay, A2, A C X, let x € X and let r > 0.
We define the diameter of a set

diam(A) := sup{d(z,y) : x,y € A}, (1.12)
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the distance of two sets
dist (A1, A2) ;= inf{d(x,y) : x € A1,y € As}, (1.13)
the distance of a point from a set
dist (z, A) := inf{d(z,y) : y € A}, (1.14)
the r-neigbhourhood of a set
B, (A) :={y e X :dist (y,A4) <r} (1.15)
and the ball of radius r around z
B(z,r) = B,({z}) ={y € X : d(x,y) <r}. (1.16)

A set A is called bounded if diam(A) < oo and the space (X,d) is called
bounded if diam(X) < oo.
We also define the Hausdorff distance of two sets A and B by

dp(A,B) :=inf{r >0: AC B,(B) and B C B,(A4)}. (1.17)
It is easy to show (exercise) that

du (A, B) = max (supdist (z, B), sup dist (y, A)). (1.18)
€A yeEB

Proposition 1.17 (Topology induced by a metric). Let (X,d) be a metric
space and let Ty consist of all the sets with the following property:

VeeUde>0 B(x,e)CU. (1.19)

Then Ty is a topology on X and (X, Ty) is a Hausdorff space.

Proof. This is an easy exercise. The main point is that by the triangle
inequality for every z € B(x,r) we have B(z,s) C B(x,r) with s = r —
d(xz,z) > 0. O

In the following we will always consider the topology 74 on (X, d) (unless
stated otherwise) and we will often write only 7 instead of 73. One easily
sees that B(x,r) is open and we call this set the open ball of radius r around
x.

Lemma 1.18. Let (X, d) be a metric space. Let
C:={A C X : A closed, bounded, non-empty}.

Then the Hausdorff distance dg defined in (1.17) is a metric on C.

Proof. Exercise. O
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1.2.2 Convergence and continuity in metric spaces

Proposition 1.19 (Convergence in a metric space). Let (X,d) be a metric
space, let x : N — X be a sequence. Then the following two statements are
equivalent.

(i) The sequence x converges to x* in (X, Tq).
(ii) Ve > 0 3ko Vk > ko d(zp,2*) < €.

Proof. For the implication (i) == (4i) apply Definition 1.7 with U = B(z*, ).
For the converse implication one uses the fact the if U € T und 2* € U
then by definition of 7; there exists an e > 0 such that B(z*,e) C U. O]

A key feature in a metric space is that open sets (or equivalently closed
sets) are completely characterized in terms of convergence of sequences.
More precisely we have

Proposition 1.20. Let (X,d) be a metric space and A C X. Then the
following two statements are equivalent

(i) A is closed, i.e. X \ A € Ty.
(ii) A is sequentially closed, i.e. for every sequence x : N — A which
converges to a point x* € X we have x* € A.

Moreover for an arbitrary set A C X the closure A (see Definition 1.3)
agrees with the sequential closure, i.e.,

A={z" € X :Isequencex : N = A, lim xj, = z*}. (1.20)
k—ro0
Proof. Exercise. O

In metric spaces continuity can also be characterized in terms of se-
quences.

Proposition 1.21 (Continuity in metric spaces). Let (X,dx) and (Y,dy)
be metric spaces and f : X — Y. Then the following three statements are
equivalent.

(1) f is continuous as a map from (X, Ta,) to (Y, Tay ).
(ii) (e — ¢ definition of continuity)
Vee X Ve>030 >0 dx(z,xz) <d=dy(f(2), f(z)) <e. (1.21)

(11i) (sequential continuity) For every z* € X and every sequence x : N —
X which converges to x* the sequence k — f(xy) converges to f(x*).

Proof. Exercise, see Analysis 1. O

[13.10. 2017, Lecture 2]
[18.10. 2017, Lecture 3|
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Metrizability. The foregoing results show that spaces where the topology
is induced by a metric are more easy to handle. Such topological spaces are
called metrizable. One might wonder whether every topological space which
is Hausdorff is metrizable. This is not true in general.

A necessary condition for metrizability is that for each point z € X there
exists a countable family of open sets such that every open neighbourhood
of & contains one of these sets (for a metric space one may take the family
of balls B(z,r) with r € Q). We say that each point has a countable
neighbourhood basis (or that the space is 'first countable’).

One sufficient condition is given by Uryson’s theorem!: assume there
exist a countable family of open sets such that every element of 7 contains
a set in the family (’(X,7T) is second countable’) and that the following
stronger version of the Hausdorff property holds: for every closed set A C X
and every z € X \ A there exist U,V € T such that A C U, x € V and
UNV =0 ((X,T) is regular’). Then there exist a metric d on X such that
T ="Ta

It is not difficult to see that the nonstandard topology on R given in
Example 1.2 (iv) does not have a countable neighbourhood basis and is thus
not metrizable. One can also verify that for this topology there exist sets
which are sequentially closed but not closed (exercise).

Definition 1.22. Let d; and da be metrics on X. We say that dy is stronger
than ds if the topology induced by di is stronger than the one induced by
do. We say that di and ds are equivalent if they induce the same topology
(equivalently, if dy is stronger than da and dy is stronger than dy ).

Proposition 1.23. Let d; and ds be metrics on X. Then then the following
statements are equivalent.

(i) The metric dy is stronger than ds.

(i) The identity map x — x is continuous as a map from (X, Tg,) to

(X, Ta,)-
(i1i) Every sequence which converges in di converges also in da.
(iv) Ve € XVe >030 >0 di(x,y) <d = da(z,y) <e

Proof. (i) <= (it): this follows directly from the definition of continuity
and Definition 1.22.

(17) <= (vii): this follows since continuity and sequential continuity are
equivalent.

(#1) <= (iv): this follows from the € — ¢ characterization of continuity. [

1See, e.g., N. Dunford, J.T. Schwartz, Linear operators, Part I, Interscience Publishers,
1966, Theorem 1.19,page 24
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Examples. (i) Let X = R. The standard metric d(z,y) = |z — y| and the
metric d(z,y) = | arctan z — arctany| are equivalent.

(ii) Let l; denote the spaces of summable sequences a : N — R. The
metric di(z,y) = > ooy |tk — yi| is stronger than the metric do(z,y) =
SUPren |k — Y| (since dos < dy), but the two metrics are not equivalent.

To see this consider the sequence j — () where x,gj ) =1 /j for k < j and

a;,(gj) =0 for k > j. Then doo(z),0) = 0 as j — oo, but dy(z9),0) = 1.

Definition 1.24. A metric space (X,d) is called separable if (X, Ty) is sep-
arable.

1.2.3 Completeness

A fundamental concept in metric spaces is completeness.

Definition 1.25 (Cauchy sequence and completeness). Let (X, d) be a met-
TiC Space.
(i) A sequence x : N — X is called a Cauchy sequence if

Vo > 0 dkg Vk,j > kg d(xj,a;k) < 6. (1.22)

(ii) The space (X,d) is called complete if every Cauchy sequence converges.

Examples. (i) Let X = Q, equipped with the standard metric on R. Then
X is not complete.

(ii) Let 1 < p < oco. Then the spaces (I, dp) of sequences introduced after
Definition 1.15 are complete.

(iii) The space (I1,ds) is not complete (consider the sequence 1) defined
by x,(c]) =1/(k+1) for £ < j and x,g) = 0 for £ > j). This sequence
converges in (loo, doo to x* with 2} = 1/(k + 1) for all k € N and hence is a
Cauchy sequence in (I, ds). It has, however, no limit in /1, since z* # ;.
(iv) If (X, d) is a complete metric space and A is a dense subsets of X with
A # X then the metric space (A, d4), where d4 denotes the restriction of d
to A x A is not complete.

Remark. Completeness is really a metric property and not a topological
property. There exists a metric d on R which are equivalent to the standard
metric such that (R, d) is not complete (see homework problems). The point
is that the notion of ’Cauchy sequence’ depends on the metric and not just

on the topology induced by the metric.

Proposition 1.26. Let (X,d) be a complete metric space and let A C X be
closed and let ds be the restriction of d to A x A. Then the space (A,da) is
complete.
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Proof. Let x : N — A be a Cauchy sequence in A. Then x is also a Cauchy
sequence in X and hence has a limit x,. Since A is closed x, € A. Thus
(A,dy4) is complete. O

An important result states that every non-complete space can be seen
as a dense subset in a complete metric space (up to isometry).

Definition 1.27 (Isometry). Let (X,dx) and (Y,dy) be metric spaces. A
map f: X — Y is called an isometric immersion if

d(f(z), f(y)) = d(z,y). (1.23)
The map f is called an isometry if it is in addition bijective.

Note that an isometric immersion is automatically injective. Thus if
f is an isometric immersion than f is an isometry from X to f(X). The
spaces X and f(X) (equipped with the restriction of the metric dy) are
indistinguishable as metric spaces. In particular a sequence z : N — R is
convergent in X if and only if f ox is convergent in f(X) and x is a Cauchy
sequence in X if and only if f o x is a Cauchy sequence in f(X).

Theorem 1.28 (Completion). Let (X,d) be a metric space. Then there

exists a complete metric space (X,d) and an isometric immersion j : X — X
such that j(X) is dense in X.

The space X is called the completion of X (and is unique up to isome-
tries).

Proof. We will see a short proof later. Here we just sketch the standard
proof which is based on considering the space of Cauchy sequences in X
modulo converging sequences. This proof is modelled on the construction
of the real numbers R from the rational numbers Q (see e.g. Alt’s book for
details).
Let
X = {z:N = X : 2 Cauchy sequence}

Define
x~y <= lim d(zg,yr) = 0.
k—o00

It is easy to see that ~ is an equivalence relation. The equivalence class of
x € X is defined by
[z] :={z € X : 2z ~z}.

and the space of equivalences is defined by X = X / ~. On X we define

d([],[y]) := lim d(z;,y;). (1.24)

Jj—o0

It follows from the definition of the equivalence classes and the triangle
inequality that d is well-defined, i.e., the right hand side only depends on
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the equivalence classes of the Cauchy sequences x and y. Since x and y are
Cauchy sequences it is also easy to see j — d(xj,y;) is a Cauchy sequence
in R and that therefore lim;_, d(z;,y;) exists. It is easy to see that d is a
metric on X. Then one shows that

e (X,d) is complete

e the map j : X — X which maps a to the (equivalence class of) the
constant sequence with value a is an isometry

e j(X) is dense in (X, d).
O

Lemma 1.29. Let (X, d) be a complete metric space. Then the space (C,dg)
of closed, bounded, non-empty sets with the Hausdorff metric, introduced in
Lemma 1.18 is complete.

Proof. Exercise. Hint: first show that a decreasing Cauchy sequence of
sets Bj converges to B* := NjenB; (and that in particular B* # ). By
passage to a subsequence you can assume without loss of generality that
du(Bj, Bj+1) < 277 (explain why). For a general Cauchy sequence Aj;
define Bj := Uy>; A and show that dy(A;, Bj) — 0. O

One can also introduce a metric on set of (equivalence classes of ) bounded
and complete metric spaces, the so called Gromov-Hausdorff metric. Here
we say that (X,dx) ~ (Y,dy) if there exist an isometry I : X — Y. Then
one defines

dG’H((X7 d:v)v (Y7 dy)
=inf{dy z(I(X),J(Y)): (Z,dz) metric space,
I:X — Z J:Y — Z isometric immersion}. (1.25)
Here dp,z denotes the Hausdorff distance in the metric space (Z,dz). The

GH metric plays an important role in geometry as well as in application to
image processing.

1.3 Normed spaces

Let X be a K vector space. Recall our convention that always

K=R orK=C. (1.26)
Definition 1.30 (Normed space). A pair (X, | -||) is called a normed space
if X is a K vector space and || - || : X — [0,00) is a map with the following
properties

(i) (Definiteness) ||z|| =0 = x = 0.
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(i) (Homogeneity) ||ax| = |af||z|| Va e K,z € X.

(111) (Triangle inequality) ||z + y|| < [|z|| + ||ly]|-

The map ||-|| is called a norm. Note also that the homogeneity condition
(ii) implies that ||0]] = 0. Thus condition (i) can also be written as ||z|| =
0 xz=0.

A map ||-]| : X — [0, 00) which satisfies the second and third condition is

called a seminorm. One can pass from a seminorm to a norm by considering
the quotient space X = X/ ~, where & ~ y if ||z — y|| = 0 with the norm
l[z]]|~ = ||z|| (see the corresponding discussion for metric spaces).

If (X,]| -] is a normed space then d(z,y) = || — y|| is a metric on X.
The notions of convergence, continuity and completeness on a normed space
are defined using this metric.

It follows from the triangle inequality that

izl =yl < flz =yl (1.27)

(write x = y+ (z —y) and y = z + (y — z)). In particular the map = — ||z||
is continuous from X to R (use the -0 definition with § = ¢).

Definition 1.31 (Banach space). A normed space is called a Banach space
if it is complete under the above metric d.

Example. For 1 < p < oo the sequence spaces [, are Banach spaces
with norms ||z|, := (3252, |z [P)Y/? (for p < o0) and |20 = supgen ||,
respectively.

Definition 1.32. Let ||-||1 and ||-||2 be norms on the K vector space X. We
say that ||-||1 is stronger than || -||2 if the corresponding metric dy is stronger
than do. We say that the two norms are equivalent if the corresponding
metrics are equivalent (i.e., if the induced topologies are the same).

Proposition 1.33. Let || - |1 and || - [|2 be norms on the K vector space X.
The norm || - |1 is stronger than || - ||2 if and only if there exists a constant
C > 0 such that

|zl < C|lz]i Vz e X. (1.28)

The two norms are equivalent if and only if there exists constant ¢ > 0 and
C > 0 such that
cllzlly < ||zl < C|lz|li Vx e X. (1.29)

Proof. Tt suffices to prove the first statement. For the ’if’ statement use
the characterization (iii) in Proposition 1.23. For the ’only if’ part apply
the characterization (iv) in Proposition 1.23 with € = 1 and y = 0 and let
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C > %. Let 2 #0. Then y = maz satisfies |ly|[1 < 0 and hence |Jy||2 < 1.
By the homogeneity of the norm this implies that

lzll2 = Clizlly [lyll2 < Ol
O

[18.10. 2017, Lecture 3|
[20.10. 2017, Lecture 4]

1.4 Hilbert spaces
For o € C we denote by & the complex conjugate.

Definition 1.34. Let X be a K vector space. A map (x1,x2) — (x1,22)x
from X x X to K is called a sesquilinear form if for all x,y,x1, 2, y1,y2 € X
and all o € K we have

(7’) (axay)X = Oé(.’IJ,y) (J},Oéy)X = @($7y)X7
(i) (z1+x2,y)x = (v1,y)x+(22,9)x, (2, y1+y2)x = (2, y1)x+(z,y2) x.
A sesquilinear form is called symmetric if for all z,y € X
(y,2)x = (z,y)x. (1.30)

A sesquilinear form is called positive semidefinite if

Vee X (z,z)x >0 (1.31)
A symmetric sesquilinear form is called positive definite if

VeeX (r,z)x >0 and(z,z)=0&2=0. (1.32)

Remark. If K =R a sesquilinear form is bilinear.
One often writes only (z1,z2) instead of (z1,x2)x. Another common nota-
tion is (z1, z2).

Definition 1.35. A positive definite symmetric sesquilinear form on a K
vector space is called a scalar product. If (-,-)x is a scalar product then the
pair (X, (-,+)x) is called a pre-Hilbert space.

Lemma 1.36. Let X be a K vector space and let (-,-) be a positive semidef-
inite symmetric sesquilinear form and set

|zl :== v/ (=, ). (1.33)

Then
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(i) (Homogeneity)

|laz|| = |a|||z]] VaeK, ze X. (1.34)

(ii) (Cauchy-Schwarz inequality)

(@, y)| < l=llllyl Vz,yeX. (1.35)

(iii) (Triangle inequality)

[z +yll < [lzll +llyll Ve,y € X. (1.36)

(iv) (Parallelogram identity)

lz +ylI? + llz = yI* = 2l|z ] + 2lly|*  Vz,y € X. (1.37)
In particular || - || is a seminorm on X. If, in addition, (-,-)x is positive
definite then || - || is a norm.

Proof. (i): This follows directly from Definition 1.34 (i).
(ii): We may assume that (x,y) # 0 since otherwise there is nothing to
show. Moreover we may assume that

(r,y)x € R and (z,y)x > 0. (1.38)

Indeed if this condition does not hold we set « = (z,y)/|(z,y)|. Then |a| =1
and (az,y) = |(z,y)|. We then prove the result for  := az and y. This
implies the assertion for x and y since by (i) we have ||az|| = ||z].
Assume now (1.38) and assume in addition that If ||z|| # 0 and ||y|| # 0.
- Z_ - Y
Set & = Tl = Tyl and note that
0< (€~ m&—n) = €2 + [n]* — 2Re(&, ) (1.39)

In view of (1.38) this implies

1 1
(€ m)l < §II€H2 + 5||?7||2 = L. (1.40)

Since |(&,n)] = m\(m,y)] the assertion follows.

If |z|| = 0 apply (1.40) with ¢ = kz and n = 3y. Then |(z,y)| =
(€,m)x < 0+ k72| y|? for all k > 0 which implies |(z,y)| = 0. A similar
argument applies if y = 0.

(iii): This follows from [z + y||* = [|z]|* + [[y[|* + 2 Re(z,y) and (ii).

(iv): Exercise. O
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Lemma 1.37. Let (X, || -||) be a normed space. Then there ezists a scalar
product (-,-) with
]l =/ (2, 2) (1.41)

if and only if the parallelogram identity holds, i.e., if and only if
Iz +ylI” + [l — yl* = 2l|2[I* + 2[|y[* Vz,y € X. (1.42)

Proof. Exercise. The ’only if” part is just Lemma 1.36 (iv).
O

Definition 1.38. A Hilbert space is pre-Hilbert space which is complete
under the norm induced by the scalar product.
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2 Function spaces

2.1 Spaces of bounded, continuous and differentiable func-
tions

Definition 2.1. Let X be a set, let (Y,|| -||) be a normed space Then the
space of bounded functions B(X;Y') is defined as

B(X;Y):={f: X =Y :sup{]|f(2)| : x € X} < . (2.1)
Proposition 2.2. Let Y be a Banach space and for f € B(X;Y) define

If1] == sup{[[f(z)] - = € X}. (2.2)

Then (B(X;Y), | - ||) is a Banach space.

Remark. An important special case is Y = R or Y = C. In this case we
usually write B(X) instead of B(X;K).

Proof. Tt is easy to see that || - || is a norm so we only need to verify com-
pleteness. Let f: N — B(X;Y) be a Cauchy sequence, i.e.,

V8> 0 3ko(8) Vi k 2 ko sup [1f5(2) = i)l <5 (2.3)
xe

Taking 0 = 1 we deduce in particular that || f;]| < M := || fy )|l + 1 for all
J > ko(1). Moreover for each x € X the sequence j — f;(x) is a Cauchy
sequence. Since Y is complete this sequence has a limit which we call f,(z).
We have || f.(z)|| < M +1 and thus the map f, : X — Y belongs to B(X;Y).

We finally show that lim;_, || f; — f«|| = 0. We have limy_,« || fr(z) —
f«(x)]l = 0 and it thus follows from (2.3) that

Vi 2 ko(d) [Ifj(x) = fula)]| < 0. (2.4)

Since kg depends only on § and not on = we get

Vi > ko(6) sup [fi(z) = fe(2)|| < 0. (2.5)

Now sup,ex [Ifj(z) = fe(@)| = Ifj — f«ll. Thus limsup; . [|f; — f«l| < 0.
Since § > 0 was arbitrary this finishes the proof. O

We can now give a short proof of the fact for each metric space ~(X ,d)

there exist a complete metric space (X , J) and an isometry j : X — X such
that j(X) is dense in X.
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Proof of Theorem 1.28. Let Y = B(X). For each z € X we define a function
dy : X - R by
d.(z) = d(z, 2).

We fix a point zp € X and define j by
Jj(x) =dy — dg,.

Using the triangle inequality we can easily to show that |j(z)(2)| < d(x, xo)-
Thus j(z) an element of Y = B(X), Similarly one shows that j : X — Y
is an isometry (exercise). Now we set X = j(X) where the bar denotes the
closure in Y. Then X is a closed subset of the complete metric space Y and
hence by Proposition 1.26 itself a complete metric space. O

Proposition 2.3. The space B(X) = B(X,R) is separable if and only if X
is a finite set. In particular the space of bounded sequences loo = B(N) is
not separable.

Proof. Exercise. Hint: Let A C B(X) be the set of functions which only
take values 0 or 1. This set can be mapped bijectively to {0,1}* and if X
is infinite then A is uncountable. Moreover

Assume D = {hy,ha,...} is a countable and dense subset of X. Use (2.6)
to show that there exists an injective map j : A — D. This contradicts the
fact that A is uncountable. O

Definition 2.4. Let (X, T) be a topological space andY be a normed space.
The space of continuous functions from X to Y 1is defined as

C(X;Y):={f: X =Y :f continuous} (2.7)
and the space of bounded continuous functions is defined as
Cy(X;Y):=C(X;Y)NnB(X;Y). (2.8)
Theorem 2.5. Let Y be a Banach space and for f € Cyp(X;Y) define
111 := sup{[lf ()] - = € X}. (2.9)
Then (Cy(X;Y), || - ||) is a Banach space.

Proof. The space C(X;Y) is a subset of B(X;Y). In view of Proposition
1.26 it suffices to show that Cp(X;Y) is a closed subset. Assume that f; €
Co(X3Y), fo € B(X;Y) and limg o0 || fx — f«|| = 0. We need to show
that f, is continuous. For this it suffices to show that f is continuous at
every x € X, i.e., that for every neighbourhood V of f.(x) there exists a
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neighbourhood U of x such that f.(U) C V. Let x and V be given. Since
V is open there exists an ¢ > 0 such that B(f.(z),e) C V. There exists k
such that || fy — full < /3. Set U = f, ' (B(fx(x),2/3)). Then U € T since
fx is continuous. Moreover = € U. We claim that f.(U) C B(f«(z),e) C V.
To this see this note that the triangle inequality implies that for each z € U

d(f+(2), fe(2)) < d(fi(2), [1(2)) + d(fi(2), [r(@)) + d(fi(2), f(2)) <( €. :
2.10
O

Theorem 2.6. Let (X, T) be a compact topological space. LetY be a normed
space. If f : X — Y is continuous, then f is bounded. Thus C(X;Y) =
Cy(X;Y).

Proof. The map y +— |ly|]| is continuous as a map from Y to R. Hence

the map h : X — R defined by h(z) := | f(z)| is also continuous. By
Theorem 1.12 it follows that A attains its maximum on X. In particular A
is bounded on X and hence f is bounded on X. O

[20.10. 2017, Lecture 4]
[25.10. 2017, Lecture 5]

Theorem 2.7. Let (X,d) be a compact metric space and let Y be a normed
space, which is separable. Then the space C(X;Y) is separable.

Remark. (i) In particular C(X) = C(X;R) is separable when X is com-
pact.

(ii) Compare this with the result that B(X;R) is separable if and only if X
is a finite set.

Proof. Step 1: Uniform continuity.
Let € > 0, f € C(X;Y). Then here exists a 67, > 0 such that

da,y) <0re = @)= FW)l < 3. (2.11)

This argument is known from Analysis 1 (’continuous functions on a compact
interval are uniformly continuous’). We recall the proof for the convenience
of the reader. Since f is continuous for each z € X there exists an r, > 0
such that f(B(z,r.)) C B(f(z),e/4). Trivially X C U,cx B(z,7:/2). Since
X is compact there exist finitely many balls B(z1,71), ... B(zk, ) such that
X C Ule B(z;,1;/2). Let 6 = $min{r; : i = 1,...k}. Let z,y € X, with
|z — y| < 0. Then there exist i € {1,...,k} such that |x — z;| < r;/2. Since
d <r;/2 it follows that |y — z;| < r; and thus

1£@) = FW) < 1F@) = FEl+1FG) = F)ll < 5 +5 <50 (212)
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Step 2: Partition of unity.
Let § > 0. We claim that there exist finitely many points x1, ...z € X and

continuous functions 7, ...,n; : X — R such that
k
Y mi(z)=1 VreX, n;=0onR"\B(z;0) (2.13)
i=1

(such a family of functions is called a partition of unity).

Indeed X = U,ex B(x,d/2) and hence by compactness there exist x1, . .. xj
such that X = U B(x;,8/2). Let f : [0,00) — [0,1] be a continuous
function such that f > % on [0,2) and f = 0 on [1,00) (Wwe may take
f(t) = max(0,1—t)). Set f;(z) = f(3d(z,z;)). Then f; >1/2 on B(z;,5/2)
and thus Zle fi(z) > 1/2. Moreover f; = 0 on R™ \ B(z;,0). Hence the
functions

fi(z)

i\ L) i\—m ——————— 2.14
= 244

have the desired properties.

Step 3: Approzimation by subspace isomorphic to Y.
Let f € C(X;Y), let ¢ > 0 and let dy. be as in Step 1. Assume that
0 <6 <ds. and let B(z;,6/2) and 7; be as in Step 2. Set

k

g(@) = flzmi(x). (2.15)

i=1
We claim that || f — g|| < e/2. To see this recall that >, n;(z) = 1 and thus

k

f(z) = g(x) =Y [f(2) = fx)lmi(x). (2.16)

=1

If i(x) # 0 then |z — z;| < and thus ||f(x) — f(x;)|| < e/2. Thus

k
I1£() =g}l < 3 gmite) < 5 (2.17)
=1

Step 4: Approzimation by a countable set.
Let ¢, 07, 0 and 7; be as in Step 3, let D C Y be countable and dense and
set

k
Ag = {g X > R: g(x) = dei(m), d; € D} (2.18)
=1

Then Aj is countable since it can be mapped bijectively to D¥. There exist
d; € D such that |f(z;) — di| < €/2. Together with Step 3 it follows that
there exists g € Ag with [|f — ¢g|| < e.
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Step 5: Conclusion.
Finally set A = (Jg—, A%. Then A is countable. If ¢ > 0, f € C(X;Y) and

k > 1/64. then by Step 4 there exist g € Ay C A such that ||f — g|| < e.
Hence A is dense in C(X;Y). O

If U € R" is open, then continuous maps f : U — R need not be
bounded (example: U = (0,1), f(z) = 1). One can still define a metric on
such continuous functions by exhausting U with compact sets.

Theorem 2.8. Let U C R™ be open and let Y be a normed space. Let
K; C U be an increasing sequence of compact sets with |J;2y K; = U and
assume that for every x € U there exists v > 0 und i such that B(x,r) C K.
For f € C(U;Y) define

(e}

L o i f—gli
flis= sup [f@),  d(f.9) = ;2 T g (2.19)

Then [-]; is a seminorm on C(U;Y) and d is a metric. If Y is a Banach
space then (C(U;Y),d) is complete. If Y is separable then (C(U;Y),d) is

separable.

Remark. (i) The procedure to use countably many seminorms (or semi-
metrics) to obtain a metric as in (2.19) is used in a number of other situa-
tions. The metric d is sometimes called the Frechet metric generated by the
seminorms [-];.

(ii) There exists no norm on C'(U;Y’) such that the induced metric is equiv-
alent to d (for a similar problem see homework sheet 2).

(iii) For each open set U C R™ there exists such a sequence K;. One may
take K; = {z € U : dist (2, R"\ U) > 27 |z| < i}.

(iv) Different choices of the sequence K; lead to equivalent metrics d (com-
pare Proposition 2.9 below).

Proof. Tt is easy to see that [-]; is a seminorm (note the [f]; < oo since K is
compact). Thus d;(f,g) = [f—g]: is a semimetric. From this it easily follows

that then (f,g) — 112’2’?’)9) and d are also semimetrics (see Lemma 1.16).
To see that d is actually a metric assume that d(f,g) = 0. Then d;(f,g) =0
for all ¢ and hence f = g on K;. Since U = |J;2; K; we get f = g.

To prove completeness let j — f; be a Cauchy sequence with respect to
d. This implies that j — f; is a Cauchy sequence for each d;. It follows
from the completeness of C'(K;;Y) that there exist functions g; € C'(K;;Y)
such that lim; o sup,ck, || fi(z) — gi(x)|| = 0. Since K; C K;y1 one easily
sees that for k < ¢ we have g, = gi|k,. Thus we can define g : X — YV
by g(z) = gi(z) if € K;. By construction we have lim;_, d;(fj,9) = 0
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for each i. This implies that d(f;,g) — 0 (see Proposition 2.9). Finally we
need to show that g is continuous. This follows from the fact that g g, is
continuous that for each = € U there exists a ball B(z,r) which is contained
in one K;.

To prove separability let € > 0 and let i be such that 272 < ¢. Then
for any set d(f,g) < d;,(f,g) + ¢ and the result follows easily from the
proof of Theorem 2.7 (details: exercise, see also the proof of Proposition 2.9
below). O

Proposition 2.9. Let U C R" be open and let (C(U;Y),d) be as in Theorem
2.8. Let f : N — C(U;Y) be a sequence. Then the following statements are
equivalent:

(ii) Vi limj_ﬂx, dz(f, g) = 0;

(111) for all compact sets K C U limj_,o0 sup,cg || fj(z) — g(x)|| = 0.

Remark. The convergence in (iii) is often called locally uniform conver-
gence.

Proof. (iii) = (ii): obvious.

(ii) = (i): Exercise. Hint: let 27972 < ¢ and split the sum into a finite
part for i < ig and the rest.

(i) = (iii): For each = € K there exists an 7 > 0 and an i such that
B(z,r) C K;. Since K is compact, finitely many of these balls B(z;,r;) C
K; cover K. Since the sets K; are increasing in ¢ there exists iy such that
K C Kj,. By assumption d;,(fj,g) — 0. This implies (iii). O

Let U C R"™ be open. By C*(U;R™) we denote the space of k times
differentiable functions f : U — R™ whose derivatives are continuous. The
derivative D! f(z) at a point z is an l-multilinear form on R™. On the finite-
dimensional vector space of [-multilinear forms are a number of natural
norms which are all equivalent (we will see shortly that all norms on a finite
dimensional vector space are equivalent). If nothing else is said we will use
the Euclidean norm

D ()] = (Y 10%f (@) P)' /2. (2.20)

laf=l

Here o € N” is a multiindex, o] = """ a; and 0°f = 07" ...05" f with
the convention that Y f = f.

Definition 2.10. Let U C R"™ be open and bounded. We define

CH(U;R™) := {f € CK(U;R™) : D'f has a continuous extension to U VI < k}
(2.21)
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and, for 0 <1<k,

k

ey =sw D' f @), Ifller =D [fler (2.22)

zeU 1=0
Moreover we set C*(U; R™) = 72, C*(U;R™) and

ot e
d(fvg)—lzg2 T (2.23)

Theorem 2.11. For 0 < | < k the expression [|c: is a seminorm on
C*(U;R™), the expression ||-||cw is a norm and (C*(U;R™), ||-|lcx) is a sep-
arable Banach space. Moreover (C®(U;R™), d) is a separable and complete
metric space.

Remark. One can combine this result and Theorem 2.8 to introduce met-
rics on C*(U;R™) and C*®(U;R™) so that these spaces become complete
and separable metric space. Moreover d(f;,g) — 0 if and only if D'f; con-
verges uniformly to D'g on all compact subsets of U and all I < k or all
l € N, respectively.

Proof. Exercise. Hints: For completeness of C*(U;R™) consider a Cauchy
sequence f : N — CF(U;R™) and first deduce from Theorem 2.5 that
0°f; — ¢g* in C(U;R™) for |a| < k. Assume first k = 1. For z and y
sufficiently close one has f;(y) — fj(z) = fol Dfj(x+t(ly —z))(y — z)dt and
passing to the limit one easily sees that g is differentiable and 9;g = ¢*. This
shows that g € C*(U;R™). For general k one argues by induction.

To establish separability on can proceed in a similary way as in the proof
of Theorem 2.5 as long as one chooses in addition f € C*°(R") and one
uses the k-th order Taylor expansion in the definition of the approximating
functions.

The corresponding results for C*°(U; R™) then follow by using the rela-
tion between the Frechet metric d and the seminorms [-]o: as in the proof
of Theorem 2.8. O

Functions with compact support.

Definition 2.12 (Functions with compact support). (i) Let (X,T) be a
topological space, let Y be a normed space and let f : X — Y. The
support of f is defined as

supp f :={zx € X : f(z) # 0}. (2.24)

(i) The space of continuous functions with compact support is defined as

Co(X;Y):={feC(X;Y):supp f compact}. (2.25)
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(i5i) If U C R™ is open and Y = R™ we define

C*(U;R™) := C*(U;R™) N C.(U;R™), (2.26)
D(U;R™) := CX(U;R™) := C®(U;R™) N C.(U;R™). (2.27)

Remark. (i) For m = 1 we often write C*(U) := C*(U,R). Some authors
(e.g. H.W. Alt) write C§(U;R™) instead of C¥(U;R™) etc.

(ii) In part (iii) of the definition the relative topology on U is used to de-
fine 'closure’ and ’compact’. Equivalently we can take the closure of the set
{z : f(z) # 0} in R™ and require that this closure is contained in U and
compact. Note that the closure of {z : f(z) # 0} in R™ is compact if and
only if {z : f(z) # 0} is bounded.

(iii) Define f(x) = 1 —x if z € [0,1) and f(z) = 0 if z € [1,00). Then
1 € Cu([0,50)) and f € Cu([0,1]) but f ¢ C.((0,1)) and f ¢ Co([0,1)).

(iv) The space C.(U;R™) is dense in C(U;R™) (equipped with the Frechet
metric defined above).

[25.10. 2017, Lecture 5]
[27.10. 2017, Lecture 6]

Interesting subspaces of the space of continuous functions arise when we
consider functions with a given modulus of continuity p : [0,00) — [0, 0),
i.e., functions for which [|f(z) — f(y)|| < Cfp(d(x,y)) where limy o p(t) =
0. The most important examples are Holder continuous functions, which
correspond to p(t) = t¢. For simplicity we focus on functions on A C R™.

Definition 2.13. Let « € (0,1]. Let A C R™. We say that f : A — R™ is
Holder continuous with exponent o if

[fla,a = sup M < 00. (2.28)
z,Y€EA, x#y ‘33 - y‘
We define
CO(AR™) = {f € Cy(4R™) < [flaa < oo}, [ fllaa:= sup 1f () |+ [faa-

(2.29)
If U is open and bounded then we define

CEA(U;R™) := {f € CH(U;R™) < [D¥ flay <00}, I flksaa := 1 (@)l o @pomy + [ Flav
(2.30)

Remark. (not discussed in class)

(i) Similarly one can define C%%(4;Y) where Y is a normed space.
(ii) Holder continuous functions with exponent o = 1 are called Lipschitz
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continuous and we write Lip(f, A) := [f]1.4. Often the set A is dropped
from the notation.

(iii) f U ¢ R™ is open, f : U — R™ and [f]ou < oo for some a > 1 then
f is differentiable at each point € U and Df(x) = 0. If, in addition U
is connected then f is constant in U. This is why we only consider Holder
exponents o < 1.

(iv) In analogy with Theorem 2.8 we can define a metric on the set Cfo’?(U )=
{f e C*(U) : [D¥flak, < oo Vi}.

Proposition 2.14. The expression []o.a is a seminorm on CY*(A;R™)
and the spaces C¥Y(A;R™) and C**(U;R™) are Banach spaces with the
norms || - [la,a and || - [|r,0.v-

Remark. The space C%%(A;R) is not separable (unless A is finite).

Proof. The assertions about the seminorms and norms are easy to prove.
Completness of C%*(A;R™): see homework sheet 3.
Completeness of C*(U;R™) is shown similarly. O

2.2 L? spaces and the Lebesgue integral

Here we very quickly recall from Analysis 3 important features of the Lebesgue
integral and the L? spaces .

Definition 2.15. Let X be a set. Then S C 2X is a o-algebra if
(i) eSS, X €S;
(ii)) AcS = X\AeS;

(iii) Yk e N Ay e S = UpenAr€S.

An arbitrary intersection of o-algebras is a o-algebra and 2% is always
a o-algebra. Hence the smallest o-algebra which contains a given subset of
2% is well defined. If (X,7) is a topological space then the Borel-algebra
B(X) is defined as the smallest o-algebra which contains 7.

It is interesting to compare the definition of a o-algebra and a topology.
A o-algebra is closed under countable union and complement and thus under
countable intersection. A topology is closed under arbitrary union and finite
intersection.

Definition 2.16. Let S be a o-algebra on X, p: S — [0,00]. The map p
is called a measure on S if :

(i) (@)

0;
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(i1) w is o-additive, i.e., if A: N — S and A, N A =0 for all h # k then

I (U Ah) = pu(An). (2.31)

heN heN

In this case the triple (X, S, 1) is called a measure space.

The elements of S are called measurable sets. An element A € S is called
null set if p(A) = 0. A measure space is called complete if every subset B
of a null set belongs to S (then necessarily B is also a null set).

The measure i is called o-finite if there exist countably many sets Ay, € S
such that X = JAg and p(Ag) < co.

Here we use the usual extended arithmetic on [0,00]. We say the a
properties holds almost everywhere (or a.e., for short) in X if there exists a
null set NV, such that the property holds in X \ N.

Examples. (i) Let M, denote the Lebesgue measurable subsets of R”
and let £" denote the Lebesgue measure. Then (R", M,,, L") is a complete
measure space.

(ii) Let # denote the counting measure. Then (N, 2N, #) is a measure space.

In the following we will always assume that p is o-finite.

Let (X,S, 1) be a measure space and let (Y,7) be a topological space.
We say that f : X — Y is measurable if f~1(U) € S for all U € T
(’preimages of open sets are measurable’) 2. One can easily check that a
map f: X — Ror f: X — [—00,00] is measurable if and only if the
sets {z : f(z) > a} are measurable for all a € (—o00,00) and that a map
f:X —>R"or f: X — [-00,00|™ is measurable if and only if all the
component maps are measurable

If (X,S, 1) is a measure space and F € S then we define the character-
istic function by

(2.32)

1 ifxek,
xe(x) =

0 ifxgFE

and we define [ xpdp = p(E). One can see easily that any measurable
function f : X — [0,00) can be uniformly approximated by functions of
the form ) % aixg, with E; € S. This allows one to define [ fdu as a
number in [0, co] and this definition can be extended to measurable functions

2Here I follow Def. 2.3.2. in H. Federer, Geometric measure theory and not H-W. Alt,
Lineare Funktionalanalysis. H.-W. Alt requires in addition that there exists a p null set
N such that f(X \ N) is separable. For us the difference does not matter since R™ and
[0, 00]™ are separable, so the extra condition is empty.
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f X — [0,00]. We say that a function f : X — [—o00,00] is integrable if
it is measurable and if its positive and negative part, f* = max(f,0) and
f~ = max(—f,0), both have finite integral. Then one defines [ fdu =
Jx ftdp— [ f~ du. For measurable functions f : X — R™ one can define
the integral componentwise. Then the integral has the usual properties. In
addition for this (Lebesgue) integral one has the following three powerful
convergence theorems.

Theorem 2.17 (Beppo Levi, monotone convergence). Let (X,S,u) be a
measure space, E € S and assume that for all k € N fi, + E — [0,00] is
measurable and fi < fyy1. Then

lim/fkdu:/ lim frdu. (2.33)
k—o00 E Ek‘—)oo

The assumption fr > 0 can be replaced by fr > ¢ for an integrable
function g (proof: consider fr — g).

Theorem 2.18 (Fatou, lower semicontinuity of the integral). Let (X, S, )
be a measure space. Assume that E € S and for all k € N the functions
fr : E — [0,00]| are measurable. Then

/ liminf fi dp < lim inf/ fredu. (2.34)
E k—o00 k—o00 E

Again it suffices to assume f; > g, for some integrable g.

Theorem 2.19 (Lebesgue, dominated convergence theorem). Let (X, S, )
be a measure space. Assume that E € S and that for oll k € N the functions
fr + E — [—00,00] are measurable. Suppose that there exists a null set N
and f: E\ N = R such that

fel@) = f(z) Yz e E\N. (2.35)

Suppose further that there exists g : E — [0, 00| integrable, such that

fo(@)| < g(x) VkeNVae E. (2.36)
Then
J = jim [ fea (2.37)
and
klggo/E o — fldu=0. (2.38)

The function g is often called an integrable majorant.

Another fundamental result is Fubini’s theorem. In Analysis 3 we proved
this for Lebesgue measure on R™.
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Theorem 2.20 (Fubini). Let f : R"™ — [—o00,00] be integrable and for
z € R"™ and y € R™ define

gz : R™ — [—00,00], hy :R" = [—00, 0] (2.39)
by
92(y) = hy(z) = f(z,y). (2.40)

Then there exists an L™ null set Ny C R™ and an L£™ null set No C R™
such that

(i) The function g, is L™-integrable for x € R™\ Ny and
v [ Jewdeni) = [ gaacm (2.41)
is L™ integrable;
(it) the function hy is L™-integrable for y € R™ \ Ny and
Y — - f(z,y)dL"(x) == /n hy dLC" (2.42)

is L™ integrable;

(iii)
[ gaem— [ ] fegaene) aet@ = [ g de@) aen),
R” XR™ n JrRm m JRn (2.43)

There exists a partial converse: if f is L™ measurable and one of the it-

erated integrals [o, [pm |f (2, y)[dL™(y) L™(z) or [gm [Jzn |f (@, y)]dL™(2) L™ (y)
is finite then all the integrals in (2.43) exist and equality holds. It is not
sufficient that only the maps g, and h, are measurable (see Analysis 3, Satz
3.39 and the warning after Satz 3.25).

Definition 2.21. Let (X,S, ) be a measure space and let E € S. For a
measurable function f: E — R™ we define

1/p
1= ([ 15an)  itpe o), (2.44)
E
| fllzee := ess supg | f| := inf{M € [0,00) : u{x € E : |f(z)| > M} = 0}
(2.45)

For p € [1, 00| we set
L,(E):={f:E —R"™: f measurable , | f||, < oo} (2.46)

and we denote by LP(E) the corresponding equivalence classes of functions
with respect to the equivalence relation

f~g & f=gae (2.47)
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A more precise notation is L,(E,S, u; R™) since measurability depends
on the o-algebra S and the norm depends on u. It will, however, usually be
clear which o-algebra, which measure and which target space we consider.
Note that || f]|z» = ||g||zr if f ~ g. Hence we can define ||[f]|zr := || f]|Lr
The elements of L, are called p-integrable functions.

If p is the counting measure, defined on all subsets of N then we see that
L,(N) =1,.

Theorem 2.22. Let p € [1,00]. The expression || - ||, is a seminorm on
L,(E) and a norm on LP(E). If the measure space (X,S,p) is complete
then the spaces LP(E) are complete, i.e., Banach spaces.

In particular the spaces LP(FE) of Lebesgue measurable, p-integrable
functions are Banach spaces. The completeness of the LP spaces is known
as the Fischer-Riesz theorem.

A fundamental estimate (which can be used to prove that || - ||, satisfies
the triangle inequality) is Holder’s inequality.

Theorem 2.23 (Hélder). Let p,q € (1,00) with
1 1
S =1, (2.48)
P q

or {p,q} = {1,00}. Let f € L,(E), g € Ly(E). Then fg € L1(E) and

gl < [ fllpllgllq - (2.49)

We will often use the fact that LP functions on (subsets of) R™ can be
approximated in the LP norm by continuous or smooth functions.

Theorem 2.24. Let p € [1,00) and let U C R™ be open. Then CO(U) is
dense in Ly(U).

Proof. See Analysis 3, Satz 4.20.. The main idea is to approximate f by
linear combinations of characteristic functions and Lebesgue measurable sets
by open and compact sets. ]

Remark. C(U) N Loo(U) is not dense in Lo (U). Example: take U =
(—=1,1) and f(z) = sgnzx. If g € C(U) and supg > 1/2 and infg < —1/2
then there exists a non-empty open set V' (and hence a set of positive mea-
sure) such that g(V') C (—1/2,1/2). Hence ||f — g||oc > 1/2 for each contin-
uous g.

For the approximation by smooth functions the notion of convolution is
crucial.

Definition 2.25 (Convolution). Let f,g: R™ — R be measurable. Let

N={xeR":yw— f(y)g(x —y) is not integrable } . (2.50)
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Then the convolution f * g :R™ — R is defined as

{fRn fWglx —y)dL(y) ifz g N
0

(F+9)@) = e

(2.51)

One easily sees that f*g=gx* f. )
Moreover f = f a.e. and § = g a.e. implies that (f x g)(x) = (f * g)(z) for
all x € R™.

Theorem 2.26. Let p € [1,00| and f € L1(R"™), g € L,(R™). Then the set
N in (2.50) is an L™ null set, fxg € Ly(R™) and

1f* gllz, @y < If 2@ lgllz, @) - (2.52)

Proof. For p = 1 see Analysis 3, Satz 4.24., for general p, see Analysis 3,
Satz 4.25. The proof of Theorem 2.26 for p = 1 relies on a linear change of
variable (z,y) — (x,y — x) and Fubini’s theorem. O

Lemma 2.27. Let f,g,h € L1(R™). Then
(i) (f+xg)xh=fx*x(g*h) a.e.
(i) If, in addition h € Loo(R™) and (Sf)(x) := f(—x) then

/n(f*g)hdﬁn -/ f(Sg*h)dL" :/Hg(Sf*h) dc".  (2.53)

(iii) If g € C*(R™) then N =0, f * g € C*(R") and for k > 1 we have

9%(f*g)=[f*0% (2.54)
for all multiindices o with |a| < k.

Proof. See Analysis 3, Lemma 4.26.
For the first equality in (ii) one uses the identity f(y)g(z—y)h(x) = f(y)Sg(y—
x)h(z) and Fubini’s theorem and the second identity is proved similarly. [

[27.10. 2017, Lecture 6]
[3.11. 2017, Lecture 7|

Lemma 2.28. (i) 3ne C°(B(0,1)) withn > 0 and

/ ndr = / ndx = 1. (2.55)
n B(0,1)

(i) 3n € CX(B(0,1)) with0 <n <1 and n(x) =1 if |z| < 3.
We may in addition assume that n is radially symmetric.

33 [FEBRUARY 2, 2018]



Proof. Analysis 3, Lemma 4.27. O
Theorem 2.29. Let p € [1,00).
(i) Let ¢ € Li(R"™) and [z, pdL™ = 1. Set iy (x) := k™p(kx). Then

bpx f— f in Ly(R") Vfe Ly(R"). (2.56)

(i1) Let U C R™ be open and let p € [1,00). Then C°(U) is dense in
L,(U).

Proof. See Analysis 3, Lemma 4.28.

The idea is to prove (i) first for f € C.(R™).Then (i) follows for f € L,(R")
from Theorem 2.24 since one can bound the error terms ¥y * (f — f ) using
Theorem 2.26.

For (i) one first approximates f € L,(U) by f € C.(U) using Theorem 2.24.
Then we take ¢ € C®°(B(0,1)). It now suffices to note that 1 * f € C(U)
if k> 1/6, where ¢ = dist (supp f,R" \ U) = mingecgupp s dist (z,R" \ U) >
0. O

Let U C R™ be open. We say that f € Lj,.(U) if f € Li(K) for all
compact subsets K C U.

Lemma 2.30. Let U C R" be open and let f € Ly joc(U).

(1) If vy is as in Theorem 2.29 then 1y * f — f in Ly 0.(U). More
precisely for every compact set K C U there exists ko(K) such that for
k > ko(K) the function y — ¥p(y) f(x —1y) is integrable for x € K and

ek f— fin Ly(K). (2.57)

(ii) If
/ feodl" =0 YoeCX({U) (2.58)
U
then f =0 a.e. in U.

Proof. (i) Let ¢ := dist (K,R" \ U). Then ¢ > 0 since K is compact. Set
K' := {z € R" : dist (z, K) < 6/2}. Then K’ is compact and K’ C U.
Set g = fin K" and ¢ = 0 in R*\ K. Then g € L1(R"). If k > 2/§
then ¢y, * f(x) = ¢ * g(z) for all x € K. Hence the assertion follows from
Theorem 2.29.

(ii) Let K C U be compact. If we set ¢(y) = ¥r(x — y) we see that
fx1r =01in K if k is large enough. Thus by (i) we have f = 0 a.e. in
K. The assertion follows since U can be written as a countable union of
compact subsets of U. 0
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2.3 Sobolev spaces

Motivation: Consider the space C*(]0,1]). On this space there is a natural
scalar product given by

1
(f.9) = /0 f(@)g(z) + F'(2)g () d. (2.59)

It is, however, easy to see that the space is not complete under the induced
norm || f ||z := (|| f]|2, + ||f’||%2)1/2, just as C'([0,1]) is not complete in the
L? norm.

To overcome this problem there are two possibilities. First one can
consider the abstract completion of C! in || - |1 and then try to identify
the objects in the completion with usual functions. The space obtained in
this way was originally called H2.

Secondly, one can weaken the notion of derivative to allow functions
whose derivatives in the weak sense are only L? functions and show that the
resulting space is complete in the H! norm. The space obtained in this way
was originally called W12,

We will see that both approaches actually lead to the same space, i.e.
W2 = H%2. To prove this we will follow the second approach and then
show that C! (in fact C) is dense in W12,

2.3.1 Definition and completeness
In the following we always assume

U CR" isopen. (2.60)

If other conditions, e.g., boundedness are imposed on U we will state this
explicitly.

Definition 2.31. We say that f € L1 10.(U) is weakly differentiable if there
exist functions gi,...,gn i L1 joc such that

/ fonpda = — / gipdz Vo€ CX(U). (2.61)
U U

We say that f is k times weakly differentiable if for all multiindices o € N™
with || < k there exist g* € L} (U) such that

/ fo%pdx = (—1)'“'/ 9%pdr Yo e CF(U). (2.62)
U U
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Remark. (i) The functions g; and g% are called weak derivatives and are
still denoted by 0;f and 9%f, respectively. If they exist they are unique by
Lemma 2.30 up to sets of measure zero, i.e. they correspond to a unique
equivalence class in Ll oc- In particular the weak derivative and the usual
derivative agree if g € CF(U).

(ii) The weak derivatives depend only on the equivalence class of f.

In view of (i) and (ii) it makes sense that an equivalence class [f] € L}
is weakly differentiable and has weak derivatives in [¢®] € L} .. In the
following we will usually make no distinction in notion between functions
and their equivalence classes.

Examples. (i) Let U = (—1,1) and f(z) = |z|. Then f is weakly differ-
entiable and the weak derivative is f'(x) = sgn(x).

(ii) Let U = (—1,1) and f(z) = sgn(z). Then f is not weakly differentiable.
Indeed [, f¢' dx = —2¢(0) for all ¢ € C°(U), but there is no g € L}, (U)
such that [;; go dx = ¢(0) for all p € C(U).

(iii) Let U = R™ and f = xp(,1)- Then f is not weakly differentiable. In-
deed fB(o,l) foipdr = faB(OJ) v dH L.

(iv) Let U = B(0,1) C R", n > 2, a € R\ {0} and f(z) = |z|* for x # 0,
f(0) = 0. Then f is weakly differentiable if and only if & > —(n —1). To
see this consider first |’ B(0,1)\B(0 f&go dx and then pass to the limit ¢ — 0.

JFrom these examples we see that weakly differentiable functions cannot
jump across (smooth) hypersurfaces but they may have singularities on lower
dimensional sets. For n > 2 they can be discontinuous and unbounded.

Definition 2.32. Let 1 < p < oo and k € N\ {0}. The Sobolev space
WHP(U) consists of all f € LP(U) which are k times weakly differentiable
with all weak derivatives in LP(U). We define for 1 < p < oo

1/p k 1/p
T (Z / IDf”> =<Z||le|u§pw)) (263

=0

and for p = oo
| fllwh.oo @y = = max, 1D £ | 0 o) - (2.64)

90y

Recall that |D!f(z)[? := > lal=i 0% f(z)|%.
H.W. Alt uses the equivalent norm Hin’k’p = al<k Sy loxfIPdLr.

Theorem 2.33. The pair (W*P(U),| - ||) is a Banach space. The space
WH2(U) is a Hilbert space with scalar product

(fs@wr2w) : Z (0%f,0%9) r2v)- (2.65)

laf<k
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Proof. Tt is easy to see that || - ||jyxp is @ norm and (-,-)yre2 is a scalar
product. Let f : N — W*P(U) be a Cauchy sequence. Then for any
multiindex o with |a| < k the sequence 0% f is a Cauchy sequence in LP(U)
and hence has a limit ¢® € LP(U). In particular f; — g in LP(U). To show
completeness we only need to show that g is weakly differentiable and the
weak derivatives of g are given by g“.

By the definition of the weak derivative we have

/fjao‘godm:(—l)|a|/ 0°fipde. (2.66)
U U

Since ¢ and 9%p are bounded and have compact support they are in par-
ticular in Lp/(U ). Thus using Holder’s inequality we can pass to the limit
j — oo and get

/ g0%pdx = (—1) / g% pdz. (2.67)
U U

This shows that ¢ is k times weakly differentiable and the derivatives are
given by g¢. O

[3.11. 2017, Lecture 7]
[8.11. 2017, Lecture §|

2.3.2 Approximation by smooth functions and calculus rules

We next want to show that element of W*P can be approximated in the
W¥P norm by smooth functions. The key observation if the following: if
f is k times weakly differentiable in R™ and n € C2°(R"™) then n * f is in
C>(R™) and

0 f)=n=*x0%f for all a with |o| < k.
where 0° f denotes the weak derivative of f. We state a slightly more general

version for weakly differentiable functions defined in a general open subset
U of R™.

Lemma 2.34. Let k > 1, let p € [1,00], let f € WFP(U) and denote by
fxu the function which agrees with f in U and is zero in R™ \ U.

Let n € CX(B(0,1)) with n > 0 and [z, ndL™ =1 and set nj(x) =
J"n(jz) and

U, = {w € U : dist (2, R"\ U > })}. (2.68)

Then n; * (fxv) € C*°(R") and
F*(nx (fxv)) =n*x0*f U ifla] <k, (2.69)

where 0% f denotes the weak derivative of f.
If U =R" then fxuy = f and (2.68) holds with U; = R™.
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The functions 7); are sometimes called mollifiers (or mollifying kernels)
and the sequence j — 7, is sometimes called a Dirac sequence.

Proof. By Lemma 2.27 we have 7; * (fxy) € C*°(R") and
Do * (fxv)) (@) = 0%((fxv) * 1) () (2.70)
= [ sworne—vay (2.71)

Now fix € U; and set ¢(y) := nj(z —y). Then ¢ € CX(U) and 9% =
(—1)lel(9%n;)(x —y). Thus the definition of the weak derivative implies that

/f il —y dy—/aa 8%n;(x — y) dy = 13 * ((8° F)xv) (@),
(2.72)
Il

Theorem 2.35. Let p € [1,00), k € N. Then C®(R™) NW*P(R") is dense
in WP (R

Proof. For k = 0 this follows from Theorem 2.29. Let £ > 1 and let n; be
as in Lemma 2.34 and set f; := n; * f. By Lemma 2.34 and Theorem 2.29
we have f; € C*°(R") and

O%f; =m;x0°f = 0°f in LP(R™). (2.73)
Thus f; — f in WFP(R"). O

Theorem 2.36. Let p € [1,00), k € N. Then C®(U) N WkP(U) is dense
in WkP(U).

Proof. The proof combines the previous argument with a smooth partition
of unity. We only give a sketch of the argument.

Step 1: Partition of unity.
Define for i € N, i > 1,

1
Ui:={xe€U:|z| <i, dist (z, R"\ U) > ;} (2.74)

Then U; is open and the closure Uj is given by {z € U : |z| < i, dist (z, R"\
U) > %} Hence U; C U;y1 C U and Uj; is compact. Moreover Uz, U;=U.
Consider now the open sets V; := U3 \ﬁz and the compact sets K; :=
Uis2\Uiy1. Set Ky := U and V; := Us. Then |2, K; = U and each point
x € U is contained in at most three of the sets V.
Now there exist h; € C°(V;) with h; = 1 on K; and h; > 0 (see Analysis
3, Lemma 5.10). We define

R )

(2.75)
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For x € Uy and k > 3. we have hj(x) = 0 if j > k. Thus the sum in the
denominator converges for each x € U and is a smooth function in each set
Ui and hence in U. In addition the sum in the denominator is always > 1
in U since each x € U lies in at least one set K;. Thus

P € C2(Vi), i >0, Zm )=1 Vzel. (2.76)

Step 2: Local approximation.
Now let € > 0 and f € W*P(U). We set
filx) = i(x) f(z) for x €V}, fi(x)=0 forzeR"\V,. (2.77)

Then it is easy to see that f; € WKP(R"™). Let n; be as in the proof of
Theorem 2.35. Then n; * f; — f; in W*P(R") as j — oo. Since supp C V;
is compact it follows that 7; * f; has compact support in V; if j > j;. Thus
there exist

39 € CFV), 1fi — gillwrogeny <272, (278)

Step 3: Conclusion. Set

z) = gj(x). (2.79)
j=0

If € U; and i > 3 then g;(z) = 0 for all j > i since V; NU; = 0 for j > 4.
Hence the sum converges for all x € U; and g is C'°° in the open set Uj;
as a finite sum of C* functions. Thus g € C°°(U). Similarly we see that
f= Zézo fj in U;. This yields (for ¢ > 3)

9
If = gllwrrw, <2Hfg gillwen < 5 (2.80)

Thus can be rewritten as

op

k
> [ -arac< 3. (2.81)
=0 i

It follows from the monotone convergence theorem that

k P
I =l =3 [P —aPacn< 5 (282)
=0

This finishes the proof. O

39 [FEBRUARY 2, 2018]



Lemma 2.37 (Product rule). Let p,q € [1, 00] with

1 1
| (2.83)
P q
(with the convention = = 0). Let f € W'P(U), g € WY(U). Then
fg € WhHY(U) and the weak derivatives satisfy

9i(fg) =0if g+ [Oig. (2.84)

Remark. (i) The analogous assertion holds for higher derivatives.

(ii) The assumptions can be a bit weakened. For example, if U is a bounded
interval (a,b) C R then it suffices that f,g € W1!((a,b)). More generally, it
suffices that f and g are weakly differentiable, fg € L' (U) and 0;f g+ fOig €
LY(U) for all i (this can be proved using the one dimensional result and
the characterization of W1 using restrictions of the function to a.e. line
segment, see the remark after Theorem 2.42).

Proof. We have p # 0o or g # co. We may assume p < 0o, since otherwise
we can exchange f and g.

Assume first that in addition f € C°°(U). Then the usual product an the
definition of the weak derivative imply the assertion since for all ¢ € C°(U)

[ fovspdcr = [ goitsorict - [ gois ot (2s9)
U U U
:/ 0ig fpdL"™ / 90 f odL". (2.86)
U U
If f e WHP(U) set fj :==n; * (fxu). Then it follows from Lemma 2.34

and Theorem 2.29 that f; — f and 0;f; — 0;f in LP(K) for every compact
set K C U. Thus

/ [j90;pdL" — / fg0;pdL", (2.87)
U U
| togeac [ jogeac (2.88)
U U
/ Oifjgpdl" — / Oif gpdLl™. (2.89)
U U
This finishes the proof. O

Lemma 2.38 (Chain rule). Let f € C1(R) and assume that f' is bounded.
Let p € [1,00] and g € W'P(U). Then fog isin LY (U), is weakly differ-
entiable, the weak derivatives belong to LP and are given by

0i(fog) = (f"og)dig. (2.90)

Moreover, if U has finite Lebesque measure or if f(0) =0 of if p = oo then
foge Whr(U).
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Remark. The analogous results holds for g : U — R™ and f : R™ — R%.

Proof. Let M := sup,cg | f'|(x). Then [f(z)— f(y)| < M|z —y|and |f(z)| <
|f(0)] + M|z|. This shows that fogisin L (U) and moreover in LP(U) if
f(0) =0 or if U has finite Lebesgue measure or if p = co.

Let g;j :=n; * (9xv)- Let ¢ € C°(U) and K = supp ¢. By Lemma 2.34
and Lemma 2.30 we have for each compact set K C U

g; =9, 0igj — 0ig in L'(K). (2.91)
By the usual chain rule we get for each p € C°(U)
/Ufogj BupdL" = /U(f'ogj)aigjcpdﬁn. (2.92)

Let K = supp ¢. Then there exists a subsequence such that g;, — g a.e. in
K. Thus

f0gj 0ige— flogdige ae., |f og digle < Msuplpllg]. (2.93)
Hence by the dominated convergence theorem
/ [ ogj, digpdl™ — / flogdigodl™. (2.94)
U U
On the other hand

’/U f' o gj, (0igj, — dig) pdL"

< M sup g0|/ 10595, — Oig| dL™ — 0.
K

(2.95)
Hence
/ f"ogj, 8igj, pdL" — / flogOigpdl™. (2.96)
U U
On the other hand |f o g;, — f o g| < M]|gj, — g| and therefore
/ fogj Oipdl" — / fogdipdl™. (2.97)
U U

Thus f o g is weakly differentiable with weak derivative (f’ o ¢)9;g. Since f’
is bounded the weak derivative is in LP(U) O

[8.11. 2017, Lecture §]
[10.11. 2017, Lecture 9]

Corollary 2.39. Let f € WYP(U). Then the functions

fT:=max(f,0), f :=max(—f,0) and|f|=f"—f (2.98)
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are also in WP and the weak derivatives are given by

Oift =xp+0if, O0if " =—xp-0if, Oilfl =xp+0if — xp-0if, (2.99)

where
Et:={zcU: f(x)>0}, E ={xcU: f(z) <0} (2.100)

Proof. Exercise. Hint: if suffices to show the result for f*. For this show
first that there exist functions hy € CL(R) with |hy(t) — t7] < 1, |4 < 1
and h)(t) — 1if t >0 and hy(t) = 0if t <O. O

Corollary 2.40. Let p € [1,00], f € WYP(U). Let E C U be measurable
and let a € R. Then

f=a ae onE = 0;f=0 a.ce onkE. (2.101)

Proof. Exercise. Hint: use Corollary 2.39. O

Remark. The map f — f* is continuous in WHP(U), ie. f; — f in
WLP(U) implies that fJ+ — f* in WHP(U) (exercise). Hint: use that

limj_,o L"{z € U : f;(z) >0, f(z) < —7} = 0and show thatlimj_, fAk |0; fldL™ =
O,WhereAk:{:L‘EU:%ngO}.

It follows that the maps (f,¢g) — max(f,g) and (f,g) — min(f, g) are also
continuous in WP (U).

2.3.3 Sobolev functions in one dimension

We finally show that in one dimension every element on W' has a unique
continuous representative. In fact elements of W1 are absolutely continu-
ous in the following sense.

Definition 2.41. Let (a,b) C R be a bounded interval. A map f : [a,b] — R
is called absolutely continuous if there exists g € L*((a,b)) such that

F(x)=F(a) + /w g(y)dy Vz € [a,b]. (2.102)

Theorem 2.42. Let I = (a,b) C R be a bounded interval. Then f € Wh(T)
if and only if f has an absolutely continuous representative f : [a,b] — R.
In that case

flx)=c+ /x f'(z)dz Yz € [a,b] (2.103)
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Proof. Homework. Hint: If F' satisfies (2.102) one can use Fubini’s theorem
to show that F' is weakly differentiable with weak derivative g and hence
belongs to WL (I). Conversely if f € W1(I) is given one can define

F(z) = / " P ) dy.

Then f — F is in W1(I) and has weak derivative zero. It only remains
to show that this implies that f — F' equals a constant c a.e. (one can use
mollification to prove this). Then one can set f = c+ F. O

Remark. One can show by measure-theoretic methods that every abso-
lutely continuous function is (classically) differentiable at a.e. point in (a, b).
The classical derivative and the weak derivative agree a.e.

Remark. There exists a similar characterization for functions defined on
an open subset U C R™. We have f € WL(U) if and only if there exists
a representative f such that for every cube Q = [](as,b;) C U the maps
x; — f(x1,... @i 1, 2i Tip1, ..., Ty) belongs to W1 ((as,b;)) (and hence
are absolutely continuous) for £ a.e. choice of the other coordinates /.
Moreover for £ ! a.e. o} and all z;,y; € (a,b) we have

f(xl, ey Ljg—1, Ty Ty 1y - - - 7‘Tn) - f(xl, ey Li—15Yiy T4y e - - 7xn)

Z;
:/ sz(xl, s Ti—1, b T, ,.Z‘n) dt, (2.104)

Yi
where 0; f is (a representative of) the weak derivative.

Corollary 2.43. Let I = (a,b) C R be a bounded interval. Let p € (1,00]
and o := 1 — % (with the convention L =0). Let f € W'P(I). Then the

representative f in Theorem 2.42 satisfies f € CO%(T) and

[fla < I1f/lze- (2.105)

Remark. Using Rademacher’s theorem (Lipschitz functions are a.e. dif-
ferentiable and absolutely continuous) one can show that f € W1Hoo(T) if
and only if f has a Lipschitz continuous representative.

Remark. (i) Using the usual identification of functions and representatives
one often writes C%(I) ¢ WP(I) and C%(I) = WH>(1).

(i) The Cantor function (also known as the ’devil’s staircase’) is in C%
(with @ = iﬁ—g) and differentiable a.e. with derivative 0, but not absolutely

continuous and hence not in W11,

Proof. Homework. O

43 [FEBRUARY 2, 2018]



2.3.4 Boundary values of Sobolev functions

Definition 2.44. Let p € [1,00). The space Wég’p(U) is defined as the
closure of C°(R™) in WkP(U). For p = oo we define

We™(U) == {f € WF(U) : 3f; € C2(U), sup || fjllwre < oo,
J

9 fj = 0% f in Lio(U)}. (2.106)

We think of Wé” P(U) as the Sobolev space of functions with zero bound-
ary values.
Example.

(i)

(i)

(iii)

If f € WFP(U) and if there exists a compact set K C U such that
f=0ae. inU\K then f € W[])“p(U). To see this denote by Ef the
extension of f by zero outside U, consider f; := n;*(E f) and note that
fj € C(U) if j is large enough and f; — Ef in WEP(R?) (if p < oo;
for p = oo we have the convergence required in the definition of VV(;C .

Let f € Wok P(U) and denote by Ef the extension of f by zero outside
U. Then f € WkEP(R™).

Proof: Clearly for f € C°(U) we have Ef € C°(R") and || E f{[yyr.pgn) =

[ fllwer@)- Ep<oolet fj € C°(U) with fj — f in WHP(U). Then
Ef; is a Cauchy sequence in W*P(R") and thus Ef; — g € WEP(R®).
On the other hand Ef; — Ef in LP(R™). Thus f = g (in the sense of
equivalence classes) and hence f € WP (R™).

Added Jan 18, 2013 A similar argument applies for p = co.

WEP(R™) = WEP(R™), i.e., C2°(R") is dense in WH5P(R") (idea: con-
sider fj(z) = ¢(5)f(x) with ¢ € C°(B(0,1)) and ¢ = 1 in B(0, o3k
details: exercise).

Remark. Let I = (a,b) be a bounded interval, p € [1,00]. Then

feWgPI) <« fla)=f(b)=0, (2.107)

where f denotes the absolutely continuous representative of f (see Theorem

2.42).
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3 Subsets of function spaces: convexity and com-
pactness

3.1 Convexity and best approximation

Definition 3.1. Let X be a K vector space.
(i) A set A C X is convex if

r,y€A ae(0,1) = (1-a)r+ayc A (3.1)
(ii) Let A C X be convex. A function f: A — RU{+oo} is convez if
Ve,y e AVae (0,1) f(l—a)z+ay) < (1—a)f(x)+af(y). (3.2)

(i1i) For an arbitrary set A C X the conver hull conv A is defined as

k k
conv A := {Z a;z ke N\ {0}, z; € A, a; > O,Zai =1}. (3.3)

i=1 i=1
One easily sees that conv A is the smallest convex set which contains A.

Theorem 3.2 (Projection theorem). Let X be a Hilbert space, let A C X
be non-empty, convex and closed. Then there exists one and only one map
P: X — A such that

|z — P(z)||x = dist (z, A) := inf ||z — y|x (3.4)
yeA

for all x € X. The value P(x) is equivalently characterized by the condition
Re(x — P(z),a — P(x)) <0 Va € A. (3.5)
The map P : X — A is called the orthogonal projection from X to A.

Proof. Step 1: Uniqueness of P(x).
Set m :=infyc 4 || — y||x and assume that there exist a,b € A such that

la —af| = b —z| = m. (3.6)

It follows from the triangle inequality and the homogeneity of the norm that

||“T+b — || < m. We now use the parallelogram identity to show that the
inequality is strict if a # b. Since A is convex we get
9 a+b 9 a—z b—z 5, 1 5 1 9 a—">b,
< ||— = = = — — — b — — || —
m? < | ol = | T+ P IR = el + gllo— 2l ~ |27
(3.7)
2 a—b
<m” —|| | (3.8)
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Thus a = b.

Step 2: Ewistence of P(x).
By definition of m there exist a;, € A such that [lay — z|> < m? + 4 for
kE € N\ {0}. Since A is convex we have H%Jra]
parallelogram identity gives

z|| > m. Hence the

1 1 —a
m? < 4 g o= I HS R

o (3.9)

Thus j +— a; is a Cauchy sequence and since X is complete there exists
a € X such that a; — a. in X. Since A is closed we have a, € A. Finally
the continuity of the norm implies that |la. — 2| < m. By the definition of
m we must have equality and we set P(x) = a.

[10.11. 2017, Lecture 9]
[15.11. 2017, Lecture 10]

Step 3: Characterization of P(x).
To see that (3.4) implies (3.5) let A € (0,1). Since A is convex we have
(1 =AN)P(z) + Aa € A and thus

lz = P(@)]* < [lz = [(1 = M) P(2) + ][> = ||z — P(x) = Ma — P(x))|
=|lz = P(2)|* = 2Re(z — P(2), A(a — P(x))) + [|A(a = P())[*.  (3.10)

Subtract ||z — P(z)||? on both sides, divide by A > 0 and consider the limit
A} 0. This gives (3.5).
Conversely assume that (3.5) holds. Then for all a € A

lz = all* = [|(z — P(2)) + (P(2) — a)|* (3.11)
= [lz — P()||* + 2Re(x — P(x), P(z) — a) +[| P(z) —al* (3.12)
>0
> |z — P(x)||*. (3.13)
Thus (3.4) holds. O

Corollary 3.3 (Projection onto a subspace). Let X be a Hilbert space and
let Y C X be a closed subspace. Then there exists one and only one map
P: X —Y with

|z — P(x)|| = dist (x,Y). (3.14)

This map is linear and it is equivalently characterized by the condition
(x — P(x),y) =0 VYyeY. (3.15)
Notation: If Y is a subspace we define the orthogonal space by

Li={reX:(z,y) =0VyeY}) (3.16)
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We have
Y closed — (YH)t=V (3.17)

Clearly Y C (Y+)L. Assume that z € (Y1)~ \ Y and let P as in the
Corollary. Then z — Pz € Y by (3.15). At the same time z — Pz € (Y )+
since Y C (Y1)+. Thus z — Pz =0, i.e., z € Y, a contradiction.

Proof. Theorem 3.2 implies the existence and uniqueness of P(x). Moreover
P(x) is characterized by the condition

Re(P(z) —z,a— P(z)) <0 Va€ey. (3.18)

Let y € Y. If X is areal Hilbert space application of (3.18) with a = P(z)+y
implies (3.15). If X is a complex Hilbert space application of (3.18) with
a = P(x) £y and a = P(z) £ iy implies (3.15). Conversely (3.15) always
implies (3.18).

Finally linearity of P follows from (3.15) and uniqueness. Indeed if
x1,22 € X and A € K then (3.15) implies that

(r1 +x2 — P(z1) + P(x2),y) =0 ,(Ax1 —AP(z1),y) =0 VyeY (3.19)

and by uniqueness we get P(z1 4+ z2) = P(x1) + P(z2) and P(Az) = AP(x).
O

Example 3.4. Let U C R™ be open and bounded, let v € W2(U). Let
A=v+WPU) = {ue WH2U) :u=v+w, we Wy*(U)}  (3.20)

and let
f = En 0; f0;gdL™, 2. L f) = VFI2dcn. )
(79) /il foigd [f] (ff) /’ ‘ d (321)

Note that (-,-) is a positive semidefinite symmetric bilinear form and [-] is
a seminorm on W12, We claim that there exists a unique @ € A such that

[a] = dist (0, A) = 11161{"4[14 (3.22)

and .
0= (4,w)= / > duowdl" Yw e Wy (U). (3.23)

Ui=1

This does not directly follow from Theorem 3.2 since (-,-) is only positive

semidefinite. The parallelogram identity, however, still holds and thus for

any sequence k — uy, € A with [ug]? < dist2(0, A) +  we get that

Uj — Uk 9 1 1
- "< — 4+ —. 3.24
[ 2 ] _2j+2k (3:24)
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Now up, — v € WOI’2(U) and hence it follows from the Poincaré inequality
below that k — ui — v is a Cauchy sequence in W&’Q(U). Thus wj — u in
W2(U) and w € A. The condition (3.23) now follows as in Corollary 3.3.

Ifue C*U)NC(U) and v € C(U) then it follows from (3.23) and the
definition of A that

—Au=0 inU, u=v on U, (3.25)

i.e. u is a classical solution of the Dirichlet problem.

Ifa € v+ Wy*(U) and (3.23) holds we call @ a weak solution of the
Dirichlet problem. Note that in Einfihrung PDG we have shown that (3.23)
implies that w € C*°(U) and —Au =0 in U (Weyl’s lemma).

Lemma 3.5 (Poincaré inequality). Let n > 1, p € [1,00]. Let U C R"”
be bounded and open and assume that U C [[i(ai,a; + L;). Then for
fe Wol’p(U) one has

1fllzrwy < LillOifll e @) (3.26)

Proof. By density it suffices to prove this for f € C°(U). By Fubini one can
easily reduce the problem to the case n = 1 for which the assertion follows

from the fundamental theorem of calculus. See Homework Sheet 4, Problem
3. O

Definition 3.6 (Uniformly convex spaces). A normed space X is called
uniformly convezx if

r+y

ve>030>0 |zl =1, ]yl = 1,]I—;

[21-0 = |z-y|<e
(3.27)

Example. (i) Let p € (1,00). Then LP(X,S,p) is uniformly convex
(Homework sheet 5, Problems 3 and 4). The spaces L'(X,S, ) and L>®(X, S, 1)
are not uniformly convex (except in the trivial case when p is concentrated
on one point).

(ii) By the parallelogram identity every Hilbert space is uniformly convex
(with 6 = £2/2).

Theorem 3.7. Let X be a uniformly conver Banach space and let A C X
be non-empty, closed and convexr. Then there exists one and only one map
P: X — A such that

|lx — P(z)|| = dist (z, A). (3.28)

Proof. Let m = dist (xz, A). If m = 0 then z € A because A is closed. Thus
P(z) = x. If m > 0 we proceed as in the Hilbert space case and use uniform
convexity instead of the parallelogram identity to deduce convergence.
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Let ap € A be such that my := ||lax — z|| < m + % Since A is convex we
have || %% — z|| > m. Set

g=k_"T (3.29)
mg
Then
ap + a 1 2+ 2 1 1
M—x:f(mkzk—i-mlzl):m kT A + —(mp —m)zi + =(my — m)z.
2 2 2 2 2
(3.30)
Thus n 1 1
Zk Zl
_ > —— - —. 3.31
H 2 H - 2km 2lm ( )

It follows from the definition of uniform convexity that k +— z is a Cauchy
sequence. Thus z; — z in X and hence ap — a in X and a € A since A
is closed. Moreover ||a — z|| = m since the norm is continuous. Uniqueness
follows directly from strict convexity. O

Lemma 3.8 ("Almost orthogonal element’). Let X be a normed space, let
Y be a closed subspace with' Y # X and let 0 > 0. Then there exists xg € X
with

lxgl| =1, dist(zg,Y)>1—0. (3.32)

Remark. If X is a Hilbert space and z is orthogonal to Y, i.e., (z,y) =
0 for all y € Y, then Corollary 3.3 implies that ||z| = dist (x,Y) (since
orthogonality implies P(z) = 0). In a general normed space there is no
notion of orthogonality, but the element zy is almost as good as a vector
orthogonal to Y in the sense that the ratio of the distance to Y to the norm
is almost 1.

Proof. Let z € X \'Y. Then dist (z,Y) > 0 since Y is closed. Thus there
exists y € Y such that ||z — y|| < 2;dist (2,Y). Since Y is a linear space
we have dist (z,Y) = dist (z — y,Y). Now set zy = O

2Ty
lz=yll*

3.2 Compactness

Theorem 3.9. Let (X,d) be a metric space and let A C X. Then the
following statements are equivalent.

(i) A is compact, i.e. every cover of A by open sets contains a finite
subcover.

(ii) A is sequentially compact, i.e. every sequence x : N — A has a con-
vergent subsequence whose limit is in A.

(11i) (A,d) is complete and A is precompact, i.e. for each e > 0 there exists
a finite number of € balls which cover A.
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Remark. The definition of 'precompact’ in (iii) follows H.W. Alt’s book.
Some authors also call this property 'totally bounded’.

Proof. (i) = (ii): If the sequence x contains no convergent subsequence
with limit in A then for each y € A there exists an 7, > 0 such that the
set Ny :={j € N:z; € B(y,ry)} is finite. The balls B(y,r,) form an open
cover of A. Hence there exist finitely many balls such that

k

Ac | Bi,ry,). (3.33)
=1

Thus N C Ule Ny,. This is a contradiction since the right hand side is a
finite set.

(ii) = (iii): We first show that (A, d) is complete. Let z : N — A be a
Cauchy sequence. By (ii) there exists a convergent subsequence whose limit
x4 is in A. Since x is a Cauchy sequence, the whole sequence converges to
z«. Hence (A,d) is complete. Now let € > 0 and assume that A cannot be
covered by a finite number of £ balls. We inductively construct a sequence
z : N — A such that d(zj,zp) > € if j # k. Indeed if z1,... 2} are given
with that property then

k
AN B(aie) # 0. (3.34)
=1

Take x4 € A\Uf:]L B(z;,€). Then d(xy41,x) > € for j < k. The sequence
xy, contains no convergent subsequence. This contradicts (ii).

[15.11. 2017, Lecture 10]
[17.11. 2017, Lecture 11]

(iii) = (i): Let A be an index set, let Uy C X be open for all A € A and
assume that A C [Jycp Un. Let B denote the set of all subsets of A which
cannot be covered by finitely many of the sets U, i.e.,

B:={BCA:NCA BC |J Uy = N infinite}. (3.35)
AeN

We want to show A & B.
Since A is precompact we have

ke

BeB ande>0 = 3m,...ax, AC|JB(z,e) (3.36)
=1

= 3 BN B(z,e)eB (3.37)

Now suppose that A € B. Then application of the above implication
with ¢ = % shows that there exist By € B such that By = A and By =
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By N B(xy, %‘H) Now let yx € By C A. Then by construction d(y;, yx) < %
if | > k. Since A is complete there exists y, € A such that yr — s as
k — co. By assumption there exists A € A such that y, € Us. Since Uy is
open there exists § > 0 such that B(y.,d) C Uy. Thus for k large enough

1 2
By, C B(zg, E) C B(yg, %) C B(y«,0) C Us. (3.38)
This contradicts the fact that By € B. O

Proposition 3.10. Let (X,d) be a metric space and let A C X. Then the
following assertions holds.

(i) Subsets of precompact sets are precompact.

(ii) A precompact == A bounded
(iii) A precompact == A precompact and closed.
(iv) A compact — A closed.

(v) If (X,d) is complete then

A precompact <= A compact. (3.39)

(vi) If X = K" with the standard norm then

A C K" precompact <= A bounded. (3.40)

(vii) (Heine-Borel property) If X = K" with the standard norm then

A C K" compact <= A bounded and closed. (3.41)

(viii) If A, A; C X and 6; > 0 for i € N with lim;_,o §; — 0 then

Vie N A C Bj,(A;) and A; precompact == A precompact.
(3.42)

(ix) Let (X,dx) and (Y,dy) be metric spaces and assume that f: X =Y
s continuous. Then

ACX compact = f(A)CY compact. (3.43)

(x) Let (X,dx) and (Y,dy) be metric spaces and assume that f : X =Y
is uniformly continuous. Then

AC X precompact = f(A)CY precompact. (3.44)
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Remark. In (x) it is not enough to assume that f is continuous. Ex-
ample f(x) = %va\ is a continuous map from (—1,1) to R and (—1,1) is
precompact, but R is not.

Proof. Properties (i)—(iv) follow directly from the definition of precompact-
ness and Theorem 3.9. Properties (vi) and (vii) were proved in Analysis I.
(v) <=: by Theorem 3.9 A is precompact and the assertion follows from (i).
(v) =: By (iii) 4 is precompact and closed. Thus (4,d) is complete by
Proposition 1.26. Now use Theorem 3.9.

(viii): Let ¢ > 0. Let ¢ € N such that ¢; < £/2. Since A; is precompact

there exist finitely many x1,...,z,, € X such that
m m
A; C U B(zi,e/2), and hence A C U B(x;,e). (3.45)
j=1 j=1

(ix): Assume that f(A) C J, Va and Vy open. Then Uy = f~1(Vy) is
open and A C |J, Uy. Since A is compact there exist finitely many A; with
Ac U, Uy, Thus f(A) c UL, W,

(x): Let € > 0. By uniform continuity there exists § > 0 such that d(z,2’) <
§ implies d(f(x), f(2')) < e. Since A is precompact there exist finitely many
balls B(z;,d) which cover A. Thus the balls B(f(x;),¢) cover f(A). O

Lemma 3.11. Let X be a finite dimensional K vector space. Then all norms
of on X are equivalent. In particular if ||-|| is any norm on X, then (X, |-||)
s complete.

Proof. Let n = dim X and let {ej,...,e,} be a basis of X. Then the map

n
x— h(zr) = inei (3.46)
i=1
is a bijective linear map from K" to X. If || - || is a norm on X then
2| = [[A ()] (3.47)
is a norm in K" and the map A is an isometry from (K", |- ) to (X, | - ).

Hence it suffices to show all norms on K" are equivalent and that (K", |- )
is complete.

Let {e1,...,e,} be the standard basis of K", let | - | be an arbitrary
norm on K" and let |z|o = (3 |z;|?)"/? denote the Euclidean norm. By the
triangle inequality and the Cauchy Schwarz inequality in R

n

2| < failled] < Clalz,  with € = () el (3.48)

i=1 =1
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From this it follows that the map = +— |z| is continuous (and even Lipschitz
continuous) as a map from (K", |- |2) to R. Let S = {z € K" : |z|2 = 1}.
Then S is compact in (K", |- |2) and hence |z| attains its minimum on S by
Theorem 1.12. Thus

c=inf{|z|:z € S} = min{|z|: x € S} >0 (3.49)
since | - | is a norm. By the homogeneity of the norm this shows that
|z| > c|x|s. (3.50)

and thus |- | and |- |2 are equivalent. In particular (K™, |-|) is complete since
(K™, | - |2) is complete. O]

Lemma 3.12. Let (X, ||-||) be a normed space and 'Y be a finite dimensional
subspace. Then Y is complete and hence closed.

Proof. Apply Lemma 3.11 to (Y, || - ||)- O

Theorem 3.13. Let X be a normed space. Then

B(0,1) compact <= dimX < oo. (3.51)

Remark. The assertion holds also for B(0, R) for any R > 0.

Proof. '<=": Let n = dim X, let {e1, ..., e,} be a basis of X and let h(z) :=
S xie; and |z| := ||h(x)||. Since || is equivalent to the Euclidean norm |-|o
on K" the map h : (K, |-]2) — (X, ||-||) is continuous and K’ := h=1(B(0, 1))
is closed and bounded in (K",| - |2). Thus K’ is compact and therefore
B(0,1) = h(K) is compact by Proposition 3.10 (ix).

'=": Assume that dim X = oo. For k € N we inductively construct
z, € B(0,1) with ||lzg|| = 1 and ||zg — ;]| > 5 if k # j. Thus B(0,1) cannot

1

be covered by finitely many balls of radius ; and hence is not compact.

Assume that xg,...xx have already been constructed and let
Y :=span{xo,...,zx}. (3.52)

Then Y is a finite dimensional subspace of X and hence closed by Lemma
3.12. Moreover ¥ # X since dimX = oco. By Lemma 3.8 there exists
Tr4+1 € X with [|[zx4+1] =1 and

1
dist (vx41,Y) = 5. (3.53)

Thus in particular ||zg1 — 2| > & for all k < K. O

Lemma 3.14. Let (X,d) be a metric space and let A C X be compact.
Then for every x € X there exists an a € A such that

d(xz,a) = dist (x, A) := inf{d(z,y) : y € A}. (3.54)

Proof. Let € X. Then the map y — d(z,y) is continuous. The assertion
follows from Theorem 1.12. O
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3.3 Compact sets in C(5;Y) and LP(R"): the Arzela-Ascoli
and Frechet-Kolmogorov-Riesz theorem

Theorem 3.15 (Arzela-Ascoli). Let (X, d) be a metric space and let S C X
be compact. Let'Y be a Banach space. Then

A CC(S;Y) s precompact if and only if (3.55)
(i) (pointwise precompactness)

VeeS Ky:={f(z):feA} isprecompactinY and  (3.56)

(i1) (equicontinuity)

Ve>036>0Vfed daa)<d = |flx)-f@)]<e.
(3.57)

Example. Bounded sets in C%%(S;K™) are equicontinuous and precom-
pact in C(S;K™) (but in general not precompact in C%%(S; K™)).

Remark. (i) Condition (3.56) and (3.57) together with the compactness
of S imply that

K:={f(z): feA zeS}= U K, is precompact in Y. (3.58)
xeS

(ii) The most frequently used case is Y = K™. In this case precompactness
of K, or K is the same as boundedness.

(iii) The assumption that S is compact is needed even if we use the stronger
condition (3.58) and Y = R. Let ¢ € Ce(—3,3)) with 0 < ¢ < 1 and
©(0) = 1 and let A be the set of integer translates of ¢, i.e., A = {py :
vr(z) = ¢(x — k), k € Z}. Then ||p; — x| = 1 if j # k. Hence A is not
precompact.

Proof. '<=’: Let € > 0. Let § > 0 be as in the definition of equicontinuity.
Since S is compact there exist finitely many balls B(x1,9), ... B(z;,d) which
cover S. Let K' = Uélexj. Then K’ is precompact as a finite union of
precompact sets. Thus there exist finitely many balls B(y;,e) C Y, i =
1,...k which cover K'.

For each map o : {1,...,l} — {1,...,k} define

Ao ={f €A ) — ol < Vi=1...0} (359

Then |J, A; = A. For each A, which is not empty choose f, € A,. Note
that the number of maps o is k! and in particular finite.
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Let f € A;. Let x € S. Then x € B(xj,0) for some j € {1,...,l} and
equicontinuity yields

1 (z) = fo(@)| <IIf(z;) = folz;)]| + 2¢
SHf(xj) - ya(a:j)H + ||yo(:z:j) - fU('rj)” +2e < 4de. (360)

Thus
VfeAs |f—fol = Sup 1f(x) = fo(2)]| < 4de (3.61)

and therefore A, C B(fy,5¢). Since A = |J, A5 it follows that A can be
covered by finitely many balls of radius 5e. Since € > 0 was arbitrary this
finishes the proof.

'=’": Pointwise precompactness follows from the fact the map f — f,
from C'(S;Y) — Y is Lipschitz continuous and Proposition 3.10 (x).
To prove equicontinuity let € > 0. Then there exists finitely many f1, ..., fx
in A such that A C Ui.“:l B(fi,e/3). Each f; is a continuous function on
a compact set S and hence uniformly continuous (see (2.11)). Thus there
exist §; > 0 such that

d(z,2') <6 = |filz) — fi(2")|| < /3. (3.62)

Let 0 = min;—; 1 d; and assume that d(z,2’) <. If f € A there exists an
i such that || f — fi|| < e/3. Thus

£ (x) = f@)] < |l fi(z) = fila)ll + ;E <e. (3.63)

This finishes the proof of (3.57). O

[17.11. 2017, Lecture 11]
[22.11. 2017, Lecture 12]

Theorem 3.16 (Frechet-Kolmogorov-M. Riesz). Let p € [1,00) and let A C
LP(R™). Then A is precompact if and only if the following three conditions
hold.

(i) (LP boundedness) supgea |l fllemny < 00;
(ii) (LP equicontinuity)

lim sup |11 + h) = £() | ogeny = 0 (3.64)
ﬁofeA

(i1i) (tightness/ no escape to infinity)

lim sup/ |fIPdL™ = 0. (3.65)
R—00 reA JRn\ B(0,R)
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Lemma 3.17. Let FF C R"™ be measurable and A C LP(F). Define the
extension operator E by

f(z) z€F,

(3.66)
0 x e R™\ F.

(Ef)(z) = {

Then A is precompact in LP(F') if and only if EA is precompact in LP(R™).

Proof. This follows from Proposition 3.10 (x) and the fact that the extension
operator E : LP(F') — LP(R™) and the restriction operator R : LP(R") —
LP(F) given by f + fip are Lipschitz continuous and REA = A. O

Example. Let p € [1,00) and let U C R™ be bounded. Then bounded
sets in VVO1 P(U) are precompact in LP(U).

Proof: Let A := {f € Wy : ||fllwir < M} and let E denote the
extension operator LP(U) — LP(R") (see Lemma 3.17). If f € Wol’p(U)
then Ef € WYP(R") (see Example (ii) after Definition 2.44). By Lemma
3.17 it suffices to show that F'A is precompact in LP(R™). Now we have for
every g € WLP(R")

19+ B) = g()llogny < LIV Lo ). (3.67)

Indeed, for g € C}(R™) this follows from the identity
1
glx+h)—g(zr) = / Dg(z +th)hdt,
0

Jensen’s inequality and Fubini’s theorem applied to [p, fol |Dg(x+th)|P dt dx.
For general g € WHP(R") the assertion follows by density of CL(R"). Ap-
plying (3.67) to E'f we see that condition (ii) in Theorem 3.16 is satisfied.
Moreover (i) holds since ||[Ef|rprny < M for all f and (iii) is trivially
satisfied since U is bounded and Ef =0 on R™\ U.

Proof of Theorem 8.16, general strategy. The main point is to verify that
properties (i), (ii) and (iii) imply precompactness of A. To do so we show
that for each § > 0 there exists

As C LP(R™) precompact with A C Bs(As). (3.68)

Then the precompactness of A follows from Proposition 3.10 (viii).

To construct As we modify f by truncation and convolution. Then we
will use the Arzela-Ascoli theorem to show that the modified functions form
a precompact set in C°(B(0, R)) and hence in LP(B(0, R)). Conditions (ii)
and (iii) guarantee that f and its modification differ only by § in the LP
norm. L]
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We will use the following result.
Lemma 3.18. Let p € [1,00] and f € LP(R"). Let ¢ € LY(R") with
supp ¢ C B(0,7), ¢ > 0 and [g, ¢ dL™ =1. Then

le* f— fllorwny < ‘illlf £+ h) = FOllrwn)- (3.69)

Proof. Since fRn wdL™ =1 we have

o f@) ~ f@) = [ oWy~ faDdy  (370)
and thus

o flz) = fa)] < / eW)|(f(z —y) = f())| dy. (3.71)

For p = 1 the assertion now follows from Fubini’s theorem. For 1 < p < oo
1 1

set % =1- ]l) and write ¢(y) = ¢(y)1¢(y)r and apply Holder’s inequality.

This gives®

jox 1@ = £l < ([ el - - soray) . @)

The assertion follows by raising this inequality to the power p and applying
Fubini’s theorem.

Finally, let p = oo and let w denote the right hand side of (3.69). Note
that the map (x,y) — |f(z — y) — f()| is measurable with respect to £".
Hence the set E := {(z,y) : |f(z —y) — f(z)| > w} is £L?® measurable. By
assumption L"(EN(R" x {y})) = 0 for all y € B(0,r). By Fubini’s theorem
L2(E N (R x B(0,7))) = 0 and thus £*(E N ({z} x B(0,r)) = 0 for a.e.
x € R™. Together with (3.71) this implies the assertion. O

Proof of the implication <<’ in Theorem 3.16, continued. We now construct
the approximating sets As by truncation and convolution.

Let |h| < 1. Since (a + b)P < 2P(a? + bP) for all a,b > 0 we have

L 0w +1) = (s m) @)l da

S/ |f($+h)—f($)|pd$+/ 2°(|f(x + h)|P + | f(2)|P) dz

B(0,R—1) R\ B(0,R—1)

g/ o+ h) — f(x)|pdac—|—2/ 2| (2) da. (3.73)
B(0,R—1) R\ B(0,R—2)

3alternatively the following estimate follows by applying Jensen’s inequality with re-
spect to the measure = pL"
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Let § > 0. By conditions (ii) and (iii) there exist R and j € N with j > 1
such that

Vfe A (3.74)

IR

sup IfxB0,R) (- +h) = fxBOR (I <
hi<?

and

I fxBo,r) — fllLr@n) < Vf € A. (3.75)

IR

S

For j and R and as above let n;(z) = j
and set

n(jx) be the standard mollifier

As = {n; * (fxBo,r) : f € A}. (3.76)
Then it follows from (3.74), Lemma 3.18 and (3.75) that

)
I (fxpor) —fls5  V/eA (3.77)
Thus A C Bg(A(;).

To show that As is precompact let M := supec 4 || f|lLr, let 1% =1- %
and note that for all f € A we have

ni* (fxBo.r) =0 inR"\ B(0,R+1), (3.78)
sup Inj * (fxBo,r) @) < il 1fle < Mnill 1o s (3.79)
sup 1D nj * (fxBo,r) (@) < 1Dl o 1 le < MDnj|l - (3.80)

The last estimate implies that

[(nj * FxBo,R)) () = (15 * FxBO,R)) (@) < M| Dnjll |z — 2| (3.81)

It follows from (3.79) and (3.81) and the Arzela-Ascoli theorem that Aj is
precompact in C(B(0, R+ 1)) and hence in LP(B(0, R+1)). By (3.78) As is
precompact in LP(R™). More precisely the set of restrictions As = { 9Bo.R)
g € Ags} is precompact in C(B(0, R)) and hence in LP(B(0, R)). Then by
Lemma3.17 the set A5 = EAj is precompact in LP(R"). This concludes the
proof of that properties (i), (ii) and (iii) imply precompactness of A. O

To prove the converse implication '=>" in Theorem 3.16 we use the
following result.

Proposition 3.19. Let p € [1,00) and f € LP(R™). Then

;llii)% [f(-+h) = fC)llzp@ny = 0. (3.82)
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Proof. The assertion holds if f € C.(R™). Since C,(R") is dense in LP(R")
for p € [1,00) the proposition follows.

Detailed proof: Let ¢ > 0. Then there exist ¢ € C°(R"™) such that
|f —gll < §. Suppose that suppg C B(0, R —1). Then for g(- +h) — g(-)
uniformly in B(0, R) and ¢(- + h) and g are zero outside B(0, R) if |h| < 1.
Hence

Lim flg(- +h) = g()ll o (@n) = 0 (3.83)
—0
and thus
lim sup 1fC+R) = FOllze@ny < 1f =glle@ny +1f(+R)—g(+h) || Lr@n) <e.
_>
(3.84)
Since € > 0 was arbitrary this finishes the proof. O

Proof of the implication =" in Theorem 3.16. Property (i) is obvious since
precompact sets are bounded. To prove (ii) and (iii) let € > 0. Then
AC Ufil B(fi,e), where f; € LP(R™). For f € B(fi, &) we have

[fC+R) = fOlle < Nfil-+h) = fi()lle + 26 (3.85)
Thus
sup [ f(-+h) = f()llr < sup [[fi(-+h) = fi()llLe + 2. (3.86)
feA 1<i<ke

Hence Proposition 3.19 implies that

limsupsup || f(- + k) — f(-)|r < 2e. (3.87)
h—0 feA

Since € > 0 was arbitrary this implies condition (ii).
Similarly for f € B(fi,¢)

[ fle®m\B(0,R)) < Il fillLon\B(0,R)) + € (3.88)

and
sup || f n < sup ||fi n + e. 3.89
feAH | e R\ B(0,R)) Sup | fill Lo (r7\ B(0, R)) (3.89)

Since (a + b)P < 2P(aP 4 bP) for a,b > 0 we get

sup / [fIPdLt <2° ( sup / |filPdL™ + 5P> . (3.90)
feA JR™\B(0,R) 1<i<ke JR?\B(0,R)

Since f; € LP(R™) and ﬂ(Rn \ B(0,k)) = 0 we have
i=k

lim il dLC = lim \filPdCm = 0. (3.91)
R—oo R7\B(0,R) k—o0 R\ B(0,k)
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Hence

lim sup sup/ [fIPdL™ < eP. (3.92)
R—co feAJRM B(O,R)

Since € > 0 was arbitrary this implies condition (iii). This concludes the
proof of Theorem 3.16. O
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4 Linear operators
In this chapter
X,Y,Z,...... denote normed K vector spaces. (4.1)

We will mention explicitly if these spaces are complete, i.e., Banach spaces.
For a linear map T': X — Y we write

Tx :=T(x) (4.2)
and for the composition of two linear maps we write
ST :=SoT. (4.3)

Lemma 4.1. Let T : X — Y be linear. Then the following three assertions
are equivalent.

(i) T is continuous.
(ii) T is continuous at 0.

(i1i) T is bounded, i.e., there exists a constant C such that

ITz|| < Cllz| Yz e X. (4.4)

Proof. ’(i) = (ii)’: obvious.
'(ii) = (iii)’: Apply the ¢ — ¢ characterization of continuity with ¢ = 1.
Then there exist § > 0 such that

T(B(0,9)) C B(0,1). (4.5)
Thus 5
|7 2Tzl

'(ili) = (i)”: For z,2’ € X we have

2
| <1 andhence [To] < 5e]- (4.6)

[T2" — Tz|| < |T(z —2)|| < Cllz — 2| (4.7)
Thus T is Lipschitz continuous and hence continuous. ]

[22.11. 2017, Lecture 12]
[24.11. 2017, Lecture 13|

It is easy to construct unbounded operators when X is not complete. One
can, for example, take the identity map from X = (I3, - ;) to ¥ =
(L]l ) or from X = (CO[0,1; | - [l11) to ¥ = (CO[0, 15| - o). To
construct an unbounded operator from an (infinite dimensional) Banach X
space to itself one can use the fact that every vector space has a basis B.

61 [FEBRUARY 2, 2018]



Then one takes a countable subset B’ = {bg, b1,...} of B and set Tb; = ib;
and Tb =01if b € B\ B’. Since B is a basis T has a unique extension to a
linear map from X to itself and T is not bounded.

We set

L(X,Y):={T: X — Y : T linear and continuous} (4.8)

and for T' € L(X,Y) we set

Tx
1Tl cx,yy == sup{[|Tz[| : |z|| < 1} = Sup{u rx # 0} (4.9)

-
Note that the equality follows from the homogeneity of the norm and that
IT|lz(x,y) is the smallest constant for which (4.4) holds. We call the el-
ements of £(X,Y) bounded linear operators and we call || - [[z(x,y) the
operator norm. Often we write ||T'|| instead of ||T||z(x,y). We use the ab-
breviation

L(X) == L(X, X). (4.10)

Theorem 4.2. The space (L(X,Y),| - |lz(x,y)) is normed space. IfY is
a Banach space then L(X,Y) is a Banach space. If S,T € L(X) then
ST € L(X) and

ST < ISIHIT (4.11)

Proof. Let S,T € L(X,Y) and let A € K. Then \T" and S+T are continuous
linear maps. Hence £(X,Y) is a K vector space. Moreover ||AT|| = |A|||T|
and ||T']] = 0 implies that Tz = 0 for all  with ||z|| < 1 and hence T = 0.
To prove that 7'+ ||| is a norm it remains to show that

[S+T| < [IS][ + [IT]- (4.12)
Now

vz € B(0,1) € X [[(§+ Tzl = [|Sz + Taf| < || S|l + [Tl < S+ T
(4.13)
Taking the supremum over x € B(0,1) we get (4.12)
Now assume that Y is a Banach space and let k +— T} be a Cauchy
sequence in £(X,Y). Then

Ve >0 3ko Yk, 1> ko ||T) — Tl <e. (4.14)

Thus
Ve >0 ko VEk, 1 > ko ||Tiz — Trx|| < ezl (4.15)

Hence for each x € X the sequence k — Tz is a Cauchy sequence in Y.
Since Y is complete we can define

Tix := lim Tix (4.16)
l—o0
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and it is easy to see that T} is linear. Moreover
(T~ Tl = lim | Tiw — Tia]| < ellal] ¥k > ko (417)
(o ¢]

Hence ||Ty, — Ty|| < e if k > ko. Thus T, — T in L(X,Y).
To prove (4.11) note that for all x € X

ST < (ST} < ST l]]- (4.18)
O

Definition 4.3. (i) The space X' := L(X,K) is called the dual space of
X. Its elements are called (bounded) linear functionals. Note that
by Theorem 4.2 the space X' is always a Banach space (since K is
complete), even if X is not a Banach space.

(i) The set of compact operators from X to'Y is defined as
K(X,Y):={T e L(X,Y):T(B(0,1)) compact in Y'}. (4.19)

If Y is complete then T'(B(0,1)) is compact if and only if T(B(0,1))
precompact in'Y (see Proposition 3.10 (vi)).

(iii) A linear map P : X — X is called a projection if P> = P. The set of
continuous linear projections (or projectors) is defined as

P(X):={PeL(X): P?=P}. (4.20)

(iv) ForT € L(X,Y) we call
N(T) :=kerT :={x: Tx =0} (4.21)

the null space (or kernel) of T. Since T is continuous N (T') is a closed
subspace of X. We call

R(T)={Tz:z e X} (4.22)
the range of T'. The range is in general not closed.

(v) A map T € L(X,Y) is called an embedding if T is injective, i.e., if
N(T) = {0}

(vi) If T € L(X,Y) is bijective and T~' € L(Y, X) we call T an invertible
operator (or a (linear) isomorphism). If X and Y are Banach spaces
then a fundamental theorem of functional analysis (which we will prove
later) states that T € L(X,Y) and T bijective already implies T~ €
LY, X).
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(vii) An operator T' € L(X,Y) is called an isometry if (see Definition 1.27)

|Tx| = ||| Vze X. (4.23)

(viii) If T € L(X,Y) then we define a linear map T' : Y' — X' by
(T'y)(x) :=y/(Tx). (4.24)

The map T' is called the adjoint (or dual) operator to T and we have
T e LY, X")

To see that T" € L(Y', X') it suffices to note that
(T"y)(@)| = 1y (T)| < [Tl < 1y 1T [l])- (4.25)

Thus ||T"y|| < ||| ||T]|.- Hence T" € L(Y', X') and ||T"|| < ||T'|| (we will see
later that | T7|| = ||T|)-

Proposition 4.4. Let X be finite dimensional. Then every linear map
T:X —Y is continuous.

Proof. Let dim X = n and let {ej,...,e,} be a basis of X. Then every
z € X has a unique representation z = Y " | zje; and |[z|j1 == Y1 |z
defines a norm on X. Now

n
T = > 2:iTe|| < ||zl sup ||Tei]. (4.26)
] 1<i<n

Since by Lemma 3.11 all norms on X are equivalent this shows that T is
bounded and hence continuous. O

Definition 4.5 (Frechet differentiability). Let U C X be open.

(i) A map F : U — Y is called Frechet differentiable at xog € U if there
exists T € L(X,Y) such that

po IF(@) = Po) = T — xo)]

=0. 4.27
o, o — o] (4.27)

If such a T exists it is unique. We call T the differential of F' at g
and write
DF(xo) =T. (4.28)

(ii)) A map F : U — Y s called Frechet differentiable if it is Frechet
differentiable at every x € U.
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(i) We say F is continuously differentiable in U (notation: F € CY(U;Y))
if F' is Frechet differentiable in U and the map

x+— DF(x) s continuous as a map U — L(X,Y). (4.29)

Theorem 4.6 (Inverse function theorem). Let X and Y be Banach spaces,
let U C X be open, let F € CY(U; F) and zg € U. If

DF(x9) € L(X,Y) s invertible (4.30)

then F is a C' diffeomorphism in a neighbourhood of xo. More precisely
there exist open sets V.C X and W C Y such that xog € V, F(xg) € W such
that

F:V W bijective, F~'eCYW,X) (4.31)

and

DF~Y(y) = (DF(F~}(y))) " (4.32)

Proof. This was proved in Analysis 2. To construct the inverse function
y — G(y) one applies the Banach fixed point theorem to the map Ty (z) =
L™y — L7Y(F(z) — L(z — x¢)), where L = DF(z¢) and shows that T} is
a contraction on B(zg,d) if y € B(xo,e) and if §,e > 0 are sufficiently
small. O

Example 4.7. (i) Let E C R™ be Lebesgue measurable. Let p € [1,00]

and let p' be the dual exponent, i.e., & =1 — ;1). Let g € L”/(E) and

p/
define T : LP(E) — R by

Tf = /E FgdL™. (4.33)

By Hélder’s inequality we have T € (LP(E))" and ||T||(1r(m)y < 91l Lo (-
We shall see later that equality holds and that for p < co every element
in (LP(E))" can be written in this way.

(ii) For f € C([0,1]) define
v5w) = [y (4.34)

ThenT € L(C([0,1]); C1([0,1))) and T € K(C([0,1]); C(]0,1])). More-
over R(T) is not closed in C([0,1]) (exercise).

(iii) Differential operators. Let U C R™ be open. For |a| < m let ao : U —
R and set Tf = Z|a|§m aa0%f. Then

(a) If a,, € C(U) and U is bounded then T € L(C™(U); C(U));
(b) if U is bounded and a, € COP(U) then T € L(C™P(U); COP(U));
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(¢) if ag € L=(U) then T € LW™P(U); LP(U)).

One calls T a linear partial differential operator with coefficients a,,.
A fundamental question in the theory of partial differential equation is
if and under which additional conditions T s invertible.

Theorem 4.8 (Neumann series). Let X be a Banach space and T € L(X)

with lim sup,, o ||Tm|]i < 1 (this hold in particular if |T|| < 1). Then
Id — T is bijective and (Id —T)~' € L(X). Moreover the series Y oo qT"
converges in L(X) and

oo
(d-7)'=) 1" (4.35)
n=0
Proof. For k € N set Sy := Zﬁ:o T™. By assumption there exist § < 1 and
m € N such that ||T"|| < 6™ for all n > m. Then we have for m < k <
! ! pr+1

1SSl <l > s Y TSy (436)

n=k+1 n=k+1 k+1

The right hand side goes to zero as k — oco. Since L£(X) is complete there
exists S € L£(X) such that

S= lim S; in L(X). (4.37)
k—o0

Hence we have in the limit £ — oo

k
I-T)S+— (I-T)S =Y (T"—T"")=1d - T"" — T (4.38)

n=0

since ||T%|| < 0¥ — 0 for k — oco. Thus (Id — 7)S = Id. In the same way
one shows that S(Id —T) = Id. Thus Id — T is surjective and injective and
S is its inverse. O

Corollary 4.9. Let X and Y be Banach spaces. Then the set of invertible
operators is an open subset of L(X,Y). More precisely: if X # {0} and
Y #{0} and S,T € L(X,Y) then

T invertible, ||S —T| < |[|[T7Y ™" = S invertible. (4.39)
Proof. Set R :=T—S. Then S = T(Id —=T~'R) and | T R| < | T Y ||R| <

1. Thus Id — T~'R is invertible by Theorem 4.8 and S is invertible as a
product of invertible operators. O
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Proposition 4.10. Let
oo
=> apz" (4.40)
n=0

be a power series with radius of convergence R. Let X be a K Banach space.

If T in L(X) then

lim sup HTmHm <R = f(T Zan T"  exists in L(X). (4.41)

m—00

Proof. By assumption there exists r < R and m € N such that ||[T7"| < "
for all n > m. Thus for m <k </

Z%T" < Z lan| I T < Z lap|r™ =0 ask — oo (4.42)
n=k
because the power series has radius of converges R > r. O

Example. (i) For all ' € £(X) one defines the exponential function by

[e.e]

1

exp(T) == el = Z aT” € L(X). (4.43)
n=0
For S,T € L(X) we have
ST =TS = I =¢leS. (4.44)
From this one easily deduces that
jtt:to A= AeloA = elod g, (4.45)

(ii)) f T € T and |Id — T'|| < 1 defines

o0

1
log(T) =Y _ —(Id - T)" (4.46)

n=0

3

Then exp(logT) =T (exercise).
[24.11. 2017, Lecture 13|

[29.11. 2017, Lecture 14]
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5 Linear functionals on Hilbert spaces and weak
solutions of PDE

5.1 The Riesz representation theorem and the Lax-Milgram
theorem

Motivation: If X is a Hilbert space and = € X then the Cauchy-Schwarz
inequality implies that y — (y, z) is a continuous linear map from X to K,
i.e. an element of X’. The Riesz representation theorem states that every
element of X’ can be written in this way.

Theorem 5.1 (Riesz representation theorem). Let X be a Hilbert space.
Then the map J given by

J(2)(y) == (y, ) (5.1)
defines a conjugately linear isomorphism from X to X', i.e., J is bijective

and ||J(z)|x = [|=[|x-

Remark. It follows that X’ is a Hilbert space with scalar product (z',y') :=

(1), I &)
Notation: we denote the isomorphism J by Rx.

Definition 5.2. Let X and Y be K vector spaces. A map J : X — Y is
called conjugately linear if for all x,y € X and a € K

J(ax +y) =at(z)+ J(y). (5.2)
For K = R conjugately linear is the same as linear.
Proof of Theorem 5.1. By the Cauchy-Schwarz inequality

[T(@)W)| = (g, 2)| < lylxllzllx, and thus J(z) € X" [|J(2)]lx < [|2]|x-

(5.3)
If x = 0 then J(x) = 0. If x # 0 the choice y = z/||z||x yields
x x
1T (@)l x = J(2)( ) =( ) = [l x. (5-4)
el lellx
Thus ||J(z)|x» = ||=||x. Hence J is an isometry and in particular injective.

It follows from the property of the scalar product that J is conjugately
linear.

The main point is to show that J is surjective, i.e., for every T € X’
there exists a # € X such that T = J(z). Let T € X’ and assume that
T # 0. The null space N(T') = {y : Ty = 0} is closed since T is continuous.
Let P : X — N(T) denote the linear projection in Corollary 3.3. Since
T # 0 there exists e € X with T'(e) = 1. Let g = e — P(e). Then

(y,0) =0 Yy e N(T). (5.5)
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Now T'(z9) = T'(e) = 1 since P(e) € N(T). Thus for all z € X

x=x—T(x)rg+T(x)xo (5.6)

—_——

eN(T)
and hence

(z,20) = 04 T(z)|xo|* VzreX (5.7)

so that -
Tx)=J(——)(x). 9.8
(x) (||1f0||2)( ) (5.8)
O

Variant of the proof of surjectivity. . Let A = {x : T(x) = 1}. Then the
projection theorem shows that there exists g € A such that

|zol|* = dist (0, A) < ||z]|* Vz € A. (5.9)
For |t| small we have T'(zg + tz) # 0 and T?ﬁﬁfx) € A. Thus the function
2 2
To + 1tz |zo + t||
h(t) := = 5.10
®) H T(xo + tx) ’ |T(xg + tz)|? ( )

is minimized at ¢ = 0. Differentiation at ¢ = 0 gives (with T'(xp) = 1)
0 = h'(0) = 2Re(x, o) — 2||zo||* Re T(x). (5.11)

Hence for K = R we get T = J(zo/||7o]|?). If K = C we first apply (5.11)
for x and ix and then reach the same conclusion. O

Theorem 5.3 (Lax-Milgram). Let X be a K Hilbert space. Leta: X x X —
K be a sesquilinear form. Suppose that there exist constants co, Co > 0 such
that

(i) (continuity) |a(w,y)| < Collal Iyl Va,y € X;
(ii) (coercivity) Rea(w,z) > colz|?.
Then there exists one and only one map A : X — X such that
a(y,xz) = (y, Ax)x Vz,y € X. (5.12)

Moreover A € L(X) and A is an invertible operator with

1
|4l < Co and A7 < (5.13)
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Remark. Note that we did not assume that a is symmetric.

Proof. Step 1: Existence of A.

For x € X define T, by T,(y) = a(y,z). By the assumption (i) we have
T, € X" and ||T;| < Cy||z||. By the Riesz representation theorem there
exists one and only one element A(z) € X such that

a(y,z) = (y, A(x))x Vye X and [|A(z)] < Collz|. (5.14)

Since A(z) is unique and since a and the scalar product are conjugately
linear in the second argument it follows that A is linear. Thus A € L£(X)
and ||A]| < Cb.

Step 2: Lower bound for || Ax||.
Coercivity of a implies that

co||9UH2 < Rea(z,x) = Re(z, Ax)x < ||z||||Ax|| (5.15)
and thus
collz| < [|Az]]. (5.16)

In particular A is injective.
Step 3: A has closed range.
Assume that yr = Az and yr — y. Then it follows from (5.16) that

1
|z, — 2] < a”yk —ull- (5.17)

Hence k +— x; is a Cauchy sequence and zp — x, as k — oo. Since A is
continuous we get y, = Az — Az, € R(A).
Step 4: A is surjective and |A7|| < %
Assume that R(A) # X. Since R(A) is closed there exists an zg # 0 such
that
(xo,y) =0 Yy e R(A). (5.18)

To see this take z € X \ R(A) and let xp = = — P(x) where P is the
orthogonal projection in Corollary 3.3. Now coercivity yields

CQH$0||2 < Re(xo,Axo) = O, (5.19)

where we used (5.18). Thus zg = 0, a contradiction. Hence R(A) = X.
Finally the estimate [|[A~1y|| < %Hy” follows from (5.16) by taking = =
A1y, O

Corollary 5.4. Let X be a Hilbert space and let a be as in the Laz-Milgram
theorem. Let T € X'. Then there exists one and only one x € X such that

a(y,z) =T(y) Vye X. (5.20)

Moreover the map T — x is conjugately linear and

1
Il < — 171 (5.21)
0
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Proof. Let Rx : X — X' be the conjugately linear isomorphism in the
Riesz representation theorem and let A be the operator in the Lax-Milgram
theorem. Then (5.20) is equivalent to

(y,Azr)x = (y, Ry (T))x Vye X (5.22)
and this is equivalent to Ax = R)_(IT or
r=A"RJT (5.23)

and the estimate for ||z|| follow from the Lax-Milgram theorem since Rx is
an isometry. O

Corollary 5.5. Let X be a Hilbert space and let A € L(X). If there exists
co > 0 such that

Re(z, Az)x > col|z||% (5.24)

then A is invertible and 1
|A7Y) < — (5.25)
Proof. Apply the Lax-Milgram theorem with a(y,z) = (y, Az)x. O

5.2 Weak solutions of elliptic partial differential equations

We now will use the Lax-Milgram theorem and its corollaries to establish
the existence of weak solutions of elliptic partial differential equations of
second order.

We first quickly review the notion of classical solution. Let U C R"
be open and bounded, for i = 1,...,n and j = 1,...n let a;; € CY(U),
h; € CYU), b€ C(U) and f € C(2). We seek a function u € C?(U) such
that

Lu=f— Z@'hi’ where Lu= — Z 0i(a;j0ju) + bu (5.26)
i—1 ij=1

In addition we assume either Dirichlet boundary conditions, i.e., u € C%(U)N

C(U) and
u=g¢g ondU (5.27)

for a given function g € C(U) or Neumann boundary condition, i.e., u €

C*(U)NCYU) and
Z v; | — Z a;j0ju+h; | =g on dU, (5.28)
i=1 j=1

where v is the outward normal of U (and where we assume that U has C*
boundary).
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We now reduce the Dirichlet and the Neumann problem to the case of
zero boundary conditions. To have any chance to solve the Dirichlet problem
there must exist a function uy € C?(U) N C(U) with u = g on du. Then
u 1= u — ug solves the problem

—Za (aij0;i) + bii = f — Zah in U (5.29)
1,j=1
u=0 on U, (5.30)
where
fi=f—bug, hi:=h;— Zama Ug. (5.31)

We call this the Dirichlet problem with homogeneous boundary conditions.

Similarly to have any chance to solve the Neumann problem there must
exist a ug € C*(U) N CHU) such that — > ", v;(— > =1 0ij0ju + h;) =
Then % = u— ug solves the homogeneous Neumann problem with f replaced
by f and h; replace by h;.

In the following we write again v instead of 4 etc.

To pass to the weak formulation of the Dirichlet problem we multiply
(5.29) by a test function ¢ € C°(U) and integrate over U and integrate by
parts. This gives

/Z%agawbcudcn /Cf+28§h dL™¢ e C2(U). (5.32)
Uij=1 i=1

Conversely, if (5.32) holds then integration by parts yields (5.26) since
Jyw¢ =0 for all ¢ € C°(U) implies w = 0.

Definition 5.6 (Weak solution). Let a;;,b € L>®(U), f,h; € L*(U). We
say that u is a weak solution of the Dirichlet problem

—Zaa”auwu—f Z&h in U (5.33)
1,j=1
u=0 on OU, (5.34)
if
/ S asy0iCou + bCudL" = / Cf+Z@Ch act Ve e W)
i,j=1
(5.35)
ue Wy?(U) (5.36)
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Theorem 5.7. Let U C R" be bounded and open. Let a;j,b € L*(U),
f,hi € L*(U) and assume that

b(x) >0 forae zeU (5.37)

and that the coefficients a;; are elliptic, i.e.,

Je>0VEeR” Z aij(x)&&; > cléf*  for a.e. x € U. (5.38)
ij=1

Then there exists one and only one weak solution u of the Dirichlet problem.
Moreover there exists a constant C which only depends on the set U such
that

C
lullfyae < AT + D IRill7e)- (5.39)
Proof. Consider the bilinear form
a(C,v) := / Z a;;0;C0jv + bCv dL" (5.40)
U =
2,7=1

and the linear map
T(C) = / CF+ Y ochscn. (5.41)
4 i=1

Then T is a bounded functional on VVO1 2 and

1Tl 2y < (172 + D hill72)'2. (5.42)
Wy")

One also sees easily that a(¢,v) < C'[[C]|y12]|v]ly)1.2. Hence all assertions
0 0
follow from Corollary 5.4 if we can show that

C
a(0,0) 2 Sl e, (5.43)

where C only depends on U. From the condition b > 0 a.e. and the ellipticity
condition we see that
a(v,v) > | Vo||3,. (5.44)

Now the Poincaré inequality, Lemma 3.5, yields

1
[v[|22 < C||Vv||2. and hence ||Vovl3s > o 1||UH?/V(},2. (5.45)

O]
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[29.11. 2017, Lecture 14]
[1.12. 2017, Lecture 15]

We now pass to the homogeneous Neumann problem, i.e., (5.26), (5.28)
with g = 0. Multiplication of (5.26) by ¢ € C*(U) and integration by parts
yields

U

ij=1 Ui=1

(5.46)

Conversely if (5.46) holds for all ¢ € CY(U) (and if u is C*(U) N CH(U) we
can first use all ¢ € C2°(U) to deduce the partial differential equation (5.26).
Then integration by parts yields that

/ C Z Viaij(“?ju - Z Vihi dHn_l =0 (547)
ou i=1

ij=1
for all ¢ € C1(U). This implies the boundary condition (5.28) with g = 0.

Definition 5.8 (Weak solution of the Neumann problem). Let a;;,b €
L®(U), f,hi € L*(U). We say that u is a weak solution of the Neumann
problem

- Z 0i(aijOju) +bu = f — Z@ihi in U (5.48)
i=1

1,j=1

D vi| =D aidyuthi | =0 on U, (5.49)

=1 j=1

if
/ 2 ai0iCOju +bCudL! = / CF+ 3 0ChidL” W e WD)
Uij=1 U P

(5.50)
ue WH(U) (5.51)

Theorem 5.9. Let U C R"™ be bounded and open. Let a;j,b € L>®(U),
f,hi € L*(U) and assume that

b(x) >c>0 forae xzeU (5.52)

and that the coefficients a;; are elliptic, i.e.,

Je>0VEeR” Z aij(x)&&; > cl€*  for ace. x € U. (5.53)

ij=1
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Then there exists one and only one weak solution u of the Neumann problem.
Moreover

1
Jullne < (713 + 3 Il (554
Proof. This is parallel to the proof of Theorem 5.7. The quadratic form a
given by (5.40) satisfies
a(v, v) > / (Vo2 + o AL = cljo]Za. (5.55)
U

Now the assertion follows from the Lax-Milgram theorem. O

In the important special case b = 0 then the assumptions of Theorem 5.9
are not satisfied. Indeed, we do not have existence of a weak solution for all
f and h;. If u is a weak solution we get with ( =1

0=a(l,u)=T(1) = / fdcr. (5.56)
U
Hence the condition fU fdL™ = 0 is necessary for the existence of a solution

if b = 0. Indeed it is also sufficient.

Theorem 5.10. Let U, a;j, f, h; be as in Theorem 5.9 and assume that
b= 0. Assume in addition that U has Lipschitz boundary. Then there exists
a weak solution of the Neumann problem if and only if

/ Fdcr =o. (5.57)
U

If (5.57) holds then the weak Neumann problem has a unique solution u in
the space

XH:{UGIVL%U)i/vdﬁnzo} (5.58)
U

Any other solution is of the form u + const.

Sketch of the proof. The main point is that in X a Poincaré inequality holds,
i.e., there exists a constant C which depends only on U such that

vl < ClV|2 Yo e X. (5.59)
Together with the ellipticity assumptions this yields
a(v,v) > ¢|Vo|is > d|v]wre Vv € X. (5.60)

Moreover X is a closed subspace of W1?(U) and thus a Hilbert space. Hence
we can apply Corollary 5.4 in X and this shows that there exists one and
only one u € X such that

a(C,u) =T(C) V¢ e X. (5.61)
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Now every ( € WL2(U) can be written as ¢ = (+const, where ¢ € X. Since
b = 0 we have a(1,u) = 0 and by assumption T'(const) = const T'(1) = 0.
Thus a(u,¢) = T(¢) for all { € WH2(U). Hence u is a weak solution of the
Neumann problem.

It is easy to see that every constant function is a weak solution, too.
Hence u + const is a solution. Conversely let v be a weak solution of the
Neumann problem. Then there exist a constant a such that v —a € X and
v is a weak solution of the Neumann problem. In particular a(v,¢) = T'(()
for all ¢ € X. Hence v = u since we have shown that (5.61) has only one
solution. O

The theory of weak solutions does not only give existence and uniqueness
of solutions in a natural way. It also provides an easy and systematic way
to compute approximate solutions and to estimate the error between the
approximate and the exact solutions. We state an abstract result which can
be applied both to the Dirichlet problem and the Neumann problem.

Theorem 5.11. Let X be a Hilbert space, let T € X' and leta: X x X — K
be as in the Laz-Milgram theorem, i.e., a is a sesquilinear form and there
exist C,c > 0 such that

a(¢,uw) < O¢Hull,  alu,u) > cllul? Y¢,u e X. (5.62)
Let u € X be the solution of
a(Gu) =T(C) VCeX (5.63)

which exists by Corollary 5.4.
Let Y C X be a finite dimensional subspace. Then there exists one and
only one uy such that

a(Cuy) =T(() V(eY. (5.64)

Moreover o
lu—uyl| < zinf{”u —v||:veY}. (5.65)

If in addition a is symmetric then ||ullq == a(u,u)'/? is a norm (often called
the ’energy norm’) and

lu — uyl|le < inf{||lu—v|s:veY}. (5.66)

Thus the error between the true solution v and the approximate solution
uy in the energy norm agrees with error made by looking at the best possible
approximation of u in the subspace Y. In the given norm of X such an
estimate holds up to a constant.
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If uy,...un is a basis of Y the approximate solution uy has a unique
representation uy = Zf\i 1 a;u; and the coefficients «; are the solutions of
the linear system of equations

n
ZAichj =b Vi=1,...n, where  A;; = a(ui, uj), by =T (u;).
j=1
(5.67)
In the context of elliptic PDE the sequilinear form a and the functional T
are given by (5.40) and (5.41), respectively and one usually chooses the u;
such that many of the matrix entries A;; are zero. One can, e.g., take u; as
piecewise affine and continuous ’hat functions’ (linear finite elements).

Proof. See, Homework sheet 7, problem 4. O

6 Linear functionals on Banach spaces and the
Hahn-Banach theorems

Theorem 6.1 (Dual space of LP). Let p € [1,00), let %—i—% =1,let ECR"
be measurable. Then

Ha)1) = [ faac (6.1)
defines a conjugately linear and isometric isomorphism from LV (E) to (LP(E))'.

Remark The result for 1 < p < oo holds also for LP(X,S, i) where
(X,S, ) is a general measure space. For p = 1 one needs to assume in
addition that p is o-finite, i.e., that X can be write as a countable union of
measurable subsets with finite measure.

Proof. Assume first that p € (1,00). By Hélder’s inequality J(g)(f) <
[fllze llgll L and thus J(g) € (LP(E))" and [[J(g)| < |lgll. To see that
equality holds we set

~Jlg@) P 2g(x) if g(x) #0,
J(@) = {0 if g(z) =0 (6.2)
Since p = p,pil we have
11 = [ 1o ac” = lal, (6.3)
and thus
lgll?, = J(a)(F) < 1T @I flle < 1T (9)l] Hgllfp/- (6.4)

Now f — £ = 1 and hence [7(9)]| = lgl -
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The main point is to show that J is surjective, i.e., every T € (LP(E))’
/

is of the above form. We first assume that p € (1,00). Let T € (LP(E)),
assume that 7" # 0 and set

A={feLP(BE):T(f) =1}. (6.5)

Then A is non empty, closed and convex (in fact affine). Since LP(F) is
uniformly convex it follows from Theorem 3.7 that there exists f. € A such
that

[fellr < llgllze Vg € A (6.6)
Let h € LP(E). Then for sufficiently small |t| we have T'(f. + th) # 0 and
thus (6.6) implies that

fu+th
(fs + th)

p 8 th p
_ fe+thll, (6.7)
o T (fe+th)[P

1512 < | 7

Hence the expression on the right hand side has a minimum at ¢t = 0. Now
%t20|a + tb|P = Re(pla|P~2ab) and T(f.) = 1. Thus differentiation with
respect to ¢t at ¢t = 0 yields

0=yt ([ 112 Ende) pl LI BT ). (68)
Using the above equation for h and ¢h we get
70 = [ grhac”, withgr = ILIZILP2E (69
This finishes the proof for p € (1, c0).
For p = 1 consider first the case that £L*(E) < co. Then L?(E) C L'(E).

Hence by the result for p = 2, for T € (L' (E))’ there exists g € L?(E) such
that

T(f) = /fgdL:” Vf € L*(E). (6.10)
We now show that
g€ L>™(E) and gL~ <|T]. (6.11)
Let
Sy = {I’ S D ‘g(l‘)’ > M}? f = XSu9- (6'12)
Then

M [ lglacn < / g2 dem = / fgdc < Tl < |7 / gl dL.
Sumr S E Sm
(6.13)
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For M > ||T|| we deduce that ISM lg| dL™ = 0. Since |g| > M in Sy this
implies that Sjs is a null set. This proves (6.11). To see that (6.10) holds
for f € LY(E), define for K € N the truncated function fx by

fre(a) = {f@") if | f(2)] < K

0 otherwise.

Then by dominated convergence fx — f in L'(E) as K — oo, and (again
by dominated convergence)

/ngd/:”—>/fgd£".
E E

Thus by continuity of T,

/E fgdcr = Jim /E frgdC" = Jim T(fx) =T(f)

[1.12. 2017, Lecture 15]
[8.12. 2017, Lecture 16]

Finally consider the case L(E) = oo and let k — Ej be an increasing
sequence of measurable sets with L"(Ey) < oo and E = (J,cy Ey. Let

Tp(f) =T(fxE,)- (6.14)

Then Ty, € (LY(E)) with [|T[|(z1y < | Tll(z1y and also Ty, € (L*(E))’ since
Te(f) < AITI N Fxele < T2 L(E)Y. (6.15)
Thus there exist g, € L?(E) such that
Tf) = [ fode" i e 1(B) (6.16)
E

By the argument above this implies that g, € L°°(E) and ||gk|[ze < || T||(z1)-
The choice f = XE;\E, 9k shows that gy =0 a.e. on E \ Ej. Now we have

/EfXEkgk dC" =Ty (fxe,) = T(fxe,) = Tkr1(fXxE,) = /EfXEkng acr.

(6.17)
Thus gx+1 = gx a.e. in Ey and we can define g € L*> with ||g||z < ||T|| by

g:=gr on Ej (6.18)

Moreover

T(fxs,) = /E faudLr = /E S dL” = /E fmadc™.  (6.19)
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As above, this equality holds for f € L'(E). If f € L'(FE) then the dom-
inated convergence theorem implies that fxg, — f in L*(E). Since T is
continuous on L'(FE) and g € L>(E) passing to he limit k — oo we get

(f) = /E fgacr. (6.20)

To show that J is isometric, let g € L*°(E). Then again by Hoélder’s in-
equality J(g) € (L'(E))" and ||J(9)ll(z1y < [lgllze. Equality follows by the
reasoning of (6.13) with Sy replaced by Sy N E. O

Theorem 6.2 (Hahn-Banach I). Let X be an R-vector space. Suppose that

(i) p: X — R is sublinear, i.e., for all z, y € X

p(xz+y) <p(z) +py) and plaz)=ap(z) foralla >0,

(i) f:Y — R is linear, where Y is a subspace of X, and
(111) f(z) <p(x) for allz €Y.
Then there is F' : X — R linear with

F(z)= f(z) forallz €Y and F(z)<p(z) foralz e X.

Note that p is sublinear if and only if p is convex and p(azx) = ap(z) for
all @ > 0.

Note also that the statement of the theorem is purely algebraic/ geomet-
ric. No norms or topologies appear in the statement.

First part of the proof. We show that if Z C X is a subspace, if g : Z — R
is linear with ¢ < p and z9 € Z then g can be extended to a linear map go
on Zy := Z ®span{zp} with gy < p. To do so we make the ansatz

go(z + azg) = g(2) + ca. (6.21)

Clearly go is linear on Zy and go|; = g. We have to show that ¢ € R can be
chosen so that

9(z) +ca < p(z+azy) VzeZVacR. (6.22)

Since g < p on Z the condition holds for « = 0. For a > 0 the condition
becomes

e < 2(p(a+az) ~ 9(2) =p(C ) ~g(D). (623)

For oo < 0 the condition becomes
1 z z

ez (plz+az) — g(2) =g(-2) —p(-= ). (624)
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We thus need to satisfy

supg(z) —p(z — 20) < ¢ < inf p(2' + 2z9) — g(2') (6.25)
2€7 ez

This is possible since for all z,2’ € Z

9(2)+9(2") = g(z+2) < p(z+2") = p((2—20)+(2'+20)) < p(2—20)+p(2"+20)
(6.26)
which implies that

9(2) = p(z = 20) < p(z' + 20) — g(=). (6.27)

If X is finite dimensional we can now deduce the theorem by induction. For
general X induction is replaced by Zorn’s lemma. O

To state Zorn’s lemma we recall some basic notions for (partially) ordered
sets. Let P be a set. A (partial) order < is a relation on P which is reflexive,
antisymmetric and transitive, i.e., for all a,b,c € P we have

(i) (reflexivity) a < a;
(ii) (antisymmetry) if @ < b and b < a then a = b;
(iii) (transitivity) if a < b and b < ¢ then a < c.

We call the pair (P, <) an ordered set. A subset Q C P is totally ordered if
for any pair (a,b) € @ x @ we have a < b or b < a. For an arbitrary subset
Q C P we say that ¢ € P is an upper bound for Q) if a < ¢ for all a € Q. We
say that an m € P is a mazimal element of P if the relation m < x holds
only for x = m. Note that a maximal element need not be an upper bound
for P (e.g. if a < b if and only if a = b then every element is a maximal
element but P has no upper bound, if P contains more than one element).

We say that P is inductive if every totally ordered subset ) C P has an
upper bound.

Theorem 6.3 (Zorn’s lemma). Every non empty ordered set that is induc-
tive has a maximal element.

Proof of the Hahn-Banach Theorem, second part. We set

P:={(Z,g9): Z C X subspace, Y C Z, (6.28)
g:Z — R linear, gy = f, g <pon 7} (6.29)

and we define an order on P by

(Z1,91) < (Z2,92) <= Z1CZy, g2=g1 on Z. (6.30)
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We now verify the assumptions of Zorn’s lemma. Let () C P be totally
ordered. Define

Z..= |J 2 (6.31)
(Z.9)eQ
g«(z):=g(x) ifxeZ and (Z,9)€ Q. (6.32)

We have to show that (Z, g«) € P. Then it follows that (Z,, g«) is an upper
bound for Q. To see that (Z,, g.) € P first note that Y C Z, C X. Moreover
g« is well defined. Indeed if

z€ Z1NZy and (Zl,gl) € Q, (Zg,gg) €Q (6.33)
then
(Z1,91) < (Z2,92) or (Z2,92) < (Z1, 1) (6.34)
since (@ is totally ordered. Assume the first case. Then
Z1CZy and g1 =gy on 7 (6.35)
and thus
91(2) = g2(2). (6.36)

In the second case we arrive at the same conclusion. A similar argument
shows that Z, is a linear space and ¢, : Z, — R is linear. Finally the
definition of P and of g, yields gy = f and g. < p on Z,. Thus every
totally ordered subset of P has an upper bound.

By Zorn’s lemma P has a maximal element (Z,g). If Z = X we are
done. If Z # X then the first step yields (Zy, go) with

(Z,9) < (Zo,90) and Zy # Z. (6.37)
This contradicts the maximality of (Z, g). O

[8.12. 2017, Lecture 16]
[13.12. 2017, Lecture 17]

Theorem 6.4 (Hahn-Banach II). Let X be a normed K vector space and
let Y be a subspace (with the norm induced by X ). Then for every y' € Y’
there exists ' € X' such that

o=y on Y, |lx =ylly- (6.38)

Proof. For K = R apply Theorem 6.2 with p(xz) = ||¢/||||z]|. Thus there
exists a linear map 2’ : X — R with 2/(y) = ¢/(y) for y € Y and for all x we
have

'(x) < p(x) = '] =], (6.39)
—a/(x) = 2/ (—x) < p(=z) = |ly/]| |- (6.40)
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Thus 2’ € X’ and ||2/|| < [|y/||. We have equality since by definition of ||y/||
for each £ > 0 there exists y € Y\ {0} such that

(y) =9y'(y) > 1 =)y (6.41)

For K = C consider X and Y as normed R vector spaces Xg and Yg,
i.e., the scalar multiplication is only carried out for real numbers and the
norms are the same as before). If y' € Y’ then

Yre(w) 1= Rey/(z) (6.42)

defines a bounded linear functional on Yr and

Yrellvy < 1Y/ [ly- (6.43)
Moreover
Y() = Rey/(z) + il (z) = ylo(0) — itfeliz).  (6.44)
Extend v/, to /. and define
2 (z) := xl (1) — izl (ix). (6.45)

Then one sees easily that 2’ is C linear and a short calculation shows that
12| = el = llyrell = ll/]]- O

Theorem 6.5. Let X be a normed space, let Y C X be a closed subspace
and let xog € X \'Y. Then there exist and ' € X' such that

=0 on Y, ||| =1, 7' (zo) = dist (20, Y). (6.46)

Remark. If X is a Hilbert space we can take z’'(z) = (z, ”ig%ﬁig“) where
P is the orthogonal projection onto Y. Theorem 6.5 can often be used as a

substitute for the orthogonal projection.

Proof. On
Yo :=Y @ span {zg} (6.47)

define
yo(y + axo) := adist (zg,Y). (6.48)

Then y( : Yo — K is linear and y{ = 0 on Y. We only need to show that
is bounded and ||yj|| = 1. Then the assertion follow from Theorem 6.4.
For y € Y and a # 0 we have

dist (zp,Y) <

(6.49)
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and thus
Yo (y + axo)| < |af

0= 22| =l + 4. (6.50)

It follows that y{, € Yy and ||yg| < 1.
On the other hand we have dist (zo,Y) > 0 since Y is closed. Let ¢ > 0.
Then there exist y. € Y such that

lzo — yel| < (14 e)dist (xp,Y). (6.51)

Then

Yo(zo — ye) = yo(wo) = dist (z0,Y) > 1o — ell - (6.52)

1+¢

Since zp — y. # 0 this implies that [Jy,| > ﬁ Since € > 0 was arbitrary
we finally conclude that |y = 1. O

Corollary 6.6. Let X be a normed space and xg € X.

i) If xo # 0 then there exists xy; € X' such that
0

lzoll =1 and  xp(x0) = ||zoll. (6.53)

(ii) If 2'(xo) for all 2’ € X' then xo = 0.

Proof. For the first assertion apply Theorem 6.5 with ¥ = {0}. The second
assertion follows from the first. O

We now show that a point outside a closed convex sets can be separated
from the set by a half space. We will see later that geometrically intuitive
fact has also profound consequences for functional analysis.

Lemma 6.7. Let X be a normed space and let M C X be a closed convex
set with 0 € M. Let

p(z) :==1inf{r >0: % e M} (6.54)
Then p(z) < 0o, p: X — R is sublinear and
p(z) <1 <<= zeM. (6.55)

Theorem 6.8 (Separation of convex sets). Let X be a normed space. Let
M C X be non empty, closed and convex and let g € X \ M. Then there
exists x' € X' and o € R such that

Rex'(r) <a Vre M and Rea'(x) > . (6.56)
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Proof. We first consider K = R. We may assume that 0 € M (otherwise let
Z € M and consider —Z + M instead of M and Zy = zp — & instead of zg).
Indeed we may assume that 0 € M. Otherwise let 0 < r < dist (29, M)
and consider M = B,.(M). Then M is closed and convex and 0 € M. If
the result holds for M it also holds for M.
Thus assume 0 € MY and let p be the sublinear map defined in Lemma
6.7. On span {xo} define f by

f(azo) := ap(xo). (6.57)

Then for a > 0 we have f(azg) = p(axp) and for a < 0 we have f(axg) <
0 < p(axg). Thus by the Hahn-Banach theorem, Theorem 6.2, there exists
a linear extension F': X — R with F' < p. Thus

F<p<l onM,  F(xo)= f(xo)=p(xo) > 1. (6.58)
It remains to show that F € X’. Then the assertion follows with 2’ = F
and a = 1. Since 0 € MY there exist p > 0 with B(0, p) C M. Thus

1 1
reX — eM = p@)< bl = F@) < jal.

x
Ta]
(6.59)

We also have —F(z) = F(—x) < %Hl’“ and thus F € X'.
For K = C consider the real vector space Xg and obtain Fr € Xp with
the desired properties. Then consider F(z) = Fr(z) — iFg(ix) as in the
proof proof of Theorem 6.4. O

We will now use the Hahn-Banach theorem to find the dual space of
continuous functions. The arguments below were only sketched briefly in
the lecture.

Let K C R™ be a compact set, let B(K) denote the Borel subsets of K
and let p : B(K) — R be a measure with p(K) < co. Let g € C(K). Then

T(g) == /K gdu (6.60)

is well-defined and 7" : C'(K) — R is linear and continuous with ||| = p(K)
(for equality consider g = 1).
Similarly, if o : K — {—1,1} is Borel measurable then

T(g) ::/Kgo'du (6.61)

defines and element of C(K)" with |T|| = u(K).

We now want to show that all elements of C'(K)’ are of this form. There
are several approaches to this. We will use the Hahn-Banach theorem to
first construct a finitely additive signed measure which represents 7.
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Indeed if T : C(K) — R is continuous and B(K) denotes the space
of bounded functions on the compact set K then 7' can be extended to a
continuous linear functional on 7' : B(K) — R. Now we can define

ME):=T(xg) VECK. (6.62)

Then A is a map from the subsets of K to R and [A(E)| < [|T'[|. Moreover
the linearity of T yields

EiNE;=0 = )\(El U EQ) = )\(El) + )\(Eg) (6.63)

We call such maps A finitely additive signed measures (or shorter: additive
measures).

Definition 6.9. Let X be a set and S C 2X. We say that S is a Boolean
algebra if

(i) 0, X €S,
(i) FeS =— X\FEe€S,
(iii) E,FeS — FEUFES.

If S is a Boolean algebra we say that X : S — RY is (finitely) additive
measure if

E,FeES,ENF=0 = XNEUF)=XE)+\F). (6.64)

We define the variation measure ||A|lvar : S — [0, 00] associated to \ by
k
[ Allvar(E) == sup{> _[MEi)| : B; C E € S, E; disjoint}. (6.65)
i=1

It is easy to see that the arbitrary intersection of Boolean algebras is a
Boolean algebra.

Definition 6.10. Let S C R"™ be bounded and open or closed. We set
U:={E C S : E relatively open} (6.66)

and
Bo(S) := smallest Boolean algebra which contains U (6.67)

and we recall that the Borel o-algebra was defined as
B(S) := smallest o-algebra which contains U. (6.68)
We set

ba (S) :={\: Bo(S) = R : X finitely additive, ||A|lvar(S) < 00}, (6.69)
ca(S) :={\: B(S) = R¥: X o-additive, ||\||var(S) < oo} (6.70)
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An element X € ba(S) or A € ca(S) is called regular if

inf{[[A\var[(U\K) : K C ECU: K compact, U relatively open} =0
(6.71)
for all E in By(S) or all E € B(S), respectively. We set

rba (S) := {\ € ba(S) : A regular}, rca(S):={\ € ca(S): A regular}.
(6.72)

Remark. (i) The abbreviations can be read as ’bounded and (finitely) ad-
ditive’, 'countably additive’, 'regular bounded additive’ and ’'regular count-
ably additive® The element of rca (S) are often also called regular Borel
measures on S.

(ii) Note that the assumption ||A|lvar(S) < oo implies that for any sequence
i — E; of disjoint sets in B(S) the sum ), A(E;) converges absolutely
because all the partial sums Zle IA(E;)| are bounded by ||Allvar(S)-

Lemma 6.11. The spaces ba(S), ca(S), rba(S) and rca(S) are Banach
spaces with norm ||A|| = [|A]lvar(S)-

Proof. Exercise. O

For K compact and A € ba (K) one can define an integral in the usual
way. First let f : K — R be a simple function, i.e. f = Zle a;xE; with
E; € By(K). Then we define

/ fdx =" cil(E) (6.73)
S

and one can show that the sum on the right side depends only on f, i.e. if
also f = 2321 Bixr; then >, a;A(E;) = > BjA(Fj). Now every f € C(K)
is a uniform limit of simple functions and using that ||A|] < oo one can
define the integral of a continuous function uniquely through approximation
by simple functions.

Theorem 6.12. (Riesz-Radon) Let K C R™ be compact. Then the map
J :rca(K) — C(K)" given by

Jw)(f) ::/deu (6.74)

18 an isometric isomorphism.

4This terminology comes from N.Dunford, J.T. Schwartz, Linear operators, IV 2.15—
2.17; finitely additive measures are quite different from o-additive measures and have some
strange properties, see K. Yosida, E. Hewitt, Finitely additive measures, Trans. Amer.
Math. Soc. vol. 72 (1952), pp. 46-66.
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Remark. The assumption K C R" is not essential here. The result holds
for a general compact Hausdorff space K°

Sketch of proof. Isometry: The estimate ||| < ||v|| follows directly from the
definition of the integral. To prove the reverse estimate let E; € B(K) be
disjoint. If the test function f := )" o;x g, with o; = sgn (E;) was admissible
then one would conclude immediately ||v||var(K) < |T||||f]] = ||T||. For a
complete proof one approximates xg, by continuous functions and uses the
regularity of v.

Surjectivity: This is the hard part. One first uses the Hahn-Banach the-
orem to extend T to a bounded linear functional T on the space of bounded
function B(K) and defines

ME) :=T(xE). (6.75)

Then one easily sees that A € ba (K) and
T(f) = /K fdx if f=xp, E€ByK). (6.76)
By linearity and continuity of 7' we obtain
VfeCK) T(f)=T(f) = /K fdA. (6.77)

Then by one shows by a careful construction that there exists v € rca (K)
such that

vf € O(K) /de)\:/dey. (6.78)

Idea: first one shows that there exist nonnegative measures A* € ba (K)
such that A = AT — A\~ Then one can assume without loss of generality that
A > 0. For A > 0 one defines v : By — [0, 00) by

v(E) = sup inf A(U).
ACE UDA
A closed U open
Then one can show that v € rba(K) and that p is countable additive on
By. Finally one can extend v to an element of u € rca (K), see Alt’s book
for the details. O

[13.12. 2017, Lecture 17]
[15.12. 2017, Lecture 18]

Ssee N. Dunford, J.T. Schwartz, Linear Operators, Part I, IV 6.3.
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Theorem 6.13. Let U C R™ be open and bounded. Let Cy(U) denote the
closure of C.(U) in the || - ||co norm. Then the map J : rca(U) — Co(U)’
given by

JON(f) = /U £ (6.79)

18 an isometric isomorphism.

Remark. The same assertion holds for unbounded U, the most important
case being U = R”. One considers U and U as subsets of the compact metric
space R™ U {oo} (the metric on R™ U {oco} can be defined by stereographic
projection to the sphere S™ and its restriction to R™ is equivalent to the
standard metric on R™). Then one can argue as below, using the Riesz-
Radon theorem for S” C R"~! Note that oo belongs to U if and only if U
is unbounded.

Proof. The main point is again surjectivity. The space C.(U) can be seen as

a subspace of C'(U) (by extending a function in C.(U) by zero to R™). Hence

Co(U) is a closed subspace of C(U) (indeed Co(U) consists of all functions

in C(U) which vanish on 0U). Therefore ' € Co(U)" can be extended to
T € C(U). Since U is compact there exists a p € rca (U) such that

T(f)::lzlfdu. (6.80)
Set v(E) := u(E) for all E € B(U). Then v € rca (U) and for all f € Cy(U)
T(f) = T(f) = /U fin = [ fdu= /U fdv. (6.81)

f=0 on o’ Y
O

Remark 6.14. Let M,, denote the o-algebra of Lebesgue measurable subsets
of R". Let E € M,, and set M,(E) = {A € M,, : A C E}. Then the
dual space of L*°(E) is isometric to the space ba (E,L™) of finitely additive
measures on My (E) which are absolutely continuous with respect to the
Lebesgue measure (see homework).

7 The Baire category theorem and the principle
of uniform boundedness

Theorem 7.1 (Baire category theorem). Let (X,d) be a complete metric
space. For k € N let A, C X be closed and assume that Ax has empty
interior. Then

X # [ Ax. (7.1)

keN
In fact Jycn Ak has empty interior.
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Proof. We will construct a decreasing sequence of closed balls By = B(zy, )
with r;, — 0 such that A, N By, = (. Then

keN keN

and we will show that the left hand side contains one point.

We construct the balls By, be induction. Since Ag is closed X \ Ap is
open. Moreover X \ Ag # ) since Ay is nowhere dense. Thus there exists
an open ball B(zg,2r9) C X \ Ao and we may assume that ro < 1. Set
BO = B({L‘(),’r'o). - o

Assume now that closed balls B(xg,79) D ... D Bxr(zg, 1) with

Bi(zp,me) N Ag =0, rp<27F (7.3)
have been constructed for k¥ < K. Now

B(zk,rkx) \ Ax+1 is open and not empty (7.4)

since A1 is closed and nowhere dense. Thus there exist 11 < 9~ (K+1)

and rx 1 such that B(zgi1,2rk+1) C B(rg,rx) \ Axi1. Set Bgy1 =
B($K+1,7’K+1)- -

It is clear that (7.2) holds. To see that (), oy Br # 0 note that if k,1 > m
then xp,x; € B(xm,Tm). Thus [ — x; is a Cauchy sequence. Since (X, d)
is complete x; — x4 as | — oo. Now x; € B(xy, 7)) for all I > k and all
k € N. Since B(wg, 1) is closed we get . € B(zy,ry) for all k € N. Thus
Ty € ﬂ?k

To show that the set | J,cy Ax has empty interior it suffices to show that
it contains no closed ball B(x, R) with R > 0. Now B(z, R) is a closed
subset of the complete space X and hence a complete space. Moreover
the sets A N B(z,R) are closed and have empty interior (as subsets of
B(z,R)). Indeed otherwise there existed a y € B(x, R) and an open ball
B(y, p) such that B(y,p) N B(x, R) C Ag. Then B(y,r0) N B(x, R) was
not empty and open and contained in Ag. This contradicts the assumption
that Ag has empty interior. Now what we have already proved implies that
Uken(Ax N B(z, R)) # B(x, R). Thus |J,ey Ar does not contain the ball
B(z, R). 0

Remark. Terminology: Recall that a general set £ C X is nowhere dense
if its closure has empty interior. According to Baire one calls a set £ C X
of the first category (or meager) if it is a countable union of nowhere dense
sets. The Baire category theorem states X is not of the first category in
itself. The complement of a meager set is called comeager or residual. One
should think of meager sets as small sets and residual sets as large sets.
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Remark. By considering the complement of Ay we see that the theorem
is equivalent to the following statement. If the sets U are open and dense
in X then (,cy Uk is dense in X.

Remark. The assumption that X is complete is essential. First coun-
terexample: let X = Q, let @ : N — Q be a bijection and set Ay = {ay}.
Second counterexample: let [, denote the spaces of sequences for which only
finitely many elements are nonzero, i.e.,

le:={x: N> R:#{j e N:z; #0} < oo} (7.5)

Let Ay :={z:N—>R:2; =0, Vj > k+1}. Then l. = J;—, Ak

Theorem 7.2 (Uniform boundedness principle). Let X be a complete metric
space and let Y be a normed space. Consider a family of functions F C
C(X;Y) with the property

sup || f(z)|| < o0 Ve X. (7.6)
fer

Then there exists an xg € X and an € > 0 such that

sup sup | f(z)]| < oc. (7.7)
2€B(x0,e) feF

Proof. Let k € N. The sets {z € X : | f(z)|| < k} are closed since f is
continuous. Thus

Ap = ({r e X« [If ()] <k} (7.8)

feF

is closed. If supscr|/f(x)| < k then € Ag. Hence by assumption
Uren A = X. By the Baire category theorem there exists a kg such that
Ay, contains an open ball and hence a closed ball B(zg,¢). By definition of
Ay, we have ||f(z)|| < ko for all x € B(xg,r) and all f € F. O

If we apply the uniform boundedness principle to linear maps we get the
following result.

Theorem 7.3 (Banach-Steinhaus). Let X be a Banach space and let Y be
a normed space. Consider a set T C L(X,Y) with the property

sup || Tz|| < oo Vze X. (7.9)
TeT

Then T is a bounded set in L(X,Y), i.e.,

sup || Tl z(x,v) < oo (7.10)
TeT
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Proof. By the uniform boundedness principle there exist an x¢g € X and an
€ > 0 such that
M := sup sup |[|[Tz| < occ. (7.11)
z€B(z0,e) TET

By assumption My := supper ||[T2zo|| < oo. For z € B(0,¢) we have x+xz¢ €

B(zg,e) and Tz = T'(x + x0) — T'(z9). Thus

sup sup ||Tz|| < My + Mo. (7.12)

zeB(0,e) TET
Since the order of the two suprema can be exchanged we get ||T|| < %
foral T € T. O

[15.12. 2017, Lecture 18]
[20.12. 2017, Lecture 19]

Definition 7.4. Let X andY be topological spaces. Then a map f: X =Y
s open if
U openin X = f(U) open inY. (7.13)

Theorem 7.5 (Open mapping theorem). Let X and Y be Banach spaces,
letT € L(X,Y). Then

T surjective <= T open. (7.14)

Remark. This example was not discussed in class. It is easy to see that
completeness of Y is necessary. Let X = Iy and let YV = {y € Iy :
supgen(k + 1)|yx| < oo}, equip both spaces with the [, norm and set
(Tx) = %ka Then T : X — Y is bijective and continuous, but T'(B(0, 1))
does not contain B(0,5) NY for any § > 0. Indeed y = e, € B(0,6) NY
but T~1(y) = (k + 1)de;, does not belong to B(0,1) if k is large enough.

For a counterexample with Y complete, but X not complete see Homework

sheet 10.

Proof. '=—>":
The assertion is equivalent to the following statement

35>0 B(0,5) C T(B(0,1)). (7.15)

Indeed let U C X be open and y € TU. Then there exist x € U and
e > 0 such that Tz = y and B(x,e) C U. If (7.15) holds then T'B(x,c) =
Tx+ TB(0,e) Dy+ B(0,e6). Hence TU is open.
Conversely if T is open then 7'B(0,1) must contain an open ball B(0,0)
around 0.
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Step 1: B(0,6) C TB(0,1).
Since T' is surjective we have (J,cyTB(0,k) = Y. By the Baire category
theorem there exist a ko € N and a ball B(yo, ) with

B(yo,€) € T(B(0, ko)). (7.16)

Hence for y € B(0,¢) there exist x; € B(0, ko) with Tz; — yo +y as i — oo.
Since T is surjective there exists xg € X with Txg = yg. Then

T; — X Yy T — X0
T(——— ) > —-— and — | < 1. 7.17
() e @ [5r) 7

Thus for all y € B(0,¢)
y e —

Y eT(BO1 7.18
ot ol 7O s

and hence -
B(0,8) c T(B(0,1)) with 6:= —— . 7.19
(0,6) ¢ T(B(0.1) o e (7.19)

Step 2: B(0,3) C T(B(0,1)).
)

y € B(0,0) = dze B(0,1) y—TxEB(O,i) (7.20)
= dxe B(0,1) 2(y—Tx) e B(0,9). (7.21)

For y € B(0,6) choose inductively y, € B(0,6) and x, € B(0, 1) such that

Y=y and yr1 = 2(yx — Txp). (7.22)
Then
27 ey =27y — T2 Fay). (7.23)
and thus
m
T(O) 27 a) =y — 27" Y1 >y asm — oo, (7.24)
k=0

Now the partial sums sp, = Y ;- 27k, form a Cauchy sequence and thus
sm — x in X and ||z|| < 2 since ||zk|| < 1. Since T is continuous we get
Tz =y. Therefore B(0,d) C T(B(0,2)) and this implies the assertion.
=" If T(B(0,1)) D B(0,6) then T(B(0,k)) D B(0, kd) and taking the
union over k € N we get TX D Y. O

Theorem 7.6 (Inverse operator theorem). Let X and Y be Banach spaces,
let T € L(X,Y) and assume that T is bijective. Then T~' € L(Y, X).

Proof. By the open mapping theorem the preimage of an open set in X
under T~ ! is open in Y. Hence 77! is continuous. O
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Definition 7.7 (Closed operator). Let X andY be normed spaces. A linear
map is called closed if its graph graphT := {(z,Tx) : x € X} is closed in
X xY.

Equivalently, T is closed if

Tp — Ty and Trp =y, — Yy = Tx,. (7.25)

Example. Let X := C!([0,1]) equipped with the C° norm. Let Y :=
C°([0,1]) and Tf = f. Then T is closed. Note that T': X — Y is not
continuous and X is not complete.

Theorem 7.8 (Closed graph theorem). Let X and Y be Banach spaces, let
T:X —Y be linear. Then

T closed <= T continuous (7.26)

Remark. The example after Definition 7.7 shows that the assumption
that X is complete cannot be dropped. For an example that shows that
completeness of Y is necessary, too, see Homework sheet 10.

Proof. The implication <= follows directly from (7.25).

For the converse implication first note that X x Y is a Banach space
with ||(z,v)|| = |lz]| + ||lyll. Let Z = graphT. By assumption 7" is a closed
linear subspace of X x Y and hence a Banach space (see Proposition 1.26).
Let 11 : Z — X and m9 : Z — Y be the projections to X and Y, i.e.,
m(z,y) = x, ma(z,y) = y. Then m and 7o are continuous. Moreover 7 is
bijective and 7 o 7, ' (2) = ma((x, Tx)) = Ta. Since Z and X are Banach
spaces the Inverse Operator Theorem implies that 7 1is continuous and
thus T' = mp o my 1is continuous. O

The closed graph theorem can often be used to show that an equation
has a solution for all right hand sides only if the solution can be bounded
by the right hand side. As an example consider a bounded and open set
U C R™ and the equation

—Au=f inU. (7.27)

We know that for f € L?(U) this equation has a unique weak solution
U € Wol’2(U). Moreover the map f + u is linear and continuous, i.e.,

lullwr2@y < CONFfllrzwy VS € LU).

One might expect that the solution  is in fact two orders of differentiabil-
ity better than f. This can be proved in a variety of function spaces, for ex-
ample the Holder spaces C*® or the Sobolev spaces WP for 1 < p < oo (this

94 [FEBRUARY 2, 2018]



will be discussed in the course 'Nonlinear PDE’ in the MSc programme). The
seemingly most natural conclusion f € C(U) implies u € C?(U) is, however,
not true. Even if we fix a non-empty open set V with V' C U we can find a
function f € Co(U) such that u is not in C*(V) and does not even have a
weak second derivative in L.

Proposition 7.9. Letn > 2. Let U, V, f and u. Then there exists f €
Co(U) C L>®(U) such that the second weak derivative of w in V does not

exist or
V2u ¢ L=(V). (7.28)

Remark. One can actually show quite easily that even under the weaker
condition f € L?(U) the weak solution u always has weak second derivative
and V2u € L?(V). We have formulated the proposition in such a way that
this result on existence of the second derivative is not required.
Proposition 7.9 implies in particular that there exists f € Cy(U) such
that there is no classical solution u € C?(U)NC!(U) of the Dirichlet problem

—Au=f in{, (7.29)

u=0 on 0. (7.30)

Indeed, if there was such a wu it would also be a weak solution and then the
uniqueness of weak solutions yields a contradiction with Proposition 7.9.

Proof of Proposition 7.9. Step 1.  Reduction to non-existence of bounds
on the solution.
Assume that the proposition is false. Then for each f € Cy(U) the weak
solution u has a weak second derivative in V and V?u, € L>(V). Let T
denote the map given by

Tf = Vupy. (7.31)

Then (by uniqueness of the weak solution) 7" is a linear map from Cy(U) to
L>(V).
The main point is to show that T is closed. Thus a ssume that

fe = f in Co(U), V2u, — h in L®(V), (7.32)

where uy € WO1 ’2(U) is the weak solution of —Awuy = fi. In the second con-
vergence h is a matrix-value map and the convergence means more explicitly

0;0ju, — hy; in L=(V) for all 4,j € {1,...,n}. (7.33)

The first convergence in (7.32) implies in particular fi — f in L?(U)
and therefore
up = u in W&’z(U)
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since the solution operator f + u is bounded and continuous as a map from
L2(U) to Wy *(U). With the definition of the weak second derivative it
follows that for all p € C°(V)

/Gﬁjukg@dm:/ Uk3i5j¢d$—>/uaiaj¢dx'
1% 1% 14

On the other hand (7.33) implies that

/@-ajukgodx%/ hij o dzx.
1% \%

/hijgodxz/uaic?jgoda:
\%4 \%4

for all p € C°(V). It follows that the second weak derivatives of u exist
and are given by 0;0;u = h;j. Therefore Tu = h. This shows that T"is a
closed operator.

The closed graph theorem implies that there exists a constant K such
that

Thus

ITfllLoevy < Kl fllLoe@y Yf € Co(U). (7.34)

Step 2.  The bound (7.34) does not hold.
We will now show that (7.34) leads to a contradiction. Since V' is open

and non-empty it contains a ball. After translation we may assume that
B(0,p) C V. Let n € C§°(B(0,1)) and assume that 7 = 1 on B(0, 3). Set

w(z) = 23 — 23. (7.35)
Then
2 0 0 0
0 -2 0 0
—Aw=0, Viw=S=|0 0 0 0 (7.36)
0 0 O 0
and v = nw satisfies
in B(0,4) U (R"\ B(0,1
—Anw+2Vn-Vw in B(0,1)\ B(0, 3).
In particular
| Av]| Lo 17y < Co, V2u(0) = Sp. (7.38)

Now we get a contradiction to (7.34) by scaling and summation. Set

vp(z) = 2720 (2F). (7.39)
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Then V2u,(x) = (VZ0)(2Fz) and
supp Avy = B(0,27%)\ B(0,27%°1). (7.40)

Let ko be so large that 27% < p and set

k:()—i-m

u = Z Vg, f=-Au. (7.41)

k:ko-i-l

Then u € C°(U) and thus T'f = V?ujy,. Since the supports of the functions
Avwvy, are disjoint we get

|fl~ < Co,  TF(0) == mSo. (7.42)
Since Sp # 0 this leads to a contradiction with (7.34) if m > CoK/|Sp|. O

[20.12. 2017, Lecture 19|
[22.12. 2017, Lecture 20|

8 Weak convergence

8.1 Motivation

Motivation: in functional analysis and the theory of partial differential equa-
tions one is often confronted with the following situation. One has a sequence
of approximate solutions fi of a problem. One would like to extract a limit
and to show that the limit solves the problem. We have seen this already
in the proof of the projection theorems, Theorem 3.2 and Theorem 3.7. In
that case we could show that the sequence k +— fj, is a Cauchy sequence and
hence converges.

Often, however, one can only show that the sequence is bounded in
a suitable Banach space X. This is not enough to extract a convergent
subsequence since by Theorem 3.13 the closed unit ball in X is only compact
if X is finite dimensional.

In this chapter we will systematically develop weaker topologies in which
we can extract a convergent subsequence from a bounded sequence. The
following example already contains the heart of the matter.

Example. Let £ C R" be measurable and let k& — f; be a bounded
sequence in L2(E), i.e., supyey ||fx] < R. We claim that there exist a
subsequence f;, and an f € L?(E) such that

/fkjgdﬁne/fgdcn Vg € L*(E). (8.1)
E E
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Proof: let h : N — L?(E) be a sequence such that h(N) is dense in
L*(E). Then

< frllzzlhall 2 < Rlha]|. (8.2)

’/ freh1 dLC"
E

Hence there exists a subsequence f@) such that

w/ﬁ”hldﬁ—w(m) and || L(h1)| < R|[h]. (8:3)
E

Now we can take successive subsequences f(2), f®) . such I5 flgl)hm dc" —
L(hy,) for all m <. Finally let f be the diagonal sequence fj = fj(] ). Then

lim [ figdt" = 1(g) and L) < Rlg| ifg€ (o). (8:)
j—o J g

It follows easily that convergence holds for all g € Y = span {hy, ho, ...}
and that L : Y — R is linear and |L(g)| < R||g||. Since Y is dense in L?(FE)
there exist a unique bounded linear map L : L?*(E) — R which extends
Ly. Moreover one easily sees that the convergence in (8.4) holds for all
g€ L*(E).

Finally by the Riesz representation theorem there exists f € L?(E) such
that

L) = [ fgac” (.5)
This proves (8.1).

The same argument works with L2(E) replaced by LP(E) if p € (1,00
and g € LP (E) if we use the fact that (L? (E)) is isometrically isomor-
phic to LP(E) (see Theorem 6.1). The argument does not work for L!(E)
(since L>°(E) is not separable) and the assertion is not true for L!(E) (hint:
consider the sequence of standard mollifiers 7);).

8.2 Weak topology, weak convergence, and weak compact-
ness

The point in (8.1) is that convergence in norm is replaced by the convergence
of certain linear functionals applied to the sequence j — f;. We now consider
this in a more general context. This will lead to the definition of the weak
and weak* topologies which correspond to the convergence introduced ad
hoc in (8.1).
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Question 1. Let X be a set and let Y be a topological space. Consider
a collection of maps ¢, : X — Y where o runs through some index set A.
What is the coarsest topology 7 on X such all the maps ¢, are continuous
0

Clearly 7 must contain all sets ¢! (V) where V is an open set in Y and
a € A. Conversely if T is a topology which contains all these sets then all
the maps ¢, are continuous (by the definition of continuity). This leads us
to

Question 2. Let X be aset and let S C 2%. What is the coarsest topology
T with T O>S87?

Lemma 8.1. Let X be a set and let S C 2% and suppose that UwesW = X.
Let B denote the collection of sets obtained by taking finite intersections of
sets in' S and let T denote the collection of sets formed by (arbitrary) union
of sets in B. More formally:

k

B:={(\Wi:keN\{0},W; €S Vie{l,...,k}}, (8.6)
=1

T:={{JVa:Aset, Va€B VYacA}UD. (8.7)
acA

Then T is the coarsest topology which contains S.

Proof. Homework. Show first that 7 is a topology. Then it is easy to see
that if 7" is another topology and 7/ O S then 7' D T. O

Definition 8.2. Let X be a set and let T C 2% be a topology.

(i) We say that T' C T is a base of the topology T if every set in T can
be written as a union of sets in T'.

(11)) We say that T" C T is a subbase of T if the the collection of all finite
intersection of sets in T" is a base of T.

(iii) Let v € X. We say that T" C T is a neighbourhood base at xg
if every U € T with xg € U contains a non-empty set in T" which
contains xg.

Remark. (i) A base T’ can be equivalently characterized as follows: if
U € T then for every x € U there exists a V, € T’ such that z € V, and
V, C U. Indeed if 7" has this property then U = |J,; Vi. Conversely if 7"
has the property in (i) of the definition and U € T then there exist V, € T’
such that U = (J,c4 Va. In particular V,, C U for all « € A. Now if x € U
there exists an « such that x € V.

(ii) The set B in Lemma 8.1 is a base of 7 and S is a subbase of 7.
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Proposition 8.3. Let X be a set, let Y be a topological space. Let A be
a set and consider a collection of maps o : X — Y, where a € A. Let
T be the coarsest topology such that all the maps p, are continuous. Let
z: N —= X be a sequence. Then

Tp =T inT = @alxn) = @alzy) Yae A (8.8)

Proof. ’=": This follows from the fact that continuity of ¢, implies se-
quential continuity. Details: Let W C Y be open with ¢4 (zs) € W. Then
U = ¢ (W) is open and x, € U. Hence the set {n : x, ¢ U} is finite.
Thus the set {n : pq(x,) & W} is finite. Thus @ (z,) = @(z4).

'«<=": Let U € T and z, € U. By Lemma 8.1 there exists a set V. C U
withz, € Vand V = ﬂle oL (W;) with W open in Y. Thus ¢4, (z.) € W;
and the sets {n : pq,(x,) &€ W;} are finite since g, (Tn) — @a, (). Hence

k

{n:z, gUC{n:a, gV}= U{n D Qo (Tn) ¢ Wi}t is finite.  (8.9)

Thus z,, — . O

Example. (i) Let X = RY be the space of sequences with values in R,
ie, X ={z:2:N = R}. For k € N let pi(x) := z(k) be the projection
to the k-th factor. Let 7 be the coarsest topology such that all the maps
i+ X — R are continuous. Then by Proposition 8.3 and we have " = g,
in 7 if and only if 2" (k) — z.(k) for all k € N. A base of T is given by
the collection of all the Cartesian products ][, . Ur where all sets Uy C R
are open and only finitely many are different from R. Note that the (non
empty) sets in this base are all rather large in the sense that they contain
an infinite dimensional affine subspace.

(ii) (not discussed in class) If we slightly generalize the setting and consider
maps @, : X — Y, with possibly different topological spaces Y, we can in
the same way put a topology on an arbitrary product of topological spaces
(Xa,Ta). Let X = ], ca4 Xa (more precisely X is the space of all maps
x: A — UgeaX, with z(a) € X,) and let the projections m, : X — X, be
given by 7, (z) = z(a)). The product topology on X is defined as the coarsest
topology for which all the projections m, are continuous. We have x,, — x,
in 7 if and only if z,(a) — z«(a) for all @« € A. A base of the product
topology is given by the collection of all sets of the form U = [] 4 Ua
where U, € T, for all a € A and where only finitely many of the U, are
different from X,.

We now apply the above reasoning to the situation where X is a Banach
space and the family of maps on X is given by the elements of the dual
space X'.
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Definition 8.4. Let X be a Banach space with dual X'. The weak topology
o(X,X") on X is the coarsest topology for which all ' € X' are continuous.

Remark. (i) Let Tguong be the topology on X induced by the norm. Then
0(X,X") C Tstrong since by definition of X’ all 2/ € X’ are continuous with
respect t0 Tstrong-

(ii) If X is infinite dimensional then it follows from the remark after Propo-
sition 8.6 that o (X, X’) # Tstrong, i-€., the weak topology is strictly coarser
than the norm topology. Indeed every set in o(X, X’) contains an (infinite)
line, while the open unit ball does not contain a line.

(iii) If X is finite dimensional then it is easy to see that o(X, X") = Tstrong-

Notation: If X is a normed space with dual space X’ and z € X, 2/ € X’

we write 6
(r,2")x = 2'(2). (8.10)

We often write (x, ') instead of (z,2')x.
Proposition 8.5. The weak topology (X, X") is Hausdorff.

Proof. Let z,y € X with x # y. By Corollary 6.6 there exists 2’ € X’ such
that € := $(z — y,2') # 0. Set a = (z,2), b= (y,2’) and

Uy = (2') 1 (B(a,¢)), Uy, :=(a")" (B(b,e)). (8.11)

Then x € U, y € Uy and U, NU, = 0. Moreover U, and U, belong to the
topology o (X, X’) since 2/ is continuous with respect to this topology. [

Proposition 8.6. Let X be a Banach space. Let xg € X and let {z},...,z}.} C
X'. Define

V(zy,...,xe) ={x e X : [{x —xzp,2})| <e Vi=1,...,k}. (8.12)

Then V(x},...,x);¢€) is a neighbourhood of xo in the o(X,X') topology.
Moreover the collection of sets V(... ,a};¢) withe >0, k € N\ {0} and
x, € X' fori=1,...,k forms a neighbourhood base of o in the o(X,X’)
topology.

Proof. Let a; = (x¢,2}). The sets V; := (x}) "1 (B(a;,¢)) belong to o(X, X’).
Hence V (), ..., 2};¢) = (*_, V; belongs to o(X, X').

Conversely let U € (X, X’) and 2y € U. Then it follows from Lemma
8.1 that U contains a set of the form ﬂle(x;)_l(Wl) where W; C K is open

5This notation deliberately resembles the notation of the scalar product and is moti-
vated by the Riesz representation theorem. If X is a Hilbert space then every element in
X’ can be represented by the scalar product and we have (z, Rx (y)) = Rx (y)(z) = (z,y)x
and Rx : X — X’ is an isometric isomorphism. The notation above follows H.W. Alt’s
book. Some authors, e.g., Brezis, write (z’, ) instead of (z,z’).
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and a; = (o, ;) € W;. Hence there exists an € > 0 such that B(a;,e) C W;
foralli =1,...,k (here we use the fact that we deal only with finitely many
x}). Thus

k k
V(xy,...,x);e) = m 2/ (B(as,€)) C ﬂ (W) c UL (8.13)
i=1 i=1
]
Remark. If X is infinite dimensional then all the sets V(z),...,z};¢)

(with € > 0) contain a line (in fact an infinite dimensional affine sub-
space). Indeed set L := {y : (y,a}) =0 Vi=1,...,k}. Then x9+ L C
V(xh,...,2};€). To see that L # {0} consider the map 7' : X — K* given
by T(z) = ((x,z}),...,(z,z})). If L = {0} then T : X — R(T) is bijective.
Since R(T) is finite dimensional the space X must be finite dimensional.
This contradiction finishes the proof. More generally one sees that the quo-
tient space X/L is isomorphic to the finite dimensional space R(7T). Thus if
X is infinite dimensional, L must be infinite dimensional.

Notation: If a sequence converges in the o(X, X') topology we write
Tp, =z, weakly in o(X, X’) (8.14)

or shorter
Ty — T, (8.15)

i.e., we use the halfarrow — to denote convergence in the weak topology (or
'weak convergence’ for brevity). Note that the weak limit is unique since
the o(X, X’) topology is Hausdorff. We write

Ty — X, strongly in X (8.16)

or shorter
Ty — Tk (8.17)

if ||z, — z4]| — 0 and we call this convergence strong convergence (or 'norm-

convergence’).

[22.12. 2017, Lecture 20|
[10.1. 2018, Lecture 21]

Proposition 8.7. Let z : N — X be a sequence. Then
(i) xp, — x4 = (Tp,2') = (xy,2") V2’ e X

(ii) If Ty, — s then x, — x,.
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(111) If x,, = x4 then sup,cy ||zn| < 0o and ||z.|| < liminf, . ||zn].
(v) If x, = xy (weakly) and x|, — x' (strongly) then (x,,x]) — (z., x.).

Proof. (i): This follows from Proposition 8.3 and the definition of the o (X, X")
topology.
(ii): This follows from the fact that the weak topology is coarser than the
strong topology or from (i) and the estimate |[(xy,, ') — (x, 2")| < ||2'|| ||2n —
(iii): The first assertion follows from the Banach-Steinhaus theorem.
More precisely define a map J : X — (X') by J(z)(2’) = (x,2’). Then
|J(x)[|(xn < [|lz]| and by Corollary 6.6 we have ||.J(z)|x+y = [[z]|. Now for
each z’ we have
sup |J(xp)(z")| = sup |[(zn, 2’)| < 00 since (z,, ') = (z.,2'). (8.18)
neN neN
The Banach-Steinhaus theorem implies that sup, e ||/ (2n) || (x7) < co. Hence
Suppen [|2n ]| < oo
To prove the second assertion pass to the limit in the inequality

(2, 2")] < (|2 2wl (8.19)
This yields
[z, 2| < ||2/|| iminf ||2,]]. (8.20)
n—oQ
Using again Corollary 6.6 we get ||z || = supj,/=1 (7« 2') < liminf,, o0 [0

(iv): This follows from the inequality

[(@n, @)= (2, )| < W, 2 =) [H [ (@n =0, )| < Nl g =2 |+ (@n =2, 22)]

(8.21)
combined with (i) and (iii). O

Let X be a Banach space with dual X’. So far we have two topologies
on X',

(i) The norm topology (or strong topology) Tstrong-

(ii) The weak topology o (X', (X')’) defined as coarsest topology such that
all the maps 2’ — (2/,y)x, = y(«’) are continuous for all y in the
bidual space (X')'.

We now introduce a third topology on X', the weak™ or o(X’, X) topol-
ogy which is the coarsest topology such that the maps ' — (2/,y) x» = y(2’)
are continuous for all y for the form y € J(X) C (X') where J : X — (X')
is given by J(z)(2') = 2'(z) = (x,2') x.

Definition 8.8. Let X be a Banach space with dual X'. The weak™® topol-
ogy o(X', X) on X' is the coarsest topology such that for all x € X the
functionals J(z) : X' = K given by J(z)(2') = (x,2') are continuous.
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Remark. We have already seen that o(X', (X)) C Tstrong (and the in-
clusion is strict if and only if X is infinite dimensional). Note that also
o(X',X) C o(X',(X")) since the definition of o(X’, X) involves only a
subset of functionals J(X) C (X'). If J(X) = (X'), then, by definition
o(X', X) =0o(X',(X')), i.e., the weak and weak™ topologies agree.

Warning. If X is a Banach space and Y C X is a dense subspace then
Y’ = X’ since every bounded linear map on Y has a unique extension to X.
Nonetheless the (X', Y) topology can be strictly coarser than the o(X’, X)
topology.

Proposition 8.9. The weak*® topology is Hausdorff and a neighbourhood
base at x(y is given by the collection of the sets

V(zy,...,xp5e) ={a’ € X' : [{x;,2" —ap)| <eVie{l,...,k}}, (8.22)
where k € N\ {0}, ¢ > 0 and z1,...,z € X.

Proof. This is proved like Proposition 8.5 and Proposition 8.6. More pre-
cisely to show that the weak™ topology is Hausdorff one uses that for =’ # 3/
there exists x € X such that (z,z') # (x,y'). O

Notation: If a sequence 2’ : N — X’ converges in the weak* topology to
xl, we write
= . (8.23)

Proposition 8.10. Let 2’ : N — X’ be a sequence. Then
(i) x!, = a, = (x,xl) — (x,2)) VrelX.
(i) If 2!, — ' then x!, > 2.,
(iii) If xl, = !, then sup,cy ||2h]] < oo and |2, | < liminf, o |||
() If !, = 2. (weakly*) and x, — x (strongly) then (x,, ) — (., 2.).
Proof. The proof is analogous to the proof of Proposition 8.7. O
We now come to the first key compactness property.

Theorem 8.11 (Sequential weak* compactness of the closed unit ball).
Let X be a separable Banach space with dual X'. Then the closed unit
ball B(0,1) C X' is sequentially compact in the weak* topology, i.e., every
sequence ¥’ : N — B(0,1) contains a subsequence which converges to a point
z! € B(0,1) in the weak* topology.
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Remark. (i) This assertion about sequential compactness does in general
not hold if X is not separable. Example: for X = [ consider the fj € I/
given by fi(z) = xp. Then | fil[z, = 1, but the sequence k ~ fi has no
weak™® convergent subsequence. Proof: let j — k; be any strictly increasing
map from N to N and let g; = fi,. Define x € loo by z, = (=1)™ if m = k;
and x,, = 0 else. Then g;(z) = (—1)’ and hence g;(z) has no limit as
J — oo.

(ii) It is, however, true that for any Banach space X the closed unit ball

is compact in the weak* topology (Banach-Alaoglu theorem). The proof is
based on Tychonoff’s theorem which asserts that an arbitrary product of
compact topological spaces is compact in the product topology”.
(iii) If X is separable than one can show that the restriction of the weak™
topology to the closed unit ball is metrizable (see homework sheet 12, prob-
lem 3). Hence compactness implies sequential compactness and the above
result could be deduced from the Banach-Alaoglu theorem. We prefer to
give a short direct proof.

Proof. This is the abstract version of the example given at the beginning of
this chapter. Let y : N — X be a sequence such that y(N) is dense in X.
Let f: N — B(0,1) C X’ (for ease of notation we call the sequence f rather
than 2’). Then

Yo, fid | < Nlyoll I fxll < llwoll- (8.24)
Hence there exists a subsequence f(© such that
0
(v, 1) = L(yo) and |L(yo)]| < Ilyo (8.25)
Now we can take successive subsequences f(1), f2) . such that (Ym, f,g”) —

L(ym) as k — oo for all m < 1. Let f] = f;j) be the diagonal sequence.
Then 3
(z, fj) = L(z) and |L(z)| < |z|] Vo e y(N). (8.26)
Since = — (z, f;) is linear, convergence and the estimate for L(z) also hold
forz € Y :=span{y(N)} and L : Y — K is linear. Since Y is dense in X it
follows that there exists a unique f, € X’ such that
(v, fo) = fily) = L(y) YyeY. (8.27)

Moreover |(z, fi)| < ||z| for all x € X and hence | f|| < 1. Finally for each
yr we have

lim sup |(z, fj — f.)] (8.28)
J—00
<limsup [((z = yk), fj = fo) +limsup [(yr, f5 = fi)| < 2]z — el (8.29)
]‘)OO j*)OO

—0 by (8.26), (8.27)

"See, e.g., the book by Brezis or W. Rudin, Functional analysis. Rudin’s book also
contains a proof of Tychonoff’s theorem.
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Since y(N) is dense in X the right hand side can be made arbitrarily small
and hence f; = f O

We will see shortly that a similar compactness result holds for weak
convergence if X satisfy an extra condition. First we look at some examples.

Example.

(i) LP spaces: Let E C R™ be measurable and let p € [1,00). Recall that
there exists an isometric isomorphism ® : L (E) — (LP(E))’ given by
D(g)(f) = fE fgdz. Thus

fe = fein LP(E) <= / fjgdx —>/ fogdr Vge LV forpe [1,00).
E E
(8.30)
fe = foin L®(E) <= /fjgdac—>/ f.gdx Vge L'. (8.31)
E E

(ii) C(K) and rca(K): Let K C R"™ be compact. By the Riesz-Radon
theorem (Theorem 6.12) there exists an isometric isomorphism @ :
rca (K) — (C(K)) given by ®(u)(f) = [ f dp. Thus

ik — py inrea (K) <= /deuk—>/de,u* Vfe C(K).
(8.32)

(iii) WHP(U): Let U C R™ be open. Even though we have not computed
the dual space of WP (U) explicitly it is easy to see that (see Home-
work sheet 11, Problem 1)

fr = fe €eWWP(U) <= fr— feand 9;fy — 0;f n LP(U) Vj=1,...,n
(8.33)
if p € [1,00). Similarly

fr 2 e WHU) = fr > feand 9jfy = 8;f. in L°U) YVji=1,...,n.
(8.34)

The main idea is that the map j(f) := (f,01f,...,0nf) is a linear and

continuous map (with continuous inverse) from W1P(U) to a closed

subspace of (LP(U))"+1.

[10.1. 2018, Lecture 21|
[12.1. 2018, Lecture 22|

In Theorem 8.11 we have shown that the closed unit ball in X’ is sequen-
tially weak™® compact if X is separable. We now aim for a similar result for
weak convergence. The idea is essentially to consider a situation where X
agrees with the bidual space X” := (X’)" and hence can be viewed as a dual
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space. More specifically we recall the definition of the map Jx : X — X”
given by
@)@ = 2@ or (@ Jx(@) = (5a).

We have seen in the proof of Proposition 8.7 (iii) that Jx is an isometric
immersion, i.e., ||Jx(z)||x» = ||z||x. In particular Jx is injective. The
definition of Jx and of weak and weak® convergence imply that

Ty =z, in X <= Jx(zp) > J(z,) inX" (8.35)
since both statements are equivalent to (xg, ') — (4, 2') for all 2’ € X'.

Definition 8.12. A Banach space X 1is called reflexive if Jx : X — X" is
surjective.

Equivalently X is reflexive if Jx : X — X" is an isometry. In particular
for a reflexive space X” is isometrically isomorphic to X.

Proposition 8.13. Let X be a Banach space. Then the following assertions
hold.

(i) If X is reflexive then the weak and the weak™ topology on X' are iden-
tical.

(i1) If X is reflexive and 'Y C X is a closed subspace than'Y is reflexive.

(i1i) If Y is a Banach space and T : X —'Y is an isomorphism then
X reflexive <= Y reflexive. (8.36)
(iv) X reflezive <= X' reflexive.
Remark. One can show we that X is reflexive if and only if the weak and

the weak* topology on X’ agree.

Proof. (i): The weak topology on X’ is by definition the coarsest topology
such that all the maps
2 (2!, 2") (8.37)

are continuous for all 2”7 € X”. The weak™® topology on X’ is by definition
the coarsest topology such that all the maps

' (z,2') (8.38)
are continuous for all z € X. If Jx is surjective then

(@, 2"y = (Jx' ("), 2), (8.39)
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Hence the class of maps considered for the weak and weak™ topology is the
same and thus these two topologies agree.
(i) Let y” € Y”. Define 2’ : X’ — K by

(') = (z]y, y"). (8.40)
Then z” € X" and thus there exists € X such that Jxx = 2. Hence
(z)y,y") = 2" (a') = (z,2). (8.41)

We now claim that € Y. Indeed if z ¢ Y then by Theorem 6.5 there exists
' € X' such that $TY = 0 and 2/(z) = dist (z,Y’). Then (8.41) yields the
contradiction

0 # dist (z,Y) = (z,2') = (m"y,y"> =(0,y") = 0. (8.42)

Thus z € Y and Jx(z) = 2”.

Finally we show that Jy(x) = ¢y”. Let ¢/ € Y’. By the Hahn-Banach
theorem (Theorem 6.4) there exists an 2’ € X’ such ZL‘TY =y'. Thus (8.41)
yields

(@, 9)y = (z,2")x = @)y ¥ )y = W ")y, (8.43)
ie. Jy(x)=19".

(iii): It suffices to show X reflexive = Y reflexive, since the roles of
X and Y can be interchanged. Let y” € Y”. Define z” by

2" (') = (2 o T714"). (8.44)
Then HJI/ OT_l”X/ < ||x,HX’||T_1”E(X) and thus
2" (@) < ly" 2" o T7H < [y [ l=" | 17~ (8.45)

Thus 2" € X". Let x = Jy'a”. Fory’ € Y let ' := 3/ o T. Then 2’ € X’
and
(y,y") = (@ o T7hy") = (a',2") = &/ (2) =/ (Tw). (8.46)
Thus 3" = Jy (Tz).
(iv): We first show X reflexive = X’ reflexive. Set X" := (X”)" and
let 2”7 € X", Define 2’ by

2 (z) := (Jxz,2"). (8.47)
Then 2’ € X’ and
<.T/,33'”> — <J);1(x//),x/> — <§E”,.Z'///> (848)

for all z” € X”. Thus Jx:a' = 2. This shows that Jx/ is surjective and
thus X’ is reflexive.

Now we show X' reflexive = X reflexive. From what we have already
shown it follows that X" is reflexive. Let Y = Jx(X) C X”. Then Y is a
closed subspace because Jx is an isometry. By (ii) the space Y is reflexive.
Then by (iii) the space X is reflexive. O
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Theorem 8.14. Let X be a reflexive Banach space. Then the closed unit
ball B(0,1) is sequentially compact, i.e., every sequence in B(0,1) contains
a subsequence which converges weakly in B(0,1).

Lemma 8.15. Let X be a Banach space. Then
X' separable = X separable (8.49)
Proof. Homework sheet 9, Problem 2. O

Proof of Theorem 8.14. Consider a sequence x : N — B(0,1) C X. Let
Y := span{z : k € N}. Then Y is separable. Moreover Y is a closed
subspace of the reflexive space X and hence reflexive. Thus Y” = Jy(Y)
and therefore Y is separable. By Lemma 8.15 the space Y is also separable.

Let zj, := Jyxy. Then z, C B(0,1) C Y” since Jy is an isometry. Since
Y’ is separable the closed unit ball in Y is weak* sequentially compact by
Theorem 8.11. Thus

2k, — 2z in B(0,1) CY” (8.50)
Set . = Jy ' (24) € Y. Then for all y € Y/
(1, ) = v/, Jy (k) — (W, ze) = (T4, ). (8.51)

Finally for 2’ € X’ we have :U"Y € Y’ and thus

<xk].,x/> = <50kj7501y> — (x*,xfy> = (4, 2) (8.52)

for all ' € X'. Thus Tr, — s in X. O

Examples.

(i) Every Hilbert space X is reflexive.
Let 2”7 € X”. We have to show that there exists x € X such that

2"(y) =y (x) Wy eX' (8.53)

Let R : X — X’ the Riesz isomorphism introduced in Theorem 5.1.

We have shown that R is a conjugately linear isometric isomorphism.
Define 2’ by

2'(y) == 2" (Ry). (8.54)

Then 2’ is linear (not just conjugately linear) and bounded. Thus
x' € X'. By the Riesz representation theorem ( Theorem 5.1) there
exists an x € X with Rx = 2/. Therefore

d'(y) = (y,2) Vyev (8.55)

and
2"(Ry) = (y,x) = (x,y) = Ry(z) Vye X. (8.56)

Since R : Y — Y’ is surjective this finishes the proof of (8.53).
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(ii) Let p € (1,00). Then LP(E, u) is reflexive.
We write LP instead of LP(E, ). Let f” € (LP)”. We have to show
that there exist f € LP such that
f'(g) =4g'(f) Vg e(LP). (8.57)
Let
)(0) = [ aFdn (5.5%)

In Theorem 6.1 we have shown that J, defines a conjugately linear
isometric isomorphism from L? to (LP)". Thus we can define

f'(9) = f"(Jpg) VgeLV. (8.59)

Then f is linear and bounded on L¥'. Again by Theorem 6.1 (applied
with p’ instead of p) J, is surjective. Taking into account that (p’)’ = p
we see that there exists an f € LP such that f' = J, f. Thus

ﬂmzégMu (3.60)
and
f%wbﬂwzémw=wMﬂVWﬂ* (3.61)

Since Jp, : Lp’ — (LP)’ is surjective this proves (8.57).

(iii) Let p € (1,00), let U C R™ be open. Then WLP(R") is reflexive.
(Exercise. Hint: map WP bijectively to a closed subspace of (LP)"1
as homework sheet 11, Problem 2, and use Proposition 8.13).

(iv) The spaces 1, lso, L' (E,p), L®(E,pn), C(K) and rca(K) are not
reflexive. Hint: if X is reflexive and separable then X' is separable.
Note that for any infinite, compact set K the space rca (K) is not
separable since for any x,y € K we have |[0; — dy|lrca(x) = 2 if 2 # ¥.

8.3 Weak convergence in L” spaces

The results in the subsection were not discussed in class, but on the home-
work sheets 12 and 13.

The most important examples for weak convergence will be weak con-
vergence in LP (for p < co) and weak™ convergence in L>°. We have already
shown (see 8.30 and 8.31)

fe = fein LP(E) <+— / fijgdz —>/ fegdx Vg€ ) for p € [1, 00).
E E
(8.62)
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fe = fyin L®(E) <= /Efjgdm%/Ef*gdx Vge L'. (8.63)

Thus for weak convergence we only require convergence of suitable averages
rather then pointwise convergence (almost everywhere) or convergence in
measures. For bounded domains E there are two prototypical examples of
weakly, but not strongly, convergent sequence.

(i) (oscillation’) First let @ = (0,1). Let h : R — R be 1-periodic, i.e.,
h(z +1) = h(z) for all z € R and assume that ||h[[1»q) < co. Let

fr(z) = h(kx). (8.64)

If p € [1,00) then

fr — const. in LP(Q), where const. = / h(z)dz. (8.65)
Q

For p = oo one has similarly fx X const.. Similar results hold in the
higher dimensions. Let @ = (0,1)", assume that h : R” — R" is 1-
periodic in each coordinate, i.e., h(xz 4+ z) = h(x) for all z € Z", and
let fr(z) = h(kz). If [|h||Lr(@) < 0o and p € [1,00) then (8.65) holds.
The corresponding result with weak* convergence holds if p = co.
For the proof of these results for p > 1, see Homework sheet 12. For
p = 1 and uses the fact that for each £ > 0 there exists a decomposition
h = h' + h? with h! € L>(Q) and ||h?|| 1) < € and the first apply
the result for hl.

Weak convergence and nonlinar functions: For fi(x) = sin 27kx
in L*°((0,1)). (8.66)

This shows that weak convergence does not commute with nonlinear
functions. This is a weakness of weak convergence but not surprising.
Taking averages only commutes with applying a function if f is affine.

(ii) ("concentration’) Let p € (1,00), ket E = B(0,1) C R™ and let h €
LP(R™) with supph C B(0, R) for some R > 0. Set

fi(x) = K"Ph(kx). (8.67)

Then
fe =0 in LP(E). (8.68)

Note that || fx||zr(z) = [Pl Lp(rn) if & > R. Hence fj does not converge
strongly to 0 (unless h =0 a.e.).
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Hint for the proof of (8.68): let g € L¥ and note that p/ < oo since
p > 1. Note that for k > R

/ fr(x)g(x)dx
B(0,1)

and use Holder’s inequality.

(8.69)

|, dalgta)da
B(0,%)

If F is unbounded, e.g., if £ = R", then two further prototypical exam-
ples can arise.

(i) (’espace to infinity by translation’) Let p € (1,00]. Let h € LP(R™).
Let e € R™\ 0 and set

fr(z) :== h(x — ke). (8.70)

Then
hiy — 0 in LP(R™) ifp < oo (8.71)

and hy = 0 in L=(R") if p = co. Moreover || fillze = ||hllze-

(ii) (’vanishing’/ ’escape to infinity by dilation’) Let p € (1,00) and let
h € LP(R™). For k € N\ {0} let

fulo) = (D). 8.72)
Then
fe — 0 in LP(R") (8.73)

and || fellLe = [|hlLr
Hint for the proof of weak convergence in (i) and (ii): use Lemma 8.16 below

with D = C2°(R").

We know that weakly or weakly* convergent sequences are bounded. If
we know already that a sequence is bounded, then it suffices to check the
conditions for weak or weak* convergence on a dense subset.

Lemma 8.16 (Criterion for weak convergence of bounded sequences). Let
X be a Banach space.

1) Let x : N — X with sup x|l < oo. If D C X' and span D is dense
keN
in X' then

T =1 =  (zp,7) > (v.,2") V2’ € D.

i1) Let 2’ : N — X with sup x| <oo. If D C X and span D is dense
keN k
i X then

T, —~ o, <= (v,2)) = (r,2)) VzeD.
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Proof. We only show (i) since the proof of (ii) is analogous. The implication
= is obvious. To show the reverse implication let M = supjcy |||, let
' € X’ and let € > 0. By linearity we have

(wg, 2') — (w4, 2") V2’ € span (D).

Since span (D) is dense in X’ there exist a z’ € span (D) such that ||2'—2'|| <
€. Thus

lim sup{xy, — @4, 2') = limsup(xy — x4, 2" — 2') < (M + ||z4]))e.
k—o0 k—o00

Since £ > 0 was arbitrary this implies the assertion. ]

8.4 Convex sets, Mazur’s lemma, and existence of minimiz-
ers for convex variational problems

We now study in a general setting the relation between weak convergence
and convexity.

Theorem 8.17. Let X be a normed space and let M C X be convexr and
closed. If the sequence x : N — M converges weakly to x,. then x,. € M.

Remark. (i) One can also show that M is closed in the weak topology.
Thus strongly closed sets which are convex are also weakly closed.

(ii) Warning: the corresponding assertion for weak* convergence is in general
not true.

Proof. Suppose that z,. ¢ M. By the separation theorem (Theorem 6.8)
there exists 2’ € X’ and o € R such that

Re(r,, ') > a, Re(y,2’) <a Vy e M. (8.74)

By assumption (zg,2') — (x4, 2'). Since z, € M this gives Re(z,2’) < a,
a contradiction. O

Theorem 8.18 (Mazur’s lemma). Let X be a normed space an assume that
the sequence x : N — X converges weakly to x.. Then

x4 € conv{zy : k € N} (8.75)
(where the closure is taken in the norm topology).

Notation: for a subset E of a vector space X the set conv E is defined
as the smallest convex set which contains E. It is easy to see that conv F is
given by all finite convex combinations of elements of F, that is,

K K
conVE:{z:z:Z)\kxk, K e N\ {0}, zp € E, \; >0, Z)\kzl}.
k=1 k=1
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Proof. Apply the previous theorem with M := conv {z} : k € N}. dJ

Corollary 8.19. Let X be a normed space and suppose that x — x4 in
X. Then a suitable convexr combination of the xj converges strongly to x.
More precisely there exist \; ) such that

K;
Nk =0, > Ng=1, (8.76)
k=j
K;
zj = Z Nj kT — T (8.77)
k=j

Proof. Consider the sets M; := conv {z}, : kK > j} and note that by Mazur’s
lemma x, € M;. Thus there exist z; € M; such that ||z; — 2, < % ]

Theorem 8.20. Let X be a reflexive Banach space and let M C X be
closed, convex and not empty. Let y € X Then there exists an x. € M such
that

|2y —yl| = dist (y, M) (8.78)

Remark. We have shown earlier in Theorem 3.7 that such an z, exists
if X is uniformly convex. The Milman-Pettis theorem states that every
uniformly convex Banach space is reflexive (see, e.g., Brezis, Theorem 3.31).

Proof. By definition of the distance there exist x; such that

1
x; —yl <dist (y, M) + ——. 8.79
ey = il < dist (3, M) + = (579
In particular
;]| < [yl + dist (y, M) + 1 (8.80)

and thus the sequence j — z; is bounded. Since X is reflexive there exists
a weakly convergent subsequence

Tj, — T (8.81)

Since M is closed and convex we have x, € M. Finally weak lower semicon-
tinuity of the norm (see Proposition 8.7 (iii)) yields that

. — yll < limint [Ja;, — yl| < dist (y, M). (8.82)
k—oo
Since y € M we must have equality and the proof is finished. O

We now consider existence results for more general convex variational
problems. These problems were not discussed in class but on homework
sheets 12 and 13.
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Theorem 8.21. Let U C R™ be open and bounded and assume that f €
L2(U). Forue Wy2(U) let

E(u) ::;/U|Vu|2d£”—/Ufud£”. (8.83)

Let M C W&’Z(U) be closed, convex and not empty. Then the following
assertions hold.

(i) The functional E attains its minimum in M, i.e., there exists u € M
such that

E(u) < E(v) Yve M. (8.84)

(i) An element u € M is a minimizer of E if and only if u satisfies the
variational inequality

/ > 0i(u—v)du— (u—v)fdL" <0 YveM (8.85)
Ui=1

(11i) If M is a closed subspace then (8.85) is equivalent to the weak form of
the Euler-Lagrange equation

/ Z dwou —wfdL" =0 Ywe M (8.86)
Ui=1

Remark. The analogous assertions hold if [;, [Vu[* is replaced by [;; 32, ; aijOiudju
with a;; = aji, aj; € L°°(U) and the ellipticity condition

Je>0VEER™ Y ay&i&; > ¢ (8.87)

,J

holds. In this setting assertion (iii) with M = WO1 2(U) provides an alterna-
tive proof of the existence of a weak solution of the problem

—> Oi(adju)=f nU and u=0 ondl. (8.88)
1,J
Proof. See homework sheet 13. O

Example. (Obstacle problem) Let ¢ € WH2(U) with ¢t = max(ip,0) €
VVOL2 and let
M:={ue Wol’Z(U) tu > aet. (8.89)

Then M is clearly convex. Moreover M is closed. Indeed, if ux > ¢ a.e. and
ur — u in L2(U) then there exists a subsequence such that ug; — U a.e.
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Hence u > ¢ a.e. Moreover M is not empty since o™ € M. If we assume
that the minimizer u is in W22 then we get

/w(—Au—f)dz:ZO ifut+weM (8.90)
U

Since every positive w € I/VO1 2 is admissible we get
—Au—f>0 ae inU. (8.91)
Moreover if u and ¢ are in addition continuous we get
—Au— f=0 a.e. on the open set {z : u(z) > ¢(x)}. (8.92)

One can show® see that under suitable assumptions on f, ¢ and U the
minimizer u is indeed in W22 and even in W (and hence in particular
C1). Even in one dimension and for f = 0 the minimizer is is general not in

C2.
8.5 Completely continuous operators

We finally discuss briefly the relation between compactness and weak con-
vergence.

Definition 8.22. Let X and Y be Banach spaces. Then a linear map T :
X =Y is called completely continuous if

Tp—x, mX =— Tx,—>Tz, inY. (8.93)

Proposition 8.23. Let X be a reflerive Banach space and let’Y be a Banach
space. Then

T:X =Y completely continuous <= T € L(X,Y) and T compact.
(8.94)

Proof. Homework. Hint: for <=’ show first that for 7" € £(X,Y) the
convergence £, — T, in X implies Tz, = Tz, in Y. O

[12.1. 2018, Lecture 22]
[17.1. 2018, Lecture 23]

8For a general introduction see D. Kinderlehrer, G. Stampacchia, An introduction to
variational inequalities and their applications, reprinted by SIAM, 2000.
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9 Finite dimensional approximation

Definition 9.1 (Hamel basis). Let X be a vector space. A set A C X is
called a Hamel basis of X if every x € X can be written in a unique way as
a finite linear combination of elements of A.

Every vector space posesses a Hamel basis (this follows from Zorn’s
lemma: order the set of all linear independent subsets of X by inclusion).
From the point of view of analysis a Hamel basis is, however, not very use-
ful. Indeed, if X is an infinite dimensional Banach space then it cannot have
a countable Hamel basis (exercise; hint: otherwise X can be written as a
countable union of finite dimensional subspace and this contradicts Baire’s
theorem)

Definition 9.2 (Schauder basis). Let X be a normed space. A sequence
e: N — X is called a Schauder basis if for every x € X there exist uniquely
determined oy, € K such that

n
lim Z aRer = T (9.1)
k=0

n—oo

Remark. We write ¢z = ZZO:O arer. Note that it is not required that
the sum converges absolutely. Thus a reordering of a Schauder basis is not
necessarily a Schauder basis.

.From uniqueness of aj, one easily deduces that the map e : z — ay is
linear. If X is a Banach space then one can show that e}, is a continuous map
from X to K, i.e., an element of X’. In this case the sequence ¢/ : N — X’
is called the dual base” and it is characterized by the property

62(6[) = Oy Vk,l € N. (92)

To prove that the €], are continuous if X is a Banach space one considers
the space of sequences

n
Y ={a: N> K: nh_g)lo]cz_oakek exists} (9:3)

with the norm [|aly := sup,ey || > p_o @kex|. One defines T': Y — X by
T(o) = limp 00 Yo @kek. Then it is easy to see that T € L(Y, X). By
definition of a Schauder basis T is bijective. The main point is to show
that Y is complete. Then the inverse operator theorem implies that 71
is continuous and this easily yields the continuity of the maps e} (see Alt’s
book for the details).

9Note the so-called ’dual basis’ is not necessarily a Schauder basis of the dual space
X'. Indeed if X = 1I; then X’ = I, and X’ is not separable and hence cannot have a
Schauder basis
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Let X and Y be Banach spaces with Schauder bases e and f, respec-
tively, and let T € £(X,Y). Then there are unique t¢;; such that Te, =
limy, o0 Y5 tjk f. Moreover = > 772  agey, implies that Tax = 322, B; f;
with

Bj = [i(Tx) =) tjkay. (9.4)
k=0

In this way a bounded operator can be identified with an infinite matrix.
One has to be careful, however, in performing calculation with these matrices
since the sums involved do not need to converge absolutely.

If X has a Schauder basis then X is necessarily separable (approximate
the coefficients by rational coefficients). It was quite a surprise that there
exists a separable Banach space which does not have Schauder basis'?. Many
of the standard spaces such as LP(U) for p € [1,00) do have a Schauder basis.

In separable Hilbert spaces one can construct a particularly nice Schauder
basis by using orthogonality. We begin with the definition of an orthonormal
System.

Definition 9.3 (Orthonormal system). Let X be a pre-Hilbert space. Let
N C N be finite or infinite. A map e : N — X is an orthogonal system if

(ex,e1) =0 ifk#1 and e, #0 Vk (9.5)

and an orthonormal system if
(ex,e1) = 0p  Vk, L. (9.6)
Lemma 9.4 (Bessel’s inequality). Let eq,...,e, be a finite orthonormal

system of the pre-Hilbert space X. Then

0< flf* =D (2, ex)l® (9.7)
k=0

n 2
= ||z — Z(:p, ex)er|| = dist?(z,span{eq,...,en}). (9.8)
k=0
Proof. For ay,...a, € K we have
n 2 n n n
x— Z arerl| = ||lz|* - Z(:z:, ex)ay — Z(ek,x)ak + Z lax*  (9.9)
k=0 k=0 k=0 k=0

= 2> =Y [z en) P + Y (s ex) — anl®. (9.10)
k=0 k=0

The expression on the right hand side becomes minimal if oy = (x, ex) and
the minimum is given by ||z[|2 — Y r_, |(z, ex)|?. O

0Per Enflo, A counterexample to the approximation problem in Banach spaces. Acta
Math. 130 (1973), 309-317
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Definition 9.5 (Orthonormal basis). Let X be a pre-Hilbert space and let
e: N — X be an orthonormal system. Then e is called an orthonormal basis
if

span{e : k € N} is dense in X. (9.11)

Theorem 9.6. Let X be a pre-Hilbert space and let e : N — X be an
orthonormal system. Then the following assertions are equivalent

(i) e is an orthonormal basis.

(ii) e is a Schauder basis of X.

(i1i) (representation formula)

x = Z(w, ex)er Ve e X. (9.12)
k=0
(iv) (Parseval identity)
(ZII,y) :Z(xaek)(yaek) vxay € X. (913)
k=0

(v) (completeness relation)

lz* =) [(@,ex)? VoeX (9.14)
k=0

From the completeness relation and the orthonormality relation one
easily sees that the sequence k — (x,ey)ex converges absolutely. Hence a
reordering of an orthonormal basis is still an orthonormal basis.

Proof. We show that (i) = (iii) = (ii) = (i) and (iii) = (iv) = (v)
— (iii).

(i) = (iii): Let z € X. By (i) there exist z,, = > /") o e with
T, — x. For m > m,, Bessel’s inequality yields

m
T — Z('xa ek)ek
k=0

2
= dist ?(z,span {eg, ..., em}) (9.15)

< dist ?(x,span {eq, . .., em, )} = ||z — z,]|*.  (9.16)

Thus lmsup,,, o ||z — > jeo(z, ex)ek]| < || — zy||. This holds for all n € N
and taking n — oo we get (iii).

(iii) = (ii): We have to show uniqueness of the coefficients. Assume
that

0= Zakek. (9.17)
k=0
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By the continuity of the scalar product we have for all [

o oo
0= ( qLeL, el) = (akek, el) = (. (918)
(ii) = (i): Let x € X. By definition of the Schauder basis there exist
ay € K such that x,, := Y ;_arer, — x. Since x,, € span{ej : k € N} this
proves (i).
(iii) = (iv): By the continuity of the scalar product we have

(z,y) = lim (Z(% ek)ek’Z(yael)el> (9.19)

k=0 =0
n 7 n -
= lim ) l_o(%‘a ex)(y, &) (ex, @) = lim kz_o(ffa ex) (Y, ex)- (9.20)
T Okt -

(iv) = (v): Take y = x.
(v) = (iii): Bessel’s inequality yields

n

x — Z(x, er)ex

2 n
= |lzlI* = > [(x,ex))? =0 asn—o0.  (9.21)
k=0 k=0

O

Theorem 9.7. Let X be an infinite-dimensional Hilbert space. Then the
following statements are equivalent.

(i) X is separable.
(ii) X has an orthonormal basis.
(i1i) X is isometrically isomorphic to lo.

Proof. (i) = (ii) (Schmidt orthogonalization):

This was not discussed in detail in class

Let E C X be a countable dense subset and let y : N — E be a bijection. Let
z : N — E be a subsequence such that {z, ... zx } is linear independent for all
k and Xy = span{zo, ..., 2} D span{yo,...,yr}. Note that dim X = k+1.
Set €y := 20/||z0|| and define é,, inductively as follows. Let e, € X, \ X1
and set

n—1
Eni=en— Y (en,ék)ek (9.22)
k=0
. En
€n 1= (9.23)
N
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Note that €, # 0 since e, ¢ X,_1 but Zz;é(en,ék)ék € X,—1. Then
n +— é, is an orthonormal system. Moreover span{éy,...,é,} = X,, and
UpenXn D E is dense in X. Hence é is an orthonormal basis.

(ii) = (iii): Let e be an orthonormal basis of X. By Theorem 9.6 the
map

T(a) = Zakek (9.24)
k=0

defines an isometry from ls to X.
(iii) = (i): Clear since Iy is separable. O

Example. (Fourier series) Let X = L?((—n,7);C). Then the functions

1.
ep(x) = Ee”“, keZ (9.25)

form an orthonormal basis. Indeed, e : Z — X is clearly an orthonormal
system. To see that the span of the e; is dense let

Y = {fjcrm : [ € C?(R), f(z+27) = f(z) Vo € R}. (9.26)
We have shown in Analysis 1 (or see Lemma 9.8 below) that for f € YV

f= > (fene 0 asn— 0. (9.27)
keZ,|k|<n L2(—m)

Thus span (e; : k € Z) D Y. Now Y is dense in L?((—m, «); C). This can be
easily seen by considering the extension g € L?((—m,7);C) to a 2m-periodic
function on R and approximating the extended function in the usual way by
convolution. Thus span (e, : k € Z) = L?((—x, 7); C).

Lemma 9.8 (Convergence of Fourier series of C? functions). Let Y be given
by (9.26), let f € Y and define

fn = Z (fa ek)€k~

kEZ,k|<n
Then (9.27) holds. fn, — f uniformly and in particular (9.27) holds.

Proof. Not discussed in class.
Integration by parts shows for k € N\ {0}

(Foer) = (7o) =~ (F"sex) < 5V Omsup ).
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Since sup |ex| < 1 it follows that f, is a Cauchy sequence in C°(R) and
hence convergence uniformly to a 27 periodic function f.. It only remains
to show that f.(z) = f(z) for all x € (—m, 7). We have

o 1 nee
(Fewenta) = 5 [ flue vy e = [* ke pig)ay,
Thus -
falz) = | Kn(z—y)f(y)dy
where
n 2n+1 ;
. . ) ) 1_61(2n+1)z
_ iz __ _—inz ikz __ _—inz
k=—n k=0
Thus

sin(n + 1)z
sin%z '

Since [ e =0 for k € Z\ {0} we have

Ky(z) =

K, (z)dz = 1. (9.28)
Therefore we get

fulz) = ’ Ky (x — dy—/ K(2)f(x — 2)d=.

—T

Now for a 27 periodic function h we have fa—Hr h(z)dz = [ h(z)dz. In
view of (9.28) it follows that

fua=t@) = [ K fa2)=f@) = [ sinoo+ - DT s
Set
9(2) = f(z _Sii)l_z f(x)'

2

A short calculation shows that f € C? implies that g € C'(—m,m) and
integration by parts and the fact that cos(n + %)z =0 for z = +m yield

fulz) = f(2) =

1 1
T / mcos(n + i)zg'(z) dz—0 asn— oo.
n+35J-n

Thus fi(z) = f(x). O

[17.1. 2018, Lecture 23]
[19.1. 2018, Lecture 24|
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10 Compact operators and Sobolev embeddings

10.1 Sobolev embeddings
Theorem 10.1. Let U C R™ be open, 1 < p <n and let

np . 1 1
p = or, equivalently, — = —— —.
n—p p p n

(10.1)

Then there exists a constant Cy, , which only depends on n and p such that
lull o+ < CrpllVullze  Vu € Wy (U). (10.2)

Proof. Step 1: w€ CY(U), p=1
We extend u by zero to a function in C}(R™). Since u has compact support
the fundamental theorem of calculus yields

1
u(zy, 2, ..., xy) = / hu(yr, T2, ..., xn) dy; (10.3)
— 00
and thus
lu(z)] < / 100 (1, o, - )| gt (10.4)
R
and similarly
)| < / Ol (@i )| . (10.5)
R

We now illustrate the argument by considering the case n = 3. We raise
(10.5) to the power ﬁ = % and multiply over ¢ = 1,...,n. Moreover we

abbreviate the right hand side of (10.5) by [ |d;u|dy;. This yields

1

1 1 1
23 < ( / orul ) / Byl dyn ) ? / Oguldys ). (10.6)

hi(z2,x3) 2(11@3) ha(z1,z2)

Now we integrate over x1, note that the first term on the right does not
depend on and for the other two terms use Holder’s inequality in the

form [ fag2 < (Jg /)2(Jg9)2 (for f,g > 0). This gives

1 1
/ |u(z)|% diL’l S hl(ZL'Q,l'g % </ h2 1‘1,1‘3) dl’1> ’ </ hg(l‘l,l‘g) d$1> ’
R R

(10.7)
Now we integrate with respect to x2 use again Hélder’s inequality (in this
case for the first and third term, since the second term is independent of
T9. Finally we integrate with respect to xs and use once more Hélder’s
inequality. Thus we get
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e
R3

: : :
( hl 562,563 dﬂ?gd:l?g) </ h2($1,$3) dl‘ldﬂf3> (/ hg(.’bl,xg) dl‘ldl‘2>

2

: 3
( |O1ul d:n) (/ |82u|dx) </ ]83u|d,33> (/ |Vul d:v)
R3 R3

(10.8)

IN

This proves the estimate for p = 1 and n = 3. For general n we start from

the estimate )
n n =1
u(@)7 <] ( / |az-urdyz-) (10.9)
i=1 R

1 1
and use the generalized Holder inequality [ f" " ... fr=) < ([ fl)ﬁ (g fn_l)ﬁ

Step 2: ue CLU), p € (1,n)
Note that for v > 1 we have by the chain rule |u|” in C1(R") and

IV |u|?| < ~lu]""!|Vul. (10.10)

Thus by the result for p = 1 and the Holder inequality

;HUHmi *H!WH < IVl s

<M=l HVUHLP < Null oy IVl 2o (10.11)

Ly’ (w—l)
Now let

yon=lp_mpop (10.12)

n—p n—p

Then v > 1 and

np—n p np n
— 1)y = = =p*= . 10.13
(v—=1p w1 n_p P T ( )

Thus (10.11) yields the desired estimate for u € C}(U).

Step 3: u € Wol’p(U), p=1
Let u € Wy”. By the definition of W, there exist u, € C1(U) such that
up — u in I/VO1 P Since we have shown that (10.1) holds for uy it follows
that k — uy is a Cauchy sequence in LP*(U). Hence there exist v € LP" (U)
such that uy — v in LP*(U) and

[l oe = lm JJugll o < Coplimsup [[Vug||ze < CoplVul e (10.14)

k—o0

On the other hand ug — w in LP(u). Thus u = v a.e. and this finishes the
proof. O
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Theorem 10.2. Let U C R™ be open, let p € (n, 00| and let

a:zl—ﬁ, with a =1 for p = oco. (10.15)
p

Then every u € Wol’p(U) has a Holder continuous representative u and

[4]co,a == sup Ju(z) = uly)| < Cpl|Vul| L. (10.16)

Ty ’CC - y|a
Warning. Note that the case p = n is excluded in Theorems 10.1 and
in Theorem 10.2. Indeed for n > 2 the function u(z) = In|ln |z|| belongs
to WIn(B(0,1) but is not in L (see Homework sheet 13). For n = 1
we have shown in Theorem 2.42 that every W11 function has a continuous
representative.

Remark. (i) Assume that U is bounded. Since @ = 0 on 9U the estimate
10.2 implies that
sup |u| < Cp||Vu||rr (diamU)“. (10.17)
U

(ii) We will show that for p = oo the estimate holds with C, = 1. One
call also show a converse statement: if v € C%(U) then v € W (U)
and ||Vv|pe < [v]co1. Idea of proof: extend v to a Lipschitz function
on R™ (with the same Lipschitz constant) and then consider the difference
quotients

o (@) == kol + ) — u()).

Then |g*)| < [v]coa |a]. Thus for each a there exists a subsequence k; such
that
giks) =, gy in L®(R") as j — oo.

Now
(k) — 1 00 (Tpn
/nga pdr = /n v(z)k(p(z — ka) —p(x))dr Ve e CF(R™). (10.18)

Taking a subsequence which converges for a € {ej,...,e,} and passing to
the limit we get

/ ge.odx = —/ vOpdr Yy e CP(R™).

Rn n

Thus v is weakly differentiable and the weak derivatives d;v are given by
gi. € L. Hence v € WH®(R™). Moreover we the weak* sequential lower
semicontinuity of the L> norm (see Proposition 8.10 (iii))) we get

1050 Loe = [lge, [l zee < [vlcon-
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To show that even |Vo(z)| = (31, |[Vui]?)/? < [v]cos one can argue as

follows. Let D be a countable dense subset of R™. By taking a diagonal
(k

sequence we can find a subsequence such that gq’ — g* in L®(R") for all
a € D. Passing to the limit in (10.18) we get

/ g;godx:—/ vZai&-(pdx:/ Za,;@ivicpdx Vo € C°(R™).
R~ R™ =1 R =1

Since | g((zk)| < [v] o weak™ lower semicontinuity of the L> norm gives |g}| <
[v]coa

(a, Vo(x Zaﬁvz ) = ga(z) < [v]goila] Yz € R"\ N Vae€ D

where N is a null set. Since D is dense we get (a, Vv(x)) << [v]po,1]a| for all
a € R™ and all z € R™\ N we get the desired assertion by taking a = Vv(x)

(if Vo(x) # 0).

Lemma 10.3. Let u € CL(R™) and let p € (n,o0]. Then for all z € R™

/ lu(y) — u(z)|dy < 1/ Va2, (10.19)
B(z,1) B

(11|Z—J}|n !

<CnplVullLr(Bz,1)- (10.20)
Proof. The second inequality follows from Holder’s inequality since p’ <
n = 7. To prove the first inequality we may assume that x = 0. Using

polar coordinates y = rw we get

/3(01 [u() ‘dy_/ /Sn Julrw) —u(0)] dH™ Yw)r"Vdr. (10.21)

By the fundamental theorem of calculus we get

/ —u(sw) ds
Hence

/ lu(rw) —u(0)| dH™( / / |V81:15(1u dH" N w)s"ds

Sn—1 Sn—1

:/ [Vulz) dz</ NT; . (10.23)
B

B 12["7! 01 |z

/ |Vu(sw)|ds. (10.22)

Ju(rw) — u(0)] =

Now the assertion follows by multiplying by "', integrating over r and
using (10.21). O
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Proof of Theorem 10.2. First assume p € (n,00) and u € C}(R"). Extend
u by zero to R™.
Step 1: For x,z € R" with |x — z| = 1 we have

1
p
lu(z) —u(z)| <, (/B( ) |Vul? d/l") . (10.24)

We have for all y € B(x,1) N B(z,1)

u(e) —u(z)] < Ju(z) —uy)] + |uly) — u(z)] (10.25)
and integration over B(z,1) N B(z,1) yields in connection with the lemma

L"(B(z,1) N B(y, 1)) [u(z) — u(z)]

< / () = u(y)| + |u(z) — uly)| dy
B(z,1)NB(z,1)

1 1 1

P P P

<C, ( / rwy)\pdy) +Cop ( / rwy)\pdy) 20, ( / \Vu<y>|pdy>
B(z,1) B(z,1) B(z,2)

(10.26)

since B(y, 1) C B(x,2). The assertion follows since L"(B(z,1) N B(z,1)) >
0.
Step 2: For x,z € R"™ with |z — z| = r we have

1
P
lu(z) —u(z)| <G, e (/ |Vul? dﬁ") : (10.27)
B(z,2r)

Let 2/ = £, 2/ = £ and apply the estimate in Step 1 to the function v(§) :=
u(r€). and the points 2/ and 2z’. Now Vo(§) = r(Vu)(r) and thus

/ [Vo(§)|P d§ = P |Vu(rg)|P dg =/ P Vu(y)| dy.
B(z',2) B(z',2) B(z,2r)

(10.28)

Taking the p-th root we obtain the desired estimate.

Step 3: The estimate holds for u € Wol’p(U) and p € (n,o0).
This follows by density as in the proof of Theorem 10.1. Let u;, € C}(U)
such that uy — w in Wol’p(U). Extend uy by zero to R™. By Step 2 (and
the fact that U is bounded) the sequence k +— wuy is a Cauchy sequence in
C%*(U). Hence ux — u in C%*(U) and [@)on < C||Vulp. On the other
hand uy — w in LP(U). Thus u = u a.e. This finishes the proof for p # occ.

Step 4: p = oo.
For u € C1(R™) we have

1
u(z) —u(z)| = /0 Vu((1 =)z +t2) - (z —x) dt| < ||Vul| g |z — 2|.

(10.29)
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Let u € WOI’OO(U). Extend u by zero outside U. Then u € WH°(R") (see
the examples of Definition 2.44). Let V = By(U) = {« : dist (z,U) < 1}.
Then V is open and bounded and U C V. Thus exist ux € C1(V) such that

up — u in Wol’p(V) for all p < 0o and ||Vug||re < ||Vul gee.
(10.30)
To see approximate u as usual by convolution. Hence by the result for
p € (n,00) we have uj, — u in C%*(V) for all a < 1. Thus for all z,z € R®

[ale)—u(z)| = lim Jug() ()| < T sup | Vugllp < [ Vulpe. (10.31)

k—o0
Moreover uy, — u in LP(U). Thus @ = u a.e. in U. O

By induction one can easily obtain corresponding results for the space
Wy and we will state them below. Before doing so we show that the

exponents in the embedding theorem as p* = % anda=1-— % above are
determined entirely by scaling. Let
ue€ CX(B(0,1) up(x):=u(rz). (10.32)

Then (with the change of variables y = rx)

(/Rn |V ()P da:); =" (/n V™ u(y) P dy)ll) (10.33)

The exponent m — 2 is sometimes called the Sobolev number of the space

P
WP An estimate of the form ||f||z« < C||V™f||zr can only hold for all
f € C(R™) it holds for all the functions w,. This yields the necessary

condition —% =m — 2, ie., if the Sobolev numbers of WP and LY must

agree. For m = 1 we recover the condition g = p*.

If we want the estimate only for function with the support in a fixed
bounded set, e.g., the unit ball, then we need the estimate for all u, with
r > 1. This leads to the necessary condition —% <m-— %, i.e., the Sobolev
number of L? has to be less than or equal to the Sobolev number of WP,

A similar reasoning applies to the Holder spaces. We have
[VFu,]cos = r* P [VFu] cos. (10.34)

Hence for an estimate [V* f]cos < C||V™ f|| e for all f € C°(R™) we need
k+B8=m-— %. For k = 0 and m = 1 we recover the condition g =1 — %.
On bounded domains we obtain the corresponding inequality as a necessary
condition.

We now show that the above conditions on the Sobolev number are also

sufficient.
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Theorem 10.4 (Sobolev embedding). Let U C R™ be open and bounded.
Assume that
m € N\ {0},p € [1,00], (10.35)

leN,gel,0),8€(0,1) (10.36)
Then
(i) WP (U) c Wy(U)  ifl<m andl—2 <m—

=S

(i) WoP(U) C C*P(U)  if k+ 5 <m—1.

Moreover the corresponding injections are continuous, i.e., the W norm
or the C*P norm can be estimated by the W™P norm.

Proof. This follows by induction from Theorems 10.1 and 10.2 as well as
the relation || f||ery < C(U)| fllL- for bounded sets and g < r. The details
were not discussed in class.
(i): If U is bounded then L*(U) C L"(U) if s > r. Thus Theorem 10.1
shows that (for p < n)
W, P(U) c LIU) if = >

(10.37)

Q=
[ =
S|

This condition can be rewritten as —% <1- % orm—1-— % <m— %. If
we apply (10.37) to all partial derivative of order < m — 1 of a function in
Wy P(U) we get

WP () € W) i m - 1 — g <m— %. (10.38)

By density of C2° we get in fact W™ (U) ¢ W'~ 4(U) ifm—1-2 <m—2.
Now assertion (i) follows (for p < n) by induction. If p > n assertion (pl)
follows from assertion (ii) with k = m — 1. If p = n and ¢ = n assertion (i)
is trivial. Finally if p = n we can use that u € Wol’p(U) for all p < n. Thus
u e W (U) for all ¢ < oco.

(ii): If & = 0 this follows directly from 10.2. Now suppose u € W)"*(U)
and the condition is satisfied for some k& > 0. Then all (weak) derivatives
of u up to order k belong to W;" ~FP and hence have a representative in
C%. From this one easily concludes that u has a representative in C**(U)
(one possibility is to show that if u; € C°(U) converges in Wi"? then uy,
is Cauchy sequence in C*?(U)). The limit in C*#(U) must agree a.e. with
the limit in W"*(U). O

[19.1. 2018, Lecture 24|
[24.1. 2018, Lecture 25|
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We now ask when the identity map from Wj"" to Wé‘q is not only
continuous but compact. Recall that for normed spaces X and Y a map
T € L(X,Y) is compact if and only if T'(B(0,1)) is compact. We note that

T(B(0,1)) compact <=

every sequence y : N — T'(B(0, 1)) has a subsequence which converges in Y’
(10.39)

The implication = is clear since compactness of T'(B(0, 1)) implies sequen-
tial compactness. To show the implication <= we show that 7'(B(0,1)) is
sequentially compact. Let z : N — T(B(0,1)). By definition of the closure
there exist y : N — T(B(0,1)) such that ||zx — yx|| < 27%. By assump-
tion there exists a subsequence yi, — y« in X. Then y. € T(B(0,1)) and
2k; — Y« Thus T(B(0,1)) is sequentially compact and hence compact.

Theorem 10.5 (Compact Sobolev embedding). Under the conditions of
Theorem 10.4 the identity map from W"P(U) to Wé’q(U) or CHB(U) are
compact if

l<m and -2 <m-" (10.40)
q p

and n
k—l—ﬂ<m—;, (10.41)

respectively.

Remark. The scaling ug(z) = k%_mu(k‘m) shows that the embedding is
not compact if | — ¢ = m — (orif k+p5=m— %) Highly oscillating
functions of the form wug(x) = k™™ sinkz show that the embedding is not
compact if [ = m, even for n =1 and U = (0, 1).

Proof. Regarding (10.40) it suffices to consider the case m = 1, [ = 0. The
other cases follow from Theorem 10.4 and the fact that the composition of a
bounded operator and a compact operator is a compact operator. To show
that the identity is a compact operator from Wol’p(U) to LY(U) for q < px
we have to show that every sequence in u : N — B(0,1) € W'P(U) has a
convergent subsequence in LI(U). We know that

ug;, = u in LP(U) (10.42)

(see the example after Lemma 3.17). Hence we are done if ¢ < p (since U is
bounded). If p < g < p* we use the interpolation inequality

1 1 1

Iflla < WIS I£15, %, where 6 is uniquely defined by — = 6= + (1—60)=
q D1 Do
(10.43)
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which follows from Hélder’s inequality [ gh < |g|s ||k||s with g = |f|%,
h = |f|(-9 s = L and s’ = _ 25 Since uy; is bounded in LP* and a
Cauchy sequence in L this shows that j — wuy, is a Cauchy sequence in
L9(U) and hence convergent.

The proof of (10.41) is similar. It suffices to show that the identity map
from C%*(U) to C%A(U) is compact if 0 < B < a < 1. Let u : N —
B(0,1) ¢ C%*(U). By the Arzela-Ascoli theorem (Theorem 3.15) there
exists a subsequence such that Uk; — Us uniformly. This finishes the proof
for f =0. Now let 6 = 3/«

[o(2) —v(y)| _ o(@) —v(y)l’

= v(z) — v(y)]*? ‘
Z—yf |z —g [v(@) —v(y)] (10.44)

which implies that
[Wleos < [)goa2 vl (10.45)

Thus j — ug; is a Cauchy sequence in CY%8(U) and hence convergent. [

Theorem 10.6. Let U C R" be open and bounded with Lipschitz boundary.
Then the results in Theorems 10.4 and 10.5 also hold with W"?(U) replaced
by W™P(U).

Idea of proof. . Let U CC V CC R™. Then one can show that there exist a
bounded extension operator E : WlP(U) — Wol’p(V) such that Efjy = f.
Then the assertion follows for m = 1 and [ = 0 or kK = 0 by applying the
result for WO1 P(V'). The general case follows by induction as in the proof of
Theorem 10.4.

To construct F for a function with support near QU one uses a suitable
local reflection and a cut-off. For general f one first uses a partition of unity.
For details see, e.g., the book of H-W Alt. O

11 Spectral theory

11.1 The spectrum and the resolvent
For a linear map A : C* — C" we have
A injective <= A surjective <= A invertible. (11.1)

Moreover there exist finitely many values (the eigenvalues of A) Aj,... A\ €
C such that A — \;Id is not invertible. There exists a basis of C" such that
the matrix of A in this basis has Jordan normal form with the values \; on
the diagonal. If A is self-adjoint, i.e. if (Ax,y) = (z, Ay) for all z,y € C"
then all eigenvalues are real and there exists an orthonormal basis such that
A is diagonal in this basis (thus the elements of the basis are eigenvectors).

We aim for an extension of these results to bounded operators T' € L(X)
on a complex Banach space X. In this case the situation is more complicated
since the counterpart of (11.1) is not true.
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Example. (i) Let X = Iy and let T : la — Iz be the shift operator,
ie, (Tx)gt1 = xg, (Tx)o = 0. Then T is injective but not surjective.
More precisely the range R(T') is a closed subspace of ls and we have Iy =
R(T) @ span (eg). Similarly the left shift operator defined by (T'z)r = zk41
is surjective but not injective.

(ii) Let X = Iy and let T : Iy — I3 be given by (Tx)x = 2~*x;. Then T is
injective and R(T") is dense in [ since R(T") contains all sequences which
have only finitely many non-zero entries. We have, however, R(T) # o,
since, e.g., the sequence y € Iy given by y, = 27%/2 is not in R(T), Indeed
every sequence = € [y is bounded. Hence every sequence y € R(T) must
satisfies |yx| < C27F for some C' € R and all k € N.

These examples motivate the following definition.

Definition 11.1 (Spectrum of an operator). Let X be a Banach space of C
and let T € L(X). Then we define the spectrum of T' as

o(T):={AeC:T — Md is not invertible (11.2)

and we set
op(T) :={X € C: N(T — \Id) # {0}}, (11.3)
ge(T) := {A € C: N(T — Ald) = {0}, R(T — \Id) # X, R(T — Ald) = X},
(11.4)
on(T) :={\ € C: N(T — AId) = {0}, R(T — Ald) # X}. (11.5)

These sets are referred to as the point spectrum, the continuous spectrum
and the residual spectrum. The elements of o,(T) are called eigenvalues.

By the inverse operator theorem we have o (1) = o,(T) Uo(T)Uo,(T).

Notation For T'e £(X) and A € C we write
T — X\ as an abbreviation of T'— A 1d (11.6)
Theorem 11.2. The resolvent set
p(T) i=C\ o(T) (11.7)
s open and the map

A= RN\ :=(A—T)""

p(T) — L(X) (11.9)

s analytic.
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Proof. Let A € p(T'). Then
AN+p)—T=A-T+pu=N-T)Id+p\-T)"". (11.10)

Now for |u| < r := 1/|[(A = T)~! we can express (Id + u(A — T)"! as a
convergent Neumann series, see Theorem 4.8. This shows that p(T") contains
the disc B(\,r) and that the resolvent maps is analytic in B(A,r). Hence
p(T) is open and the resolvent map is analytic in p(T). O

11.2 Fredholm operators, index, Fredholm alternative

We next consider a class of operators which are almost invertible, in the
sense that they are invertible up to a finite dimensional correction in the
domain and the image.

Definition 11.3 (Fredholm operator). . Let X and Y be Banach spaces.
An operator F € L(X,Y) is called a Fredholm operator if

(i) dim N (F) < oo,
(i) R(F) is closed,

(111) codimR(F') < oo i.e., there exists a finite dimensional space Yy such
that
Y=R(F)®Yy, dimYp< oo (11.11)

Proposition 11.4. Let Y be a Banach space and Z, Yy and Y7 be closed
subspaces. Assume that

Y=ZaYy=ZaY. (11.12)

Then Yy and Y1 are isometrically isomorphic. In particular if Yo is finite
dimensional then Y7 is finite dimensional and dim Yy = dim Y7.

Proof. Consider the maps A; := Z x Y; — Y given by A(z,v;) = z + y;.
Then A is bijective (by the definition of the direct sum) and bounded (since
the product norm is given by ||(z,y)|| = ||z]| + |lvi||. Hence by the inverse
operator theorem the operators A; are invertible. Now define B : Y1 — Yj by
By = 7T2A61y1, where m2(z,yo) = yo. Then B is bounded. Moreover B is
injective since By; = 0 implies that Aalyl = (2,0). Thus z + 0 = y1, which
implies y1 = 0. Finally B is surjective. Indeed if yp € Yy then 772A1_1y0 €Y.
Thus there exists a z € Z such that y; + z = yg. Hence Aal(yl) = (—2,0)
and By; = yo. By the inverse operator theorem B is invertible and hence
Yy and Y7 are isometrically isomorphic. O

[24.1. 2018, Lecture 25]
[26.1. 2018, Lecture 26|
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Definition 11.5. Let F € L(X,Y) be a Fredholm operator. Then we define
codimR(F) =dimY if R(F) @Yo =Y and we define the index of T as

ind F := dim NV (F) — codim R(F). (11.13)

Theorem 11.6. Let X be a Banach space and let T € L(X) be compact.
Then
A=1d - T (11.14)

is a Fredholm operator with index zero. In particular we have
(i) dimN(A) < oo;
(ii) R(A) closed;
(iii) N(A) = {0} = R(A)=X;
(iv) R(A) =X = N(A)={0};
(v) codimR(A) < dimN(A):
(vi) dim N (A) < codim R(A).

Proof. Many arguments of the proof are modelled on the argument that the
closed unit ball in a Banach space is only compact if the space is finite di-
mensional (Theorem 3.13). It might be helpful to reread this short argument
as a preparation.

We use the following facts for a closed subspace Z C X with Z # X.

Vee X Jze€Z |x—z|| <2dist(z,2), (11.15)

JyeX |yll=1 dist(y,2)> - (11.16)

N =

Indeed the first assertion clearly holds if dist (x, Z) = 0 because closedness
of Z then implies x € Z and we can take z = z. If dist (x,Z) > 0 then
the definition of the distance implies that for each ¢ > 0 there exists z € Z
such that ||z — z|| < dist (z, Z) + ¢. Taking ¢ = dist (z, Z) we get (11.15).
The second assertion is contained in Lemma 3.8. It follows from the first be
taking z € X \ Z and y = (x — 2)/||z — z||.

(i): Note that
Ar =0 <<= z=Tu. (11.17)

Let B1(0) N N(A) be the closed unit ball in N'(A). Now B1(0) NN (A) =
T(B1(0)) therefore
B1(0) NN (A) € T(B41(0)) (11.18)

Hence B;1(0) N N(A) is compact which implies dim N (A) < oo.
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(ii): Suppose that Az, — y. Since N'(A) is closed there exists an a,, €
N(T) such that

|z — an|| < 2dist (2, N(A)). (11.19)
We may assume that a, = 0. Otherwise we consider the sequence Z,, :=
Ty, — .
Case 1: sup,, ||z,| < .
We have

T, = Az, + Tx,,. (11.20)

Since T is compact there exists a subsequence such that Tz, — y. and
hence z;,; — y + y«. Therefore

Y Az, — Ay + y)- (11.21)

Thus y = A(y + y«) and y € R(A). Hence R(A) is closed.

Case 2: sup,, ||zn| = oo.
Then there exists a subsequence (which for simplicity we still denote by x,)
such that ||z,| — oco. Set

Ax,,

[

X
Y =, sothat |ly,|| =1, Ay, =
[0l

— 0. (11.22)

Now the compactness of T" implies that for a subsequence
Yn; = AYn; + TYn; = Ys- (11.23)
The continuity of A yields

Ay, = lim Ay, = 0. (11.24)
J—00

Hence y, € N(A) and thus

dist (z,,,, N (A
lon, =l 2 s, A7) = 02D

> (11.25)

N | —

where we used (11.19) with a, = 0 in the last step. This contradicts the
convergence Yn; — Y.
(iii): We always have R(A™"!) = A"(A(X)) C R(A™). We claim that if
N(A) = {0} and R(A) # X then
R(A™) # R(A™) Vn e N,
Indeed let z € X \ R(A). We claim that then

Atz € R(A™) \ R(A™) vn >0 (11.26)
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If there existed y € X such that A"z = A""ly then A™(x — Ay) = 0. Since
N(A) = {0} this implies that A" !(z — Ay) = 0 and by induction we get
x — Ay. This contradicts the assumption x & R(A).

Moreover R(A™1) is closed. Indeed

" . = (n+1
A = (I -1T) +1—I+;< N )(—T)k (11.27)

compact operator

and thus R(A™*!) is closed by (ii).
Thus there exists 7, € R(A") \ R(A""!) such that

1
2] =1, dist (x,, R(A™T!) > 5

For m > n we have Az, + (2, — Azp,) € R(A™1). Thus

| Txp—Tm|| = | n—(Azp+zm—Azy,)| > dist (z,, R(A"T)) > Ym > n.

| =

Therefore the sequence n — T'x,, cannot contain a convergent subsequence.
This contradicts the compactness of 7.

(iv): We follow a similar approach as in the proof of (iii). Let 21 € N'(A)
with 21 # 0. Since R(A) = X we can define inductively x such Az = zp_1.
Then z € N(AF) \ N(AF1). Since A¥ is continuous the subspaces N'(A¥)
are closed. By Lemma 3.8 there exist z, € N(A¥F) \ N(4*~1) such that

1
|zl =1 and dist (z;, N(4*" 1)) > 5 (11.28)
Thus for [ > k we have Az; + x — Az € N (A1) and hence
1
||Tl‘l — T$k“ = ||:L’l - (Al‘l + T — Amk)H > 5 (11.29)

Hence the sequence k — Tx; cannot contain a convergent subsequence.
This contradicts the compactness of 7.

(v): We reduce this to (iii). By (i) we have n := dimN(A) < oo. Let
Z1,...,ZTy be a basis of N(A). Assume the assertion was false. Then there
exist linear independent y1, ..., y, € X such that R(A)@®span{y1,...,yn} #
X.

Every z € N(A) has a unique decomposition z = " | a;z; and the
maps T — «; are linear and hence bounded since N(A) is finite dimensional.
It follows from the Hahn-Banach theorem that these map can be extended
to a maps z4,..., 2, € X’. We have

(zj,ah) =6 Vi k=1,...,n (11.30)
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Set

n

Tz =Tz — Z(m,xj)yj. (11.31)
j=1

The operator T' — T is compact because its range is contained in the finite

dimensional space span (y1, . .., yn). Hence T is compact. Set
5 5 5 n
A:=1d =T sothat Az = Az + Y (z,2;)y;. (11.32)
j=1

We claim that A'(A) = {0}. Indeed if

n

0=Az = Az + Z(m,xj>yj . (11.33)
er(A) J=1
—_——

€span (y1,...Yn }

then we get Az = 0 and Z?:1<x,xj>yj = 0 since we assumed that the
sum R(A) @ span{y1,...,yn} is direct. Thus x € N(A) and since the y;
are linearly independent we get (v,27) = 0. Now z € N(A) implies that
x =3, a;z;. The condition (z,z;) = 0 and (11.30) then imply that = = 0.

Thus assertion (iii) yields that R(A) = X. On the other hand the
definition of A implies that R(A) C R(A) ® span (y1,...,yn) # X. This
contradiction finishes the proof of (iv).

(vi): We reduce this to (iv). By (v) we have m := codimR(A4) < n :=
dim N (A). Let z1,...,2, and 2,...,2), be as in the proof of (iv) and let
Y1, -+, Ym be such that

R(A) & span (y1,-..,ym) = X. (11.34)

Consider the map
m

v To=Tr— Y (z,7))y. (11.35)
i=1
Then T is compact. We claim that A = Id — T is surjective. Indeed every
y € Y can be written as y = z + >, Biy; with z € R(A), i.e. z = Azx. Set
o =Y ;0  oiz;. Then zg € N(A) and thus A(z + z9) = z and

Az + z0) = z—i—Z((a:,:c;) + ;). (11.36)
i=1

The choice o; = f8; — (z,z}) shows that A(z 4+ z9) = y. Thus R(A) = X by
(iv) we get N'(A) = {0}. If n > m then (z,,x;) = 0 for all i < m and hence
Ax, = Ax, = 0. Thus n = m. O
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Theorem 11.7 (Fredholm alternative). Let X be a Banach space, let T €
L(X) be compact and let A=1d —T. Then either (i) or (ii) holds.

(i) For each y € X the equation Ax =y has a unique solution. Moreover

Al e £(X).
(i) The equation Az =0 has a nontrivial solution and R(A) # X.

Proof. By Theorem 11.6 the operator A is a Fredholm operator of index 0.
Case 1: N(A) = {0}.
Then R(A) =Y and thus the equation Az = y has a unique solution for
every y € X, i.e., A: X — X is bijective. By the inverse operator theorem
A=l € £(X). Thus alternative (i) holds.
Case 2: N(A) # {0}.
Then Az = 0 has a nontrivial solution. By Theorem 11.6 we have codim (R(A)) >
1 and thus R(A) # X. Thus alternative (ii) holds. O

[26.1. 2018, Lecture 26]
[31.1. 2018, Lecture 27|

11.3 Further examples and properties of Fredholm operators
The subsection was only discussed very briefly.
Proposition 11.8. Let X be a Banach space.

(i) If Y C X is finite dimensional then there exists a closed subspace
Z C X such that X =Y ® Z. Moreover the injection J : Z — X 1is a
Fredholm operator.

(i) If X =Y ® Z, Z is a closed subspace and Y is a finite dimensional
subspace then there exist R € L(X,Z) with Ry = 1dz, R(R) = Z,
N(R) =Y. In particular R is a Fredholm operator.

(i1i) Let X,Y,Z and R be as in (i) and let J : Z — X be the injection.
Then P := JR is a projection (i.e. P2 =P)N(P)=Y, R(P) = Z.
Hence P is Fredholm. Moreover R(Id — P) =Y and in particular
Id — P s compact.

Proof. (i): Let y1,...yn be a basis of Y and let 4],...y,, € X’ be the dual
basis, i.e., (Y, y;) = 0xl. Set

n

Qz =Y (&, )i (11.37)

i=1

Then Q € £(X), R(Q) =Y and Q? = Q. Set Z = N(Q). Then Z is closed.
Moreover = — Qx € Z for all z € X, since Q% = Q. Since every z € X can
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be written as x = Qx + (x — Qx) we get X =Y + Z. If x € Y N Z then
x = Q' for some 2z’ € X and 0 = Qz = Q%2 = Qz' = x and therefore
X =Y @ Z. Finally N(J) = {0} and R(J) = Z is closed and has finite
codimension. Hence J is a Fredholm operator.

(ii): The space Y X Z is a Banach space with norm ||(y, 2)|| = ||y|| + ||=||
and the projection 7o : Y x Z — Z given by 7(y, z) = z is continuous. The
map L : Y x Z — X given by L(y,z) = y + z is continuous and bijective
and hence has a continuous inverse. Set R = moL~!. Then R € L(X, Z)
and R|; = Id z. Moreover N'(R) =Y. Hence R is a Fredholm operator.

(iii) From the properties of R and J we see that Pz = z for z € Z and
Py=0foryeY. Hence P(y + z) = z. It follows that R(P) = Z, N(P) =
Y. In particular P is a Fredholm operator. Moreover P? = P. Finally it
follows that (Id — P)z = 0 and (Id — P)y = y and hence R(Id —P) =Y. O

Theorem 11.9. Let XY and Z be Banach spaces. Then the following
assertions hold.

(i) Let B € L(X,Y) and A € L(Y,Z). If two of the three operators A,
B, AB are Fredholm operators, then the third operator is a Fredholm

operator and
ind AB = ind A + ind B. (11.38)

(i) The set F(X,Y) of all Fredholm operators from X to'Y is an open
subset of L(X,Y) and the index is locally constant in F(X,Y).

Remark. Note that while the index is locally constant it is in general
not true that dimN(A) or codim R(A) are locally constant (not even for
X =Y =R"; look at a neighbourhood of 0).

Proof. The proof of (i) is essentially a nice exercise in linear algebra (the
details of the proof were not discussed in the lecture).
Step 1: Linear algebra.
We first discuss only the aspects of linear algebra, i.e., we consider all the
spaces only as vector spaces and all the maps only as linear maps, ignoring
questions of closedness or continuity. This argument can be expressed very
concisely in the language of exact sequences (see below). For the convenience
of the reader we first give a proof that does not use that language.
Preliminaries from linear algebra: If V is a vector space and Vj is a
subspace then there exists a subspace Vs such that V' = V; @ V4 (this follows

from Zorn’s lemma'!). Moreover Vo ~ V/Vj in the sense that there exists

1One approach is to argue as in the proof of the Hahn-Banach theorem and to construct
a linear projection P : V — V with R(P) = Vi and Pv = v for v € V4 (see 7.13 in Alt’s
book). Then one can take Vo = N (P). Alternatively one can start from a Hamel basis
B of Vi and show that there exists a Hamel basis B of V which contains B;. Then one
sets Vo = span (B \ Bi).
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a bijective linear map from V, to the quotient space V/Vj. Indeed the
restriction of the canonical projection projection m : V' — V/V] given by
m(x) = x + V1 to V3 is bijective. In particular if V.=V @& Vy then Vi ~ Vs.
Thus we can define codimVj := dimV, = dim V/V; (where we allow the
value 00).

We main assertion is that under the assumption of (i) we have

dimN(AB) = dim N(B) + dim(N (4) N R(B)) (11.39)
codimR(AB) = codim R(A) 4 codim (N (A) + R(B))
= codim R(A) + codim R(B) — dim N (A) + dim(N (4) N R(B)).
(11.40)

and that all the numbers which appear in these formulae are finite.
To prove (11.39) we use there exists a subspace Xy such that X =
N(B) @ Xo. Moreover B|x, is injective and we have

R(Bx,) = R(B) and B~ (E)=N(B)® B} (E)

for any subspace £ C Y. Thus
N(AB) = B"Y(N(A) N R(B)) = N(B) & By, (W(A) NR(B)). (11.41)

This implies (11.39) since Bx, is a bijective map from Xy to R(B). Note

also that all the spaces which appear in the formula are finite dimensional.

Indeed if A and B are Fredholm operators then both space on the right hand

side are finite dimensional. If AB is a Fredholm operator then N(AB) is

finite dimensional and hence both space on the right are finite dimensional.
To prove (11.40) we use the decompositions

Y =R(B) @Yo (11.42)
Y = (R(B)+ N(4))en
N(A) = (R(B)NN(A)) ® Yz (11.43)
R(B) = Y3 @& (R(B) NN (A)). (11.44)

Then R(B) + N(A) = R(B) @ Y, and

Y=RB)&Y2dY1 =Y38 (R(B)NN(A)) &Y, ®Y. (11.45)

=N(4)

Thus
Yo~ Y1 DYs. (1146)

It follows from (11.45) that Ajy,qy, is injective, that A is a bijective map
from Y3 @ Y; to R(A) and that

R(A) = AY3 p AY; = A(}/?, @N(A)) o AY] = R(AB) o AY].
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Thus
Z=R(A)® Zy=R(AB) ® AY1 ® Zy and AY; ~Y]. (11.47)

We now claim that if three of the operators A, B, AB are Fredholm then
the spaces Y1, Y2, Zp and N(A) are finite dimensional. Since we already
know that R(B) NN (A) is finite dimensional this yields

codinR(AB) = codimR(A)+dimY;
(11.47)

= codimR(A) + codimR(B) — dim Y>
(11.46),(11.42)

i) codim R(A) + codim R(B) — dim N (A) + dim(R(B) N N (A)).
(11.48)

This gives (11.40). To see that the spaces Y1, Y2, Z and N(A) are indeed
finite dimensional assume first that A and B are Fredholm. Then Y} is
finite dimensional and hence Y; and Y5 are finite dimensional. Moreover
dim Zy = codim R(A) < co and dim N (A) < oco.

Now assume that AB and B are Fredholm. Then Yy and hence Y7 and Y5
are finite dimensional. Moreover dim Z = codimR(A4) < codimR(AB) <
oo. Finally dim N (A4) = dim Y, + dim(R(B) NN (A)) < cc.

Finally consider the case that AB and A are Fredholm. Then AY; & Zj
is finite dimensonal and hence Zy and Y7 are finite dimensional. Moreover
N (A) is finite dimensional which implies that Y5 is finite dimensional. Thus
Yy ~ Y] @ Y5 is finite dimensional.

The calculations so far can be summarized in the statement that the
following two sequences are exact.

0 — N(B) — N(AB) 25 N(4) N R(B) — 0, (11.49)

R(B) +N(A) R Y A Z N Z
R(B) R(B) R(AB) R(A)
Moreover one can easily check that if two of the three operators A,

B and AB are Fredholm then in each sequence at most one space is not

finite dimensional. Exactness then implies that all the spaces are finite
dimensional.

00—

— 0. (11.50)

Step 2: Closedness of the range.
Assume that R(A) and R(B) are Fredholm. Then R(AB) = AY3. Moreover
A is a bijective map from Y1 ®Y3 to R(A) and R(A) is closed by assumption.
Proposition 11.8 (i) implies that Y3 can be chosen as a closed subspace since
N(A)NR(B) € N(A) is finite dimensional. Since dimY; < dimY) < oo
the space Y7 @ Y3 is also closed and hence a Banach space. Thus A is an
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invertible operator from Y7 @ Y3 to R(A) and hence the image of the closed
subspace Y3 is closed.

Alternative proof: It suffices to show that R(AB) is closed in R(A). The
map A is bijective as a map from the quotient space!? Y/N(A4) — R(A) and
hence invertible. Now R(B)+N(A) is closed since R(B) is closed and N (A)
is finite dimensional. Hence (R(B)+N(A))/N(A) is closed in Y/N(A) and
thus R(AB) = A(R(B)+N(A))/N(A)) is closed in R(A) as A is invertible.

Now assume that AB and B are Fredholm operators. Then dimY; <
dimYp < oo and R(A) = R(AB) @ AY;. Since R(AB) is closed and AY] is
finite dimensional it follows that R(A) is closed.

Finally assume that AB and A are Fredholm operators. By Proposition
11.8 there exists a closed space X1 C X such that X = N(AB) & X;. Let
J : X1 — X be the injection and let R : Z — R(AB) the restriction as in
Proposition 11.8. We first show that R(B.J) is closed. Then C := RABJ :
X1 — R(AB) is bijective and hence invertible. This implies that R(B.J) is
closed. Indeed let y, = BJx, and assume that y, — 3. Then RAy, —
RAy, and thus =, = C"'RAy,, - C~'RAy, =: z,. Thus BJzx, — BJx,
and hence y. € R(BJ). To show that R(AB) we used that N'(B) D N(AB)
is finite dimensional. Hence there exists a finite dimensional space Xo such
that N(AB) = N(B) & X5. Hence X = N(B) ® X2 ® X; and thus R(B) =
BXs @ BX1; = BXy ® R(BJ). Since BX> is finite dimensional it follows
that R(AB) is closed.

(ii): The main point is to reduce the problem from Fredholm operators
to invertible operators. Let A € L(X,Y) be a Fredholm operator. By
Proposition 11.8 there exists a closed subspace X such that X = N (A)® Xp.
Let the injection J : X9 — X and the restriction R : Y — R(A) be as in
Proposition 11.8. Then J and P are Fredholm operators. Define

A(] : Xo — R(A) by AO = PAJ. (1151)

Then Ag is bijective and continuous and hence invertible. In particular Ag
is a Fredholm operator with index 0. Now assume that B € £(X,Y) and
|B — Al <e. Set

By := PBJ. (11.52)

Then [|By — Ao|| < ||P]|||J||e. Since the set of invertible operators is open
(see Corollary 4.9) the operator By is invertible if ¢ > 0 is sufficiently small.

121f X is a normed space and Y is a subspace then the quotient space X/Y consists of
equivalence classes [z] ==z + Y, for z € X. If Y is closed then ||[z]|| := infyey ||z + y]|
defines a norm on X/Y and if X is a Banach space so is X/Y (see homework sheet 10,
problem 3). The canonical projection 7 : X — X/Y given by w(xz) = = + Y a Lipschitz
continuous map. We claim that 7w(E) is closed in X/Y if and only if E + Y is closed
in X. Indeed if w(E) is closed then E +Y = 7~ !(n(E)) is closed since 7 is continuous.
Conversely assume that E+Y is closed and that m(z,) — 2« for z, € E. Let . € 7 (24).
Then there exist y, € Y such that z,, + y» converges to z.. Since ., +y», € E+Y and
since this set is closed we have . € E+Y. Thus z. € 7n(E+7Y).
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In particular By is a Fredholm operator of index 0. Since P and J are
Fredholm operators it follows from (i) that B is a Fredholm operator and
ind B = ind A since ind By = ind Ag = 0. O

Here is another interesting result which gives a precise meaning to the
intuition that Fredholm operators are almost invertible or 'invertible modulo
compact operators’.

Theorem 11.10 (Atkinson’s theorem). Let X and Y be Banach spaces and
let A€ L(X,Y). Then A is a Fredholm operator if and only if there exists
B e L(Y,X) such that

AB—1d and BA-1d are compact operators. (11.53)

The operator B is often called a parametrix of A; it is determined up to
the addition of a compact operator.
11.4 The spectral theorem for compact self-adjoint operators

Definition 11.11. Let X be a Hilbert space and let T € L(X). Then the
adjoint operator T™ is defined by

(T*z,y) = (z,Ty) Vz,y € X. (11.54)
The operator T is called self-adjoint if T* =T, i.e., if
(Tz,y) = (x,Ty) Vz,y € X. (11.55)

If A: C" — C" is selfadjoint then there exist and orthonormal basis
e1,...,e, of C" such that A is diagonal, i.e., Az = Y }_; M\e(x,ex)er. We
now prove a counterpart of this for compact operators on a complex Hilbert
space.

Notation. If X is a Hilbert space and Y and Z are subspace we write
Y 17 — (y,2) =0 YyeyY,zeZ, (11.56)

i.e., if the spaces Y and Z are orthogonal. Note that in this case in particular
Y NZ={0}

Theorem 11.12 (Spectral theorem for compact self-adjoint operators). Let
X be a Hilbert space over C and let T € L(X) be self-adjoint and compact,
with T # 0. Then the following assertions hold.

(1) o(T) \ {0} consists only of eigenvalues and for each N\ € o(T) \ {0}
the eigenspace N (T — \) is finite dimensional. Moreover o(T)\ {0} is
finite or countable and the only possibly accumulation point is 0.
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(ii) We have o(T) C R and there exists an orthonormal system e : N — X
and a sequence A : N — R\ {0} mit N C N such that

Te, = Aer, Vk € N, O'(T) \ {0} = {)\k S N} (11.57)
and
N(T —)) Cspan(ex : ke N) VAeo(T)\ {0} (11.58)

If N is infinite then A\ — 0 as k — oo.

(111) N(T) L span (e : k € N) and X = N(T) @ span (ej, : k € N).

(iv) © = Py + Y pen(@er)er, To=3 1 cnM(z,ex)er Vo e X.

Remark. (not discussed in class) (i) By the usual complexification argu-
ment one can show that the same assertion holds Y is a Hilbert space over
R and S € L(Y) is compact and self-adjoint. Indeed we can extend S to a
compact self-adjoint operator T' on the complexified space X =Y 4 ¢Y by
T(a+1ib) = S(a)+iS(b). If ey, is an eigenfunction of 1" for the eigenvalue Ay
then the complex conjugate € is an eigenfunction for the same eigenvalue
(since A\ € R). Thus Reey or Imey, is an eigenfunction for S.

(ii) If T is a normal operator, i.e., if TT* = T*T then the same conclusions
holds with the exception that the spectrum may lie in C rather than in R
and thus A : N — C\ {0}.

(iii) Operator calculus. It follows from assertion (iii) that

AFg = Z Mo (z, er)er. (11.59)
keN
Thus for f: R — R we define f(A) by
F(A)z == f0)Pyima + Y N, ex, ex). (11.60)
keN

For analytic f this agrees with the definition of f(A) via a power series.
(iv) There is a counterpart of assertion (iii) for merely bounded self-adjoint
operators. First note that the assertion for compact 7" can also be written
as

r= > Q, Tr= Y Iz, (11.61)

Xeo(T) Ao (T)

where @) denotes the orthogonal projection to the eigenspace N (T — ).
Note we have shown that different eigenspaces are orthogonal, i.e., @@, = 0
if A £ p. In the case of bounded operators the sum is replaced by a suitable
Lebesgue-Stieltjes integral, i.e.,

(Tx,y):/R)\dPA(x,y) (11.62)
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where the P, are orthogonal projections that are mutually orthogonal in
the sense that for A > u we have (Py — P,+)P, = 0 where P, (z,y) =
limy g P4¢. For compact T' the Py can be defined by P\ = ZMGU(T):/K/\ Qu-
Then the map A — (Pyz,y) is piecewise constant and has jumps at all values
p € o(T) with limy o (Pyysx,y) — (Pu—tx,y) = (Qrz,y).

There is also an extension to unbounded self-adjoint operators T': D(A) —
X where D(A) is a dense subset of X. In this case care has to be taken with
the definition of self-adjointness.

Proof. (i): Step 1: o(T) \ {0} consists only of eigenvalues and for each
A€ o(T)\ {0} the eigenspace N (T — X) is finite dimensional.
Suppose that A £ 0 and that AId — T is not invertible. Then A :=1d — %T
is not invertible. By the Fredholm alternative we must have N (A) # {0}.
Thus A is an eigenvalue of T and the corresponding eigenspace is finite
dimensional by Theorem 11.6.

Step 2: o(T)\ {0} is countable and the only possible accumulation point
of this set is zero.
It suffices to show that the set Sy := o(T) \ B(0, 1) is finite for all k > 1.
First note that by definition of ||T'|| we have |A| < ||T’|| for every eigenvalue .
Thus, if Sy, is infinite then there exist a sequence A; — A with A\; € S; and
A # 0. We may assume that the \; are all different. Since the eigenspaces
Z;j .= N(T — )\;) are closed and finite dimensional there exist z; € Z; such

that ||2;]| = 1 and dist (2;,|J]_, Z) > L. Thus
I .
llzj — 2|l > 3 ifk<j (11.63)
Now 1
Zj = Ysz (11.64)
J

and since T' is compact and since A; — X # 0 the sequence j — z; contains
a convergent subsequence. This contradicts (11.63).
(ii): Let A € o(T)\ {0} be an eigenvalue and let x # 0 be an eigenvector.

MNz||? = \z,2) = (Tx,z) = (x,Tz) = X||z|| (11.65)

Hence A € R.
Now let \, i € o(T)\{0} with A\ # u. Let x € N(T—X) and y € N (T—p)
we have

Az, y) = (Tz,y) = (2, Ty) = p(z,y). (11.66)

Thus (z,y) = 0 and the eigenspaces N(T' — \) and N (T — p) are orthogo-
nal. Therefore we can choose a finite orthonormal basis in each eigenspace.
Since the number of eigenspaces is at most countable we obtain an at most
countable orthonormal system of eigenvectors that contains a basis of each

eigenspace N (T — \) with A # 0.
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[31.1. 2018, Lecture 27|
[2.2. 2018, Lecture 28|

(iii): Let Y :=span(ex: k€ N). Then Yt = {2 € X : (z2,y) =0 Vy €
Y} is a Hilbert space and by the projection theorem we have X =Y @Y+,
We claim that Y+ = N (T).

Step 1: N(T) Cc Y+
For z € N(T) we have

Me(ek,x) = (Teg,x) = (ex, Tx) = 0. (11.67)

Since A\; # 0 it follows that (eg,x) = 0 for all £ € N. By continuity of the
scalar product we get x € Y.
Step 2: Y+ C N(T).
We first show that 7' maps Y to itself. Indeed for z € Y+ we have for all
ke N
(Tz,ex) = (2, Te) = Ap(z,ex) = 0. (11.68)

Thus by continuity of the scalar product Tz € Y.

Let S = Tjy+. Then S is compact, self-adjoint operator on Y. If § =0
then we are done. If S # 0 then by Theorem 11.13 below S has a non-zero
eigenvalue. Thus there exist p # 0 and x € Y+ \ {0} with

Tr=Sr = px. (11.69)

Thus p € o(T) \ {0} and by (ii) we must have = € span (e : k € N) C Y.
This contradicts the definition of Y+,

(iv) By (iii) we have y := 2 — Pyrryz € Y = span (e; : k € N). Since the
e : N — X is an orthonormal system in X it is actually on orthonormal basis
of Y. Thus by Theorem 9.6 we have y := >, n(y,er)er = D pen(T, ex)er.
Finally the formula for Tz follows from the absolute convergence of the
series ) . n(7, ex)ex and the boundedness of T'. O

Note that for a self-adjoint operator T" the expression (T'z, x) is real since
(x,Tx) = (z,Tx) = (Tx,x). The following result extends the characteriza-
tion of the maximal and minimal eigenvalue of a symmetric or hermitean
matrix.

Theorem 11.13 (Rayleigh quotient). Let X be a Hilbert space and let T €
L(X) be a self-adjoint and compact. Set

T T
Amin = inf (Tz,z) = inf ( x’x), Amax = sup (Tz,z) = sup( z,2),
l|zll=1 a#0 (x,x) |21 o (@ 2)
(11.70)

Then the following assertions hold.
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(i) If Amax > 0 then there exists x, € X with ||x.|| =1 and

(Try, s) = Amaxs,  TTs = AmaxTx- (11.71)

(71) If Amin < O then there exists x. € X with ||z«|| =1 and

(Txy, s) = Amins T = AminTx. (11.72)
(143) If Amax = Amin = 0 then T' = 0.

Remark. If X is infinite dimensional then Apax > O0Amin. Proof: let
e : N — X be an infinite orthonormal system (such a system exists by
the Schmidt orthonormalization procecure). Since Y, oy (2, e)? < ||z]|? we
have limg_,o(z,ex) = 0 for all z. Thus e, — 0. Since T is compact this
implies T'e;, — 0 and thus (Teg, ex) — 0.

Proof. (i) Let xj, be a maximizing sequence, i.e., ||zg|| = 1 and (Txg, xx) —
Amax- Since every Hilbert space is reflexive there exists a subsequence such
that Ty — Ty Since compact operators are completely continuous (see
Proposition 8.23) we get T'zy;, — Tz, (strong convergence !). Hence
(Tzs, i) = lim (Tg;, Tk;) = Amax- (11.73)
j—o0
By the weak lower semicontinuity of the norm we have ||z.|| < 1. Indeed we
must have equality. First z. # 0 since Apax > 0. Now if 0 < ||z < 1 we
have ||z /[|z«| || = 1 and

Ty Ty (Txy, xy)

(T > Amax (11.74)

[ENEN I ENE

and this contradicts the definition of A\pax. Hence z, realizes the infimum.
Then the function

T(zs +ty, v + ty)

h(t) :=
) (T4 + ty, xs + ty)

(11.75)

has a maximum at ¢ = 0. Differentiation gives (taking into account that
2]l = 1)

0="h0)=(Ty, ) +(Ts,y)—(Txs, ) ((y, 2:)+(2%,y)) = 2Re(TTe—AmaxTx, Y)-

(11.76)
Taking y = Tx+ — Amax®s« We obtain the assertion.
(ii): Apply (i) to —T.
(iii): In this case (T'z,z) = 0 for all x € X. This yields
4Re(Tz,y) = (T(z +y),z +y) — (T(z —y),z —y) =0. (11.77)
Taking y = T'x we get the assertion. O
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11.5 An orthonormal system of eigenfunctions for second or-
der elliptic PDE

Theorem 11.14. Let U C R"™ be open and bounded. Then there exists and
orthonormal basis e : N — L2(U) which consists of eigenfunctions of —A,
1.€.,

—Aep, = M\pep,  in U, e, =0 on OU. (11.78)

Moreover the eigenvalues A\ satisfy A > 0 and limg_ oo A\ = 0.

Remark. (i) The eigenvalue equation is understood in the sense of weak
solutions, i.e., e} € W01’2(U) and

/Vgp-Vede”:/ @ eer dL" Vo € WA (U). (11.79)
U U

One can show that e, € C*°(U) and that (11.78) actually holds in the clas-
sical sense.

(ii) The analogous result (without the regularity statement and with the
weaker inequality infy Ay > —o0) holds for the operator L with Lu =
— > Oiaij(z)0ju) + c(z)u, if aij = aj; and a;j,c € L*=(U).

(iii) More generally many interesting orthonormal bases of L? and other
Hilbert space arise as eigenfunctions of suitable differential operators.

Proof. Set T := (—A)~!. More precisely we have shown in Theorem 5.7
that for f € L?(U) there exists a unique u € W2?(U) such that

(Veo, V)2 = (¢, )2 Y € Wy2(U) (11.80)

and we set uw = Tf. Then u is the weak solution of —Au = f with zero
boundary conditions.

Step 1: T is a compact operator from L*(U) to L*(U).
By Theorem 5.7 T is a bounded operator from L?(U) — W01’2(U). This
implies the assertion since the embedding from VVO1 ’Q(U ) to L2(U) is compact
(see the example after Lemma 3.17 or Theorem 10.5).

Step2: T is self-adjoint on L*(U).
Let Tf = w and T'g = v. Then the definition of u yields

(T'g, flrz = (v, fr2 = (Vv,Vu) (11.81)
while the definition of v gives
(Tf,9)r2 = (u,9)r2 = (Vu, Vv). (11.82)

Thus (T'g, f) = (T'f,g9) = (9,Tf) since we work in a real Hilbert space.
Step 3: N(T) = {0}.

If Tf =0 then (V,0)2 = (f, )2 for all € W) *(U). Since C2°(U) C

Wol’z(U) is dense in L?(U) we get f = 0.
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Step 4: Conclusion.
It follows from the spectral theorem, Theorem 11.12, that there exist an
orthonormal basis e : N — L2(U) and a sequence x : N — R\ {0} such that

Te, = prex (11.83)

(note that the set N in Theorem 11.12 cannot be finite since L?(U) is not
finite dimensional. Hence we may take N = N). By the definition of T" we
have pgey in Wol’Z(U) and

(Voo, Viurer)) = (p,er) Vo € Wy (U). (11.84)

Set A\, = ;le then (11.84) is equivalent to (11.79).

The choice ¢ = e; shows that pg > 0 and hence A\ > 0. The spectral
theorem states that the only accumulation point of p is zero. Hence the
sequence A must converge to oo. O

The following applications of where only discussed briefly in class.
Theorem 11.14 has many interesting applications. As an example we con-
sider the initial-boundary value problem for the heat equation

Ou—Au = 0 in U x (0,00), (11.85)
u = 0 on OU x (0, 00), (11.86)
u(z,0) = wp(x,0) (11.87)

for a given function ug € L%(U). We look for solutions of the form

u(a,t) = ap(t)ex(x) (11.88)

keN

and ag(0) = (uo, ex). The heat equation then reduces to a family of decou-
pled ordinary differential equations

ap(t) — A\pag(t) = 0. (11.89)
This yields
u(z,t) = Z e~ (ug, er,)ex. (11.90)
keN

One can easily check that u is indeed a solution of the heat equation and
that t — u(-, ) is a continuous map from [0, 00) to L(U). Symbolically one

can write u as
u(-,t) = ePuy. (11.91)

Similarly the choice

u(-,t) = sin(t(—A)2)(—A) " 2uy + cos(t(—A) 2 )ug (11.92)
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provides a solution to the wave equation
O*u— Au=0 (11.93)
with initial values
u(-,0) = ug € Wy 2 (U), deu(-,0) = uy € LA(U). (11.94)

More precisely the symbolic notation in (11.92) means

11 1
u(z,t) = Z sin(tAZ )AL 2 (u1, ex)er + cos(tA2)(uo, ex)er. (11.95)
keN

The formula can be Writtel} even more concisely if one the introduces the
complex variable z = (—A)2u + i0;u. Then

N

2(-,t) = exp(—it(—A)?)z (11.96)

and one sees immediately that the map zo — z(-,t) is an L? isometry.
11.6 The Fredholm altenative for second order elliptic oper-
ators

This was not discussed in class.

Lemma 11.15 (Fredholm alternative in Hilbert spaces). Let X be a Hilbert
space, let T' € L(X) be compact and let A=1d —T. Then

(i) R(A) = N(A")*,
(ii) dim N (A) = dim N(A*).
Proof. (i): We have
yeNA") — VeeX (z,Ay)=0 <— VeeX (Az,y)=0
— yeRA™L (11.97)

Thus R(A)* = N(A*). Since R(A) is closed we have (R(A)1)+ = R(A)
which implies the assertion.
(ii) : By Theorem 11.6 the operator A has index zero. Hence

dimN(A) = codimR(A) = dim N (A4%). (11.98)

(4)
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We now apply the Fredholm alternative to the existence of weak solutions
of the equation Lu = f where

— Z 8i(a,-j8ju) — Z 8Z(bzu) + Z cou+d. (11.99)
=1 =1

ij=1

We assume that
aij,bi,ci,de LOO(U) (11.100)

and that the coefficients a;; are elliptic, i.e.,

n

Je>0 Z aij(2)&&; > clé* for ae. w. (11.101)
ij=1

Associated to L is the bilinear form
B(v,u) = / Z8vamau—l—zavbu—l—Zvclau—f—dvudﬁn (11.102)
U ;
7.] 1 =1

We recall that u is a weak solution of the boundary value problem

Lu=f inU, u=0 ondU (11.103)
if u e Wy*(U) and
B(v,u) = /va dcr Yo e Wy (U). (11.104)
Let
N(L) := {u € Wy : B(v,u) =0 Vv € Wy *(U)}. (11.105)

We define the formal adjoint L* by

n
L'u = — Z (0ai0ju) — 28 ciu +Zb8u+d (11.106)
,j=1
The corresponding bilinear form is given by

B*(v,u) = B(u,v). (11.107)

Theorem 11.16 (Fredholm alternative for second order elliptic operators).
Assume (11.100) and (11.101). Then either (i) or (ii) holds.

(i) For all f € L?(U) there exists a unique weak solution of the boundary
value problem (11.103).
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(1)) N(L) # {0} and the boundary value problem (11.103) has a weak
solution if and only if

(0, f)pe =0 Yo eN(L. (11.108)

Moreover
dim NV(L*) = dim N(L) < oc. (11.109)

Proof. Step 1: Reduction to compact operators
Using the Cauchy Schwarz inequality and Young’s inequality we get

B(u,u) > c|Vul 72 = Cillull 2 [|Vul 2 = Colul

c
> 5HVuH%Q — C|ul2.. (11.110)
For v € R set
Lou=Lu+~u, By(v,u)=B(v,u)+v(v,u). (11.111)
If v > C we have by the Poincaré inequality
¢ 2 11112
By (u,u) > S||VulZe = &lull? 1z (11.112)
2 Wo

Thus by the Lax-Milgram theorem for each f € L? the boundary value
problem for L,u has a unique weak solution in I/VO1 2 (U). Denote the solution
by u = L;lf. Then

Lu=f <= Lu+yu=~yu+f
= uva;lu—{—L;lf — u— Ku=h, (11.113)
where
K:=~L7' and h:=L"f. (11.114)

Note that K is bounded as an operator from L?(U) to VVO1 2(U) and hence
compact as an operator from L2(U) to L?(U). Note also that (11.113)
implies that

u—Ku=0 <= wueN(L). (11.115)

Similarly one can show that (see Step 3 below for the details)

u—K'u=0 <= wueN(L"). (11.116)

Step 2: Application of the Fredholm alternative.

First case: N'(L) = {0}.
Then N (Id — K) = {0} and thus by the Fredholm alternative, Theorem 11.7,
we have R(Id — K) = L*(U). Thus u — Ku = h has a solution for every
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h € L? and hence the boundary value problem (11.103) has a weak solution
for each f € L?(U). Moreover the solution is unique since N'(L) = {0}.

Second case N'(L) # {0}.
Then N(Id — K) # {0}. By Lemma 11.15 we have N (Id — K*) # {0}.
Moreover the equation u — Ku = h has a solution if and only if

(v,h) =0 Yve N(Id — K7). (11.117)
Now for v € N(Id — K*) we get from (11.114)

1 Loreen iy Lo
(v, h) =~ (0, Kf) = Z(K"0, ) = ~(v, f)- (11.118)

In view of (11.113) the boundary value problem (11.103) has a weak solution
if and only if (v, f) = 0 for all v € N(Id — K*). By (11.116) we have
N(d — K*) = N(L*).

Finally the assertion dimAN(L) = dimN(L*) follows from (11.115),
(11.116) and Lemma 11.15 (ii).

Step 3: Computation of K*.
(This argument was not discussed in class). For completeness we give a
detailed proof of (11.116) which is similar to the proof the (—A)~! is self-
adjoint. If suffices to show that K* = ’y(Li)_l. Then the assertion follows
from (11.113) with L replaced by L*. To compute K* let f,g € L?*(U) and
set u = vL;lf =Kf,v= v(Li)_lg. Then the definition of L;l gives

By(v,u) = (v, f)r2 (11.119)

Similarly the definition of (L*)~" gives

Bi(u,v) = v(u,9)r2 = (Kf,9)r2 (11.120)
Since BZ(u,v) = B(v,u) we get (f,v) = (v, f) = (K f,g) and thus v = K*g,
as desired. O
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12

Overview

12.1 Abstract results

12.1.1 Hilbert spaces

(i)

Cauchy-Schwarz inequality

Strict convexity, parallelogram identity

Projection on closed convex sets and closed subspaces
Riesz representation theorem

Lax-Milgram theorem and its consequences

Orthonormal basis, Parseval’s identity

12.1.2 Metric spaces and Banach spaces

(i)

Compactness = sequential compactness = precompact and complete;
compactness and existence of minimizers

Projection theorem in uniformly convex spaces

The Hahn-Banach theorem and its consequences (separation of sub-
spaces and convex sets)

The Baire category theorem and its consequences

e Uniform boundedness principle/ Banach-Steinhaus theorem

e Open mapping thm./ inverse operator thm./ closed graph thm.

12.1.3 Weak convergence

(i)

Definition of the weak and weak™* topology and convergence
X separable = B(0,1) C X’ weak* sequentially compact
If X is reflexive then B(0,1) C X is weakly sequentially compact.

Mazur’s lemma and convex minimization problems

12.1.4 Spectral theory

(i)
(i)
(i)

Definition of the spectrum and its subsets, analyticity of the resolvent
Fredholm operator, Fredholm alternative, Continuity of the index

Spectral theorem for compact self-adjoint operators
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12.2 Applications

12.2.1 Function spaces

(i)

Definition and properties of C(X;Y), Ck, C*2 completeness, separa-
bility

LP spaces and Sobolev spaces (Definition, completeness, approxima-
tion, product rule, chain rule, boundary values)

Criteria for compactness in C? (Arzela-Ascoli) and LP (Frechet-Kolmogorov-
M. Riesz)

Duality: (LP) = L? for 1 < p < oo, C(K)' = rca(K) for K compact
Weak convergence in LP and W*»

Examples of reflexive and non reflexive spaces

Fourier series in L?

(Compact) Sobolev embeddings

12.2.2 Partial differential equations

(i)

Weakly harmonic functions by the projection theorem in I/VO1 ’2(U )
Lax-Milgram and weak solutions of second order elliptic pde
Non-solvability results by the closed graph theorem

Minimizers of convex variational problems (weak convergence and Mazur’s
lemma), obstacle problem

Existence of an L? orthonormal basis of eigenfunctions for second order
elliptic operators
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Notes

The course and the lecture notes follow very closely the book [Alt] by H.W.
Alt, usually with identical proofs.

The material in Section 1 is standard is taken from various sources.

Section 2.1 is taken from [Alt] 1.1-1.7, for the separability statements
see Alt 2.17. Section 2.2 is classical and is based on the lecture notes from
Analysis 3. For a nice very short summary of the properties of the Lebesuge
integral and LP spaces, see also [Brezis]. Section 2.3 on Sobolev spaces
follows [GT]. In [Alt] Sobolev spaces are defined by completion and it is
then shown that this agrees with the definition by weak derivatives. The
one dimensional results are discussed in [Alt] U1.6-1.8. The assertion that
Sobolev functions have representatives which are absolutely continuous on
a.e. line can, e.g., be found in [EG], Section 4.9.2, Theorem 2. Many further
interesting results on pointwise properties of Sobolev functions on lower
dimensional sets can be found in in that book, too.
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Section 3 is taken from Alt 2.1-2.4, except for Example 3.4 and the dis-
cussion of uniformly convex spaces. For uniform convexity see, e.g. [Brezis]
Section 3.7 and Theorem 4.10. Section 3.2 is taken from Alt 2.5-2.9. The
presentation of the Arzela-Ascoli theorem and the Frechet-Kolmogorov-Riesz
theorem is taken from Alt 2.11-2.15, with minor modifications. The Arzela-
Ascoli theorem is directly proven for functions with values in a Banach space
and the discussion of the approximation by convolution is adapted to the
material discussed in the section on LP spaces. The proof of the compact
embedding from Wol P(U) to LP(U) is standard.

Section 4 on linear operators is directly taken from Alt 3.1-3.10 and
3.12, while Sections 5.1 and 5.2 are taken from [Alt] 4.1-4.3 and 4.4-4.8,
respectively.

The proof of the duality relation (LP)" ~ L¥ by uniform convexity is
standard and the uniform convexity follows from Clarkson’s inequalities; see,
e.g., [Brezis] Theorem 4.10 and 4.11, or [Adams|] Theorem 2.28, Corollary
2.29 and Theorem 2.33. The rest of the material in Section 6 is taken from
[Alt] 4.14-4.23. For Remark 6.14 and a much more comprehensive study of
the spaces ba and rca as well as related spaces and their duality relations
see [DS].

The material in Section 7 on Baire’s category theorem and its conse-
quences is taken from [Alt] 5.1-5.9, with the exception of Proposition 7.9.
The result is classical, I know no particular reference for the argument given.

The motivation and definition of the weak topology in Section 8 is taken
from [Brezis] Chapter 3.1-3.4. The results starting with the weak™ sequential
compactness of the closed unit ball in X’ are taken from [Alt] 6.4, 6.5, 6.8—
6.17. The short discussion of completely continuous operators is based on
[Alt] 8.1 and 8.2(i).

The discussion of finite dimensional approximation in Section 9 is taken
from [Alt] 7.3-7.9. The proof of the Sobolev embeddings in Section 10
follows [GT] Theorem 7.10 and Corollary 7.11 and [Alt] 8.7-8.13. Many
further results, also for the borderline case W' can be found in [GT], see
also [Adams|. More details on extension operators can be found [Alt] A6.12
and, for higher order Sobolev spaces, in [Stein] Chapter VI.2 and VI.3.

Section 11.1 is taken from [Alt] 9.1-9.3. The results in Section 11.2 up
to the Fredholm alternative are taken from [Alt] 9.6, 9.8, and 9.11, The
results on the continuity of the index and Atkinson’s theorem are adapted
from [Notes]. The spectral theorem in Section 11.4 is a special case of [Alt]
10.12, where normal operators are covered. The variational characterization
of the largest and smallest eigenvalue is taken from [Alt] 10.14. The result on
the eigenfunctions of the Laplace operator and its application to evolution
equations follow [Alt] 10.16. The Fredholm alternative in Hilbert spaces
follows from [Alt] 10.8 if one takes into account that the dual operator and
the adjoint operator are related by the Riesz isomorphism: T% = R;(lT 'Rx.
The proof of the Fredholm alternative for second order elliptic PDE is taken
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from [Evans|, Section 6.2.3, Theorem 4.

Further reading

Many interesting topics covered in [Alt] and [Brezis| could not be covered
in the course: Distributions, functions of bounded variations, definition of
boundary values for Sobolev functions by trace operators, LP estimates for
elliptic operators (Calderon-Zygmund theory), C*® estimates for elliptic
operators (Schauder theory), maximal monotone operators and evolution
equations, more general spectral theorems, ...

There are of course many further classical and modern books on func-
tional analysis and on its applications to partial differential equations. The
following is a deliberately short list, meant as a starting point to inspire
further reading beyond the books by H.W. Alt and H. Brezis.

e For partial differential equations: [GT] and [Evans]
e For further properties of Sobolev spaces: [GT], [Adams] and [EG]

e For a more general set-up (with locally convex topological spaces in-
stead of normed spaces), distributions and their Fourier transform,
spectral theory on Banach algebras, and various applications of func-
tional analytic methods: [Rudin]
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