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[11.10. 2017, Lecture 1]

1 Structures

We consider the following increasingly richer structures on a set or a vector
space.

• Neighbourhoods and convergence (topological spaces)

• Distance (metric spaces)

• Length in a vector space (normed spaces, Banach spaces)

• Length and angle/ scalar product in a vector space (Pre-Hilbert spaces,
Hilbert spaces)

In these notes all vector spaces will be vector spaces of the fields

K = R or K = C. (1.1)

1.1 Topological spaces

Let X be a set. Then 2X denotes the set of all subsets of X (including the
empty set).

Definition 1.1. A topological space (X, T ) is pair consisting of a set X and
a subset T of 2X with the following properties.

(i) ∅ ∈ T , X ∈ T .

(ii) If U ∈ T , V ∈ T then U ∩ V ∈ T .

(iii) If Λ is an arbitrary set and Uλ ∈ T for all λ ∈ Λ then
⋃
λ∈Λ Uλ ∈ T .

The set T is called a topology on X. If T1 and T2 are topologies on X
then T1 is called finer (or stronger) than T2 if T1 ⊃ T2. In this case T2 is
called coarser (or weaker) than T1.

A set A ⊂ X is called open if A ∈ T . It is called closed if the complement
Ac := X \A is open. By definition of a topological space a finite intersection
and an arbitrary union of open sets is open. It follows from the formula
(
⋂
λ∈ΛAλ)c =

⋃
λ∈ΛA

c
λ that a finite union and an arbitrary intersection of

closed sets is closed.

Example 1.2. (i) (finest topology) T = 2X is a topology on X.

(ii) (coarsest topology) T = {∅, X} is a topology on X.
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(iii) (standard topology on R) Let X = R. The standard topology on R is
defined by U ∈ Tst if and only if for each x ∈ U there exists an ε > 0
such that (x − ε, x + ε) ⊂ U . If nothing else is said we consider
in the following the standard topology on R.

(iv) Let X = R. Then

T = {U ⊂ R : U = ∅ or R \ U countable } (1.2)

is a topology on X (exercise).
Here we say that a set A is ’countable’ if A is empty or finite or if
there exists a bijective map j : N→ A.

(v) (relative topology) If A ⊂ X, if T is a topology on X and if TA :=
{U ∩A : U ∈ T } then TA is a topology on A.

(vi) (intersection of topologies) If B is a set and Tβ is a topology on X for
all β ∈ B then

⋂
β∈B Tβ is a topology on X (exercise).

In particular given any set S ⊂ 2X then

T :=
⋂

U topology on X, U⊃S

U (1.3)

is a topology on X, namely the coarsest topology which contains S.

(vii) (product topology) Let (X, TX) and (Y, TY ) be topological spaces, let

S := {U × Y : U ∈ TX} ∪ {X × V : V ∈ TY } (1.4)

and let T be the coarsest topology on X × Y which contains S. In
particular T contains all sets of the form U × V , with U ∈ TX and
V ∈ TY .

Definition 1.3. Let (X, T ) be a topological space and let A ⊂ X. The
interior Ao, the closure A and the boundary ∂A are defined by

Ao :=
⋃

U⊂A,U∈T
U, A :=

⋂
K⊃A,Kc∈T

K, ∂A := A \Ao. (1.5)

By the definition of a topology Ao is open, in fact Ao is the largest open
set contained in A. Similarly A is closed and is the smallest closed set which
contains A. The boundary is also closed since it is the intersection of A and
X \Ao.

Definition 1.4. Let (X, T ) be a topological space. A set A ⊂ X is called
dense, if A = X. The space X is separable if there exists a countable dense
subset.
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Definition 1.5. Let (X, T ) be a topological space and let x ∈ X. A set
U ⊂ X is an open neighbourhood of x if U ∈ T and x ∈ U .

Definition 1.6 (Continuous maps). Let (X, TX) and (Y, TY ) be topological
spaces and let f be a map from X to Y . Then f is continuous if

V ∈ TY =⇒ f−1(V ) ∈ TX , (1.6)

i.e. if the preimage of every open set is open.
The map f is continuous at a point x ∈ X if for every open neighbourhood
V of f(x) ∈ Y there exists an open neighbourhood U of x ∈ X such that
f(U) ⊂ V .
The map f is called a homeomorphism if f is bijective and f and f−1 are
continuous.

Notation f−1(V ) := {x ∈ X : f(x) ∈ V }. Note the properties

f−1(A ∪B) = f−1(A) ∪ f−1(B), f−1(A ∩B) = f−1(A) ∩ f−1(B),

f−1(Y \A) = X \ f−1(A).
(1.7)

Remark. It follows directly from the definition that the composition of
continuous maps is continuous: if f1 is continuous from (X1, T1) to (X2, T2)
and f2 is continuous from (X2, T2) to (X3, T3) then f2◦f1 is continuous from
(X1, T1) to (X3, T3).

Remark. The map f is continuous if and only if it is continuous at every
x ∈ X (exercise).

If TX = 2X then every map f : X → Y is continuous.
If TX = {∅, X} then the constant map is continuous. If, in addition, (Y, TY )
is a Hausdorff space (see below) then the constant map is the only continuous
map.
If f is a continuous map from (X, TX) to (Y, TY ), if A ⊂ X and if TA is the
relative topology on A (see Example 1.2 (v)), the f|A is a continuous map
from (A, TA) to (Y, TY ).
The finer the topology on X the more continuous maps exist.

Definition 1.7 (convergence). Let (X, T ) be a topological space. We say
that a sequence x : N→ X converges to x∗ (notation: xk → x∗) if and only
if for every open neighbourhood U of x∗ the set {k ∈ N : xk ∈ X \ U} is
finite. The point x∗ is called a limit point of the sequence.

Examples. If T is the standard topology on R this agrees with the defi-
nition of convergence in Analysis 1.
If T = 2X then only sequences which are constant, up to finitely many
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terms, are convergent.
If T = {∅, X} then every sequence is convergent and every x∗ is a limit
point.

Definition 1.8 (Hausdorff space). A topological space (X, T ) is called Haus-
dorff if sets consisting of a single point are closed and for different points
there exist disjoint open neighbourhoods, i.e.,

x 6= y =⇒ ∃Ux, Uy ∈ T such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅. (1.8)

An immediate consequence is

Proposition 1.9. If (X, T ) is a Hausdorff space then every sequence has
at most one limit point.

Notation If (X, T ) is a Hausdorff space and the sequence x : N → X
converges to x∗ we write x∗ = limk→∞ xk .

[11.10. 2017, Lecture 1]
[13.10. 2017, Lecture 2]

Definition 1.10 (Compactness). A subset K of a toplogical space is compact
if every cover of K by open sets contains a finite subcover. The space (X, T )
is called a compact topological space if X is compact.

More explicitely this definition reads as follows: if Λ is any index set, if
Uλ ∈ T for each λ ∈ Λ and K ⊂ ∪λ∈ΛUλ then there exists a finite subset
Λ′ ⊂ Λ such that K ⊂ ∪λ∈Λ′Uλ.

Lemma 1.11. Assume that f : (X1, T1)→ (X2, T2) is continuous and K ⊂
X1 is compact. Then f(K) ⊂ X2 is compact.

Proof. This follows directly from the definitions of continuity and compact-
ness (exercise).

Theorem 1.12. Let f : (X, T )→ R be continuous and K ⊂ X be compact.
Then f attains its maximum and minimum on K, i.e. there exist a, b ∈ K
such

f(a) ≤ f(x) ≤ f(b) ∀x ∈ K.

Proof. Exercise. One possibility is to show that every compact set K ′ ⊂ R
is bounded and the infimum m = inf{x : x ∈ K ′} and the supremum
M = sup{x : x ∈ K ′} belong to K ′.

Definition 1.13 (Connectedness). Let (X, T ) be a topological space. Then
X is connected if X cannot be written as a non-trivial disjoint union of two
open sets, i.e., if

U ∈ T and X \ U ∈ T =⇒ U = ∅ or U = X. (1.9)

A subset A ⊂ X is connected if the topological space (A, TA) is connected.
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Theorem 1.14 (Intermediate value theorem). Let (X, T ) be a connected
topological space and let f : X → R be continuous (where R is equipped with
the standard topology). Suppose that there exist x, y ∈ X with f(x) < 0 <
f(y). Then there exists z ∈ X with f(z) = 0.

Proof. Assume that 0 /∈ f(X) and set U = f−1(0,∞). By the continuity of
f the set U is open and by assumption U is not empty. Moreover

X \ U = f−1(R \ (0,∞)) = f−1((−∞, 0)) (1.10)

is also open and not empty. This contradicts the assumption that X is
connected.

1.2 Metric spaces

1.2.1 Definition and examples

Definition 1.15. A pair (X, d) is called a metric space if d : X×X → [0,∞)
has the following properties.

(i) (definiteness) d(x, y) = 0⇔ x = y

(ii) (symmetry) d(y, x) = d(x, y) ∀x, y ∈ X

(iii) (triangle inequality) d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X

A map d : X ×X → [0,∞) with the above properties is called a metric on
X.

If A ⊂ X and if dA denotes the restriction of d to A×A then (A, dA) is
again a metric space.

If d : X × X → [0,∞) satisfies only (ii), (iii) and d(x, x) = 0 for all
x ∈ X, then d is called a semimetric (or pseudometric). If d is a semimetric
one can define an equivalence relation by x ∼ y if and only if d(x, y) = 0.
The quotient space X̃ := X/ ∼ consists of equivalence classes [x] := {z ∈
X : x ∼ z} = {z ∈ X : d(z, x) = 0}. It follows from the triangle inequality
that the expression d̃([x], [y]) := d(x, y) is well-defined. Moreover one easily
sees that d̃ is a metric (not just a semimetric) on X̃. In this way one can
improve every semimetric to a metric by passing to equivalence classes. This
idea was e.g. used in the definition of the Lebesgue spaces Lp(X,µ) which
consist of equivalence classes of functions that only differ on sets of measure
zero.

The notion of metric is very flexible.

Lemma 1.16. Assume that ψ : [0,∞)→ [0,∞) is continuous, nondecreas-
ing, concave and satisfies ψ(0) = 0, ψ(x) > 0 for x > 0. If d is a metric,
then ψ ◦ d is also a metric. If d is a semimetric, then ψ ◦ d is a semimetric.
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Proof. We only need to verify the triangle inequality. This follows from the
estimate ψ(a + b) ≤ ψ(a) + ψ(b) for all a, b > 0 whose proof is left as an
exercise.

A function ψ ∈ C([0,∞)) ∩ C2((0,∞) is nondecreasing and concave if
and only if ψ′ ≥ 0 and ψ′′ ≤ 0. In particular ψ(t) = t

1+t = 1− 1
1+t satisfies

the assumptions of Lemma 1.16.

Examples. (i) Let X = Rn, d∞(x, y) = maxi=1,...n |xi − yi|.
(ii) X = Rn, 1 ≤ p < ∞, dp(x, y) = (

∑p
i=1 |xi − yi|p)

1/p
. For p = 2 we

obtain the standard Euclidean metric on Rn.
(iii) Let 1 ≤ p < ∞, lp := {a : N → R :

∑∞
k=0 |ak|p < ∞}, dp(x, y) :=

(
∑∞

k=0 |xk − yk|p)
1/p. Then (lp, dp) is a metric space.

(iv) Let l∞ be the space of bounded sequences a : N → R and d∞(x, y) =
supk∈N |xk − yk|. Then (l∞, d∞) is a metric space.

(v) X = R, d(x, y) = |x−y|
1+|x−y| (see Lemma 1.16 ).

(vi) Denote by RN the space of all sequences a : N → R. Then d(x, y) =∑∞
k=0 2−k |xk−yk|1+|xk−yk| is a metric on RN.

(vii) (Pull-back metric) Let X be set, let (Y, dY ) be a metric space and let
f : X → Y be injective. Then dX(x1, x2) := dY (f(x1), f(x2)) is a metric on
X.
(viii) Let X = R ∪ {−∞} ∪ {∞} = [−∞,∞], define f : X → [−1, 1] by

f(x) =


−1 if x = −∞
x

1+|x| if x ∈ R
1 if x =∞

(1.11)

and set dX(x1, x2) = |f(x1) − f(x2)|. By (vii) the pair (X, dX) is a metric
space.
(ix) Let V be a finite set, let E ⊂ V × V be a symmetric set and consider
the graph Γ = (V,E). A curve in Γ is a map γ : {0, 1, . . . k} → V with
(γ(j), γ(j+ 1)) ∈ E and k is called the length of γ. The graph is called con-
nected if for every two points in x, y ∈ V there exists a curve with γ(0) = x
and γ(k) = y. We define d(x, x) = 0 and for x 6= y we define d(x, y) be
the length of the shortest curve from x to y. Then d is a metric on V . By
Lemma 1.16 d̃ = d/(1+d) is another metric on V . If (V,E) is not connected
we can define a metric on V by d̂(x, y) = d̃(x, y) if a curve from x to y exists
and d̂(x, y) = 1 otherwise.

Let (X, d) be a metric space, let A1, A2, A ⊂ X, let x ∈ X and let r > 0.
We define the diameter of a set

diam(A) := sup{d(x, y) : x, y ∈ A}, (1.12)
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the distance of two sets

dist (A1, A2) := inf{d(x, y) : x ∈ A1, y ∈ A2}, (1.13)

the distance of a point from a set

dist (x,A) := inf{d(x, y) : y ∈ A}, (1.14)

the r-neigbhourhood of a set

Br(A) := {y ∈ X : dist (y,A) < r} (1.15)

and the ball of radius r around x

B(x, r) := Br({x}) = {y ∈ X : d(x, y) < r}. (1.16)

A set A is called bounded if diam(A) < ∞ and the space (X, d) is called
bounded if diam(X) <∞.

We also define the Hausdorff distance of two sets A and B by

dH(A,B) := inf{r > 0 : A ⊂ Br(B) and B ⊂ Br(A)}. (1.17)

It is easy to show (exercise) that

dH(A,B) = max
(

sup
x∈A

dist (x,B), sup
y∈B

dist (y,A)
)
. (1.18)

Proposition 1.17 (Topology induced by a metric). Let (X, d) be a metric
space and let Td consist of all the sets with the following property:

∀x ∈ U ∃ε > 0 B(x, ε) ⊂ U. (1.19)

Then Td is a topology on X and (X, Td) is a Hausdorff space.

Proof. This is an easy exercise. The main point is that by the triangle
inequality for every z ∈ B(x, r) we have B(z, s) ⊂ B(x, r) with s = r −
d(x, z) > 0.

In the following we will always consider the topology Td on (X, d) (unless
stated otherwise) and we will often write only T instead of Td. One easily
sees that B(x, r) is open and we call this set the open ball of radius r around
x.

Lemma 1.18. Let (X, d) be a metric space. Let

C := {A ⊂ X : A closed, bounded, non-empty}.

Then the Hausdorff distance dH defined in (1.17) is a metric on C.

Proof. Exercise.
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1.2.2 Convergence and continuity in metric spaces

Proposition 1.19 (Convergence in a metric space). Let (X, d) be a metric
space, let x : N → X be a sequence. Then the following two statements are
equivalent.

(i) The sequence x converges to x∗ in (X, Td).

(ii) ∀ε > 0 ∃k0 ∀k ≥ k0 d(xk, x
∗) < ε.

Proof. For the implication (i) =⇒ (ii) apply Definition 1.7 with U = B(x∗, ε).
For the converse implication one uses the fact the if U ∈ Td und x∗ ∈ U
then by definition of Td there exists an ε > 0 such that B(x∗, ε) ⊂ U .

A key feature in a metric space is that open sets (or equivalently closed
sets) are completely characterized in terms of convergence of sequences.
More precisely we have

Proposition 1.20. Let (X, d) be a metric space and A ⊂ X. Then the
following two statements are equivalent

(i) A is closed, i.e. X \A ∈ Td.

(ii) A is sequentially closed, i.e. for every sequence x : N → A which
converges to a point x∗ ∈ X we have x∗ ∈ A.

Moreover for an arbitrary set A ⊂ X the closure A (see Definition 1.3)
agrees with the sequential closure, i.e.,

A = {x∗ ∈ X : ∃ sequencex : N→ A, lim
k→∞

xk = x∗}. (1.20)

Proof. Exercise.

In metric spaces continuity can also be characterized in terms of se-
quences.

Proposition 1.21 (Continuity in metric spaces). Let (X, dX) and (Y, dY )
be metric spaces and f : X → Y . Then the following three statements are
equivalent.

(i) f is continuous as a map from (X, TdX ) to (Y, TdY ).

(ii) (ε− δ definition of continuity)

∀x ∈ X ∀ε > 0 ∃δ > 0 dX(z, x) < δ =⇒ dY (f(z), f(x)) < ε. (1.21)

(iii) (sequential continuity) For every x∗ ∈ X and every sequence x : N→
X which converges to x∗ the sequence k 7→ f(xk) converges to f(x∗).

Proof. Exercise, see Analysis 1.

[13.10. 2017, Lecture 2]
[18.10. 2017, Lecture 3]
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Metrizability. The foregoing results show that spaces where the topology
is induced by a metric are more easy to handle. Such topological spaces are
called metrizable. One might wonder whether every topological space which
is Hausdorff is metrizable. This is not true in general.

A necessary condition for metrizability is that for each point x ∈ X there
exists a countable family of open sets such that every open neighbourhood
of x contains one of these sets (for a metric space one may take the family
of balls B(x, r) with r ∈ Q). We say that each point has a countable
neighbourhood basis (or that the space is ’first countable’).

One sufficient condition is given by Uryson’s theorem1: assume there
exist a countable family of open sets such that every element of T contains
a set in the family (’(X, T ) is second countable’) and that the following
stronger version of the Hausdorff property holds: for every closed set A ⊂ X
and every x ∈ X \ A there exist U, V ∈ T such that A ⊂ U , x ∈ V and
U ∩ V = ∅ (’(X, T ) is regular’). Then there exist a metric d on X such that
T = Td.

It is not difficult to see that the nonstandard topology on R given in
Example 1.2 (iv) does not have a countable neighbourhood basis and is thus
not metrizable. One can also verify that for this topology there exist sets
which are sequentially closed but not closed (exercise).

Definition 1.22. Let d1 and d2 be metrics on X. We say that d1 is stronger
than d2 if the topology induced by d1 is stronger than the one induced by
d2. We say that d1 and d2 are equivalent if they induce the same topology
(equivalently, if d1 is stronger than d2 and d2 is stronger than d1).

Proposition 1.23. Let d1 and d2 be metrics on X. Then then the following
statements are equivalent.

(i) The metric d1 is stronger than d2.

(ii) The identity map x 7→ x is continuous as a map from (X, Td1) to
(X, Td2).

(iii) Every sequence which converges in d1 converges also in d2.

(iv) ∀x ∈ X ∀ε > 0 ∃δ > 0 d1(x, y) < δ =⇒ d2(x, y) < ε

Proof. (i) ⇐⇒ (ii): this follows directly from the definition of continuity
and Definition 1.22.
(ii) ⇐⇒ (iii): this follows since continuity and sequential continuity are
equivalent.
(ii)⇐⇒ (iv): this follows from the ε− δ characterization of continuity.

1See, e.g., N. Dunford, J.T. Schwartz, Linear operators, Part I, Interscience Publishers,
1966, Theorem I.19,page 24
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Examples. (i) Let X = R. The standard metric d(x, y) = |x− y| and the
metric d̃(x, y) = | arctanx− arctan y| are equivalent.
(ii) Let l1 denote the spaces of summable sequences a : N → R. The
metric d1(x, y) :=

∑∞
k=0 |xk − yk| is stronger than the metric d∞(x, y) =

supk∈N |xk − yk| (since d∞ ≤ d1), but the two metrics are not equivalent.

To see this consider the sequence j 7→ x(j) where x
(j)
k = 1/j for k ≤ j and

x
(j)
k = 0 for k > j. Then d∞(x(j), 0)→ 0 as j →∞, but d1(x(j), 0) = 1.

Definition 1.24. A metric space (X, d) is called separable if (X, Td) is sep-
arable.

1.2.3 Completeness

A fundamental concept in metric spaces is completeness.

Definition 1.25 (Cauchy sequence and completeness). Let (X, d) be a met-
ric space.
(i) A sequence x : N→ X is called a Cauchy sequence if

∀δ > 0 ∃k0 ∀k, j ≥ k0 d(xj , xk) < δ. (1.22)

(ii) The space (X, d) is called complete if every Cauchy sequence converges.

Examples. (i) Let X = Q, equipped with the standard metric on R. Then
X is not complete.
(ii) Let 1 ≤ p ≤ ∞. Then the spaces (lp, dp) of sequences introduced after
Definition 1.15 are complete.
(iii) The space (l1, d∞) is not complete (consider the sequence x(j) defined

by x
(j)
k = 1/(k + 1) for k ≤ j and x

(j)
k = 0 for k > j). This sequence

converges in (l∞, d∞ to x∗ with x∗k = 1/(k + 1) for all k ∈ N and hence is a
Cauchy sequence in (l1, d∞). It has, however, no limit in l1, since x∗ 6= l1.
(iv) If (X, d) is a complete metric space and A is a dense subsets of X with
A 6= X then the metric space (A, dA), where dA denotes the restriction of d
to A×A is not complete.

Remark. Completeness is really a metric property and not a topological
property. There exists a metric d̃ on R which are equivalent to the standard
metric such that (R, d̃) is not complete (see homework problems). The point
is that the notion of ’Cauchy sequence’ depends on the metric and not just
on the topology induced by the metric.

Proposition 1.26. Let (X, d) be a complete metric space and let A ⊂ X be
closed and let dA be the restriction of d to A×A. Then the space (A, dA) is
complete.
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Proof. Let x : N→ A be a Cauchy sequence in A. Then x is also a Cauchy
sequence in X and hence has a limit x∗. Since A is closed x∗ ∈ A. Thus
(A, dA) is complete.

An important result states that every non-complete space can be seen
as a dense subset in a complete metric space (up to isometry).

Definition 1.27 (Isometry). Let (X, dX) and (Y, dY ) be metric spaces. A
map f : X → Y is called an isometric immersion if

d(f(x), f(y)) = d(x, y). (1.23)

The map f is called an isometry if it is in addition bijective.

Note that an isometric immersion is automatically injective. Thus if
f is an isometric immersion than f is an isometry from X to f(X). The
spaces X and f(X) (equipped with the restriction of the metric dY ) are
indistinguishable as metric spaces. In particular a sequence x : N → R is
convergent in X if and only if f ◦x is convergent in f(X) and x is a Cauchy
sequence in X if and only if f ◦ x is a Cauchy sequence in f(X).

Theorem 1.28 (Completion). Let (X, d) be a metric space. Then there
exists a complete metric space (X̃, d̃) and an isometric immersion j : X → X̃
such that j(X) is dense in X̃.

The space X̃ is called the completion of X (and is unique up to isome-
tries).

Proof. We will see a short proof later. Here we just sketch the standard
proof which is based on considering the space of Cauchy sequences in X
modulo converging sequences. This proof is modelled on the construction
of the real numbers R from the rational numbers Q (see e.g. Alt’s book for
details).

Let
X̂ = {x : N→ X : x Cauchy sequence}

Define
x ∼ y :⇐⇒ lim

k→∞
d(xk, yk) = 0.

It is easy to see that ∼ is an equivalence relation. The equivalence class of
x ∈ X̂ is defined by

[x] := {z ∈ X̂ : z ∼ x}.

and the space of equivalences is defined by X̃ = X/ ∼. On X̃ we define

d̃([x], [y]) := lim
j→∞

d(xj , yj). (1.24)

It follows from the definition of the equivalence classes and the triangle
inequality that d̃ is well-defined, i.e., the right hand side only depends on
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the equivalence classes of the Cauchy sequences x and y. Since x and y are
Cauchy sequences it is also easy to see j 7→ d(xj , yj) is a Cauchy sequence
in R and that therefore limj→∞ d(xj , yj) exists. It is easy to see that d̃ is a
metric on X̃. Then one shows that

• (X̃, d̃) is complete

• the map j : X → X̃ which maps a to the (equivalence class of) the
constant sequence with value a is an isometry

• j(X) is dense in (X̃, d̃).

Lemma 1.29. Let (X, d) be a complete metric space. Then the space (C, dH)
of closed, bounded, non-empty sets with the Hausdorff metric, introduced in
Lemma 1.18 is complete.

Proof. Exercise. Hint: first show that a decreasing Cauchy sequence of
sets Bj converges to B∗ := ∩j∈NBj (and that in particular B∗ 6= ∅). By
passage to a subsequence you can assume without loss of generality that
dH(Bj , Bj+1) < 2−j (explain why). For a general Cauchy sequence Aj
define Bj := ∪k≥jAk and show that dH(Aj , Bj)→ 0.

One can also introduce a metric on set of (equivalence classes of) bounded
and complete metric spaces, the so called Gromov-Hausdorff metric. Here
we say that (X, dX) ∼ (Y, dY ) if there exist an isometry I : X → Y . Then
one defines

dGH((X, dx), (Y, dy)

:= inf{dH,Z(I(X), J(Y )) : (Z, dZ) metric space,

I : X → Z, J : Y → Z isometric immersion}. (1.25)

Here dH,Z denotes the Hausdorff distance in the metric space (Z, dZ). The
GH metric plays an important role in geometry as well as in application to
image processing.

1.3 Normed spaces

Let X be a K vector space. Recall our convention that always

K = R or K = C. (1.26)

Definition 1.30 (Normed space). A pair (X, ‖ · ‖) is called a normed space
if X is a K vector space and ‖ · ‖ : X → [0,∞) is a map with the following
properties

(i) (Definiteness) ‖x‖ = 0 =⇒ x = 0.
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(ii) (Homogeneity) ‖αx‖ = |α| ‖x‖ ∀α ∈ K, x ∈ X.

(iii) (Triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The map ‖·‖ is called a norm. Note also that the homogeneity condition
(ii) implies that ‖0‖ = 0. Thus condition (i) can also be written as ‖x‖ =
0⇔ x = 0.

A map ‖·‖ : X → [0,∞) which satisfies the second and third condition is
called a seminorm. One can pass from a seminorm to a norm by considering
the quotient space X̃ = X/ ∼, where x ∼ y if ‖x − y‖ = 0 with the norm
‖[x]‖∼ := ‖x‖ (see the corresponding discussion for metric spaces).

If (X, ‖ · ‖) is a normed space then d(x, y) = ‖x − y‖ is a metric on X.
The notions of convergence, continuity and completeness on a normed space
are defined using this metric.

It follows from the triangle inequality that

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ (1.27)

(write x = y+ (x− y) and y = x+ (y− x)). In particular the map x 7→ ‖x‖
is continuous from X to R (use the ε-δ definition with δ = ε).

Definition 1.31 (Banach space). A normed space is called a Banach space
if it is complete under the above metric d.

Example. For 1 ≤ p ≤ ∞ the sequence spaces lp are Banach spaces
with norms ‖x‖p := (

∑∞
k=0 |xk|p)1/p (for p < ∞) and ‖x‖∞ := supk∈N |xk|,

respectively.

Definition 1.32. Let ‖·‖1 and ‖·‖2 be norms on the K vector space X. We
say that ‖·‖1 is stronger than ‖·‖2 if the corresponding metric d1 is stronger
than d2. We say that the two norms are equivalent if the corresponding
metrics are equivalent (i.e., if the induced topologies are the same).

Proposition 1.33. Let ‖ · ‖1 and ‖ · ‖2 be norms on the K vector space X.
The norm ‖ · ‖1 is stronger than ‖ · ‖2 if and only if there exists a constant
C > 0 such that

‖x‖2 ≤ C‖x‖1 ∀x ∈ X. (1.28)

The two norms are equivalent if and only if there exists constant c > 0 and
C > 0 such that

c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 ∀x ∈ X. (1.29)

Proof. It suffices to prove the first statement. For the ’if’ statement use
the characterization (iii) in Proposition 1.23. For the ’only if’ part apply
the characterization (iv) in Proposition 1.23 with ε = 1 and y = 0 and let
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C > 1
δ . Let x 6= 0. Then y = 1

C‖x‖1x satisfies ‖y‖1 < δ and hence ‖y‖2 < 1.
By the homogeneity of the norm this implies that

‖x‖2 = C‖x‖1 ‖y‖2 < C‖x‖1.

[18.10. 2017, Lecture 3]
[20.10. 2017, Lecture 4]

1.4 Hilbert spaces

For α ∈ C we denote by ᾱ the complex conjugate.

Definition 1.34. Let X be a K vector space. A map (x1, x2) 7→ (x1, x2)X
from X×X to K is called a sesquilinear form if for all x, y, x1, x2, y1, y2 ∈ X
and all α ∈ K we have

(i) (αx, y)X = α(x, y) (x, αy)X = ᾱ(x, y)X ,

(ii) (x1+x2, y)X = (x1, y)X+(x2, y)X , (x, y1+y2)X = (x, y1)X+(x, y2)X .

A sesquilinear form is called symmetric if for all x, y ∈ X

(y, x)X = (x, y)X . (1.30)

A sesquilinear form is called positive semidefinite if

∀x ∈ X (x, x)X ≥ 0 (1.31)

A symmetric sesquilinear form is called positive definite if

∀x ∈ X (x, x)X ≥ 0 and (x, x) = 0⇔ x = 0. (1.32)

Remark. If K = R a sesquilinear form is bilinear.
One often writes only (x1, x2) instead of (x1, x2)X . Another common nota-
tion is 〈x1, x2〉.

Definition 1.35. A positive definite symmetric sesquilinear form on a K
vector space is called a scalar product. If (·, ·)X is a scalar product then the
pair (X, (·, ·)X) is called a pre-Hilbert space.

Lemma 1.36. Let X be a K vector space and let (·, ·) be a positive semidef-
inite symmetric sesquilinear form and set

‖x‖ :=
√

(x, x). (1.33)

Then
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(i) (Homogeneity)

‖αx‖ = |α|‖x‖ ∀α ∈ K, x ∈ X. (1.34)

(ii) (Cauchy-Schwarz inequality)

|(x, y)| ≤ ‖x‖‖y‖ ∀x, y ∈ X. (1.35)

(iii) (Triangle inequality)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ X. (1.36)

(iv) (Parallelogram identity)

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 ∀x, y ∈ X. (1.37)

In particular ‖ · ‖ is a seminorm on X. If, in addition, (·, ·)X is positive
definite then ‖ · ‖ is a norm.

Proof. (i): This follows directly from Definition 1.34 (i).
(ii): We may assume that (x, y) 6= 0 since otherwise there is nothing to

show. Moreover we may assume that

(x, y)X ∈ R and (x, y)X > 0. (1.38)

Indeed if this condition does not hold we set α = (x, y)/|(x, y)|. Then |α| = 1
and (ᾱx, y) = |(x, y)|. We then prove the result for x̃ := ᾱx and y. This
implies the assertion for x and y since by (i) we have ‖ᾱx‖ = ‖x‖.

Assume now (1.38) and assume in addition that If ‖x‖ 6= 0 and ‖y‖ 6= 0.
Set ξ = x

‖x‖ , η = y
‖y‖ and note that

0 ≤ (ξ − η, ξ − η) = ‖ξ‖2 + ‖η‖2 − 2 Re(ξ, η) (1.39)

In view of (1.38) this implies

|(ξ, η)| ≤ 1

2
‖ξ‖2 +

1

2
‖η‖2 = 1. (1.40)

Since |(ξ, η)| = 1
‖x‖ ‖y‖ |(x, y)| the assertion follows.

If ‖x‖ = 0 apply (1.40) with ξ = kx and η = 1
ky. Then |(x, y)| =

(ξ, η)X ≤ 0 + k−2‖y‖2 for all k > 0 which implies |(x, y)| = 0. A similar
argument applies if y = 0.

(iii): This follows from ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2 Re(x, y) and (ii).
(iv): Exercise.
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Lemma 1.37. Let (X, ‖ · ‖) be a normed space. Then there exists a scalar
product (·, ·) with

‖x‖ :=
√

(x, x) (1.41)

if and only if the parallelogram identity holds, i.e., if and only if

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 ∀x, y ∈ X. (1.42)

Proof. Exercise. The ’only if’ part is just Lemma 1.36 (iv).

Definition 1.38. A Hilbert space is pre-Hilbert space which is complete
under the norm induced by the scalar product.
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2 Function spaces

2.1 Spaces of bounded, continuous and differentiable func-
tions

Definition 2.1. Let X be a set, let (Y, ‖ · ‖) be a normed space Then the
space of bounded functions B(X;Y ) is defined as

B(X;Y ) := {f : X → Y : sup{‖f(x)‖ : x ∈ X} <∞. (2.1)

Proposition 2.2. Let Y be a Banach space and for f ∈ B(X;Y ) define

‖f‖ := sup{‖f(x)‖ : x ∈ X}. (2.2)

Then (B(X;Y ), ‖ · ‖) is a Banach space.

Remark. An important special case is Y = R or Y = C. In this case we
usually write B(X) instead of B(X;K).

Proof. It is easy to see that ‖ · ‖ is a norm so we only need to verify com-
pleteness. Let f : N→ B(X;Y ) be a Cauchy sequence, i.e.,

∀δ > 0 ∃k0(δ) ∀j, k ≥ k0 sup
x∈X
‖fj(x)− fk(x)‖ < δ. (2.3)

Taking δ = 1 we deduce in particular that ‖fj‖ ≤ M := ‖fk0(1)‖+ 1 for all
j ≥ k0(1). Moreover for each x ∈ X the sequence j 7→ fj(x) is a Cauchy
sequence. Since Y is complete this sequence has a limit which we call f∗(x).
We have ‖f∗(x)‖ ≤M+1 and thus the map f∗ : X → Y belongs to B(X;Y ).

We finally show that limj→∞ ‖fj − f∗‖ = 0. We have limk→∞ ‖fk(x) −
f∗(x)‖ = 0 and it thus follows from (2.3) that

∀j ≥ k0(δ) ‖fj(x)− f∗(x)‖ ≤ δ. (2.4)

Since k0 depends only on δ and not on x we get

∀j ≥ k0(δ) sup
x∈X
‖fj(x)− f∗(x)‖ ≤ δ. (2.5)

Now supx∈X ‖fj(x) − f∗(x)‖ = ‖fj − f∗‖. Thus lim supj→∞ ‖fj − f∗‖ ≤ δ.
Since δ > 0 was arbitrary this finishes the proof.

We can now give a short proof of the fact for each metric space (X, d)
there exist a complete metric space (X̃, d̃) and an isometry j : X → X̃ such
that j(X) is dense in X̃.

20 [February 2, 2018]



Proof of Theorem 1.28. Let Y = B(X). For each x ∈ X we define a function
dx : X → R by

dx(z) = d(x, z).

We fix a point x0 ∈ X and define j by

j(x) = dx − dx0 .

Using the triangle inequality we can easily to show that |j(x)(z)| ≤ d(x, x0).
Thus j(x) an element of Y = B(X), Similarly one shows that j : X → Y
is an isometry (exercise). Now we set X̃ = j(X) where the bar denotes the
closure in Y . Then X̃ is a closed subset of the complete metric space Y and
hence by Proposition 1.26 itself a complete metric space.

Proposition 2.3. The space B(X) = B(X,R) is separable if and only if X
is a finite set. In particular the space of bounded sequences l∞ = B(N) is
not separable.

Proof. Exercise. Hint: Let A ⊂ B(X) be the set of functions which only
take values 0 or 1. This set can be mapped bijectively to {0, 1}X and if X
is infinite then A is uncountable. Moreover

f, g ∈ A, , f 6= g =⇒ ‖f − g‖ = 1. (2.6)

Assume D = {h1, h2, . . .} is a countable and dense subset of X. Use (2.6)
to show that there exists an injective map j : A→ D. This contradicts the
fact that A is uncountable.

Definition 2.4. Let (X, T ) be a topological space and Y be a normed space.
The space of continuous functions from X to Y is defined as

C(X;Y ) := {f : X → Y : f continuous} (2.7)

and the space of bounded continuous functions is defined as

Cb(X;Y ) := C(X;Y ) ∩B(X;Y ). (2.8)

Theorem 2.5. Let Y be a Banach space and for f ∈ Cb(X;Y ) define

‖f‖ := sup{‖f(x)‖ : x ∈ X}. (2.9)

Then (Cb(X;Y ), ‖ · ‖) is a Banach space.

Proof. The space Cb(X;Y ) is a subset of B(X;Y ). In view of Proposition
1.26 it suffices to show that Cb(X;Y ) is a closed subset. Assume that fk ∈
Cb(X;Y ), f∗ ∈ B(X;Y ) and limk→∞ ‖fk − f∗‖ = 0. We need to show
that f∗ is continuous. For this it suffices to show that f is continuous at
every x ∈ X, i.e., that for every neighbourhood V of f∗(x) there exists a
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neighbourhood U of x such that f∗(U) ⊂ V . Let x and V be given. Since
V is open there exists an ε > 0 such that B(f∗(x), ε) ⊂ V . There exists k
such that ‖fk − f∗‖ < ε/3. Set U = f−1

k (B(fk(x), ε/3)). Then U ∈ T since
fk is continuous. Moreover x ∈ U . We claim that f∗(U) ⊂ B(f∗(x), ε) ⊂ V .
To this see this note that the triangle inequality implies that for each z ∈ U

d(f∗(z), f∗(x)) ≤ d(f∗(z), fk(z)) + d(fk(z), fk(x)) + d(fk(x), f∗(x)) < ε.
(2.10)

Theorem 2.6. Let (X, T ) be a compact topological space. Let Y be a normed
space. If f : X → Y is continuous, then f is bounded. Thus C(X;Y ) =
Cb(X;Y ).

Proof. The map y 7→ ‖y‖ is continuous as a map from Y to R. Hence
the map h : X → R defined by h(x) := ‖f(x)‖ is also continuous. By
Theorem 1.12 it follows that h attains its maximum on X. In particular h
is bounded on X and hence f is bounded on X.

[20.10. 2017, Lecture 4]
[25.10. 2017, Lecture 5]

Theorem 2.7. Let (X, d) be a compact metric space and let Y be a normed
space, which is separable. Then the space C(X;Y ) is separable.

Remark. (i) In particular C(X) = C(X;R) is separable when X is com-
pact.
(ii) Compare this with the result that B(X;R) is separable if and only if X
is a finite set.

Proof. Step 1: Uniform continuity.
Let ε > 0, f ∈ C(X;Y ). Then here exists a δf,ε > 0 such that

d(x, y) < δf,ε =⇒ ‖f(x)− f(y)‖ < ε

2
. (2.11)

This argument is known from Analysis 1 (’continuous functions on a compact
interval are uniformly continuous’). We recall the proof for the convenience
of the reader. Since f is continuous for each z ∈ X there exists an rz > 0
such that f(B(z, rz)) ⊂ B(f(z), ε/4). Trivially X ⊂

⋃
z∈X B(z, rz/2). Since

X is compact there exist finitely many balls B(z1, r1), . . . B(zk, rk) such that
X ⊂

⋃k
i=1B(zi, ri/2). Let δ = 1

2 min{ri : i = 1, . . . k}. Let x, y ∈ X, with
|x− y| < δ. Then there exist i ∈ {1, . . . , k} such that |x− zi| < ri/2. Since
δ ≤ ri/2 it follows that |y − zi| < ri and thus

‖f(x)− f(y)‖ ≤ ‖f(x)− f(zi)‖+ ‖f(zi)− f(y)‖ < ε

4
+
ε

4
<
ε

2
. (2.12)
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Step 2: Partition of unity.
Let δ > 0. We claim that there exist finitely many points x1, . . . xk ∈ X and
continuous functions η1, . . . , ηk : X → R such that

k∑
i=1

ηi(x) = 1 ∀x ∈ X, ηi = 0 on Rn \B(xi, δ) (2.13)

(such a family of functions is called a partition of unity).
IndeedX = ∪x∈XB(x, δ/2) and hence by compactness there exist x1, . . . xk

such that X = ∪ki=1B(xi, δ/2). Let f : [0,∞) → [0, 1] be a continuous
function such that f ≥ 1

2 on [0, 1
2) and f = 0 on [1,∞) (we may take

f(t) = max(0, 1− t)). Set fi(x) = f(1
δd(x, xi)). Then fi ≥ 1/2 on B(xi, δ/2)

and thus
∑k

i=1 fi(x) ≥ 1/2. Moreover fi = 0 on Rn \ B(xi, δ). Hence the
functions

ηi(x) :=
fi(x)∑k
j=1 fj(x)

(2.14)

have the desired properties.
Step 3: Approximation by subspace isomorphic to Y k.

Let f ∈ C(X;Y ), let ε > 0 and let δf,ε be as in Step 1. Assume that
0 < δ < δf,ε and let B(xi, δ/2) and ηi be as in Step 2. Set

g(x) =
k∑
i=1

f(xi)ηi(x). (2.15)

We claim that ‖f − g‖ ≤ ε/2. To see this recall that
∑

i ηi(x) = 1 and thus

f(x)− g(x) =
k∑
i=1

[f(x)− f(xi)]ηi(x). (2.16)

If ηi(x) 6= 0 then |x− xi| < δ and thus ‖f(x)− f(xi)‖ < ε/2. Thus

‖f(x)− g(x)‖ <
k∑
i=1

ε

2
ηi(x) ≤ ε

2
(2.17)

Step 4: Approximation by a countable set.
Let ε, δf,ε, δ and ηi be as in Step 3, let D ⊂ Y be countable and dense and
set

Aδ := {g : X → R : g(x) =

k∑
i=1

diηi(x), di ∈ D} (2.18)

Then Aδ is countable since it can be mapped bijectively to Dk. There exist
di ∈ D such that |f(xi) − di| < ε/2. Together with Step 3 it follows that
there exists g ∈ Aδ with ‖f − g‖ < ε.
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Step 5: Conclusion.
Finally set A =

⋃∞
k=1A 1

k
. Then A is countable. If ε > 0, f ∈ C(X;Y ) and

k > 1/δf,ε then by Step 4 there exist g ∈ Ak ⊂ A such that ‖f − g‖ < ε.
Hence A is dense in C(X;Y ).

If U ⊂ Rn is open, then continuous maps f : U → R need not be
bounded (example: U = (0, 1), f(x) = 1

x). One can still define a metric on
such continuous functions by exhausting U with compact sets.

Theorem 2.8. Let U ⊂ Rn be open and let Y be a normed space. Let
Ki ⊂ U be an increasing sequence of compact sets with

⋃∞
i=1Ki = U and

assume that for every x ∈ U there exists r > 0 und i such that B(x, r) ⊂ Ki.
For f ∈ C(U ;Y ) define

[f ]i := sup
x∈Ki

‖f(x)‖, d(f, g) :=
∞∑
i=1

2−i
[f − g]i

1 + [f − g]i
. (2.19)

Then [·]i is a seminorm on C(U ;Y ) and d is a metric. If Y is a Banach
space then (C(U ;Y ), d) is complete. If Y is separable then (C(U ;Y ), d) is
separable.

Remark. (i) The procedure to use countably many seminorms (or semi-
metrics) to obtain a metric as in (2.19) is used in a number of other situa-
tions. The metric d is sometimes called the Frechet metric generated by the
seminorms [·]i.
(ii) There exists no norm on C(U ;Y ) such that the induced metric is equiv-
alent to d (for a similar problem see homework sheet 2).
(iii) For each open set U ⊂ Rn there exists such a sequence Ki. One may
take Ki = {x ∈ U : dist (x,Rn \ U) ≥ 2−i |x| ≤ i}.
(iv) Different choices of the sequence Ki lead to equivalent metrics d (com-
pare Proposition 2.9 below).

Proof. It is easy to see that [·]i is a seminorm (note the [f ]i <∞ since Ki is
compact). Thus di(f, g) = [f−g]i is a semimetric. From this it easily follows

that then (f, g) 7→ di(f,g)
1+di(f,g)

and d are also semimetrics (see Lemma 1.16).

To see that d is actually a metric assume that d(f, g) = 0. Then di(f, g) = 0
for all i and hence f = g on Ki. Since U =

⋃∞
i=1Ki we get f = g.

To prove completeness let j 7→ fj be a Cauchy sequence with respect to
d. This implies that j 7→ fj is a Cauchy sequence for each di. It follows
from the completeness of C(Ki;Y ) that there exist functions gi ∈ C(Ki;Y )
such that limj→∞ supx∈Ki ‖fj(x) − gi(x)‖ = 0. Since Ki ⊂ Ki+1 one easily
sees that for k < i we have gk = gi|Kk . Thus we can define g : X → Y
by g(x) = gi(x) if x ∈ Ki. By construction we have limj→∞ di(fj , g) = 0
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for each i. This implies that d(fj , g) → 0 (see Proposition 2.9). Finally we
need to show that g is continuous. This follows from the fact that g|Ki is
continuous that for each x ∈ U there exists a ball B(x, r) which is contained
in one Ki.

To prove separability let ε > 0 and let i0 be such that 2−i+2 < ε. Then
for any set d(f, g) ≤ di0(f, g) + ε and the result follows easily from the
proof of Theorem 2.7 (details: exercise, see also the proof of Proposition 2.9
below).

Proposition 2.9. Let U ⊂ Rn be open and let (C(U ;Y ), d) be as in Theorem
2.8. Let f : N→ C(U ;Y ) be a sequence. Then the following statements are
equivalent:

(i) limj→∞ d(fj , g) = 0;

(ii) ∀i limj→∞ di(f, g) = 0;

(iii) for all compact sets K ⊂ U limj→∞ supx∈K ‖fj(x)− g(x)‖ = 0.

Remark. The convergence in (iii) is often called locally uniform conver-
gence.

Proof. (iii) =⇒ (ii): obvious.
(ii) =⇒ (i): Exercise. Hint: let 2−i0+2 < ε and split the sum into a finite

part for i ≤ i0 and the rest.
(i) =⇒ (iii): For each x ∈ K there exists an r > 0 and an i such that

B(x, r) ⊂ Ki. Since K is compact, finitely many of these balls B(xj , rj) ⊂
Kj cover K. Since the sets Ki are increasing in i there exists i0 such that
K ⊂ Ki0 . By assumption di0(fj , g)→ 0. This implies (iii).

Let U ⊂ Rn be open. By Ck(U ;Rm) we denote the space of k times
differentiable functions f : U → Rm whose derivatives are continuous. The
derivative Dlf(x) at a point x is an l-multilinear form on Rn. On the finite-
dimensional vector space of l-multilinear forms are a number of natural
norms which are all equivalent (we will see shortly that all norms on a finite
dimensional vector space are equivalent). If nothing else is said we will use
the Euclidean norm

|Dlf(x)| := (
∑
|α|=l

|∂αf(x)|2)1/2. (2.20)

Here α ∈ Nn is a multiindex, |α| =
∑n

i=1 αi and ∂αf = ∂α1
1 . . . ∂αnn f with

the convention that ∂0
i f = f .

Definition 2.10. Let U ⊂ Rn be open and bounded. We define

Ck(U ;Rm) := {f ∈ Ck(U ;Rm) : Dlf has a continuous extension to U ∀l ≤ k}
(2.21)
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and, for 0 ≤ l ≤ k,

[f ]Cl(U) := sup
x∈U
|Dlf(x)|, ‖f‖Ck :=

k∑
l=0

[f ]Cl . (2.22)

Moreover we set C∞(U ;Rm) =
⋂∞
k=0C

k(U ;Rm) and

d(f, g) =
∞∑
l=0

2−l
[f ]Cl

1 + [f ]Cl
(2.23)

Theorem 2.11. For 0 ≤ l ≤ k the expression [·]Cl is a seminorm on
Ck(U ;Rm), the expression ‖·‖Ck is a norm and (Ck(U ;Rm), ‖·‖Ck) is a sep-
arable Banach space. Moreover (C∞(U ;Rm), d) is a separable and complete
metric space.

Remark. One can combine this result and Theorem 2.8 to introduce met-
rics on Ck(U ;Rm) and C∞(U ;Rm) so that these spaces become complete
and separable metric space. Moreover d(fj , g) → 0 if and only if Dlfj con-
verges uniformly to Dlg on all compact subsets of U and all l ≤ k or all
l ∈ N, respectively.

Proof. Exercise. Hints: For completeness of Ck(U ;Rm) consider a Cauchy
sequence f : N → Ck(U ;Rm) and first deduce from Theorem 2.5 that
∂αfj → gα in C(U ;Rm) for |α| ≤ k. Assume first k = 1. For x and y

sufficiently close one has fj(y)− fj(x) =
∫ 1

0 Dfj(x+ t(y− x))(y− x) dt and
passing to the limit one easily sees that g is differentiable and ∂ig = gi. This
shows that g ∈ C1(U ;Rm). For general k one argues by induction.

To establish separability on can proceed in a similary way as in the proof
of Theorem 2.5 as long as one chooses in addition f ∈ C∞(Rn) and one
uses the k-th order Taylor expansion in the definition of the approximating
functions.

The corresponding results for C∞(U ;Rm) then follow by using the rela-
tion between the Frechet metric d and the seminorms [·]Cl as in the proof
of Theorem 2.8.

Functions with compact support.

Definition 2.12 (Functions with compact support). (i) Let (X, T ) be a
topological space, let Y be a normed space and let f : X → Y . The
support of f is defined as

supp f := {x ∈ X : f(x) 6= 0}. (2.24)

(ii) The space of continuous functions with compact support is defined as

Cc(X;Y ) := {f ∈ C(X;Y ) : supp f compact}. (2.25)
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(iii) If U ⊂ Rn is open and Y = Rm we define

Ckc (U ;Rm) := Ck(U ;Rm) ∩ Cc(U ;Rm), (2.26)

D(U ;Rm) := C∞c (U ;Rm) := C∞(U ;Rm) ∩ Cc(U ;Rm). (2.27)

Remark. (i) For m = 1 we often write Ckc (U) := Ckc (U,R). Some authors
(e.g. H.W. Alt) write Ck0 (U ;Rm) instead of Ckc (U ;Rm) etc.
(ii) In part (iii) of the definition the relative topology on U is used to de-
fine ’closure’ and ’compact’. Equivalently we can take the closure of the set
{x : f(x) 6= 0} in Rn and require that this closure is contained in U and
compact. Note that the closure of {x : f(x) 6= 0} in Rn is compact if and
only if {x : f(x) 6= 0} is bounded.
(iii) Define f(x) = 1 − x if x ∈ [0, 1) and f(x) = 0 if x ∈ [1,∞). Then
f ∈ Cc([0,∞)) and f ∈ Cc([0, 1]) but f 6∈ Cc((0, 1)) and f 6∈ Cc([0, 1)).
(iv) The space Cc(U ;Rm) is dense in C(U ;Rm) (equipped with the Frechet
metric defined above).

[25.10. 2017, Lecture 5]
[27.10. 2017, Lecture 6]

Interesting subspaces of the space of continuous functions arise when we
consider functions with a given modulus of continuity ρ : [0,∞) → [0,∞),
i.e., functions for which ‖f(x) − f(y)‖ ≤ Cf ρ(d(x, y)) where limt↓0 ρ(t) =
0. The most important examples are Hölder continuous functions, which
correspond to ρ(t) = tα. For simplicity we focus on functions on A ⊂ Rn.

Definition 2.13. Let α ∈ (0, 1]. Let A ⊂ Rn. We say that f : A → Rm is
Hölder continuous with exponent α if

[f ]α,A := sup
x,y∈A, x 6=y

|f(x)− f(y)|
|x− y|α

<∞. (2.28)

We define

C0,α(A;Rm) := {f ∈ Cb(A;Rm) : [f ]α,A <∞}, ‖f‖α,A := sup
x∈A
‖f(x)‖+[f ]α,A.

(2.29)
If U is open and bounded then we define

Ck,α(U ;Rm) := {f ∈ Ck(Ū ;Rm) : [Dkf ]α,U <∞}, ‖f‖k,α,A := ‖f(x)‖Ck(U ;Rm)+[f ]α,U
(2.30)

Remark. (not discussed in class)
(i) Similarly one can define C0,α(A;Y ) where Y is a normed space.
(ii) Hölder continuous functions with exponent α = 1 are called Lipschitz
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continuous and we write Lip(f,A) := [f ]1,A. Often the set A is dropped
from the notation.
(iii) If U ⊂ Rn is open, f : U → Rm and [f ]α,U < ∞ for some α > 1 then
f is differentiable at each point x ∈ U and Df(x) = 0. If, in addition U
is connected then f is constant in U . This is why we only consider Hölder
exponents α ≤ 1.
(iv) In analogy with Theorem 2.8 we can define a metric on the set Ck,αloc (U) :=
{f ∈ Ck,α(U) : [Dkf ]α,Ki <∞ ∀i}.

Proposition 2.14. The expression [·]α,A is a seminorm on C0,α(A;Rm)
and the spaces C0,α(A;Rm) and Ck,α(U ;Rm) are Banach spaces with the
norms ‖ · ‖α,A and ‖ · ‖k,α,U .

Remark. The space C0,α(A;R) is not separable (unless A is finite).

Proof. The assertions about the seminorms and norms are easy to prove.
Completness of C0,α(A;Rm): see homework sheet 3.
Completeness of Ck,α(U ;Rm) is shown similarly.

2.2 Lp spaces and the Lebesgue integral

Here we very quickly recall from Analysis 3 important features of the Lebesgue
integral and the Lp spaces .

Definition 2.15. Let X be a set. Then S ⊂ 2X is a σ-algebra if

(i) ∅ ∈ S, X ∈ S;

(ii) A ∈ S =⇒ X \A ∈ S;

(iii) ∀k ∈ N Ak ∈ S =⇒
⋃
k∈NAk ∈ S .

An arbitrary intersection of σ-algebras is a σ-algebra and 2X is always
a σ-algebra. Hence the smallest σ-algebra which contains a given subset of
2X is well defined. If (X, T ) is a topological space then the Borel-algebra
B(X) is defined as the smallest σ-algebra which contains T .

It is interesting to compare the definition of a σ-algebra and a topology.
A σ-algebra is closed under countable union and complement and thus under
countable intersection. A topology is closed under arbitrary union and finite
intersection.

Definition 2.16. Let S be a σ-algebra on X, µ : S → [0,∞]. The map µ
is called a measure on S if :

(i) µ(∅) = 0;
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(ii) µ is σ-additive, i.e., if A : N→ S and Ah ∩Ak = ∅ for all h 6= k then

µ

(⋃
h∈N

Ah

)
=
∑
h∈N

µ(Ah) . (2.31)

In this case the triple (X,S, µ) is called a measure space.
The elements of S are called measurable sets. An element A ∈ S is called

null set if µ(A) = 0. A measure space is called complete if every subset B
of a null set belongs to S (then necessarily B is also a null set).

The measure µ is called σ-finite if there exist countably many sets Ak ∈ S
such that X =

⋃
Ak and µ(Ak) <∞.

Here we use the usual extended arithmetic on [0,∞]. We say the a
properties holds almost everywhere (or a.e., for short) in X if there exists a
null set N , such that the property holds in X \N .

Examples. (i) Let Mn denote the Lebesgue measurable subsets of Rn
and let Ln denote the Lebesgue measure. Then (Rn,Mn,Ln) is a complete
measure space.
(ii) Let # denote the counting measure. Then (N, 2N,#) is a measure space.

In the following we will always assume that µ is σ-finite.

Let (X,S, µ) be a measure space and let (Y, T ) be a topological space.
We say that f : X → Y is measurable if f−1(U) ∈ S for all U ∈ T
(’preimages of open sets are measurable’) 2. One can easily check that a
map f : X → R or f : X → [−∞,∞] is measurable if and only if the
sets {x : f(x) > a} are measurable for all a ∈ (−∞,∞) and that a map
f : X → Rm or f : X → [−∞,∞]m is measurable if and only if all the
component maps are measurable

If (X,S, µ) is a measure space and E ∈ S then we define the character-
istic function by

χE(x) :=

{
1 if x ∈ E,
0 if x 6∈ E

(2.32)

and we define
∫
X χE dµ = µ(E). One can see easily that any measurable

function f : X → [0,∞) can be uniformly approximated by functions of
the form

∑∞
i=0 aiχEi with Ei ∈ S. This allows one to define

∫
f dµ as a

number in [0,∞] and this definition can be extended to measurable functions

2Here I follow Def. 2.3.2. in H. Federer, Geometric measure theory and not H.W. Alt,
Lineare Funktionalanalysis. H.W. Alt requires in addition that there exists a µ null set
N such that f(X \ N) is separable. For us the difference does not matter since Rm and
[−∞,∞]m are separable, so the extra condition is empty.
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f : X → [0,∞]. We say that a function f : X → [−∞,∞] is integrable if
it is measurable and if its positive and negative part, f+ = max(f, 0) and
f− = max(−f, 0), both have finite integral. Then one defines

∫
X f dµ =∫

X f
+ dµ−

∫
X f
− dµ. For measurable functions f : X → Rm one can define

the integral componentwise. Then the integral has the usual properties. In
addition for this (Lebesgue) integral one has the following three powerful
convergence theorems.

Theorem 2.17 (Beppo Levi, monotone convergence). Let (X,S, µ) be a
measure space, E ∈ S and assume that for all k ∈ N fk : E → [0,∞] is
measurable and fk ≤ fk+1. Then

lim
k→∞

∫
E
fk dµ =

∫
E

lim
k→∞

fk dµ . (2.33)

The assumption fk ≥ 0 can be replaced by fk ≥ g for an integrable
function g (proof: consider fk − g).

Theorem 2.18 (Fatou, lower semicontinuity of the integral). Let (X,S, µ)
be a measure space. Assume that E ∈ S and for all k ∈ N the functions
fk : E → [0,∞] are measurable. Then∫

E
lim inf
k→∞

fk dµ ≤ lim inf
k→∞

∫
E
fk dµ . (2.34)

Again it suffices to assume fk ≥ g, for some integrable g.

Theorem 2.19 (Lebesgue, dominated convergence theorem). Let (X,S, µ)
be a measure space. Assume that E ∈ S and that for all k ∈ N the functions
fk : E → [−∞,∞] are measurable. Suppose that there exists a null set N
and f : E \N → R such that

fk(x)→ f(x) ∀x ∈ E \N. (2.35)

Suppose further that there exists g : E → [0,∞] integrable, such that

|fk(x)| ≤ g(x) ∀k ∈ N ∀x ∈ E. (2.36)

Then ∫
E
f dµ = lim

k→∞

∫
E
fk dµ (2.37)

and

lim
k→∞

∫
E
|fk − f | dµ = 0 . (2.38)

The function g is often called an integrable majorant.

Another fundamental result is Fubini’s theorem. In Analysis 3 we proved
this for Lebesgue measure on Rn.
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Theorem 2.20 (Fubini). Let f : Rn+m → [−∞,∞] be integrable and for
x ∈ Rn and y ∈ Rm define

gx : Rm → [−∞,∞], hy : Rn → [−∞,∞] (2.39)

by
gx(y) = hy(x) = f(x, y). (2.40)

Then there exists an Ln null set N1 ⊂ Rn and an Lm null set N2 ⊂ Rm
such that

(i) The function gx is Lm-integrable for x ∈ Rn \N1 and

x 7→
∫
Rm

f(x, y) dLm(y) :=

∫
Rm

gx dLm (2.41)

is Ln integrable;

(ii) the function hy is Ln-integrable for y ∈ Rm \N2 and

y 7→
∫
Rn
f(x, y) dLn(x) :=

∫
Rn
hy dLn (2.42)

is Lm integrable;

(iii) ∫
Rn×Rm

f dLn+m =

∫
Rn

∫
Rm

f(x, y) dLm(y) dLn(x) =

∫
Rm

∫
Rn
f(x, y) dLn(x) dLm(y).

(2.43)

There exists a partial converse: if f is Ln+m measurable and one of the it-
erated integrals

∫
Rn
∫
Rm |f(x, y)| dLm(y) Ln(x) or

∫
Rm
∫
Rn |f(x, y)| dLn(x) Lm(y)

is finite then all the integrals in (2.43) exist and equality holds. It is not
sufficient that only the maps gx and hy are measurable (see Analysis 3, Satz
3.39 and the warning after Satz 3.25).

Definition 2.21. Let (X,S, µ) be a measure space and let E ∈ S. For a
measurable function f : E → Rm we define

‖f‖Lp :=

(∫
E
|f |p dµ

)1/p

if p ∈ [1,∞), (2.44)

‖f‖L∞ := ess supE |f | := inf{M ∈ [0,∞) : µ{x ∈ E : |f(x)| > M} = 0}
(2.45)

For p ∈ [1,∞] we set

Lp(E) := {f : E → Rm : f measurable , ‖f‖p <∞} (2.46)

and we denote by Lp(E) the corresponding equivalence classes of functions
with respect to the equivalence relation

f ∼ g ⇔ f = g a.e. (2.47)
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A more precise notation is Lp(E,S, µ;Rm) since measurability depends
on the σ-algebra S and the norm depends on µ. It will, however, usually be
clear which σ-algebra, which measure and which target space we consider.
Note that ‖f‖Lp = ‖g‖Lp if f ∼ g. Hence we can define ‖[f ]‖Lp := ‖f‖Lp
The elements of Lp are called p-integrable functions.

If µ is the counting measure, defined on all subsets of N then we see that
Lp(N) = lp.

Theorem 2.22. Let p ∈ [1,∞]. The expression ‖ · ‖p is a seminorm on
Lp(E) and a norm on Lp(E). If the measure space (X,S, µ) is complete
then the spaces Lp(E) are complete, i.e., Banach spaces.

In particular the spaces Lp(E) of Lebesgue measurable, p-integrable
functions are Banach spaces. The completeness of the Lp spaces is known
as the Fischer-Riesz theorem.

A fundamental estimate (which can be used to prove that ‖ · ‖p satisfies
the triangle inequality) is Hölder’s inequality.

Theorem 2.23 (Hölder). Let p, q ∈ (1,∞) with

1

p
+

1

q
= 1 , (2.48)

or {p, q} = {1,∞}. Let f ∈ Lp(E), g ∈ Lq(E). Then fg ∈ L1(E) and

‖fg‖1 ≤ ‖f‖p‖g‖q . (2.49)

We will often use the fact that Lp functions on (subsets of) Rn can be
approximated in the Lp norm by continuous or smooth functions.

Theorem 2.24. Let p ∈ [1,∞) and let U ⊂ Rn be open. Then C0
c (U) is

dense in Lp(U).

Proof. See Analysis 3, Satz 4.20.. The main idea is to approximate f by
linear combinations of characteristic functions and Lebesgue measurable sets
by open and compact sets.

Remark. C(U) ∩ L∞(U) is not dense in L∞(U). Example: take U =
(−1, 1) and f(x) = sgnx. If g ∈ C(U) and sup g ≥ 1/2 and inf g ≤ −1/2
then there exists a non-empty open set V (and hence a set of positive mea-
sure) such that g(V ) ⊂ (−1/2, 1/2). Hence ‖f − g‖∞ ≥ 1/2 for each contin-
uous g.

For the approximation by smooth functions the notion of convolution is
crucial.

Definition 2.25 (Convolution). Let f, g : Rn → R be measurable. Let

N = {x ∈ Rn : y 7→ f(y)g(x− y) is not integrable } . (2.50)
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Then the convolution f ∗ g : Rn → R is defined as

(f ∗ g)(x) =

{∫
Rn f(y)g(x− y)dLn(y) if x 6∈ N

0 if x ∈ N.
(2.51)

One easily sees that f ∗ g = g ∗ f .
Moreover f̃ = f a.e. and g̃ = g a.e. implies that (f̃ ∗ g̃)(x) = (f ∗ g)(x) for
all x ∈ Rn.

Theorem 2.26. Let p ∈ [1,∞] and f ∈ L1(Rn), g ∈ Lp(Rn). Then the set
N in (2.50) is an Ln null set, f ∗ g ∈ Lp(Rn) and

‖f ∗ g‖Lp(Rn) ≤ ‖f‖L1(Rn)‖g‖Lp(Rn) . (2.52)

Proof. For p = 1 see Analysis 3, Satz 4.24., for general p, see Analysis 3,
Satz 4.25. The proof of Theorem 2.26 for p = 1 relies on a linear change of
variable (x, y) 7→ (x, y − x) and Fubini’s theorem.

Lemma 2.27. Let f, g, h ∈ L1(Rn). Then

(i) (f ∗ g) ∗ h = f ∗ (g ∗ h) a.e.

(ii) If, in addition h ∈ L∞(Rn) and (Sf)(x) := f(−x) then∫
Rn

(f ∗ g)h dLn =

∫
Rn
f(Sg ∗ h) dLn =

∫
Rn
g(Sf ∗ h) dLn. (2.53)

(iii) If g ∈ Ckc (Rn) then N = ∅, f ∗ g ∈ Ck(Rn) and for k ≥ 1 we have

∂α(f ∗ g) = f ∗ ∂αg (2.54)

for all multiindices α with |α| ≤ k.

Proof. See Analysis 3, Lemma 4.26.
For the first equality in (ii) one uses the identity f(y)g(x−y)h(x) = f(y)Sg(y−
x)h(x) and Fubini’s theorem and the second identity is proved similarly.

[27.10. 2017, Lecture 6]
[3.11. 2017, Lecture 7]

Lemma 2.28. (i) ∃ η ∈ C∞c (B(0, 1)) with η ≥ 0 and∫
Rn
η dx =

∫
B(0,1)

η dx = 1. (2.55)

(ii) ∃ η ∈ C∞c (B(0, 1)) with 0 ≤ η ≤ 1 and η(x) = 1 if |x| ≤ 1
2 .

We may in addition assume that η is radially symmetric.
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Proof. Analysis 3, Lemma 4.27.

Theorem 2.29. Let p ∈ [1,∞).

(i) Let ϕ ∈ L1(Rn) and
∫
Rn ϕdL

n = 1. Set ψk(x) := knϕ(kx). Then

ψk ∗ f → f in Lp(Rn) ∀f ∈ Lp(Rn) . (2.56)

(ii) Let U ⊂ Rn be open and let p ∈ [1,∞). Then C∞c (U) is dense in
Lp(U).

Proof. See Analysis 3, Lemma 4.28.
The idea is to prove (i) first for f̃ ∈ Cc(Rn).Then (i) follows for f ∈ Lp(Rn)
from Theorem 2.24 since one can bound the error terms ψk ∗ (f − f̃) using
Theorem 2.26.
For (ii) one first approximates f ∈ Lp(U) by f̃ ∈ Cc(U) using Theorem 2.24.
Then we take ϕ ∈ C∞c (B(0, 1)). It now suffices to note that ψk ∗ f̃ ∈ C∞c (U)
if k > 1/δ, where δ = dist (supp f,Rn \ U) = minx∈supp f dist (x,Rn \ U) >
0.

Let U ⊂ Rn be open. We say that f ∈ L1,loc(U) if f ∈ L1(K) for all
compact subsets K ⊂ U .

Lemma 2.30. Let U ⊂ Rn be open and let f ∈ L1,loc(U).

(i) If ψk is as in Theorem 2.29 then ψk ∗ f → f in L1,loc(U). More
precisely for every compact set K ⊂ U there exists k0(K) such that for
k ≥ k0(K) the function y 7→ ψk(y)f(x−y) is integrable for x ∈ K and

ψk ∗ f → f in L1(K). (2.57)

(ii) If ∫
U
fϕ dLn = 0 ∀ϕ ∈ C∞c (U) (2.58)

then f = 0 a.e. in U .

Proof. (i) Let δ := dist (K,Rn \ U). Then δ > 0 since K is compact. Set
K ′ := {x ∈ Rn : dist (x,K) ≤ δ/2}. Then K ′ is compact and K ′ ⊂ U .
Set g = f in K ′ and g = 0 in Rn \ K ′. Then g ∈ L1(Rn). If k ≥ 2/δ
then ψk ∗ f(x) = ψk ∗ g(x) for all x ∈ K. Hence the assertion follows from
Theorem 2.29.

(ii) Let K ⊂ U be compact. If we set ϕ(y) = ψk(x − y) we see that
f ∗ ψk = 0 in K if k is large enough. Thus by (i) we have f = 0 a.e. in
K. The assertion follows since U can be written as a countable union of
compact subsets of U .
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2.3 Sobolev spaces

Motivation: Consider the space C1([0, 1]). On this space there is a natural
scalar product given by

(f, g) =

∫ 1

0
f(x)g(x) + f ′(x)g′(x) dx. (2.59)

It is, however, easy to see that the space is not complete under the induced
norm ‖f‖H1 := (‖f‖2L2 + ‖f ′‖2L2)1/2, just as C([0, 1]) is not complete in the
L2 norm.

To overcome this problem there are two possibilities. First one can
consider the abstract completion of C1 in ‖ · ‖H1 and then try to identify
the objects in the completion with usual functions. The space obtained in
this way was originally called H1,2.

Secondly, one can weaken the notion of derivative to allow functions
whose derivatives in the weak sense are only L2 functions and show that the
resulting space is complete in the H1 norm. The space obtained in this way
was originally called W 1,2.

We will see that both approaches actually lead to the same space, i.e.
W 1,2 = H1,2. To prove this we will follow the second approach and then
show that C1 (in fact C∞) is dense in W 1,2.

2.3.1 Definition and completeness

In the following we always assume

U ⊂ Rn is open. (2.60)

If other conditions, e.g., boundedness are imposed on U we will state this
explicitly.

Definition 2.31. We say that f ∈ L1,loc(U) is weakly differentiable if there
exist functions g1, . . . , gn in L1,loc such that∫

U
f∂iϕdx = −

∫
U
giϕdx ∀ϕ ∈ C∞c (U). (2.61)

We say that f is k times weakly differentiable if for all multiindices α ∈ Nn
with |α| ≤ k there exist gα ∈ L1

loc(U) such that∫
U
f∂αϕdx = (−1)|α|

∫
U
gαϕdx ∀ϕ ∈ C∞c (U). (2.62)
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Remark. (i) The functions gi and gα are called weak derivatives and are
still denoted by ∂if and ∂αf , respectively. If they exist they are unique by
Lemma 2.30 up to sets of measure zero, i.e. they correspond to a unique
equivalence class in L1

loc. In particular the weak derivative and the usual
derivative agree if g ∈ Ck(U).
(ii) The weak derivatives depend only on the equivalence class of f .

In view of (i) and (ii) it makes sense that an equivalence class [f ] ∈ L1
loc

is weakly differentiable and has weak derivatives in [gα] ∈ L1
loc. In the

following we will usually make no distinction in notion between functions
and their equivalence classes.

Examples. (i) Let U = (−1, 1) and f(x) = |x|. Then f is weakly differ-
entiable and the weak derivative is f ′(x) = sgn(x).
(ii) Let U = (−1, 1) and f(x) = sgn(x). Then f is not weakly differentiable.
Indeed

∫
U fϕ

′ dx = −2ϕ(0) for all ϕ ∈ C∞c (U), but there is no g ∈ L1
loc(U)

such that
∫
U gϕ dx = ϕ(0) for all ϕ ∈ C∞c (U).

(iii) Let U = Rn and f = χB(0,1). Then f is not weakly differentiable. In-
deed

∫
B(0,1) f∂iϕdx =

∫
∂B(0,1) ϕνi dH

n−1.

(iv) Let U = B(0, 1) ⊂ Rn, n ≥ 2, α ∈ R \ {0} and f(x) = |x|α for x 6= 0,
f(0) = 0. Then f is weakly differentiable if and only if α > −(n − 1). To
see this consider first

∫
B(0,1)\B(0,ε) f∂iϕdx and then pass to the limit ε→ 0.

¿From these examples we see that weakly differentiable functions cannot
jump across (smooth) hypersurfaces but they may have singularities on lower
dimensional sets. For n ≥ 2 they can be discontinuous and unbounded.

Definition 2.32. Let 1 ≤ p ≤ ∞ and k ∈ N \ {0}. The Sobolev space
W k,p(U) consists of all f ∈ Lp(U) which are k times weakly differentiable
with all weak derivatives in Lp(U). We define for 1 ≤ p <∞

‖f‖Wk.p(U) :=

(
k∑
l=0

∫
U
|Dlf |p

)1/p

=

(
k∑
l=0

‖ |Dlf | ‖pLp(U)

)1/p

(2.63)

and for p =∞
‖f‖Wk.∞(U) := max

l=0,...,k
‖ |Dlf | ‖L∞(U). (2.64)

Recall that |Dlf(x)|2 :=
∑
|α|=l |∂αf(x)|2.

H.W. Alt uses the equivalent norm ‖f‖p∼,k,p :=
∑
|α|≤k

∫
U |∂

αf |p dLn.

Theorem 2.33. The pair (W k,p(U), ‖ · ‖) is a Banach space. The space
W k,2(U) is a Hilbert space with scalar product

(f, g)Wk,2(U) :=
∑
|α|≤k

(∂αf, ∂αg)L2(U). (2.65)
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Proof. It is easy to see that ‖ · ‖Wk,p is a norm and (·, ·)Wk,2 is a scalar
product. Let f : N → W k,p(U) be a Cauchy sequence. Then for any
multiindex α with |α| ≤ k the sequence ∂αf is a Cauchy sequence in Lp(U)
and hence has a limit gα ∈ Lp(U). In particular fj → g in Lp(U). To show
completeness we only need to show that g is weakly differentiable and the
weak derivatives of g are given by gα.

By the definition of the weak derivative we have∫
U
fj∂

αϕdx = (−1)|α|
∫
U
∂αfjϕdx. (2.66)

Since ϕ and ∂αϕ are bounded and have compact support they are in par-
ticular in Lp

′
(U). Thus using Hölder’s inequality we can pass to the limit

j →∞ and get ∫
U
g∂αϕdx = (−1)|α|

∫
U
gαϕdx. (2.67)

This shows that g is k times weakly differentiable and the derivatives are
given by gα.

[3.11. 2017, Lecture 7]
[8.11. 2017, Lecture 8]

2.3.2 Approximation by smooth functions and calculus rules

We next want to show that element of W k,p can be approximated in the
W k,p norm by smooth functions. The key observation if the following: if
f is k times weakly differentiable in Rn and η ∈ C∞c (Rn) then η ∗ f is in
C∞(Rn) and

∂α(η ∗ f) = η ∗ ∂αf for all α with |α| ≤ k.

where ∂αf denotes the weak derivative of f . We state a slightly more general
version for weakly differentiable functions defined in a general open subset
U of Rn.

Lemma 2.34. Let k ≥ 1, let p ∈ [1,∞], let f ∈ W k,p(U) and denote by
fχU the function which agrees with f in U and is zero in Rn \ U .

Let η ∈ C∞c (B(0, 1)) with η ≥ 0 and
∫
Rn η dL

n = 1 and set ηj(x) :=
jnη(jx) and

Uj := {x ∈ U : dist (x,Rn \ U >
1

j
)}. (2.68)

Then ηj ∗ (fχU ) ∈ C∞(Rn) and

∂α(η ∗ (fχU )) = η ∗ ∂αf in Uj if |α| ≤ k, (2.69)

where ∂αf denotes the weak derivative of f .
If U = Rn then fχU = f and (2.68) holds with Uj = Rn.
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The functions ηj are sometimes called mollifiers (or mollifying kernels)
and the sequence j 7→ ηj is sometimes called a Dirac sequence.

Proof. By Lemma 2.27 we have ηj ∗ (fχU ) ∈ C∞(Rn) and

∂α(ηj ∗ (fχU ))(x) = ∂α((fχU ) ∗ ηj)(x) (2.70)

=

∫
U
f(y)∂αηj(x− y) dy (2.71)

Now fix x ∈ Uj and set ϕ(y) := ηj(x − y). Then ϕ ∈ C∞c (U) and ∂αϕ =
(−1)|α|(∂αηj)(x−y). Thus the definition of the weak derivative implies that∫

U
f(y)∂αηj(x− y) dy =

∫
U
∂αf(y)∂αηj(x− y) dy = ηj ∗ ((∂αf)χU )(x).

(2.72)

Theorem 2.35. Let p ∈ [1,∞), k ∈ N. Then C∞(Rn)∩W k,p(Rn) is dense
in W k,p(Rn);

Proof. For k = 0 this follows from Theorem 2.29. Let k ≥ 1 and let ηj be
as in Lemma 2.34 and set fj := ηj ∗ f . By Lemma 2.34 and Theorem 2.29
we have fj ∈ C∞(Rn) and

∂αfj = ηj ∗ ∂αf → ∂αf in Lp(Rn). (2.73)

Thus fj → f in W k,p(Rn).

Theorem 2.36. Let p ∈ [1,∞), k ∈ N. Then C∞(U) ∩W k,p(U) is dense
in W k,p(U).

Proof. The proof combines the previous argument with a smooth partition
of unity. We only give a sketch of the argument.

Step 1: Partition of unity.
Define for i ∈ N, i ≥ 1,

Ui := {x ∈ U : |x| < i, dist (x,Rn \ U) >
1

i
}. (2.74)

Then Ui is open and the closure Ui is given by {x ∈ U : |x| ≤ i, dist (x,Rn \
U) ≥ 1

i }. Hence Ui ⊂ Ui+1 ⊂ U and Ui is compact. Moreover
⋃∞
i=1 Ui = U .

Consider now the open sets Vi := Ui+3 \ Ui and the compact sets Ki :=
Ui+2 \Ui+1. Set K0 := U2 and V0 := U3. Then

⋃∞
i=0Ki = U and each point

x ∈ U is contained in at most three of the sets Vi.
Now there exist hi ∈ C∞c (Vi) with hi = 1 on Ki and hi ≥ 0 (see Analysis

3, Lemma 5.10). We define

ψi(x) :=
hi(x)∑∞
j=0 hj(x)

(2.75)
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For x ∈ Uk and k ≥ 3. we have hj(x) = 0 if j ≥ k. Thus the sum in the
denominator converges for each x ∈ U and is a smooth function in each set
Uk and hence in U . In addition the sum in the denominator is always ≥ 1
in U since each x ∈ U lies in at least one set Kj . Thus

ψi ∈ C∞c (Vi), ψi ≥ 0,
∞∑
i=0

ψi(x) = 1 ∀x ∈ U. (2.76)

Step 2: Local approximation.
Now let ε > 0 and f ∈W k,p(U). We set

fi(x) := ψi(x)f(x) for x ∈ Vi, fi(x) = 0 for x ∈ Rn \ Vi. (2.77)

Then it is easy to see that fi ∈ W k,p(Rn). Let ηj be as in the proof of
Theorem 2.35. Then ηj ∗ fi → fi in W k,p(Rn) as j →∞. Since suppψ ⊂ Vi
is compact it follows that ηj ∗ fi has compact support in Vi if j ≥ ji. Thus
there exist

∃gi ∈ C∞(Vi), ‖fi − gi‖Wk,p(Rn) ≤ 2−i−2ε. (2.78)

Step 3: Conclusion. Set

g(x) :=

∞∑
j=0

gj(x). (2.79)

If x ∈ Ui and i ≥ 3 then gj(x) = 0 for all j ≥ i since Vj ∩ Ui = ∅ for j ≥ i.
Hence the sum converges for all x ∈ Ui and g is C∞ in the open set Ui
as a finite sum of C∞ functions. Thus g ∈ C∞(U). Similarly we see that
f =

∑i
j=0 fj in Ui. This yields (for i ≥ 3)

‖f − g‖Wk,p(Ui) ≤
i∑

j=0

‖fj − gj‖Wk,p ≤
ε

2
(2.80)

Thus can be rewritten as

k∑
l=0

∫
Ui

|Dl(f − g)|p dLn ≤ εp

2p
. (2.81)

It follows from the monotone convergence theorem that

‖f − g‖p
Wk,p(U)

=
k∑
l=0

∫
U
|Dl(f − g)|p dLn ≤ εp

2p
. (2.82)

This finishes the proof.
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Lemma 2.37 (Product rule). Let p, q ∈ [1,∞] with

1

p
+

1

q
= 1 (2.83)

(with the convention 1
∞ = 0). Let f ∈ W 1,p(U), g ∈ W 1,q(U). Then

fg ∈W 1,1(U) and the weak derivatives satisfy

∂i(fg) = ∂if g + f∂ig. (2.84)

Remark. (i) The analogous assertion holds for higher derivatives.
(ii) The assumptions can be a bit weakened. For example, if U is a bounded
interval (a, b) ⊂ R then it suffices that f, g ∈W 1,1((a, b)). More generally, it
suffices that f and g are weakly differentiable, fg ∈ L1(U) and ∂if g+f∂ig ∈
L1(U) for all i (this can be proved using the one dimensional result and
the characterization of W 1,1 using restrictions of the function to a.e. line
segment, see the remark after Theorem 2.42).

Proof. We have p 6= ∞ or q 6= ∞. We may assume p < ∞, since otherwise
we can exchange f and g.

Assume first that in addition f ∈ C∞(U). Then the usual product an the
definition of the weak derivative imply the assertion since for all ϕ ∈ C∞c (U)∫

U
fg∂iϕdLn =

∫
U
g∂i(fϕ) dLn −

∫
U
g∂if ϕ dLn (2.85)

=−
∫
U
∂ig fϕ dLn −

∫
U
g∂if ϕ dLn. (2.86)

If f ∈ W 1,p(U) set fj := ηj ∗ (fχU ). Then it follows from Lemma 2.34
and Theorem 2.29 that fj → f and ∂ifj → ∂if in Lp(K) for every compact
set K ⊂ U . Thus ∫

U
fjg∂iϕdLn →

∫
U
fg∂iϕdLn, (2.87)∫

U
fj∂igϕ dLn →

∫
U
f∂igϕ dLn, (2.88)∫

U
∂ifj gϕ dLn →

∫
U
∂if gϕ dLn. (2.89)

This finishes the proof.

Lemma 2.38 (Chain rule). Let f ∈ C1(R) and assume that f ′ is bounded.
Let p ∈ [1,∞] and g ∈ W 1,p(U). Then f ◦ g is in Lploc(U), is weakly differ-
entiable, the weak derivatives belong to Lp and are given by

∂i(f ◦ g) = (f ′ ◦ g) ∂ig. (2.90)

Moreover, if U has finite Lebesgue measure or if f(0) = 0 of if p =∞ then
f ◦ g ∈W 1,p(U).
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Remark. The analogous results holds for g : U → Rm and f : Rm → Rd.

Proof. Let M := supx∈R |f ′|(x). Then |f(x)−f(y)| ≤M |x−y| and |f(x)| ≤
|f(0)|+M |x|. This shows that f ◦ g is in Lploc(U) and moreover in Lp(U) if
f(0) = 0 or if U has finite Lebesgue measure or if p =∞.

Let gj := ηj ∗ (gχU ). Let ϕ ∈ C∞c (U) and K = suppϕ. By Lemma 2.34
and Lemma 2.30 we have for each compact set K ⊂ U

gj → g, ∂igj → ∂ig in L1(K). (2.91)

By the usual chain rule we get for each ϕ ∈ C∞c (U)∫
U
f ◦ gj ∂iϕdLn = −

∫
U

(f ′ ◦ gj) ∂igj ϕdLn. (2.92)

Let K = suppϕ. Then there exists a subsequence such that gjk → g a.e. in
K. Thus

f ′ ◦ gjk ∂ig ϕ→ f ′ ◦ g ∂ig ϕ a.e., |f ′ ◦ gjk ∂ig|ϕ ≤M sup |ϕ||g′|. (2.93)

Hence by the dominated convergence theorem∫
U
f ′ ◦ gjk ∂ig ϕ dL

n →
∫
U
f ′ ◦ g ∂ig ϕ dLn. (2.94)

On the other hand∣∣∣∣∫
U
f ′ ◦ gjk (∂igjk − ∂ig)ϕdLn

∣∣∣∣ ≤M sup |ϕ|
∫
K
|∂igjk − ∂ig| dL

n → 0.

(2.95)
Hence ∫

U
f ′ ◦ gjk ∂igjk ϕdL

n →
∫
U
f ′ ◦ g ∂ig ϕ dLn. (2.96)

On the other hand |f ◦ gjk − f ◦ g| ≤M |gjk − g| and therefore∫
U
f ◦ gjk ∂iϕdL

n →
∫
U
f ◦ g ∂iϕdLn. (2.97)

Thus f ◦ g is weakly differentiable with weak derivative (f ′ ◦ g)∂ig. Since f ′

is bounded the weak derivative is in Lp(U)

[8.11. 2017, Lecture 8]
[10.11. 2017, Lecture 9]

Corollary 2.39. Let f ∈W 1,p(U). Then the functions

f+ := max(f, 0), f− := max(−f, 0) and |f | = f+ − f− (2.98)
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are also in W 1,p and the weak derivatives are given by

∂if
+ = χE+∂if, ∂if

− = −χE−∂if, ∂i|f | = χE+∂if − χE−∂if, (2.99)

where

E+ := {x ∈ U : f(x) > 0}, E− := {x ∈ U : f(x) < 0}. (2.100)

Proof. Exercise. Hint: if suffices to show the result for f+. For this show
first that there exist functions hk ∈ C1(R) with |hk(t) − t+| ≤ 1

k , |h′k| ≤ 1
and h′k(t)→ 1 if t > 0 and h′k(t)→ 0 if t ≤ 0.

Corollary 2.40. Let p ∈ [1,∞], f ∈ W 1,p(U). Let E ⊂ U be measurable
and let a ∈ R. Then

f = a a.e. on E =⇒ ∂if = 0 a.e. on E. (2.101)

Proof. Exercise. Hint: use Corollary 2.39.

Remark. The map f 7→ f+ is continuous in W 1,p(U), i.e. fj → f in
W 1,p(U) implies that f+

j → f+ in W 1,p(U) (exercise). Hint: use that

limj→0 Ln{x ∈ U : fj(x) > 0, f(x) ≤ − 1
k} = 0 and show thatlimk→∞

∫
Ak
|∂if | dLn =

0, where Ak = {x ∈ U : 1
k ≤ f ≤ 0}.

It follows that the maps (f, g) 7→ max(f, g) and (f, g) 7→ min(f, g) are also
continuous in W 1,p(U).

2.3.3 Sobolev functions in one dimension

We finally show that in one dimension every element on W 1,1 has a unique
continuous representative. In fact elements of W 1,1 are absolutely continu-
ous in the following sense.

Definition 2.41. Let (a, b) ⊂ R be a bounded interval. A map f : [a, b]→ R
is called absolutely continuous if there exists g ∈ L1((a, b)) such that

F (x) = F (a) +

∫ x

a
g(y) dy ∀x ∈ [a, b]. (2.102)

Theorem 2.42. Let I = (a, b) ⊂ R be a bounded interval. Then f ∈W 1,1(I)
if and only if f has an absolutely continuous representative f̃ : [a, b] → R.
In that case

f̃(x) = c+

∫ x

a
f ′(z) dz ∀x ∈ [a, b] (2.103)
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Proof. Homework. Hint: If F satisfies (2.102) one can use Fubini’s theorem
to show that F is weakly differentiable with weak derivative g and hence
belongs to W 1,1(I). Conversely if f ∈W 1,1(I) is given one can define

F (x) :=

∫ x

a
f ′(y) dy.

Then f − F is in W 1,1(I) and has weak derivative zero. It only remains
to show that this implies that f − F equals a constant c a.e. (one can use
mollification to prove this). Then one can set f̃ = c+ F .

Remark. One can show by measure-theoretic methods that every abso-
lutely continuous function is (classically) differentiable at a.e. point in (a, b).
The classical derivative and the weak derivative agree a.e.

Remark. There exists a similar characterization for functions defined on
an open subset U ⊂ Rn. We have f ∈ W 1,1(U) if and only if there exists
a representative f̃ such that for every cube Q =

∏
(ai, bi) ⊂ U the maps

xi 7→ f̃(x1, . . . , xi−1, xi, xi+1, . . . , xn) belongs to W 1,1((ai, bi)) (and hence
are absolutely continuous) for Ln−1 a.e. choice of the other coordinates x′i.
Moreover for Ln−1 a.e. x′i and all xi, yi ∈ (a, b) we have

f̃(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, yi, xi+1, . . . , xn)

=

∫ xi

yi

∂if(x1, . . . , xi−1, t, xi+1, . . . , xn) dt, (2.104)

where ∂if is (a representative of) the weak derivative.

Corollary 2.43. Let I = (a, b) ⊂ R be a bounded interval. Let p ∈ (1,∞]
and α := 1 − 1

p (with the convention 1
∞ = 0). Let f ∈ W 1,p(I). Then the

representative f̃ in Theorem 2.42 satisfies f̃ ∈ C0,α(I) and

[f̃ ]α ≤ ‖f ′‖Lp . (2.105)

Remark. Using Rademacher’s theorem (Lipschitz functions are a.e. dif-
ferentiable and absolutely continuous) one can show that f ∈ W 1,∞(I) if
and only if f has a Lipschitz continuous representative.

Remark. (i) Using the usual identification of functions and representatives
one often writes C0,α(I) ⊂W 1,p(I) and C0,1(I) = W 1,∞(I).
(ii) The Cantor function (also known as the ’devil’s staircase’) is in C0,α

(with α = ln 2
ln 3) and differentiable a.e. with derivative 0, but not absolutely

continuous and hence not in W 1,1.

Proof. Homework.
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2.3.4 Boundary values of Sobolev functions

Definition 2.44. Let p ∈ [1,∞). The space W k,p
0 (U) is defined as the

closure of C∞c (Rn) in W k,p(U). For p =∞ we define

W k,∞
0 (U) := {f ∈W k,∞(U) : ∃fj ∈ C∞c (U), sup

j
‖fj‖Wk,∞ <∞,

∂αfj → ∂αf in L1
loc(U)}. (2.106)

We think of W k,p
0 (U) as the Sobolev space of functions with zero bound-

ary values.

Example.

(i) If f ∈ W k,p(U) and if there exists a compact set K ⊂ U such that

f = 0 a.e. in U \K then f ∈ W k,p
0 (U). To see this denote by Ef the

extension of f by zero outside U , consider fj := ηj∗(Ef) and note that
fj ∈ C∞c (U) if j is large enough and fj → Ef in W k,p(Rn) (if p <∞;

for p =∞ we have the convergence required in the definition of W k,∞
0 ).

(ii) Let f ∈W k,p
0 (U) and denote by Ef the extension of f by zero outside

U . Then f ∈W k,p(Rn).
Proof: Clearly for f ∈ C∞c (U) we have Ef ∈ C∞c (Rn) and ‖Ef‖Wk,p(Rn) =

‖f‖Wk,p(U). If p <∞ let fj ∈ C∞c (U) with fj → f in W k,p(U). Then

Efj is a Cauchy sequence in W k,p(Rn) and thus Efj → g ∈W k,p(Rn).
On the other hand Efj → Ef in Lp(Rn). Thus f = g (in the sense of
equivalence classes) and hence f ∈W k,p(Rn).
Added Jan 18, 2013 A similar argument applies for p =∞.

(iii) W k,p
0 (Rn) = W k,p(Rn), i.e., C∞c (Rn) is dense in W k,p(Rn) (idea: con-

sider fj(x) = ϕ(xj )f(x) with ϕ ∈ C∞c (B(0, 1)) and ϕ = 1 in B(0, 1
2);

details: exercise).

Remark. Let I = (a, b) be a bounded interval, p ∈ [1,∞]. Then

f ∈W 1,p
0 (I) ⇐⇒ f̃(a) = f̃(b) = 0, (2.107)

where f̃ denotes the absolutely continuous representative of f (see Theorem
2.42).
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3 Subsets of function spaces: convexity and com-
pactness

3.1 Convexity and best approximation

Definition 3.1. Let X be a K vector space.

(i) A set A ⊂ X is convex if

x, y ∈ A, α ∈ (0, 1) =⇒ (1− α)x+ αy ∈ A. (3.1)

(ii) Let A ⊂ X be convex. A function f : A→ R ∪ {+∞} is convex if

∀x, y ∈ A ∀α ∈ (0, 1) f((1−α)x+αy) ≤ (1−α)f(x)+αf(y). (3.2)

(iii) For an arbitrary set A ⊂ X the convex hull convA is defined as

convA := {
k∑
i=1

αixi : k ∈ N \ {0}, xi ∈ A, αi ≥ 0,
k∑
i=1

αi = 1}. (3.3)

One easily sees that convA is the smallest convex set which contains A.

Theorem 3.2 (Projection theorem). Let X be a Hilbert space, let A ⊂ X
be non-empty, convex and closed. Then there exists one and only one map
P : X → A such that

‖x− P (x)‖X = dist (x,A) := inf
y∈A
‖x− y‖X (3.4)

for all x ∈ X. The value P (x) is equivalently characterized by the condition

Re(x− P (x), a− P (x)) ≤ 0 ∀a ∈ A. (3.5)

The map P : X → A is called the orthogonal projection from X to A.

Proof. Step 1: Uniqueness of P (x).
Set m := infy∈A ‖x− y‖X and assume that there exist a, b ∈ A such that

‖a− x‖ = ‖b− x‖ = m. (3.6)

It follows from the triangle inequality and the homogeneity of the norm that
‖a+b

2 − x‖ ≤ m. We now use the parallelogram identity to show that the
inequality is strict if a 6= b. Since A is convex we get

m2 ≤ ‖a+ b

2
− x‖2 = ‖a− x

2
+
b− x

2
‖2 =

1

2
‖a− x‖2 +

1

2
‖b− x‖2 − ‖a− b

2
‖2

(3.7)

≤ m2 − ‖a− b
2
‖2. (3.8)
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Thus a = b.
Step 2: Existence of P (x).

By definition of m there exist ak ∈ A such that ‖ak − x‖2 ≤ m2 + 1
k for

k ∈ N \ {0}. Since A is convex we have ‖ak+aj
2 − x‖ ≥ m. Hence the

parallelogram identity gives

m2 ≤ m2 +
1

2k
+

1

2j
− ‖ak − aj

2
‖2. (3.9)

Thus j 7→ aj is a Cauchy sequence and since X is complete there exists
a ∈ X such that aj → a∗ in X. Since A is closed we have a∗ ∈ A. Finally
the continuity of the norm implies that ‖a∗ − x‖ ≤ m. By the definition of
m we must have equality and we set P (x) = a∗.

[10.11. 2017, Lecture 9]
[15.11. 2017, Lecture 10]

Step 3: Characterization of P (x).
To see that (3.4) implies (3.5) let λ ∈ (0, 1). Since A is convex we have
(1− λ)P (x) + λa ∈ A and thus

‖x− P (x)‖2 ≤ ‖x− [(1− λ)P (x) + λa]‖2 = ‖x− P (x)− λ(a− P (x))‖2

=‖x− P (x)‖2 − 2 Re(x− P (x), λ(a− P (x))) + ‖λ(a− P (x))‖2. (3.10)

Subtract ‖x− P (x)‖2 on both sides, divide by λ > 0 and consider the limit
λ ↓ 0. This gives (3.5).

Conversely assume that (3.5) holds. Then for all a ∈ A

‖x− a‖2 = ‖(x− P (x)) + (P (x)− a)‖2 (3.11)

= ‖x− P (x)‖2 + 2 Re(x− P (x), P (x)− a)︸ ︷︷ ︸
≥0

+‖P (x)− a‖2 (3.12)

≥ ‖x− P (x)‖2. (3.13)

Thus (3.4) holds.

Corollary 3.3 (Projection onto a subspace). Let X be a Hilbert space and
let Y ⊂ X be a closed subspace. Then there exists one and only one map
P : X → Y with

‖x− P (x)‖ = dist (x, Y ). (3.14)

This map is linear and it is equivalently characterized by the condition

(x− P (x), y) = 0 ∀y ∈ Y. (3.15)

Notation: If Y is a subspace we define the orthogonal space by

Y ⊥ := {x ∈ X : (x, y) = 0 ∀y ∈ Y }. (3.16)
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We have
Y closed =⇒ (Y ⊥)⊥ = Y. (3.17)

Clearly Y ⊂ (Y ⊥)⊥. Assume that z ∈ (Y ⊥)⊥ \ Y and let P as in the
Corollary. Then z −Pz ∈ Y ⊥ by (3.15). At the same time z −Pz ∈ (Y ⊥)⊥

since Y ⊂ (Y ⊥)⊥. Thus z − Pz = 0, i.e., z ∈ Y , a contradiction.

Proof. Theorem 3.2 implies the existence and uniqueness of P (x). Moreover
P (x) is characterized by the condition

Re(P (x)− x, a− P (x)) ≤ 0 ∀a ∈ Y. (3.18)

Let y ∈ Y . If X is a real Hilbert space application of (3.18) with a = P (x)±y
implies (3.15). If X is a complex Hilbert space application of (3.18) with
a = P (x) ± y and a = P (x) ± iy implies (3.15). Conversely (3.15) always
implies (3.18).

Finally linearity of P follows from (3.15) and uniqueness. Indeed if
x1, x2 ∈ X and λ ∈ K then (3.15) implies that

(x1 + x2 − P (x1) + P (x2), y) = 0 , (λx1 − λP (x1), y) = 0 ∀y ∈ Y (3.19)

and by uniqueness we get P (x1 +x2) = P (x1) +P (x2) and P (λx) = λP (x).

Example 3.4. Let U ⊂ Rn be open and bounded, let v ∈W 1,2(U). Let

A := v +W 1,2
0 (U) := {u ∈W 1,2(U) : u = v + w, w ∈W 1,2

0 (U)} (3.20)

and let

(f, g) :=

∫
U

n∑
i=1

∂if∂ig dLn, [f ]2 := (f, f) =

∫
U
|∇f |2 dLn. (3.21)

Note that (·, ·) is a positive semidefinite symmetric bilinear form and [·] is
a seminorm on W 1,2. We claim that there exists a unique ū ∈ A such that

[ū] = dist (0, A) = inf
u∈A

[u] (3.22)

and

0 = (ū, w) =

∫
U

n∑
i=1

∂iū ∂iw dLn ∀w ∈W 1,2
0 (U). (3.23)

This does not directly follow from Theorem 3.2 since (·, ·) is only positive
semidefinite. The parallelogram identity, however, still holds and thus for
any sequence k 7→ uk ∈ A with [uk]

2 ≤ dist 2(0, A) + 1
k we get that

[
uj − uk

2
]2 ≤ 1

2j
+

1

2k
. (3.24)
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Now uk − v ∈ W 1,2
0 (U) and hence it follows from the Poincaré inequality

below that k 7→ uk − v is a Cauchy sequence in W 1,2
0 (U). Thus uj → ū in

W 1,2(U) and ū ∈ A. The condition (3.23) now follows as in Corollary 3.3.
If ū ∈ C2(U) ∩ C(Ū) and v ∈ C(Ū) then it follows from (3.23) and the

definition of A that

−∆u = 0 in U, u = v on ∂U, (3.25)

i.e. u is a classical solution of the Dirichlet problem.
If ū ∈ v + W 1,2

0 (U) and (3.23) holds we call ū a weak solution of the
Dirichlet problem. Note that in Einführung PDG we have shown that (3.23)
implies that ū ∈ C∞(U) and −∆ū = 0 in U (Weyl’s lemma).

Lemma 3.5 (Poincaré inequality). Let n ≥ 1, p ∈ [1,∞]. Let U ⊂ Rn
be bounded and open and assume that U ⊂

∏n
i=1(ai, ai + Li). Then for

f ∈W 1,p
0 (U) one has

‖f‖Lp(U) ≤ Li‖∂if‖Lp(U). (3.26)

Proof. By density it suffices to prove this for f ∈ C∞c (U). By Fubini one can
easily reduce the problem to the case n = 1 for which the assertion follows
from the fundamental theorem of calculus. See Homework Sheet 4, Problem
3.

Definition 3.6 (Uniformly convex spaces). A normed space X is called
uniformly convex if

∀ε > 0 ∃δ > 0 ‖x‖ = 1, ‖y‖ = 1, ‖x+ y

2
‖ ≥ 1− δ =⇒ ‖x− y‖ ≤ ε.

(3.27)

Example. (i) Let p ∈ (1,∞). Then Lp(X,S, µ) is uniformly convex
(Homework sheet 5, Problems 3 and 4). The spaces L1(X,S, µ) and L∞(X,S, µ)
are not uniformly convex (except in the trivial case when µ is concentrated
on one point).
(ii) By the parallelogram identity every Hilbert space is uniformly convex
(with δ = ε2/2).

Theorem 3.7. Let X be a uniformly convex Banach space and let A ⊂ X
be non-empty, closed and convex. Then there exists one and only one map
P : X → A such that

‖x− P (x)‖ = dist (x,A). (3.28)

Proof. Let m = dist (x,A). If m = 0 then x ∈ A because A is closed. Thus
P (x) = x. If m > 0 we proceed as in the Hilbert space case and use uniform
convexity instead of the parallelogram identity to deduce convergence.
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Let ak ∈ A be such that mk := ‖ak − x‖ ≤ m+ 1
k . Since A is convex we

have ‖ak+al
2 − x‖ ≥ m. Set

zk =
ak − x
mk

. (3.29)

Then

ak + al
2

− x =
1

2
(mkzk +mlzl) = m

zk + zl
2

+
1

2
(mk −m)zk +

1

2
(ml −m)zl.

(3.30)
Thus

‖zk + zl
2
‖ ≥ 1− 1

2km
− 1

2lm
. (3.31)

It follows from the definition of uniform convexity that k 7→ zk is a Cauchy
sequence. Thus zk → z in X and hence ak → a in X and a ∈ A since A
is closed. Moreover ‖a− x‖ = m since the norm is continuous. Uniqueness
follows directly from strict convexity.

Lemma 3.8 (’Almost orthogonal element’). Let X be a normed space, let
Y be a closed subspace with Y 6= X and let θ > 0. Then there exists xθ ∈ X
with

‖xθ‖ = 1, dist (xθ, Y ) ≥ 1− θ. (3.32)

Remark. If X is a Hilbert space and x is orthogonal to Y , i.e., (x, y) =
0 for all y ∈ Y , then Corollary 3.3 implies that ‖x‖ = dist (x, Y ) (since
orthogonality implies P (x) = 0). In a general normed space there is no
notion of orthogonality, but the element xθ is almost as good as a vector
orthogonal to Y in the sense that the ratio of the distance to Y to the norm
is almost 1.

Proof. Let z ∈ X \ Y . Then dist (z, Y ) > 0 since Y is closed. Thus there
exists y ∈ Y such that ‖z − y‖ ≤ 1

1−θdist (z, Y ). Since Y is a linear space

we have dist (z, Y ) = dist (z − y, Y ). Now set xθ = z−y
‖z−y‖ .

3.2 Compactness

Theorem 3.9. Let (X, d) be a metric space and let A ⊂ X. Then the
following statements are equivalent.

(i) A is compact, i.e. every cover of A by open sets contains a finite
subcover.

(ii) A is sequentially compact, i.e. every sequence x : N → A has a con-
vergent subsequence whose limit is in A.

(iii) (A, d) is complete and A is precompact, i.e. for each ε > 0 there exists
a finite number of ε balls which cover A.
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Remark. The definition of ’precompact’ in (iii) follows H.W. Alt’s book.
Some authors also call this property ’totally bounded’.

Proof. (i) ⇒ (ii): If the sequence x contains no convergent subsequence
with limit in A then for each y ∈ A there exists an ry > 0 such that the
set Ny := {j ∈ N : xj ∈ B(y, ry)} is finite. The balls B(y, ry) form an open
cover of A. Hence there exist finitely many balls such that

A ⊂
k⋃
i=1

B(yi, ryi). (3.33)

Thus N ⊂
⋃k
i=1Nyi . This is a contradiction since the right hand side is a

finite set.
(ii) ⇒ (iii): We first show that (A, d) is complete. Let x : N → A be a

Cauchy sequence. By (ii) there exists a convergent subsequence whose limit
x∗ is in A. Since x is a Cauchy sequence, the whole sequence converges to
x∗. Hence (A, d) is complete. Now let ε > 0 and assume that A cannot be
covered by a finite number of ε balls. We inductively construct a sequence
x : N → A such that d(xj , xk) ≥ ε if j 6= k. Indeed if x1, . . . xk are given
with that property then

A \
k⋃
i=1

B(xi, ε) 6= ∅. (3.34)

Take xk+1 ∈ A\
⋃k
i=1B(xi, ε). Then d(xk+1, xj) ≥ ε for j ≤ k. The sequence

xk contains no convergent subsequence. This contradicts (ii).
[15.11. 2017, Lecture 10]
[17.11. 2017, Lecture 11]

(iii) ⇒ (i): Let Λ be an index set, let Uλ ⊂ X be open for all λ ∈ Λ and
assume that A ⊂

⋃
λ∈Λ Uλ. Let B denote the set of all subsets of A which

cannot be covered by finitely many of the sets Uλ, i.e.,

B := {B ⊂ A : Λ′ ⊂ Λ, B ⊂
⋃
λ∈Λ′

Uλ =⇒ Λ′ infinite}. (3.35)

We want to show A 6∈ B.
Since A is precompact we have

B ∈ B and ε > 0 =⇒ ∃x1, . . . xkε A ⊂
kε⋃
i=1

B(xi, ε) (3.36)

=⇒ ∃i B ∩B(xi, ε) ∈ B (3.37)

Now suppose that A ∈ B. Then application of the above implication
with ε = 1

k shows that there exist Bk ∈ B such that B1 = A and Bk+1 =
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Bk ∩B(xk,
1

k+1). Now let yk ∈ Bk ⊂ A. Then by construction d(yl, yk) ≤ 2
k

if l ≥ k. Since A is complete there exists y∗ ∈ A such that yk → y∗ as
k → ∞. By assumption there exists λ ∈ Λ such that y∗ ∈ Uλ. Since Uλ is
open there exists δ > 0 such that B(y∗, δ) ⊂ Uλ. Thus for k large enough

Bk ⊂ B(xk,
1

k
) ⊂ B(yk,

2

k
) ⊂ B(y∗, δ) ⊂ Uλ. (3.38)

This contradicts the fact that Bk ∈ B.

Proposition 3.10. Let (X, d) be a metric space and let A ⊂ X. Then the
following assertions holds.

(i) Subsets of precompact sets are precompact.

(ii) A precompact =⇒ A bounded

(iii) A precompact =⇒ A precompact and closed.

(iv) A compact =⇒ A closed.

(v) If (X, d) is complete then

A precompact ⇐⇒ A compact. (3.39)

(vi) If X = Kn with the standard norm then

A ⊂ Kn precompact ⇐⇒ A bounded. (3.40)

(vii) (Heine-Borel property) If X = Kn with the standard norm then

A ⊂ Kn compact ⇐⇒ A bounded and closed. (3.41)

(viii) If A,Ai ⊂ X and δi > 0 for i ∈ N with limi→∞ δi → 0 then

∀i ∈ N A ⊂ Bδi(Ai) and Ai precompact =⇒ A precompact.
(3.42)

(ix) Let (X, dX) and (Y, dY ) be metric spaces and assume that f : X → Y
is continuous. Then

A ⊂ X compact =⇒ f(A) ⊂ Y compact. (3.43)

(x) Let (X, dX) and (Y, dY ) be metric spaces and assume that f : X → Y
is uniformly continuous. Then

A ⊂ X precompact =⇒ f(A) ⊂ Y precompact. (3.44)
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Remark. In (x) it is not enough to assume that f is continuous. Ex-
ample f(x) = x

1+|x| is a continuous map from (−1, 1) to R and (−1, 1) is
precompact, but R is not.

Proof. Properties (i)–(iv) follow directly from the definition of precompact-
ness and Theorem 3.9. Properties (vi) and (vii) were proved in Analysis I.
(v)⇐=: by Theorem 3.9 A is precompact and the assertion follows from (i).
(v) =⇒: By (iii) A is precompact and closed. Thus (A, d) is complete by
Proposition 1.26. Now use Theorem 3.9.
(viii): Let ε > 0. Let i ∈ N such that δi ≤ ε/2. Since Ai is precompact
there exist finitely many x1, . . . , xm ∈ X such that

Ai ⊂
m⋃
j=1

B(xi, ε/2), and hence A ⊂
m⋃
j=1

B(xi, ε). (3.45)

(ix): Assume that f(A) ⊂
⋃
λ Vλ and Vλ open. Then Uλ := f−1(Vλ) is

open and A ⊂
⋃
λ Uλ. Since A is compact there exist finitely many λi with

A ⊂
⋃k
i=1 Uλi . Thus f(A) ⊂

⋃k
i=1 Vλi .

(x): Let ε > 0. By uniform continuity there exists δ > 0 such that d(x, x′) <
δ implies d(f(x), f(x′)) < ε. Since A is precompact there exist finitely many
balls B(xi, δ) which cover A. Thus the balls B(f(xi), ε) cover f(A).

Lemma 3.11. Let X be a finite dimensional K vector space. Then all norms
of on X are equivalent. In particular if ‖·‖ is any norm on X, then (X, ‖·‖)
is complete.

Proof. Let n = dimX and let {e1, . . . , en} be a basis of X. Then the map

x 7→ h(x) =
n∑
i=1

xiei (3.46)

is a bijective linear map from Kn to X. If ‖ · ‖ is a norm on X then

|x| := ‖h(x)‖ (3.47)

is a norm in Kn and the map h is an isometry from (Kn, | · |) to (X, ‖ · ‖).
Hence it suffices to show all norms on Kn are equivalent and that (Kn, | · |)
is complete.

Let {e1, . . . , en} be the standard basis of Kn, let | · | be an arbitrary
norm on Kn and let |x|2 = (

∑
|xi|2)1/2 denote the Euclidean norm. By the

triangle inequality and the Cauchy Schwarz inequality in Rn

|x| ≤
n∑
i=1

|xi||ei| ≤ C|x|2, with C = (
n∑
i=1

|ei|2)1/2. (3.48)
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From this it follows that the map x 7→ |x| is continuous (and even Lipschitz
continuous) as a map from (Kn, | · |2) to R. Let S = {x ∈ Kn : |x|2 = 1}.
Then S is compact in (Kn, | · |2) and hence |x| attains its minimum on S by
Theorem 1.12. Thus

c = inf{|x| : x ∈ S} = min{|x| : x ∈ S} > 0 (3.49)

since | · | is a norm. By the homogeneity of the norm this shows that

|x| ≥ c|x|2. (3.50)

and thus | · | and | · |2 are equivalent. In particular (Kn, | · |) is complete since
(Kn, | · |2) is complete.

Lemma 3.12. Let (X, ‖·‖) be a normed space and Y be a finite dimensional
subspace. Then Y is complete and hence closed.

Proof. Apply Lemma 3.11 to (Y, ‖ · ‖).

Theorem 3.13. Let X be a normed space. Then

B(0, 1) compact ⇐⇒ dimX <∞. (3.51)

Remark. The assertion holds also for B(0, R) for any R > 0.

Proof. ’⇐=’: Let n = dimX, let {e1, . . . , en} be a basis of X and let h(x) :=∑n
i=1 xiei and |x| := ‖h(x)‖. Since |·| is equivalent to the Euclidean norm |·|2

on Kn the map h : (Kn, |·|2)→ (X, ‖·‖) is continuous and K ′ := h−1(B(0, 1))
is closed and bounded in (Kn, | · |2). Thus K ′ is compact and therefore
B(0, 1) = h(K) is compact by Proposition 3.10 (ix).

’=⇒’: Assume that dimX = ∞. For k ∈ N we inductively construct
xk ∈ B(0, 1) with ‖xk‖ = 1 and ‖xk−xj‖ ≥ 1

2 if k 6= j. Thus B(0, 1) cannot
be covered by finitely many balls of radius 1

4 and hence is not compact.
Assume that x0, . . . xK have already been constructed and let

Y := span {x0, . . . , xK}. (3.52)

Then Y is a finite dimensional subspace of X and hence closed by Lemma
3.12. Moreover Y 6= X since dimX = ∞. By Lemma 3.8 there exists
xK+1 ∈ X with ‖xK+1‖ = 1 and

dist (xK+1, Y ) ≥ 1

2
. (3.53)

Thus in particular ‖xK+1 − xk‖ ≥ 1
2 for all k ≤ K.

Lemma 3.14. Let (X, d) be a metric space and let A ⊂ X be compact.
Then for every x ∈ X there exists an a ∈ A such that

d(x, a) = dist (x,A) := inf{d(x, y) : y ∈ A}. (3.54)

Proof. Let x ∈ X. Then the map y 7→ d(x, y) is continuous. The assertion
follows from Theorem 1.12.
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3.3 Compact sets in C(S;Y ) and Lp(Rn): the Arzela-Ascoli
and Frechet-Kolmogorov-Riesz theorem

Theorem 3.15 (Arzela-Ascoli). Let (X, d) be a metric space and let S ⊂ X
be compact. Let Y be a Banach space. Then

A ⊂ C(S;Y ) is precompact if and only if (3.55)

(i) (pointwise precompactness)

∀x ∈ S Kx := {f(x) : f ∈ A} is precompact in Y and (3.56)

(ii) (equicontinuity)

∀ε > 0 ∃δ > 0 ∀f ∈ A d(x, x′) < δ =⇒ ‖f(x)− f(x′)‖ < ε.
(3.57)

Example. Bounded sets in C0,α(S;Km) are equicontinuous and precom-
pact in C(S;Km) (but in general not precompact in C0,α(S;Km)).

Remark. (i) Condition (3.56) and (3.57) together with the compactness
of S imply that

K := {f(x) : f ∈ A, x ∈ S} =
⋃
x∈S

Kx is precompact in Y . (3.58)

(ii) The most frequently used case is Y = Km. In this case precompactness
of Kx or K is the same as boundedness.
(iii) The assumption that S is compact is needed even if we use the stronger
condition (3.58) and Y = R. Let ϕ ∈ Cc(−1

2 ,
1
2)) with 0 ≤ ϕ ≤ 1 and

ϕ(0) = 1 and let A be the set of integer translates of ϕ, i.e., A = {ϕk :
ϕk(x) = ϕ(x − k), k ∈ Z}. Then ‖ϕj − ϕk‖ = 1 if j 6= k. Hence A is not
precompact.

Proof. ’⇐=’: Let ε > 0. Let δ > 0 be as in the definition of equicontinuity.
Since S is compact there exist finitely many balls B(x1, δ), . . . B(xl, δ) which
cover S. Let K ′ = ∪lj=1Kxj . Then K ′ is precompact as a finite union of
precompact sets. Thus there exist finitely many balls B(yi, ε) ⊂ Y , i =
1, . . . k which cover K ′.

For each map σ : {1, . . . , l} → {1, . . . , k} define

Aσ := {f ∈ A : ‖f(xj)− yσ(j)‖ < ε ∀j = 1, . . . , l} (3.59)

Then
⋃
σ Aσ = A. For each Aσ which is not empty choose fσ ∈ Aσ. Note

that the number of maps σ is kl and in particular finite.
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Let f ∈ Aσ. Let x ∈ S. Then x ∈ B(xj , δ) for some j ∈ {1, . . . , l} and
equicontinuity yields

‖f(x)− fσ(x)‖ < ‖f(xj)− fσ(xj)‖+ 2ε

≤‖f(xj)− yσ(xj)‖+ ‖yσ(xj) − fσ(xj)‖+ 2ε ≤ 4ε. (3.60)

Thus
∀f ∈ Aσ ‖f − fσ‖ := sup

x∈S
‖f(x)− fσ(x)‖ ≤ 4ε (3.61)

and therefore Aσ ⊂ B(fσ, 5ε). Since A =
⋃
σ Aσ it follows that A can be

covered by finitely many balls of radius 5ε. Since ε > 0 was arbitrary this
finishes the proof.

’=⇒’: Pointwise precompactness follows from the fact the map f 7→ fx
from C(S;Y )→ Y is Lipschitz continuous and Proposition 3.10 (x).
To prove equicontinuity let ε > 0. Then there exists finitely many f1, . . . , fk
in A such that A ⊂

⋃k
i=1B(fi, ε/3). Each fi is a continuous function on

a compact set S and hence uniformly continuous (see (2.11)). Thus there
exist δi > 0 such that

d(x, x′) < δi =⇒ ‖fi(x)− fi(x′)‖ < ε/3. (3.62)

Let δ = mini=1,...,k δi and assume that d(x, x′) < δ. If f ∈ A there exists an
i such that ‖f − fi‖ < ε/3. Thus

‖f(x)− f(x′)‖ < ‖fi(x)− fi(x′)‖+
2

3
ε < ε. (3.63)

This finishes the proof of (3.57).

[17.11. 2017, Lecture 11]
[22.11. 2017, Lecture 12]

Theorem 3.16 (Frechet-Kolmogorov-M. Riesz). Let p ∈ [1,∞) and let A ⊂
Lp(Rn). Then A is precompact if and only if the following three conditions
hold.

(i) (Lp boundedness) supf∈A ‖f‖Lp(Rn) <∞;

(ii) (Lp equicontinuity)

lim
h→0

sup
f∈A
‖f(·+ h)− f(·)‖Lp(Rn) = 0; (3.64)

(iii) (tightness/ no escape to infinity)

lim
R→∞

sup
f∈A

∫
Rn\B(0,R)

|f |p dLn = 0. (3.65)
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Lemma 3.17. Let F ⊂ Rn be measurable and A ⊂ Lp(F ). Define the
extension operator E by

(Ef)(x) :=

{
f(x) x ∈ F,
0 x ∈ Rn \ F.

(3.66)

Then A is precompact in Lp(F ) if and only if EA is precompact in Lp(Rn).

Proof. This follows from Proposition 3.10 (x) and the fact that the extension
operator E : Lp(F ) → Lp(Rn) and the restriction operator R : Lp(Rn) →
Lp(F ) given by f 7→ f|F are Lipschitz continuous and REA = A.

Example. Let p ∈ [1,∞) and let U ⊂ Rn be bounded. Then bounded
sets in W 1,p

0 (U) are precompact in Lp(U).

Proof: Let A := {f ∈ W 1,p
0 : ‖f‖W 1,p ≤ M} and let E denote the

extension operator Lp(U) → Lp(Rn) (see Lemma 3.17). If f ∈ W 1,p
0 (U)

then Ef ∈ W 1,p(Rn) (see Example (ii) after Definition 2.44). By Lemma
3.17 it suffices to show that EA is precompact in Lp(Rn). Now we have for
every g ∈W 1,p(Rn)

‖g(·+ h)− g(·)‖Lp(Rn) ≤ |h| ‖∇g‖Lp(Rn). (3.67)

Indeed, for g ∈ C1
c (Rn) this follows from the identity

g(x+ h)− g(x) =

∫ 1

0
Dg(x+ th)h dt,

Jensen’s inequality and Fubini’s theorem applied to
∫
Rn
∫ 1

0 |Dg(x+th)|p dt dx.
For general g ∈ W 1,p(Rn) the assertion follows by density of C1

c (Rn). Ap-
plying (3.67) to Ef we see that condition (ii) in Theorem 3.16 is satisfied.
Moreover (i) holds since ‖Ef‖Lp(Rn) ≤ M for all f and (iii) is trivially
satisfied since U is bounded and Ef = 0 on Rn \ U .

Proof of Theorem 3.16, general strategy. The main point is to verify that
properties (i), (ii) and (iii) imply precompactness of A. To do so we show
that for each δ > 0 there exists

Aδ ⊂ Lp(Rn) precompact with A ⊂ Bδ(Aδ). (3.68)

Then the precompactness of A follows from Proposition 3.10 (viii).
To construct Aδ we modify f by truncation and convolution. Then we

will use the Arzela-Ascoli theorem to show that the modified functions form
a precompact set in C0(B(0, R)) and hence in Lp(B(0, R)). Conditions (ii)
and (iii) guarantee that f and its modification differ only by δ in the Lp

norm.
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We will use the following result.

Lemma 3.18. Let p ∈ [1,∞] and f ∈ Lp(Rn). Let ϕ ∈ L1(Rn) with
suppϕ ⊂ B(0, r), ϕ ≥ 0 and

∫
Rn ϕdL

n = 1. Then

‖ϕ ∗ f − f‖Lp(Rn) ≤ sup
|h|≤r

‖f(·+ h)− f(·)‖Lp(Rn). (3.69)

Proof. Since
∫
Rn ϕdL

n = 1 we have

ϕ ∗ f(x)− f(x) =

∫
Rn
ϕ(y)(f(x− y)− f(x)) dy (3.70)

and thus

|ϕ ∗ f(x)− f(x)| ≤
∫
Rn
ϕ(y)|(f(x− y)− f(x))| dy. (3.71)

For p = 1 the assertion now follows from Fubini’s theorem. For 1 < p <∞
set 1

q = 1 − 1
p and write ϕ(y) = ϕ(y)

1
qϕ(y)

1
p and apply Hölder’s inequality.

This gives3

|ϕ ∗ f(x)− f(x)| ≤
(∫

Rn
ϕ(y)|(f(x− y)− f(x))|p dy

) 1
p

. (3.72)

The assertion follows by raising this inequality to the power p and applying
Fubini’s theorem.

Finally, let p = ∞ and let ω denote the right hand side of (3.69). Note
that the map (x, y) 7→ |f(x− y)− f(x)| is measurable with respect to L2n.
Hence the set E := {(x, y) : |f(x − y) − f(x)| > ω} is L2n measurable. By
assumption Ln(E ∩ (Rn×{y})) = 0 for all y ∈ B(0, r). By Fubini’s theorem
L2n(E ∩ (Rn × B(0, r))) = 0 and thus Ln(E ∩ ({x} × B(0, r)) = 0 for a.e.
x ∈ Rn. Together with (3.71) this implies the assertion.

Proof of the implication ’⇐=’ in Theorem 3.16, continued. We now construct
the approximating sets Aδ by truncation and convolution.

Let |h| ≤ 1. Since (a+ b)p ≤ 2p(ap + bp) for all a, b ≥ 0 we have∫
Rn
|(fχB(0,R))(x+ h)− (fχB(0,R))(x)|p dx

≤
∫
B(0,R−1)

|f(x+ h)− f(x)|p dx+

∫
Rn\B(0,R−1)

2p(|f(x+ h)|p + |f(x)|p) dx

≤
∫
B(0,R−1)

|f(x+ h)− f(x)|p dx+ 2

∫
Rn\B(0,R−2)

2p|f(x)|p dx. (3.73)

3alternatively the following estimate follows by applying Jensen’s inequality with re-
spect to the measure µ = ϕLn
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Let δ > 0. By conditions (ii) and (iii) there exist R and j ∈ N with j ≥ 1
such that

sup
|h|≤ 1

j

‖fχB(0,R)(·+ h)− fχB(0,R)(·)‖ ≤
δ

4
∀f ∈ A (3.74)

and

‖fχB(0,R) − f‖Lp(Rn) ≤
δ

4
∀f ∈ A. (3.75)

For j and R and as above let ηj(x) = jnη(jx) be the standard mollifier
and set

Aδ := {ηj ∗ (fχB(0,R)) : f ∈ A}. (3.76)

Then it follows from (3.74), Lemma 3.18 and (3.75) that

‖ηj ∗ (fχB(0,R))− f‖ ≤
δ

2
∀f ∈ A. (3.77)

Thus A ⊂ Bδ(Aδ).
To show that Aδ is precompact let M := supf∈A ‖f‖Lp , let 1

p′ = 1 − 1
p

and note that for all f ∈ A we have

ηj ∗ (fχB(0,R)) = 0 in Rn \B(0, R+ 1), (3.78)

sup
x∈Rn

|ηj ∗ (fχB(0,R))(x)| ≤ ‖ηj‖Lp′‖f‖Lp ≤M‖ηj‖Lp′ , (3.79)

sup
x∈Rn

|D ηj ∗ (fχB(0,R))(x)| ≤ ‖Dηj‖Lp′‖f‖Lp ≤M‖Dηj‖Lp′ . (3.80)

The last estimate implies that

|(ηj ∗ fχB(0,R))(x)− (ηj ∗ fχB(0,R))(x
′)| ≤M‖Dηj‖Lp′ |x− x

′|. (3.81)

It follows from (3.79) and (3.81) and the Arzela-Ascoli theorem that Aδ is
precompact in C(B(0, R+1)) and hence in Lp(B(0, R+1)). By (3.78) Aδ is
precompact in Lp(Rn). More precisely the set of restrictions Ãδ := {g|B(0,R) :

g ∈ Aδ} is precompact in C(B(0, R)) and hence in Lp(B(0, R)). Then by
Lemma3.17 the set Aδ = EÃδ is precompact in Lp(Rn). This concludes the
proof of that properties (i), (ii) and (iii) imply precompactness of A.

To prove the converse implication ’=⇒’ in Theorem 3.16 we use the
following result.

Proposition 3.19. Let p ∈ [1,∞) and f ∈ Lp(Rn). Then

lim
h→0
‖f(·+ h)− f(·)‖Lp(Rn) = 0. (3.82)
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Proof. The assertion holds if f ∈ Cc(Rn). Since Cc(Rn) is dense in Lp(Rn)
for p ∈ [1,∞) the proposition follows.

Detailed proof: Let ε > 0. Then there exist g ∈ C∞c (Rn) such that
‖f − g‖ < ε

3 . Suppose that supp g ⊂ B(0, R − 1). Then for g(·+ h) → g(·)
uniformly in B(0, R) and g(·+ h) and g are zero outside B(0, R) if |h| ≤ 1.
Hence

lim
h→0
‖g(·+ h)− g(·)‖Lp(Rn) = 0 (3.83)

and thus

lim sup
h→0

‖f(·+h)−f(·)‖Lp(Rn) ≤ ‖f−g‖Lp(Rn)+‖f(·+h)−g(·+h)‖Lp(Rn) < ε.

(3.84)
Since ε > 0 was arbitrary this finishes the proof.

Proof of the implication ’=⇒’ in Theorem 3.16. Property (i) is obvious since
precompact sets are bounded. To prove (ii) and (iii) let ε > 0. Then
A ⊂

⋃kε
i=1B(fi, ε), where fi ∈ Lp(Rn). For f ∈ B(fi, ε) we have

‖f(·+ h)− f(·)‖Lp ≤ ‖fi(·+ h)− fi(·)‖Lp + 2ε. (3.85)

Thus

sup
f∈A
‖f(·+ h)− f(·)‖Lp ≤ sup

1≤i≤kε
‖fi(·+ h)− fi(·)‖Lp + 2ε. (3.86)

Hence Proposition 3.19 implies that

lim sup
h→0

sup
f∈A
‖f(·+ h)− f(·)‖Lp ≤ 2ε. (3.87)

Since ε > 0 was arbitrary this implies condition (ii).
Similarly for f ∈ B(fi, ε)

‖f‖Lp(Rn\B(0,R)) ≤ ‖fi‖Lp(Rn\B(0,R)) + ε (3.88)

and
sup
f∈A
‖f‖Lp(Rn\B(0,R)) ≤ sup

1≤i≤kε
‖fi‖Lp(Rn\B(0,R)) + ε. (3.89)

Since (a+ b)p ≤ 2p(ap + bp) for a, b ≥ 0 we get

sup
f∈A

∫
Rn\B(0,R)

|f |p dLn ≤ 2p

(
sup

1≤i≤kε

∫
Rn\B(0,R)

|fi|p dLn + εp

)
. (3.90)

Since fi ∈ Lp(Rn) and

∞⋂
i=k

(Rn \B(0, k)) = ∅ we have

lim
R→∞

∫
Rn\B(0,R)

|fi|p dLn = lim
k→∞

∫
Rn\B(0,k)

|fi|p dLn = 0. (3.91)
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Hence

lim sup
R→∞

sup
f∈A

∫
Rn\B(0,R)

|f |p dLn ≤ εp. (3.92)

Since ε > 0 was arbitrary this implies condition (iii). This concludes the
proof of Theorem 3.16.
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4 Linear operators

In this chapter

X,Y, Z, . . . ... denote normed K vector spaces. (4.1)

We will mention explicitly if these spaces are complete, i.e., Banach spaces.
For a linear map T : X → Y we write

Tx := T (x) (4.2)

and for the composition of two linear maps we write

ST := S ◦ T. (4.3)

Lemma 4.1. Let T : X → Y be linear.Then the following three assertions
are equivalent.

(i) T is continuous.

(ii) T is continuous at 0.

(iii) T is bounded, i.e., there exists a constant C such that

‖Tx‖ ≤ C‖x‖ ∀x ∈ X. (4.4)

Proof. ’(i) =⇒ (ii)’: obvious.
’(ii) =⇒ (iii)’: Apply the ε − δ characterization of continuity with ε = 1.
Then there exist δ > 0 such that

T (B(0, δ)) ⊂ B(0, 1). (4.5)

Thus

‖T δ

2

x

‖x‖
‖ ≤ 1 and hence ‖Tx‖ ≤ 2

δ
‖x‖. (4.6)

’(iii) =⇒ (i)’: For x, x′ ∈ X we have

‖Tx′ − Tx‖ ≤ ‖T (x− x′)‖ ≤ C‖x− x′‖. (4.7)

Thus T is Lipschitz continuous and hence continuous.

[22.11. 2017, Lecture 12]
[24.11. 2017, Lecture 13]

It is easy to construct unbounded operators when X is not complete. One
can, for example, take the identity map from X = (l1, ‖ · ‖l∞) to Y =
(l1, ‖ · ‖l1) or from X = (C0[0, 1]; ‖ · ‖L1) to Y = (C0[0, 1]; ‖ · ‖C0). To
construct an unbounded operator from an (infinite dimensional) Banach X
space to itself one can use the fact that every vector space has a basis B.
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Then one takes a countable subset B′ = {b0, b1, . . .} of B and set Tbi = ibi
and Tb = 0 if b ∈ B \ B′. Since B is a basis T has a unique extension to a
linear map from X to itself and T is not bounded.

We set

L(X,Y ) := {T : X → Y : T linear and continuous} (4.8)

and for T ∈ L(X,Y ) we set

‖T‖L(X,Y ) := sup{‖Tx‖ : ‖x‖ ≤ 1} = sup{‖Tx‖
‖x‖

: x 6= 0}. (4.9)

Note that the equality follows from the homogeneity of the norm and that
‖T‖L(X,Y ) is the smallest constant for which (4.4) holds. We call the el-
ements of L(X,Y ) bounded linear operators and we call ‖ · ‖L(X,Y ) the
operator norm. Often we write ‖T‖ instead of ‖T‖L(X,Y ). We use the ab-
breviation

L(X) := L(X,X). (4.10)

Theorem 4.2. The space (L(X,Y ), ‖ · ‖L(X,Y )) is normed space. If Y is
a Banach space then L(X,Y ) is a Banach space. If S, T ∈ L(X) then
ST ∈ L(X) and

‖ST‖ ≤ ‖S‖ ‖T‖ (4.11)

Proof. Let S, T ∈ L(X,Y ) and let λ ∈ K. Then λT and S+T are continuous
linear maps. Hence L(X,Y ) is a K vector space. Moreover ‖λT‖ = |λ|‖T‖
and ‖T‖ = 0 implies that Tx = 0 for all x with ‖x‖ ≤ 1 and hence T = 0.
To prove that T 7→ ‖T‖ is a norm it remains to show that

‖S + T‖ ≤ ‖S‖+ ‖T‖. (4.12)

Now

∀x ∈ B(0, 1) ⊂ X ‖(S + T )x‖ = ‖Sx+ Tx‖ ≤ ‖Sx‖+ ‖Tx‖ ≤ ‖S‖+ ‖T‖
(4.13)

Taking the supremum over x ∈ B(0, 1) we get (4.12)
Now assume that Y is a Banach space and let k 7→ Tk be a Cauchy

sequence in L(X,Y ). Then

∀ε > 0 ∃k0 ∀k, l ≥ k0 ‖Tl − Tk‖ < ε. (4.14)

Thus
∀ε > 0 ∃k0 ∀k, l ≥ k0 ‖Tlx− Tkx‖ ≤ ε‖x‖ (4.15)

Hence for each x ∈ X the sequence k 7→ Tkx is a Cauchy sequence in Y .
Since Y is complete we can define

T∗x := lim
l→∞

Tlx (4.16)
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and it is easy to see that T∗ is linear. Moreover

‖(Tk − T∗)x‖ = lim
l→∞
‖Tkx− Tlx‖ ≤ ε‖x‖ ∀k ≥ k0. (4.17)

Hence ‖Tk − T∗‖ ≤ ε if k ≥ k0. Thus Tk → T∗ in L(X,Y ).
To prove (4.11) note that for all x ∈ X

‖STx‖ ≤ ‖S‖ ‖Tx‖ ≤ ‖S‖ ‖T‖ ‖x‖. (4.18)

Definition 4.3. (i) The space X ′ := L(X,K) is called the dual space of
X. Its elements are called (bounded) linear functionals. Note that
by Theorem 4.2 the space X ′ is always a Banach space (since K is
complete), even if X is not a Banach space.

(ii) The set of compact operators from X to Y is defined as

K(X,Y ) := {T ∈ L(X,Y ) : T (B(0, 1)) compact in Y }. (4.19)

If Y is complete then T (B(0, 1)) is compact if and only if T (B(0, 1))
precompact in Y (see Proposition 3.10 (vi)).

(iii) A linear map P : X → X is called a projection if P 2 = P . The set of
continuous linear projections (or projectors) is defined as

P(X) := {P ∈ L(X) : P 2 = P}. (4.20)

(iv) For T ∈ L(X,Y ) we call

N (T ) := kerT := {x : Tx = 0} (4.21)

the null space (or kernel) of T . Since T is continuous N (T ) is a closed
subspace of X. We call

R(T ) := {Tx : x ∈ X} (4.22)

the range of T . The range is in general not closed.

(v) A map T ∈ L(X,Y ) is called an embedding if T is injective, i.e., if
N (T ) = {0}.

(vi) If T ∈ L(X,Y ) is bijective and T−1 ∈ L(Y,X) we call T an invertible
operator (or a (linear) isomorphism). If X and Y are Banach spaces
then a fundamental theorem of functional analysis (which we will prove
later) states that T ∈ L(X,Y ) and T bijective already implies T−1 ∈
L(Y,X).
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(vii) An operator T ∈ L(X,Y ) is called an isometry if (see Definition 1.27)

‖Tx‖ = ‖x‖ ∀x ∈ X. (4.23)

(viii) If T ∈ L(X,Y ) then we define a linear map T ′ : Y ′ → X ′ by

(T ′y′)(x) := y′(Tx). (4.24)

The map T ′ is called the adjoint (or dual) operator to T and we have
T ′ ∈ L(Y ′, X ′)

To see that T ′ ∈ L(Y ′, X ′) it suffices to note that

|(T ′y′)(x)| = |y′(Tx)| ≤ ‖y′‖ ‖Tx‖ ≤ ‖y′‖ ‖T‖‖x‖. (4.25)

Thus ‖T ′y‖ ≤ ‖y′‖ ‖T‖. Hence T ′ ∈ L(Y ′, X ′) and ‖T ′‖ ≤ ‖T‖ (we will see
later that ‖T ′‖ = ‖T‖).

Proposition 4.4. Let X be finite dimensional. Then every linear map
T : X → Y is continuous.

Proof. Let dimX = n and let {e1, . . . , en} be a basis of X. Then every
x ∈ X has a unique representation x =

∑n
i=1 xiei and ‖x‖1 :=

∑n
i=1 |xi|

defines a norm on X. Now

‖Tx‖ = ‖
n∑
i=1

xiTei‖ ≤ ‖x‖1 sup
1≤i≤n

‖Tei‖. (4.26)

Since by Lemma 3.11 all norms on X are equivalent this shows that T is
bounded and hence continuous.

Definition 4.5 (Frechet differentiability). Let U ⊂ X be open.

(i) A map F : U → Y is called Frechet differentiable at x0 ∈ U if there
exists T ∈ L(X,Y ) such that

lim
x→x0

‖F (x)− F (x0)− T (x− x0)‖
‖x− x0‖

= 0. (4.27)

If such a T exists it is unique. We call T the differential of F at x0

and write
DF (x0) = T. (4.28)

(ii) A map F : U → Y is called Frechet differentiable if it is Frechet
differentiable at every x ∈ U .
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(iii) We say F is continuously differentiable in U (notation: F ∈ C1(U ;Y ))
if F is Frechet differentiable in U and the map

x 7→ DF (x) is continuous as a map U → L(X,Y ). (4.29)

Theorem 4.6 (Inverse function theorem). Let X and Y be Banach spaces,
let U ⊂ X be open, let F ∈ C1(U ;F ) and x0 ∈ U . If

DF (x0) ∈ L(X,Y ) is invertible (4.30)

then F is a C1 diffeomorphism in a neighbourhood of x0. More precisely
there exist open sets V ⊂ X and W ⊂ Y such that x0 ∈ V , F (x0) ∈W such
that

F : V →W bijective, F−1 ∈ C1(W,X) (4.31)

and
DF−1(y) = (DF (F−1(y)))−1. (4.32)

Proof. This was proved in Analysis 2. To construct the inverse function
y 7→ G(y) one applies the Banach fixed point theorem to the map Ty(x) =
L−1y − L−1(F (x) − L(x − x0)), where L = DF (x0) and shows that Ty is
a contraction on B(x0, δ) if y ∈ B(x0, ε) and if δ, ε > 0 are sufficiently
small.

Example 4.7. (i) Let E ⊂ Rn be Lebesgue measurable. Let p ∈ [1,∞]
and let p′ be the dual exponent, i.e., 1

p′ = 1 − 1
p . Let g ∈ Lp′(E) and

define T : Lp(E)→ R by

Tf :=

∫
E
fg dLn. (4.33)

By Hölder’s inequality we have T ∈ (Lp(E))′ and ‖T‖(Lp(E))′ ≤ ‖g‖Lp′ (E).
We shall see later that equality holds and that for p <∞ every element
in (Lp(E))′ can be written in this way.

(ii) For f ∈ C([0, 1]) define

Tf(x) :=

∫ x

0
f(y) dy. (4.34)

Then T ∈ L(C([0, 1]);C1([0, 1])) and T ∈ K(C([0, 1]);C([0, 1])). More-
over R(T ) is not closed in C([0, 1]) (exercise).

(iii) Differential operators. Let U ⊂ Rn be open. For |α| ≤ m let aα : U →
R and set Tf =

∑
|α|≤m aα∂

αf . Then

(a) If aα ∈ C(U) and U is bounded then T ∈ L(Cm(U);C(U));

(b) if U is bounded and aα ∈ C0,β(U) then T ∈ L(Cm,β(U);C0,β(U));
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(c) if aα ∈ L∞(U) then T ∈ L(Wm,p(U);Lp(U)).

One calls T a linear partial differential operator with coefficients aα.
A fundamental question in the theory of partial differential equation is
if and under which additional conditions T is invertible.

Theorem 4.8 (Neumann series). Let X be a Banach space and T ∈ L(X)

with lim supm→∞ ‖Tm‖
1
m < 1 (this hold in particular if ‖T‖ < 1). Then

Id − T is bijective and (Id − T )−1 ∈ L(X). Moreover the series
∑∞

n=0 T
n

converges in L(X) and

(Id − T )−1 =
∞∑
n=0

Tn. (4.35)

Proof. For k ∈ N set Sk :=
∑k

n=0 T
n. By assumption there exist θ < 1 and

m ∈ N such that ‖Tn‖ ≤ θn for all n ≥ m. Then we have for m ≤ k < l

‖Sl − Sk‖ ≤ ‖
l∑

n=k+1

Tn‖ ≤
l∑

n=k+1

‖Tn‖ ≤
∞∑
k+1

θn ≤ θk+1

1− θ
. (4.36)

The right hand side goes to zero as k → ∞. Since L(X) is complete there
exists S ∈ L(X) such that

S = lim
k→∞

Sk in L(X). (4.37)

Hence we have in the limit k →∞

(I − T )S ←− (I − T )Sk =

k∑
n=0

(Tn − Tn+1) = Id − T k+1 −→ I (4.38)

since ‖T k‖ ≤ θk → 0 for k → ∞. Thus (Id − T )S = Id . In the same way
one shows that S(Id −T ) = Id . Thus Id −T is surjective and injective and
S is its inverse.

Corollary 4.9. Let X and Y be Banach spaces. Then the set of invertible
operators is an open subset of L(X,Y ). More precisely: if X 6= {0} and
Y 6= {0} and S, T ∈ L(X,Y ) then

T invertible, ‖S − T‖ < ‖T−1‖−1 =⇒ S invertible. (4.39)

Proof. SetR := T−S. Then S = T (Id−T−1R) and ‖T−1R‖ ≤ ‖T−1‖‖R‖ <
1. Thus Id − T−1R is invertible by Theorem 4.8 and S is invertible as a
product of invertible operators.
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Proposition 4.10. Let

f(z) =
∞∑
n=0

anz
n (4.40)

be a power series with radius of convergence R. Let X be a K Banach space.
If T in L(X) then

lim sup
m→∞

‖Tm‖
1
m < R =⇒ f(T ) :=

∞∑
n=0

anT
n exists in L(X). (4.41)

Proof. By assumption there exists r < R and m ∈ N such that ‖Tn‖ ≤ rn

for all n ≥ m. Thus for m ≤ k ≤ l∥∥∥∥∥
l∑

n=k

anT
n

∥∥∥∥∥ ≤
l∑

n=k

|an| ‖Tn‖ ≤
∞∑
n=k

|an|rn → 0 as k →∞ (4.42)

because the power series has radius of converges R > r.

Example. (i) For all T ∈ L(X) one defines the exponential function by

exp(T ) := eT :=
∞∑
n=0

1

n!
Tn ∈ L(X). (4.43)

For S, T ∈ L(X) we have

ST = TS =⇒ eT+S = eT eS . (4.44)

From this one easily deduces that

d

dt t=t0
etA = Aet0A = et0AA. (4.45)

(ii) If T ∈ T and ‖Id − T‖ < 1 defines

log(T ) = −
∞∑
n=0

1

n
(Id − T )n. (4.46)

Then exp(log T ) = T (exercise).
[24.11. 2017, Lecture 13]
[29.11. 2017, Lecture 14]
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5 Linear functionals on Hilbert spaces and weak
solutions of PDE

5.1 The Riesz representation theorem and the Lax-Milgram
theorem

Motivation: If X is a Hilbert space and x ∈ X then the Cauchy-Schwarz
inequality implies that y 7→ (y, x) is a continuous linear map from X to K,
i.e. an element of X ′. The Riesz representation theorem states that every
element of X ′ can be written in this way.

Theorem 5.1 (Riesz representation theorem). Let X be a Hilbert space.
Then the map J given by

J(x)(y) := (y, x) (5.1)

defines a conjugately linear isomorphism from X to X ′, i.e., J is bijective
and ‖J(x)‖X′ = ‖x‖X .

Remark. It follows thatX ′ is a Hilbert space with scalar product (x′, y′) :=
(J−1(y′), J−1(x′)).

Notation: we denote the isomorphism J by RX .

Definition 5.2. Let X and Y be K vector spaces. A map J : X → Y is
called conjugately linear if for all x, y ∈ X and α ∈ K

J(αx+ y) = αJ(x) + J(y). (5.2)

For K = R conjugately linear is the same as linear.

Proof of Theorem 5.1. By the Cauchy-Schwarz inequality

|J(x)(y)| = |(y, x)| ≤ ‖y‖X‖x‖X , and thus J(x) ∈ X ′ ‖J(x)‖X′ ≤ ‖x‖X .
(5.3)

If x = 0 then J(x) = 0. If x 6= 0 the choice y = x/‖x‖X yields

‖J(x)‖X′ ≥ J(x)(
x

‖x‖X
) = (

x

‖x‖X
, x) = ‖x‖X . (5.4)

Thus ‖J(x)‖X′ = ‖x‖X . Hence J is an isometry and in particular injective.
It follows from the property of the scalar product that J is conjugately
linear.

The main point is to show that J is surjective, i.e., for every T ∈ X ′

there exists a x ∈ X such that T = J(x). Let T ∈ X ′ and assume that
T 6= 0. The null space N (T ) = {y : Ty = 0} is closed since T is continuous.
Let P : X → N (T ) denote the linear projection in Corollary 3.3. Since
T 6= 0 there exists e ∈ X with T (e) = 1. Let x0 = e− P (e). Then

(y, x0) = 0 ∀y ∈ N (T ). (5.5)
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Now T (x0) = T (e) = 1 since P (e) ∈ N (T ). Thus for all x ∈ X

x = x− T (x)x0︸ ︷︷ ︸
∈N (T )

+T (x)x0 (5.6)

and hence
(x, x0) = 0 + T (x)‖x0‖2 ∀x ∈ X (5.7)

so that
T (x) = J(

x0

‖x0‖2
)(x). (5.8)

Variant of the proof of surjectivity. . Let A = {x : T (x) = 1}. Then the
projection theorem shows that there exists x0 ∈ A such that

‖x0‖2 = dist 2(0, A) ≤ ‖z‖2 ∀z ∈ A. (5.9)

For |t| small we have T (x0 + tx) 6= 0 and x0+tx
T (x0+tx) ∈ A. Thus the function

h(t) :=

∥∥∥∥ x0 + tx

T (x0 + tx)

∥∥∥∥2

=
‖x0 + tx‖2

|T (x0 + tx)|2
(5.10)

is minimized at t = 0. Differentiation at t = 0 gives (with T (x0) = 1)

0 = h′(0) = 2 Re(x, x0)− 2‖x0‖2 ReT (x). (5.11)

Hence for K = R we get T = J(x0/‖x0‖2). If K = C we first apply (5.11)
for x and ix and then reach the same conclusion.

Theorem 5.3 (Lax-Milgram). Let X be a K Hilbert space. Let a : X×X →
K be a sesquilinear form. Suppose that there exist constants c0, C0 > 0 such
that

(i) (continuity) |a(x, y)| ≤ C0‖x‖ ‖y‖ ∀x, y ∈ X;

(ii) (coercivity) Re a(x, x) ≥ c0‖x‖2.

Then there exists one and only one map A : X → X such that

a(y, x) = (y,Ax)X ∀x, y ∈ X. (5.12)

Moreover A ∈ L(X) and A is an invertible operator with

‖A‖ ≤ C0 and ‖A−1‖ ≤ 1

c0
. (5.13)

69 [February 2, 2018]



Remark. Note that we did not assume that a is symmetric.

Proof. Step 1: Existence of A.
For x ∈ X define Tx by Tx(y) = a(y, x). By the assumption (i) we have
Tx ∈ X ′ and ‖Tx‖ ≤ C0‖x‖. By the Riesz representation theorem there
exists one and only one element A(x) ∈ X such that

a(y, x) = (y,A(x))X ∀y ∈ X and ‖A(x)‖ ≤ C0‖x‖. (5.14)

Since A(x) is unique and since a and the scalar product are conjugately
linear in the second argument it follows that A is linear. Thus A ∈ L(X)
and ‖A‖ ≤ C0.

Step 2: Lower bound for ‖Ax‖.
Coercivity of a implies that

c0‖x‖2 ≤ Re a(x, x) = Re(x,Ax)X ≤ ‖x‖‖Ax‖ (5.15)

and thus
c0‖x‖ ≤ ‖Ax‖. (5.16)

In particular A is injective.
Step 3: A has closed range.

Assume that yk = Axk and yk → y. Then it follows from (5.16) that

‖xk − xl‖ ≤
1

c0
‖yk − yl‖. (5.17)

Hence k 7→ xk is a Cauchy sequence and xk → x∗ as k → ∞. Since A is
continuous we get yk = Axk → Ax∗ ∈ R(A).

Step 4: A is surjective and ‖A−1‖ ≤ 1
c0

.
Assume that R(A) 6= X. Since R(A) is closed there exists an x0 6= 0 such
that

(x0, y) = 0 ∀y ∈ R(A). (5.18)

To see this take x ∈ X \ R(A) and let x0 = x − P (x) where P is the
orthogonal projection in Corollary 3.3. Now coercivity yields

c0‖x0‖2 ≤ Re(x0, Ax0) = 0, (5.19)

where we used (5.18). Thus x0 = 0, a contradiction. Hence R(A) = X.
Finally the estimate ‖A−1y‖ ≤ 1

c0
‖y‖ follows from (5.16) by taking x =

A−1y.

Corollary 5.4. Let X be a Hilbert space and let a be as in the Lax-Milgram
theorem. Let T ∈ X ′. Then there exists one and only one x ∈ X such that

a(y, x) = T (y) ∀y ∈ X. (5.20)

Moreover the map T 7→ x is conjugately linear and

‖x‖ ≤ 1

c0
‖T‖. (5.21)
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Proof. Let RX : X → X ′ be the conjugately linear isomorphism in the
Riesz representation theorem and let A be the operator in the Lax-Milgram
theorem. Then (5.20) is equivalent to

(y,Ax)X = (y,R−1
X (T ))X ∀y ∈ X (5.22)

and this is equivalent to Ax = R−1
X T or

x = A−1R−1
X T (5.23)

and the estimate for ‖x‖ follow from the Lax-Milgram theorem since RX is
an isometry.

Corollary 5.5. Let X be a Hilbert space and let A ∈ L(X). If there exists
c0 > 0 such that

Re(x,Ax)X ≥ c0‖x‖2X (5.24)

then A is invertible and

‖A−1‖ ≤ 1

c0
. (5.25)

Proof. Apply the Lax-Milgram theorem with a(y, x) = (y,Ax)X .

5.2 Weak solutions of elliptic partial differential equations

We now will use the Lax-Milgram theorem and its corollaries to establish
the existence of weak solutions of elliptic partial differential equations of
second order.

We first quickly review the notion of classical solution. Let U ⊂ Rn
be open and bounded, for i = 1, . . . , n and j = 1, . . . n let aij ∈ C1(U),
hi ∈ C1(U), b ∈ C(U) and f ∈ C(Ω). We seek a function u ∈ C2(U) such
that

Lu = f −
n∑
i=1

∂ihi, where Lu = −
n∑

i,j=1

∂i(aij∂ju) + bu (5.26)

In addition we assume either Dirichlet boundary conditions, i.e., u ∈ C2(U)∩
C(U) and

u = g on ∂U (5.27)

for a given function g ∈ C(Ū) or Neumann boundary condition, i.e., u ∈
C2(U) ∩ C1(U) and

n∑
i=1

νi

− n∑
j=1

aij∂ju+ hi

 = g on ∂U, (5.28)

where ν is the outward normal of U (and where we assume that U has C1

boundary).
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We now reduce the Dirichlet and the Neumann problem to the case of
zero boundary conditions. To have any chance to solve the Dirichlet problem
there must exist a function u0 ∈ C2(U) ∩ C(Ū) with u = g on ∂u. Then
ũ := u− u0 solves the problem

−
n∑

i,j=1

∂i(aij∂j ũ) + bũ = f̃ −
n∑
i=1

∂ih̃i in U (5.29)

ũ = 0 on ∂U, (5.30)

where

f̃ := f − bu0, h̃i := hi −
n∑
j=1

aij∂ju0. (5.31)

We call this the Dirichlet problem with homogeneous boundary conditions.
Similarly to have any chance to solve the Neumann problem there must

exist a u0 ∈ C2(U) ∩ C1(Ū) such that −
∑n

i=1 νi(−
∑n

j=1 aij∂ju + hi) = 0.
Then ũ = u−u0 solves the homogeneous Neumann problem with f replaced
by f̃ and hi replace by h̃i.

In the following we write again u instead of ũ etc.
To pass to the weak formulation of the Dirichlet problem we multiply

(5.29) by a test function ζ ∈ C∞c (U) and integrate over U and integrate by
parts. This gives∫

U

n∑
i,j=1

aij∂iζ∂ju+ bζu dLn =

∫
U
ζf +

n∑
i=1

∂iζhi dLn∀ζ ∈ C∞c (U). (5.32)

Conversely, if (5.32) holds then integration by parts yields (5.26) since∫
U wζ = 0 for all ζ ∈ C∞c (U) implies w = 0.

Definition 5.6 (Weak solution). Let aij , b ∈ L∞(U), f, hi ∈ L2(U). We
say that u is a weak solution of the Dirichlet problem

−
n∑

i,j=1

∂i(aij∂ju) + bu = f −
n∑
i=1

∂ihi in U (5.33)

u = 0 on ∂U, (5.34)

if ∫
U

n∑
i,j=1

aij∂iζ∂ju+ bζu dLn =

∫
U
ζf +

n∑
i=1

∂iζhi dLn ∀ζ ∈W 1,2
0 (U)

(5.35)

u ∈W 1,2
0 (U) (5.36)
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Theorem 5.7. Let U ⊂ Rn be bounded and open. Let aij , b ∈ L∞(U),
f, hi ∈ L2(U) and assume that

b(x) ≥ 0 for a.e. x ∈ U (5.37)

and that the coefficients aij are elliptic, i.e.,

∃c > 0 ∀ξ ∈ Rn
n∑

i,j=1

aij(x)ξiξj ≥ c|ξ|2 for a.e. x ∈ U. (5.38)

Then there exists one and only one weak solution u of the Dirichlet problem.
Moreover there exists a constant C which only depends on the set U such

that

‖u‖2
W 1,2

0

≤ C

c
(‖f‖2L2 +

∑
‖hi‖2L2). (5.39)

Proof. Consider the bilinear form

a(ζ, v) :=

∫
U

n∑
i,j=1

aij∂iζ∂jv + bζv dLn (5.40)

and the linear map

T (ζ) :=

∫
U
ζf +

n∑
i=1

∂iζhi dLn. (5.41)

Then T is a bounded functional on W 1,2
0 and

‖T‖
(W 1,2

0 )′ ≤ (‖f‖2L2 +
∑
‖hi‖2L2)1/2. (5.42)

One also sees easily that a(ζ, v) ≤ C ′‖ζ‖
W 1,2

0
‖v‖

W 1,2
0

. Hence all assertions

follow from Corollary 5.4 if we can show that

a(v, v) ≥ c

C
‖v‖2

W 1,2
0

, (5.43)

where C only depends on U . From the condition b ≥ 0 a.e. and the ellipticity
condition we see that

a(v, v) ≥ c‖∇v‖2L2 . (5.44)

Now the Poincaré inequality, Lemma 3.5, yields

‖v‖2L2 ≤ C‖∇v‖2L2 and hence ‖∇v‖2L2 ≥
1

C + 1
‖v‖2

W 1,2
0

. (5.45)
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[29.11. 2017, Lecture 14]
[1.12. 2017, Lecture 15]

We now pass to the homogeneous Neumann problem, i.e., (5.26), (5.28)
with g = 0. Multiplication of (5.26) by ζ ∈ C1(Ū) and integration by parts
yields∫

U

n∑
i,j=1

aij∂iζ∂ju+ bζu dLn =

∫
U

n∑
i=1

∂iζhi + fζ dLn = 0 ∀ζ ∈ C1(Ū).

(5.46)

Conversely if (5.46) holds for all ζ ∈ C1(Ū) (and if u is C2(U) ∩ C1(Ū) we
can first use all ζ ∈ C∞c (U) to deduce the partial differential equation (5.26).
Then integration by parts yields that∫

∂U
ζ

 n∑
i,j=1

νiaij∂ju−
n∑
i=1

νihi

 dHn−1 = 0 (5.47)

for all ζ ∈ C1(Ū). This implies the boundary condition (5.28) with g = 0.

Definition 5.8 (Weak solution of the Neumann problem). Let aij , b ∈
L∞(U), f, hi ∈ L2(U). We say that u is a weak solution of the Neumann
problem

−
n∑

i,j=1

∂i(aij∂ju) + bu = f −
n∑
i=1

∂ihi in U (5.48)

n∑
i=1

νi

− n∑
j=1

aij∂ju+ hi

 = 0 on ∂U, (5.49)

if ∫
U

n∑
i,j=1

aij∂iζ∂ju+ bζu dLn =

∫
U
ζf +

n∑
i=1

∂iζhi dLn ∀ζ ∈W 1,2(U)

(5.50)

u ∈W 1,2(U) (5.51)

Theorem 5.9. Let U ⊂ Rn be bounded and open. Let aij , b ∈ L∞(U),
f, hi ∈ L2(U) and assume that

b(x) ≥ c > 0 for a.e. x ∈ U (5.52)

and that the coefficients aij are elliptic, i.e.,

∃c > 0 ∀ξ ∈ Rn
n∑

i,j=1

aij(x)ξiξj ≥ c|ξ|2 for a.e. x ∈ U. (5.53)
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Then there exists one and only one weak solution u of the Neumann problem.
Moreover

‖u‖2W 1,2 ≤
1

c
(‖f‖2L2 +

∑
‖hi‖2L2). (5.54)

Proof. This is parallel to the proof of Theorem 5.7. The quadratic form a
given by (5.40) satisfies

a(v, v) ≥
∫
U
c|∇v|2 + c|v|2 dLn = c‖v‖2W 1,2 . (5.55)

Now the assertion follows from the Lax-Milgram theorem.

In the important special case b = 0 then the assumptions of Theorem 5.9
are not satisfied. Indeed, we do not have existence of a weak solution for all
f and hi. If u is a weak solution we get with ζ = 1

0 = a(1, u) = T (1) =

∫
U
f dLn. (5.56)

Hence the condition
∫
U f dL

n = 0 is necessary for the existence of a solution
if b = 0. Indeed it is also sufficient.

Theorem 5.10. Let U , aij, f , hi be as in Theorem 5.9 and assume that
b = 0. Assume in addition that U has Lipschitz boundary. Then there exists
a weak solution of the Neumann problem if and only if∫

U
f dLn = 0. (5.57)

If (5.57) holds then the weak Neumann problem has a unique solution u in
the space

X := {v ∈W 1,2(U) :

∫
U
v dLn = 0}. (5.58)

Any other solution is of the form u+ const.

Sketch of the proof. The main point is that in X a Poincaré inequality holds,
i.e., there exists a constant C which depends only on U such that

‖v‖L2 ≤ C‖∇v‖L2 ∀v ∈ X. (5.59)

Together with the ellipticity assumptions this yields

a(v, v) ≥ c‖∇v‖2L2 ≥ c′‖v‖W 1,2 ∀v ∈ X. (5.60)

Moreover X is a closed subspace of W 1,2(U) and thus a Hilbert space. Hence
we can apply Corollary 5.4 in X and this shows that there exists one and
only one u ∈ X such that

a(ζ, u) = T (ζ) ∀ζ ∈ X. (5.61)
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Now every ζ̃ ∈W 1,2(U) can be written as ζ̃ = ζ+const, where ζ ∈ X. Since
b = 0 we have a(1, u) = 0 and by assumption T (const) = constT (1) = 0.
Thus a(u, ζ̃) = T (ζ̃) for all ζ̃ ∈ W 1,2(U). Hence u is a weak solution of the
Neumann problem.

It is easy to see that every constant function is a weak solution, too.
Hence u + const is a solution. Conversely let v be a weak solution of the
Neumann problem. Then there exist a constant a such that v − a ∈ X and
v is a weak solution of the Neumann problem. In particular a(v, ζ) = T (ζ)
for all ζ ∈ X. Hence v = u since we have shown that (5.61) has only one
solution.

The theory of weak solutions does not only give existence and uniqueness
of solutions in a natural way. It also provides an easy and systematic way
to compute approximate solutions and to estimate the error between the
approximate and the exact solutions. We state an abstract result which can
be applied both to the Dirichlet problem and the Neumann problem.

Theorem 5.11. Let X be a Hilbert space, let T ∈ X ′ and let a : X×X → K
be as in the Lax-Milgram theorem, i.e., a is a sesquilinear form and there
exist C, c > 0 such that

a(ζ, u) ≤ C‖ζ‖ ‖u‖, a(u, u) ≥ c‖u‖2 ∀ζ, u ∈ X. (5.62)

Let u ∈ X be the solution of

a(ζ, u) = T (ζ) ∀ζ ∈ X (5.63)

which exists by Corollary 5.4.
Let Y ⊂ X be a finite dimensional subspace. Then there exists one and

only one uY such that

a(ζ, uY ) = T (ζ) ∀ζ ∈ Y. (5.64)

Moreover

‖u− uY ‖ ≤
C

c
inf{‖u− v‖ : v ∈ Y }. (5.65)

If in addition a is symmetric then ‖u‖a := a(u, u)1/2 is a norm (often called
the ’energy norm’) and

‖u− uY ‖a ≤ inf{‖u− v‖a : v ∈ Y }. (5.66)

Thus the error between the true solution u and the approximate solution
uY in the energy norm agrees with error made by looking at the best possible
approximation of u in the subspace Y . In the given norm of X such an
estimate holds up to a constant.
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If u1, . . . uN is a basis of Y the approximate solution uY has a unique
representation uY =

∑N
i=1 αiui and the coefficients αi are the solutions of

the linear system of equations

n∑
j=1

Aijαj = bi ∀i = 1, . . . n, where Aij = a(ui, uj), bi = T (ui).

(5.67)
In the context of elliptic PDE the sequilinear form a and the functional T
are given by (5.40) and (5.41), respectively and one usually chooses the ui
such that many of the matrix entries Aij are zero. One can, e.g., take ui as
piecewise affine and continuous ’hat functions’ (linear finite elements).

Proof. See, Homework sheet 7, problem 4.

6 Linear functionals on Banach spaces and the
Hahn-Banach theorems

Theorem 6.1 (Dual space of Lp). Let p ∈ [1,∞), let 1
p + 1

p′ = 1, let E ⊂ Rn
be measurable. Then

J(g)(f) :=

∫
E
fḡ dLn (6.1)

defines a conjugately linear and isometric isomorphism from Lp
′
(E) to (Lp(E))′.

Remark The result for 1 < p < ∞ holds also for Lp(X,S, µ) where
(X,S, µ) is a general measure space. For p = 1 one needs to assume in
addition that µ is σ-finite, i.e., that X can be write as a countable union of
measurable subsets with finite measure.

Proof. Assume first that p ∈ (1,∞). By Hölder’s inequality J(g)(f) ≤
‖f‖Lp ‖g‖Lp′ and thus J(g) ∈ (Lp(E))′ and ‖J(g)‖ ≤ ‖g‖. To see that
equality holds we set

f(x) =

{
|g(x)|p′−2g(x) if g(x) 6= 0,

0 if g(x) = 0.
(6.2)

Since p = p′

p′−1 we have

‖f‖pLp =

∫
E
|g|p′ dLn = ‖g‖p

′

Lp′
(6.3)

and thus

‖g‖p
′

Lp′
= J(g)(f) ≤ ‖J(g)‖ ‖f‖Lp ≤ ‖J(g)‖ ‖g‖

p′
p

Lp′
. (6.4)

Now p′ − p′

p = 1 and hence ‖J(g)‖ ≥ ‖g‖Lp′ .
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The main point is to show that J is surjective, i.e., every T ∈ (Lp(E))′

is of the above form. We first assume that p ∈ (1,∞). Let T ∈ (Lp(E))′,
assume that T 6= 0 and set

A = {f ∈ Lp(E) : T (f) = 1}. (6.5)

Then A is non empty, closed and convex (in fact affine). Since Lp(E) is
uniformly convex it follows from Theorem 3.7 that there exists f∗ ∈ A such
that

‖f∗‖Lp ≤ ‖g‖Lp ∀g ∈ A. (6.6)

Let h ∈ Lp(E). Then for sufficiently small |t| we have T (f∗ + th) 6= 0 and
thus (6.6) implies that

‖f∗‖pLp ≤
∥∥∥∥ f∗ + th

T (f∗ + th)

∥∥∥∥p
Lp

=
‖f∗ + th‖pLp
|T (f∗ + th)|p

. (6.7)

Hence the expression on the right hand side has a minimum at t = 0. Now
d
dt t=0

|a + tb|p = Re(p|a|p−2āb) and T (f∗) = 1. Thus differentiation with
respect to t at t = 0 yields

0 = pRe

(∫
E
|f∗|p−2f̄∗h dLn

)
− p‖f∗‖pLp Re(T (h)). (6.8)

Using the above equation for h and ih we get

T (h) =

∫
E
gTh dLn, with gT = ‖f∗‖−pLp |f∗|

p−2f̄∗ (6.9)

This finishes the proof for p ∈ (1,∞).
For p = 1 consider first the case that Ln(E) <∞. Then L2(E) ⊂ L1(E).

Hence by the result for p = 2, for T ∈ (L1(E))′ there exists g ∈ L2(E) such
that

T (f) =

∫
fḡ dLn ∀f ∈ L2(E). (6.10)

We now show that

g ∈ L∞(E) and ‖g‖L∞ ≤ ‖T‖. (6.11)

Let
SM := {x ∈ E : |g(x)| ≥M}, f = χSM g. (6.12)

Then

M

∫
SM

|g| dLn ≤
∫
SM

|g|2 dLn =

∫
E
fḡ dLn ≤ ‖T‖ ‖f‖L1 ≤ ‖T‖

∫
SM

|g| dLn.

(6.13)
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For M > ‖T‖ we deduce that
∫
SM
|g| dLn = 0. Since |g| ≥ M in SM this

implies that SM is a null set. This proves (6.11). To see that (6.10) holds
for f ∈ L1(E), define for K ∈ N the truncated function fK by

fK(x) :=

{
f(x) if |f(x)| ≤ K
0 otherwise.

Then by dominated convergence fK → f in L1(E) as K → ∞, and (again
by dominated convergence)∫

E
fK ḡ dLn −→

∫
E
fḡ dLn.

Thus by continuity of T ,∫
E
fḡ dLn = lim

K→∞

∫
E
fK ḡ dLn = lim

K→∞
T (fK) = T (f).

[1.12. 2017, Lecture 15]
[8.12. 2017, Lecture 16]

Finally consider the case L(E) = ∞ and let k 7→ Ek be an increasing
sequence of measurable sets with Ln(Ek) <∞ and E =

⋃
k∈NEk. Let

Tk(f) := T (fχEk). (6.14)

Then Tk ∈ (L1(E))′ with ‖Tk‖(L1)′ ≤ ‖T‖(L1)′ and also Tk ∈ (L2(E))′ since

Tk(f) ≤ ‖T‖ ‖fχEk‖L1 ≤ ‖T‖ ‖f‖L2L(Ek)
1/2. (6.15)

Thus there exist gk ∈ L2(E) such that

Tk(f) =

∫
E
fḡk dLn ∀f ∈ L2(E). (6.16)

By the argument above this implies that gk ∈ L∞(E) and ‖gk‖L∞ ≤ ‖T‖(L1)′ .
The choice f = χEj\Ekgk shows that gk = 0 a.e. on E \ Ek. Now we have∫
E
fχEk ḡk dL

n = Tk(fχEk) = T (fχEk) = Tk+1(fχEk) =

∫
E
fχEk ḡk+1 dLn.

(6.17)
Thus gk+1 = gk a.e. in Ek and we can define g ∈ L∞ with ‖g‖L∞ ≤ ‖T‖ by

g := gk on Ek (6.18)

Moreover

T (fχEk) =

∫
E
fḡk dLn =

∫
E
fχEk ḡk dL

n =

∫
E
fχEk ḡ dL

n. (6.19)
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As above, this equality holds for f ∈ L1(E). If f ∈ L1(E) then the dom-
inated convergence theorem implies that fχEk → f in L1(E). Since T is
continuous on L1(E) and ḡ ∈ L∞(E) passing to he limit k →∞ we get

T (f) =

∫
E
fḡ dLn. (6.20)

To show that J is isometric, let g ∈ L∞(E). Then again by Hölder’s in-
equality J(g) ∈ (L1(E))′ and ‖J(g)‖(L1)′ ≤ ‖g‖L∞ . Equality follows by the
reasoning of (6.13) with SM replaced by SM ∩ Ek.

Theorem 6.2 (Hahn-Banach I). Let X be an R-vector space. Suppose that

(i) p : X → R is sublinear, i.e., for all x, y ∈ X

p(x+ y) ≤ p(x) + p(y) and p(αx) = αp(x) for all α ≥ 0,

(ii) f : Y → R is linear, where Y is a subspace of X, and

(iii) f(x) ≤ p(x) for all x ∈ Y .

Then there is F : X → R linear with

F (x) = f(x) for all x ∈ Y and F (x) ≤ p(x) for all x ∈ X.

Note that p is sublinear if and only if p is convex and p(αx) = αp(x) for
all α ≥ 0.

Note also that the statement of the theorem is purely algebraic/ geomet-
ric. No norms or topologies appear in the statement.

First part of the proof. We show that if Z ⊂ X is a subspace, if g : Z → R
is linear with g ≤ p and z0 6∈ Z then g can be extended to a linear map g0

on Z0 := Z ⊕ span {z0} with g0 ≤ p. To do so we make the ansatz

g0(z + αz0) = g(z) + cα. (6.21)

Clearly g0 is linear on Z0 and g0|Z = g. We have to show that c ∈ R can be
chosen so that

g(z) + cα ≤ p(z + αz0) ∀z ∈ Z ∀α ∈ R. (6.22)

Since g ≤ p on Z the condition holds for α = 0. For α > 0 the condition
becomes

c ≤ 1

α
(p(z + αz0)− g(z)) = p(

z

α
+ z0)− g(

z

α
). (6.23)

For α < 0 the condition becomes

c ≥ 1

α
(p(z + αz0)− g(z)) = g(− z

α
)− p(− z

α
− z0). (6.24)
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We thus need to satisfy

sup
z∈Z

g(z)− p(z − z0) ≤ c ≤ inf
z′∈Z

p(z′ + z0)− g(z′) (6.25)

This is possible since for all z, z′ ∈ Z

g(z)+g(z′) = g(z+z′) ≤ p(z+z′) = p((z−z0)+(z′+z0)) ≤ p(z−z0)+p(z′+z0)
(6.26)

which implies that

g(z)− p(z − z0) ≤ p(z′ + z0)− g(z′). (6.27)

If X is finite dimensional we can now deduce the theorem by induction. For
general X induction is replaced by Zorn’s lemma.

To state Zorn’s lemma we recall some basic notions for (partially) ordered
sets. Let P be a set. A (partial) order ≤ is a relation on P which is reflexive,
antisymmetric and transitive, i.e., for all a, b, c ∈ P we have

(i) (reflexivity) a ≤ a;

(ii) (antisymmetry) if a ≤ b and b ≤ a then a = b;

(iii) (transitivity) if a ≤ b and b ≤ c then a ≤ c.

We call the pair (P,≤) an ordered set. A subset Q ⊂ P is totally ordered if
for any pair (a, b) ∈ Q×Q we have a ≤ b or b ≤ a. For an arbitrary subset
Q ⊂ P we say that c ∈ P is an upper bound for Q if a ≤ c for all a ∈ Q. We
say that an m ∈ P is a maximal element of P if the relation m ≤ x holds
only for x = m. Note that a maximal element need not be an upper bound
for P (e.g. if a ≤ b if and only if a = b then every element is a maximal
element but P has no upper bound, if P contains more than one element).

We say that P is inductive if every totally ordered subset Q ⊂ P has an
upper bound.

Theorem 6.3 (Zorn’s lemma). Every non empty ordered set that is induc-
tive has a maximal element.

Proof of the Hahn-Banach Theorem, second part. We set

P := {(Z, g) : Z ⊂ X subspace, Y ⊂ Z, (6.28)

g : Z → R linear, g|Y = f, g ≤ p on Z} (6.29)

and we define an order on P by

(Z1, g1) ≤ (Z2, g2) ⇐⇒ Z1 ⊂ Z2, g2 = g1 on Z1. (6.30)
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We now verify the assumptions of Zorn’s lemma. Let Q ⊂ P be totally
ordered. Define

Z∗ :=
⋃

(Z,g)∈Q

Z, (6.31)

g∗(x) := g(x) if x ∈ Z and (Z, g) ∈ Q. (6.32)

We have to show that (Z∗, g∗) ∈ P . Then it follows that (Z∗, g∗) is an upper
bound for Q. To see that (Z∗, g∗) ∈ P first note that Y ⊂ Z∗ ⊂ X. Moreover
g∗ is well defined. Indeed if

z ∈ Z1 ∩ Z2 and (Z1, g1) ∈ Q, (Z2, g2) ∈ Q (6.33)

then
(Z1, g1) ≤ (Z2, g2) or (Z2, g2) ≤ (Z1, g1) (6.34)

since Q is totally ordered. Assume the first case. Then

Z1 ⊂ Z2 and g1 = g2 on Z1 (6.35)

and thus
g1(z) = g2(z). (6.36)

In the second case we arrive at the same conclusion. A similar argument
shows that Z∗ is a linear space and g∗ : Z∗ → R is linear. Finally the
definition of P and of g∗ yields g∗|Y = f and g∗ ≤ p on Z∗. Thus every
totally ordered subset of P has an upper bound.

By Zorn’s lemma P has a maximal element (Z, g). If Z = X we are
done. If Z 6= X then the first step yields (Z0, g0) with

(Z, g) ≤ (Z0, g0) and Z0 6= Z. (6.37)

This contradicts the maximality of (Z, g).

[8.12. 2017, Lecture 16]
[13.12. 2017, Lecture 17]

Theorem 6.4 (Hahn-Banach II). Let X be a normed K vector space and
let Y be a subspace (with the norm induced by X). Then for every y′ ∈ Y ′
there exists x′ ∈ X ′ such that

x′ = y′ on Y, ‖x′‖X′ = ‖y′‖Y ′ . (6.38)

Proof. For K = R apply Theorem 6.2 with p(x) = ‖y′‖ ‖x‖. Thus there
exists a linear map x′ : X → R with x′(y) = y′(y) for y ∈ Y and for all x we
have

x′(x) ≤ p(x) = ‖y′‖ ‖x‖, (6.39)

−x′(x) = x′(−x) ≤ p(−x) = ‖y′‖ ‖x‖. (6.40)
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Thus x′ ∈ X ′ and ‖x′‖ ≤ ‖y′‖. We have equality since by definition of ‖y′‖
for each ε > 0 there exists y ∈ Y \ {0} such that

x′(y) = y′(y) ≥ (1− ε)‖y′‖. (6.41)

For K = C consider X and Y as normed R vector spaces XR and YR,
i.e., the scalar multiplication is only carried out for real numbers and the
norms are the same as before). If y′ ∈ Y ′ then

y′re(x) := Re y′(x) (6.42)

defines a bounded linear functional on YR and

‖y′re‖Y ′R ≤ ‖y
′‖Y ′ . (6.43)

Moreover

y′(x) = Re y′(x) + i Im y′(x) = y′re(x)− iy′re(ix). (6.44)

Extend y′re to x′re and define

x′(x) := x′re(x)− ix′re(ix). (6.45)

Then one sees easily that x′ is C linear and a short calculation shows that
‖x′‖ = ‖xre‖ = ‖yre‖ = ‖y′‖.

Theorem 6.5. Let X be a normed space, let Y ⊂ X be a closed subspace
and let x0 ∈ X \ Y . Then there exist and x′ ∈ X ′ such that

x′ = 0 on Y, ‖x′‖ = 1, x′(x0) = dist (x0, Y ). (6.46)

Remark. If X is a Hilbert space we can take x′(x) = (x, x0−Px0
‖x0−Px0‖) where

P is the orthogonal projection onto Y . Theorem 6.5 can often be used as a
substitute for the orthogonal projection.

Proof. On
Y0 := Y ⊕ span {x0} (6.47)

define
y′0(y + αx0) := α dist (x0, Y ). (6.48)

Then y′0 : Y0 → K is linear and y′0 = 0 on Y . We only need to show that y′0
is bounded and ‖y′0‖ = 1. Then the assertion follow from Theorem 6.4.

For y ∈ Y and α 6= 0 we have

dist (x0, Y ) ≤
∥∥∥∥x0 −

−y
α

∥∥∥∥ (6.49)
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and thus

|y′0(y + αx0)| ≤ |α|
∥∥∥∥x0 −

−y
α

∥∥∥∥ = ‖αx0 + y‖. (6.50)

It follows that y′0 ∈ Y ′0 and ‖y′0‖ ≤ 1.
On the other hand we have dist (x0, Y ) > 0 since Y is closed. Let ε > 0.

Then there exist yε ∈ Y such that

‖x0 − yε‖ ≤ (1 + ε)dist (x0, Y ). (6.51)

Then

y′0(x0 − yε) = y′0(x0) = dist (x0, Y ) ≥ 1

1 + ε
‖x0 − yε‖ . (6.52)

Since x0 − yε 6= 0 this implies that ‖y′0‖ ≥ 1
1+ε . Since ε > 0 was arbitrary

we finally conclude that ‖y′0‖ = 1.

Corollary 6.6. Let X be a normed space and x0 ∈ X.

(i) If x0 6= 0 then there exists x′0 ∈ X ′ such that

‖x′0‖ = 1 and x′0(x0) = ‖x0‖. (6.53)

(ii) If x′(x0) for all x′ ∈ X ′ then x0 = 0.

Proof. For the first assertion apply Theorem 6.5 with Y = {0}. The second
assertion follows from the first.

We now show that a point outside a closed convex sets can be separated
from the set by a half space. We will see later that geometrically intuitive
fact has also profound consequences for functional analysis.

Lemma 6.7. Let X be a normed space and let M ⊂ X be a closed convex
set with 0 ∈M0. Let

p(x) := inf{r > 0 :
x

r
∈M} (6.54)

Then p(x) <∞, p : X → R is sublinear and

p(x) ≤ 1 ⇐⇒ x ∈M. (6.55)

Theorem 6.8 (Separation of convex sets). Let X be a normed space. Let
M ⊂ X be non empty, closed and convex and let x0 ∈ X \M . Then there
exists x′ ∈ X ′ and α ∈ R such that

Rex′(x) ≤ α ∀x ∈M and Rex′(x0) > α. (6.56)
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Proof. We first consider K = R. We may assume that 0 ∈M (otherwise let
x̃ ∈M and consider −x̃+M instead of M and x̃0 = x0 − x̃ instead of x0).

Indeed we may assume that 0 ∈M0. Otherwise let 0 < r < dist (x0,M)
and consider M̃ = Br(M). Then M̃ is closed and convex and 0 ∈ M̃0. If
the result holds for M̃ it also holds for M .

Thus assume 0 ∈M0 and let p be the sublinear map defined in Lemma
6.7. On span {x0} define f by

f(ax0) := ap(x0). (6.57)

Then for a ≥ 0 we have f(ax0) = p(ax0) and for a < 0 we have f(ax0) ≤
0 ≤ p(ax0). Thus by the Hahn-Banach theorem, Theorem 6.2, there exists
a linear extension F : X → R with F ≤ p. Thus

F ≤ p ≤ 1 on M, F (x0) = f(x0) = p(x0) > 1. (6.58)

It remains to show that F ∈ X ′. Then the assertion follows with x′ = F
and α = 1. Since 0 ∈M0 there exist ρ > 0 with B(0, ρ) ⊂M . Thus

x ∈ X =⇒ x
1
ρ‖x‖

∈M =⇒ p(x) ≤ 1

ρ
‖x‖ =⇒ F (x) ≤ 1

ρ
‖x‖.

(6.59)
We also have −F (x) = F (−x) ≤ 1

ρ‖x‖ and thus F ∈ X ′.
For K = C consider the real vector space XR and obtain FR ∈ X ′R with

the desired properties. Then consider F (x) = FR(x) − iFR(ix) as in the
proof proof of Theorem 6.4.

We will now use the Hahn-Banach theorem to find the dual space of
continuous functions. The arguments below were only sketched briefly in
the lecture.

Let K ⊂ Rn be a compact set, let B(K) denote the Borel subsets of K
and let µ : B(K)→ R be a measure with µ(K) <∞. Let g ∈ C(K). Then

T (g) :=

∫
K
g dµ (6.60)

is well-defined and T : C(K)→ R is linear and continuous with ‖T‖ = µ(K)
(for equality consider g ≡ 1).

Similarly, if σ : K → {−1, 1} is Borel measurable then

T (g) :=

∫
K
g σ dµ (6.61)

defines and element of C(K)′ with ‖T‖ = µ(K).
We now want to show that all elements of C(K)′ are of this form. There

are several approaches to this. We will use the Hahn-Banach theorem to
first construct a finitely additive signed measure which represents T .
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Indeed if T : C(K) → R is continuous and B(K) denotes the space
of bounded functions on the compact set K then T can be extended to a
continuous linear functional on T̃ : B(K)→ R. Now we can define

λ(E) := T̃ (χE) ∀E ⊂ K. (6.62)

Then λ is a map from the subsets of K to R and |λ(E)| ≤ ‖T‖. Moreover
the linearity of T̃ yields

E1 ∩ E2 = ∅ =⇒ λ(E1 ∪ E2) = λ(E1) + λ(E2). (6.63)

We call such maps λ finitely additive signed measures (or shorter: additive
measures).

Definition 6.9. Let X be a set and S ⊂ 2X . We say that S is a Boolean
algebra if

(i) ∅, X ∈ S,

(ii) E ∈ S =⇒ X \ E ∈ S,

(iii) E,F ∈ S =⇒ E ∪ F ∈ S.

If S is a Boolean algebra we say that λ : S → Rd is (finitely) additive
measure if

E,F ∈ S, E ∩ F = ∅ =⇒ λ(E ∪ F ) = λ(E) + λ(F ). (6.64)

We define the variation measure ‖λ‖var : S → [0,∞] associated to λ by

‖λ‖var(E) := sup{
k∑
i=1

|λ(Ei)| : Ei ⊂ E ∈ S, Ei disjoint}. (6.65)

It is easy to see that the arbitrary intersection of Boolean algebras is a
Boolean algebra.

Definition 6.10. Let S ⊂ Rn be bounded and open or closed. We set

U := {E ⊂ S : E relatively open} (6.66)

and
B0(S) := smallest Boolean algebra which contains U (6.67)

and we recall that the Borel σ-algebra was defined as

B(S) := smallest σ-algebra which contains U . (6.68)

We set

ba (S) := {λ : B0(S)→ Rd : λ finitely additive, ‖λ‖var(S) <∞}, (6.69)

ca (S) := {λ : B(S)→ Rd : λ σ-additive, ‖λ‖var(S) <∞}. (6.70)
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An element λ ∈ ba (S) or λ ∈ ca (S) is called regular if

inf{‖λvar‖(U \K) : K ⊂ E ⊂ U : K compact, U relatively open} = 0
(6.71)

for all E in B0(S) or all E ∈ B(S), respectively. We set

rba (S) := {λ ∈ ba (S) : λ regular}, rca (S) := {λ ∈ ca (S) : λ regular}.
(6.72)

Remark. (i) The abbreviations can be read as ’bounded and (finitely) ad-
ditive’, ’countably additive’, ’regular bounded additive’ and ’regular count-
ably additive’4 The element of rca (S) are often also called regular Borel
measures on S.
(ii) Note that the assumption ‖λ‖var(S) <∞ implies that for any sequence
i 7→ Ei of disjoint sets in B(S) the sum

∑
i∈N λ(Ei) converges absolutely

because all the partial sums
∑k

i=1 |λ(Ei)| are bounded by ‖λ‖var(S).

Lemma 6.11. The spaces ba (S), ca (S), rba (S) and rca (S) are Banach
spaces with norm ‖λ‖ = ‖λ‖var(S).

Proof. Exercise.

For K compact and λ ∈ ba (K) one can define an integral in the usual
way. First let f : K → R be a simple function, i.e. f =

∑k
i=1 αiχEi with

Ei ∈ B0(K). Then we define∫
S
f dλ :=

∑
αiλ(Ei) (6.73)

and one can show that the sum on the right side depends only on f , i.e. if
also f =

∑l
j=1 βjχFj then

∑
i αiλ(Ei) =

∑
j βjλ(Fj). Now every f ∈ C(K)

is a uniform limit of simple functions and using that ‖λ‖ < ∞ one can
define the integral of a continuous function uniquely through approximation
by simple functions.

Theorem 6.12. (Riesz-Radon) Let K ⊂ Rn be compact. Then the map
J : rca (K)→ C(K)′ given by

J(ν)(f) :=

∫
K
f dν (6.74)

is an isometric isomorphism.

4This terminology comes from N.Dunford, J.T. Schwartz, Linear operators, IV 2.15–
2.17; finitely additive measures are quite different from σ-additive measures and have some
strange properties, see K. Yosida, E. Hewitt, Finitely additive measures, Trans. Amer.
Math. Soc. vol. 72 (1952), pp. 46–66.
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Remark. The assumption K ⊂ Rn is not essential here. The result holds
for a general compact Hausdorff space K5

Sketch of proof. Isometry: The estimate ‖T‖ ≤ ‖ν‖ follows directly from the
definition of the integral. To prove the reverse estimate let Ei ∈ B(K) be
disjoint. If the test function f :=

∑
σiχEi with σi = sgn (Ei) was admissible

then one would conclude immediately ‖ν‖var(K) ≤ ‖T‖‖f‖ = ‖T‖. For a
complete proof one approximates χEi by continuous functions and uses the
regularity of ν.

Surjectivity: This is the hard part. One first uses the Hahn-Banach the-
orem to extend T to a bounded linear functional T̃ on the space of bounded
function B(K) and defines

λ(E) := T̃ (χE). (6.75)

Then one easily sees that λ ∈ ba (K) and

T̃ (f) =

∫
K
f dλ if f = χE , E ∈ B0(K). (6.76)

By linearity and continuity of T̃ we obtain

∀f ∈ C(K) T (f) = T̃ (f) =

∫
K
f dλ. (6.77)

Then by one shows by a careful construction that there exists ν ∈ rca (K)
such that

∀f ∈ C(K)

∫
K
f dλ =

∫
K
f dν. (6.78)

Idea: first one shows that there exist nonnegative measures λ± ∈ ba (K)
such that λ = λ+−λ− Then one can assume without loss of generality that
λ ≥ 0. For λ ≥ 0 one defines ν : B0 → [0,∞) by

ν(E) = sup
A⊂E

A closed

inf
U⊃A
U open

λ(U).

Then one can show that ν ∈ rba (K) and that µ is countable additive on
B0. Finally one can extend ν to an element of µ ∈ rca (K), see Alt’s book
for the details.

[13.12. 2017, Lecture 17]
[15.12. 2017, Lecture 18]

5see N. Dunford, J.T. Schwartz, Linear Operators, Part I, IV 6.3.
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Theorem 6.13. Let U ⊂ Rn be open and bounded. Let C0(U) denote the
closure of Cc(U) in the ‖ · ‖C0 norm. Then the map J : rca (U) → C0(U)′

given by

J(λ)(f) :=

∫
U
f dλ (6.79)

is an isometric isomorphism.

Remark. The same assertion holds for unbounded U , the most important
case being U = Rn. One considers U and U as subsets of the compact metric
space Rn ∪ {∞} (the metric on Rn ∪ {∞} can be defined by stereographic
projection to the sphere Sn and its restriction to Rn is equivalent to the
standard metric on Rn). Then one can argue as below, using the Riesz-
Radon theorem for Sn ⊂ Rn−1 Note that ∞ belongs to U if and only if U
is unbounded.

Proof. The main point is again surjectivity. The space Cc(U) can be seen as
a subspace of C(Ū) (by extending a function in Cc(U) by zero to Rn). Hence
C0(U) is a closed subspace of C(Ū) (indeed C0(U) consists of all functions
in C(Ū) which vanish on ∂U). Therefore T ∈ C0(U)′ can be extended to
T̃ ∈ C(Ū)′. Since Ū is compact there exists a µ ∈ rca (Ū) such that

T̃ (f) :=

∫
U
f dµ. (6.80)

Set ν(E) := µ(E) for all E ∈ B(U). Then ν ∈ rca (U) and for all f ∈ C0(U)

T (f) = T̃ (f) :=

∫
U
f dµ =︸︷︷︸

f=0 on ∂U

∫
U
f dµ =

∫
U
f dν. (6.81)

Remark 6.14. LetMn denote the σ-algebra of Lebesgue measurable subsets
of Rn. Let E ∈ Mn and set Mn(E) = {A ∈ Mn : A ⊂ E}. Then the
dual space of L∞(E) is isometric to the space ba (E,Ln) of finitely additive
measures on Mn(E) which are absolutely continuous with respect to the
Lebesgue measure (see homework).

7 The Baire category theorem and the principle
of uniform boundedness

Theorem 7.1 (Baire category theorem). Let (X, d) be a complete metric
space. For k ∈ N let Ak ⊂ X be closed and assume that Ak has empty
interior. Then

X 6=
⋃
k∈N

Ak. (7.1)

In fact
⋃
k∈NAk has empty interior.
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Proof. We will construct a decreasing sequence of closed ballsBk = B(xk, rk)
with rk → 0 such that Ak ∩Bk = ∅. Then⋂

k∈N
Bk ⊂ X \

⋃
k∈N

Ak (7.2)

and we will show that the left hand side contains one point.
We construct the balls Bk be induction. Since A0 is closed X \ A0 is

open. Moreover X \ A0 6= ∅ since A0 is nowhere dense. Thus there exists
an open ball B(x0, 2r0) ⊂ X \ A0 and we may assume that r0 ≤ 1. Set
B0 =: B(x0, r0).

Assume now that closed balls B(x0, r0) ⊃ . . . ⊃ BK(xk, rk) with

Bk(xk, rk) ∩Ak = ∅, rk ≤ 2−k (7.3)

have been constructed for k ≤ K. Now

B(xK , rK) \AK+1 is open and not empty (7.4)

since AK+1 is closed and nowhere dense. Thus there exist rK+1 ≤ 2−(K+1)

and xK+1 such that B(xK+1, 2rK+1) ⊂ B(xK , rK) \ AK+1. Set BK+1 =
B(xK+1, rK+1).

It is clear that (7.2) holds. To see that
⋂
k∈NBk 6= ∅ note that if k, l ≥ m

then xk, xl ∈ B(xm, rm). Thus l 7→ xl is a Cauchy sequence. Since (X, d)
is complete xl → x∗ as l → ∞. Now xl ∈ B(xk, rk) for all l ≥ k and all
k ∈ N. Since B(xk, rk) is closed we get x∗ ∈ B(xk, rk) for all k ∈ N. Thus
x∗ ∈

⋂
Bk.

To show that the set
⋃
k∈NAk has empty interior it suffices to show that

it contains no closed ball B(x,R) with R > 0. Now B(x,R) is a closed
subset of the complete space X and hence a complete space. Moreover
the sets Ak ∩ B(x,R) are closed and have empty interior (as subsets of
B(x,R)). Indeed otherwise there existed a y ∈ B(x,R) and an open ball
B(y, ρ) such that B(y, ρ) ∩ B(x,R) ⊂ Ak. Then B(y, r0) ∩ B(x,R) was
not empty and open and contained in Ak. This contradicts the assumption
that Ak has empty interior. Now what we have already proved implies that⋃
k∈N(Ak ∩ B(x,R)) 6= B(x,R). Thus

⋃
k∈NAk does not contain the ball

B(x,R).

Remark. Terminology: Recall that a general set E ⊂ X is nowhere dense
if its closure has empty interior. According to Baire one calls a set E ⊂ X
of the first category (or meager) if it is a countable union of nowhere dense
sets. The Baire category theorem states X is not of the first category in
itself. The complement of a meager set is called comeager or residual. One
should think of meager sets as small sets and residual sets as large sets.
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Remark. By considering the complement of Ak we see that the theorem
is equivalent to the following statement. If the sets Uk are open and dense
in X then

⋂
k∈N Uk is dense in X.

Remark. The assumption that X is complete is essential. First coun-
terexample: let X = Q, let a : N→ Q be a bijection and set Ak = {ak}.
Second counterexample: let lc denote the spaces of sequences for which only
finitely many elements are nonzero, i.e.,

lc := {x : N→ R : #{j ∈ N : xj 6= 0} <∞}. (7.5)

Let Ak := {x : N→ R : xj = 0, ∀j ≥ k + 1}. Then lc =
⋃∞
k=0Ak.

Theorem 7.2 (Uniform boundedness principle). Let X be a complete metric
space and let Y be a normed space. Consider a family of functions F ⊂
C(X;Y ) with the property

sup
f∈F
‖f(x)‖ <∞ ∀x ∈ X. (7.6)

Then there exists an x0 ∈ X and an ε > 0 such that

sup
x∈B(x0,ε)

sup
f∈F
‖f(x)‖ <∞. (7.7)

Proof. Let k ∈ N. The sets {x ∈ X : ‖f(x)‖ ≤ k} are closed since f is
continuous. Thus

Ak :=
⋂
f∈F
{x ∈ X : ‖f(x)‖ ≤ k} (7.8)

is closed. If supf∈F ‖f(x)‖ ≤ k then x ∈ Ak. Hence by assumption⋃
k∈NAk = X. By the Baire category theorem there exists a k0 such that

Ak0 contains an open ball and hence a closed ball B(x0, ε). By definition of
Ak0 we have ‖f(x)‖ ≤ k0 for all x ∈ B(x0, r) and all f ∈ F .

If we apply the uniform boundedness principle to linear maps we get the
following result.

Theorem 7.3 (Banach-Steinhaus). Let X be a Banach space and let Y be
a normed space. Consider a set T ⊂ L(X,Y ) with the property

sup
T∈T
‖Tx‖ <∞ ∀x ∈ X. (7.9)

Then T is a bounded set in L(X,Y ), i.e.,

sup
T∈T
‖T‖L(X,Y ) <∞. (7.10)
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Proof. By the uniform boundedness principle there exist an x0 ∈ X and an
ε > 0 such that

M1 := sup
x∈B(x0,ε)

sup
T∈T
‖Tx‖ <∞. (7.11)

By assumption M2 := supT∈T ‖Tx0‖ <∞. For x ∈ B(0, ε) we have x+x0 ∈
B(x0, ε) and Tx = T (x+ x0)− T (x0). Thus

sup
x∈B(0,ε)

sup
T∈T
‖Tx‖ ≤M1 +M2. (7.12)

Since the order of the two suprema can be exchanged we get ‖T‖ ≤ M1+M2
ε

for all T ∈ T .

[15.12. 2017, Lecture 18]
[20.12. 2017, Lecture 19]

Definition 7.4. Let X and Y be topological spaces. Then a map f : X → Y
is open if

U open in X =⇒ f(U) open in Y. (7.13)

Theorem 7.5 (Open mapping theorem). Let X and Y be Banach spaces,
let T ∈ L(X,Y ). Then

T surjective ⇐⇒ T open. (7.14)

Remark. This example was not discussed in class. It is easy to see that
completeness of Y is necessary. Let X = l∞ and let Y = {y ∈ l∞ :
supk∈N(k + 1)|yk| < ∞}, equip both spaces with the l∞ norm and set
(Tx)k = 1

k+1xk. Then T : X → Y is bijective and continuous, but T (B(0, 1))

does not contain B(0, δ) ∩ Y for any δ > 0. Indeed y = δ
2ek ∈ B(0, δ) ∩ Y

but T−1(y) = (k + 1)δek does not belong to B(0, 1) if k is large enough.
For a counterexample with Y complete, but X not complete see Homework
sheet 10.

Proof. ’=⇒’:
The assertion is equivalent to the following statement

∃ δ > 0 B(0, δ) ⊂ T (B(0, 1)). (7.15)

Indeed let U ⊂ X be open and y ∈ TU . Then there exist x ∈ U and
ε > 0 such that Tx = y and B(x, ε) ⊂ U . If (7.15) holds then TB(x, ε) =
Tx+ TB(0, ε) ⊃ y +B(0, εδ). Hence TU is open.
Conversely if T is open then TB(0, 1) must contain an open ball B(0, δ)
around 0.
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Step 1: B(0, δ) ⊂ TB(0, 1).
Since T is surjective we have

⋃
k∈N TB(0, k) = Y . By the Baire category

theorem there exist a k0 ∈ N and a ball B(y0, ε) with

B(y0, ε) ⊂ T (B(0, k0)). (7.16)

Hence for y ∈ B(0, ε) there exist xi ∈ B(0, k0) with Txi → y0 + y as i→∞.
Since T is surjective there exists x0 ∈ X with Tx0 = y0. Then

T

(
xi − x0

k0 + ‖x0‖

)
→ y

k0 + ‖x0‖
and

∥∥∥∥ xi − x0

k0 + ‖x0‖

∥∥∥∥ < 1. (7.17)

Thus for all y ∈ B(0, ε)

y

k0 + ‖x0‖
∈ T (B(0, 1)) (7.18)

and hence
B(0, δ) ⊂ T (B(0, 1)) with δ :=

ε

k0 + ‖x0‖
. (7.19)

Step 2: B(0, δ2) ⊂ T (B(0, 1)).

y ∈ B(0, δ) =⇒ ∃x ∈ B(0, 1) y − Tx ∈ B(0,
δ

2
) (7.20)

=⇒ ∃x ∈ B(0, 1) 2(y − Tx) ∈ B(0, δ). (7.21)

For y ∈ B(0, δ) choose inductively yk ∈ B(0, δ) and xk ∈ B(0, 1) such that

y0 = y and yk+1 = 2(yk − Txk). (7.22)

Then
2−k−1yk+1 = 2−kyk − T (2−kxk). (7.23)

and thus

T (

m∑
k=0

2−kxk) = y − 2−m−1ym+1 → y as m→∞. (7.24)

Now the partial sums sm =
∑m

k=0 2−kxk form a Cauchy sequence and thus
sm → x in X and ‖x‖ < 2 since ‖xk‖ < 1. Since T is continuous we get
Tx = y. Therefore B(0, δ) ⊂ T (B(0, 2)) and this implies the assertion.

’⇐=’: If T (B(0, 1)) ⊃ B(0, δ) then T (B(0, k)) ⊃ B(0, kδ) and taking the
union over k ∈ N we get TX ⊃ Y .

Theorem 7.6 (Inverse operator theorem). Let X and Y be Banach spaces,
let T ∈ L(X,Y ) and assume that T is bijective. Then T−1 ∈ L(Y,X).

Proof. By the open mapping theorem the preimage of an open set in X
under T−1 is open in Y . Hence T−1 is continuous.
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Definition 7.7 (Closed operator). Let X and Y be normed spaces. A linear
map is called closed if its graph graphT := {(x, Tx) : x ∈ X} is closed in
X × Y .

Equivalently, T is closed if

xk → x∗ and Txk → y∗ =⇒ y∗ = Tx∗. (7.25)

Example. Let X := C1([0, 1]) equipped with the C0 norm. Let Y :=
C0([0, 1]) and Tf = f ′. Then T is closed. Note that T : X → Y is not
continuous and X is not complete.

Theorem 7.8 (Closed graph theorem). Let X and Y be Banach spaces, let
T : X → Y be linear. Then

T closed ⇐⇒ T continuous (7.26)

Remark. The example after Definition 7.7 shows that the assumption
that X is complete cannot be dropped. For an example that shows that
completeness of Y is necessary, too, see Homework sheet 10.

Proof. The implication ⇐= follows directly from (7.25).
For the converse implication first note that X × Y is a Banach space

with ‖(x, y)‖ = ‖x‖ + ‖y‖. Let Z = graphT . By assumption T is a closed
linear subspace of X × Y and hence a Banach space (see Proposition 1.26).
Let π1 : Z → X and π2 : Z → Y be the projections to X and Y , i.e.,
π1(x, y) = x, π2(x, y) = y. Then π1 and π2 are continuous. Moreover π1 is
bijective and π2 ◦ π−1

1 (x) = π2((x, Tx)) = Tx. Since Z and X are Banach
spaces the Inverse Operator Theorem implies that π−1

1 is continuous and
thus T = π2 ◦ π−1

1 is continuous.

The closed graph theorem can often be used to show that an equation
has a solution for all right hand sides only if the solution can be bounded
by the right hand side. As an example consider a bounded and open set
U ⊂ Rn and the equation

−∆u = f in U. (7.27)

We know that for f ∈ L2(U) this equation has a unique weak solution
u ∈W 1,2

0 (U). Moreover the map f 7→ u is linear and continuous, i.e.,

‖u‖W 1,2(U) ≤ C(U)‖f‖L2(U) ∀f ∈ L2(U).

One might expect that the solution u is in fact two orders of differentiabil-
ity better than f . This can be proved in a variety of function spaces, for ex-
ample the Hölder spaces Ck,α or the Sobolev spaces W k,p for 1 < p <∞ (this
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will be discussed in the course ’Nonlinear PDE’ in the MSc programme). The
seemingly most natural conclusion f ∈ C(U) implies u ∈ C2(U) is, however,
not true. Even if we fix a non-empty open set V with V̄ ⊂ U we can find a
function f ∈ C0(U) such that u is not in C2(V ) and does not even have a
weak second derivative in L∞.

Proposition 7.9. Let n ≥ 2. Let U , V , f and u. Then there exists f ∈
C0(U) ⊂ L∞(U) such that the second weak derivative of u in V does not
exist or

∇2u 6∈ L∞(V ). (7.28)

Remark. One can actually show quite easily that even under the weaker
condition f ∈ L2(U) the weak solution u always has weak second derivative
and ∇2u ∈ L2(V ). We have formulated the proposition in such a way that
this result on existence of the second derivative is not required.

Proposition 7.9 implies in particular that there exists f ∈ C0(U) such
that there is no classical solution u ∈ C2(U)∩C1(U) of the Dirichlet problem

−∆u = f in Ω, (7.29)

u = 0 on ∂Ω. (7.30)

Indeed, if there was such a u it would also be a weak solution and then the
uniqueness of weak solutions yields a contradiction with Proposition 7.9.

Proof of Proposition 7.9. Step 1. Reduction to non-existence of bounds
on the solution.
Assume that the proposition is false. Then for each f ∈ C0(U) the weak
solution u has a weak second derivative in V and ∇2u|V ∈ L∞(V ). Let T
denote the map given by

Tf := ∇2u|V . (7.31)

Then (by uniqueness of the weak solution) T is a linear map from C0(U) to
L∞(V ).

The main point is to show that T is closed. Thus a ssume that

fk → f in C0(U), ∇2uk → h in L∞(V ), (7.32)

where uk ∈W 1,2
0 (U) is the weak solution of −∆uk = fk. In the second con-

vergence h is a matrix-value map and the convergence means more explicitly

∂i∂juk → hij in L∞(V ) for all i, j ∈ {1, . . . , n}. (7.33)

The first convergence in (7.32) implies in particular fk → f in L2(U)
and therefore

uk → u in W 1,2
0 (U)
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since the solution operator f 7→ u is bounded and continuous as a map from
L2(U) to W 1,2

0 (U). With the definition of the weak second derivative it
follows that for all ϕ ∈ C∞c (V )∫

V
∂i∂juk ϕdx =

∫
V
uk ∂i∂jϕdx→

∫
V
u∂i∂jϕdx.

On the other hand (7.33) implies that∫
V
∂i∂juk ϕdx→

∫
V
hij ϕdx.

Thus ∫
V
hij ϕdx =

∫
V
u ∂i∂jϕdx

for all ϕ ∈ C∞c (V ). It follows that the second weak derivatives of u exist
and are given by ∂i∂ju = hij . Therefore Tu = h. This shows that T is a
closed operator.

The closed graph theorem implies that there exists a constant K such
that

‖Tf‖L∞(V ) ≤ K‖f‖L∞(U) ∀f ∈ C0(U). (7.34)

Step 2. The bound (7.34) does not hold.
We will now show that (7.34) leads to a contradiction. Since V is open
and non-empty it contains a ball. After translation we may assume that
B(0, ρ) ⊂ V . Let η ∈ C∞0 (B(0, 1)) and assume that η = 1 on B(0, 1

2). Set

w(x) = x2
1 − x2

2. (7.35)

Then

−∆w = 0, ∇2w ≡ S0 =


2 0 0 · · · 0
0 −2 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 (7.36)

and v = ηw satisfies

−∆v =

{
0 in B(0, 1

2) ∪ (Rn \B(0, 1)),

−∆η w + 2∇η · ∇w in B(0, 1) \B(0, 1
2).

(7.37)

In particular
‖∆v‖L∞(U) ≤ C0, ∇2v(0) = S0. (7.38)

Now we get a contradiction to (7.34) by scaling and summation. Set

vk(x) = 2−2kv(2kx). (7.39)
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Then ∇2vk(x) = (∇2v)(2kx) and

supp ∆vk = B(0, 2−k) \B(0, 2−k−1). (7.40)

Let k0 be so large that 2−k0 ≤ ρ and set

u :=

k0+m∑
k=k0+1

vk, f := −∆u. (7.41)

Then u ∈ C∞c (U) and thus Tf = ∇2u|V . Since the supports of the functions
∆vk are disjoint we get

‖f‖L∞ ≤ C0, T f(0) := mS0. (7.42)

Since S0 6= 0 this leads to a contradiction with (7.34) if m > C0K/|S0|.

[20.12. 2017, Lecture 19]
[22.12. 2017, Lecture 20]

8 Weak convergence

8.1 Motivation

Motivation: in functional analysis and the theory of partial differential equa-
tions one is often confronted with the following situation. One has a sequence
of approximate solutions fk of a problem. One would like to extract a limit
and to show that the limit solves the problem. We have seen this already
in the proof of the projection theorems, Theorem 3.2 and Theorem 3.7. In
that case we could show that the sequence k 7→ fk is a Cauchy sequence and
hence converges.

Often, however, one can only show that the sequence is bounded in
a suitable Banach space X. This is not enough to extract a convergent
subsequence since by Theorem 3.13 the closed unit ball in X is only compact
if X is finite dimensional.

In this chapter we will systematically develop weaker topologies in which
we can extract a convergent subsequence from a bounded sequence. The
following example already contains the heart of the matter.

Example. Let E ⊂ Rn be measurable and let k 7→ fk be a bounded
sequence in L2(E), i.e., supk∈N ‖fk‖ ≤ R. We claim that there exist a
subsequence fkj and an f ∈ L2(E) such that∫

E
fkjg dL

n →
∫
E
fg dLn ∀g ∈ L2(E). (8.1)
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Proof: let h : N → L2(E) be a sequence such that h(N) is dense in
L2(E). Then ∣∣∣∣∫

E
fkh1 dLn

∣∣∣∣ ≤ ‖fk‖L2‖h1‖L2 ≤ R‖h1‖. (8.2)

Hence there exists a subsequence f (1) such that∫
E
f

(1)
k h1 dLn → L(h1) and ‖L(h1)‖ ≤ R‖h1‖. (8.3)

Now we can take successive subsequences f (2), f (3), . . . such
∫
E f

(l)
k hm dLn →

L(hm) for all m ≤ l. Finally let f̃ be the diagonal sequence f̃j = f
(j)
j . Then

lim
j→∞

∫
E
f̃jg dLn = L(g) and ‖L(g)‖ ≤ R‖g‖ if g ∈ {h1, h2, . . .}. (8.4)

It follows easily that convergence holds for all g ∈ Y = span {h1, h2, . . .}
and that L : Y → R is linear and |L(g)| ≤ R‖g‖. Since Y is dense in L2(E)
there exist a unique bounded linear map L : L2(E) → R which extends
LY . Moreover one easily sees that the convergence in (8.4) holds for all
g ∈ L2(E).

Finally by the Riesz representation theorem there exists f ∈ L2(E) such
that

L(g) =

∫
E
fg dLn. (8.5)

This proves (8.1).

The same argument works with L2(E) replaced by Lp(E) if p ∈ (1,∞]
and g ∈ Lp

′
(E) if we use the fact that (Lp

′
(E))′ is isometrically isomor-

phic to Lp(E) (see Theorem 6.1). The argument does not work for L1(E)
(since L∞(E) is not separable) and the assertion is not true for L1(E) (hint:
consider the sequence of standard mollifiers ηj).

8.2 Weak topology, weak convergence, and weak compact-
ness

The point in (8.1) is that convergence in norm is replaced by the convergence
of certain linear functionals applied to the sequence j 7→ fj . We now consider
this in a more general context. This will lead to the definition of the weak
and weak* topologies which correspond to the convergence introduced ad
hoc in (8.1).
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Question 1. Let X be a set and let Y be a topological space. Consider
a collection of maps ϕα : X → Y where α runs through some index set A.
What is the coarsest topology T on X such all the maps ϕα are continuous
?

Clearly T must contain all sets ϕ−1
α (V ) where V is an open set in Y and

α ∈ A. Conversely if T is a topology which contains all these sets then all
the maps ϕα are continuous (by the definition of continuity). This leads us
to

Question 2. Let X be a set and let S ⊂ 2X . What is the coarsest topology
T with T ⊃ S ?

Lemma 8.1. Let X be a set and let S ⊂ 2X and suppose that
⋃
W∈SW = X.

Let B denote the collection of sets obtained by taking finite intersections of
sets in S and let T denote the collection of sets formed by (arbitrary) union
of sets in B. More formally:

B :={
k⋂
i=1

Wi : k ∈ N \ {0},Wi ∈ S ∀ i ∈ {1, . . . , k}}, (8.6)

T :={
⋃
α∈A

Vα : A set, Vα ∈ B ∀α ∈ A} ∪ ∅. (8.7)

Then T is the coarsest topology which contains S.

Proof. Homework. Show first that T is a topology. Then it is easy to see
that if T ′ is another topology and T ′ ⊃ S then T ′ ⊃ T .

Definition 8.2. Let X be a set and let T ⊂ 2X be a topology.

(i) We say that T ′ ⊂ T is a base of the topology T if every set in T can
be written as a union of sets in T ′.

(ii) We say that T ′′ ⊂ T is a subbase of T if the the collection of all finite
intersection of sets in T ′′ is a base of T .

(iii) Let x0 ∈ X. We say that T ′′′ ⊂ T is a neighbourhood base at x0

if every U ∈ T with x0 ∈ U contains a non-empty set in T ′′′ which
contains x0.

Remark. (i) A base T ′ can be equivalently characterized as follows: if
U ∈ T then for every x ∈ U there exists a Vx ∈ T ′ such that x ∈ Vx and
Vx ⊂ U . Indeed if T ′ has this property then U =

⋃
x∈U Vx. Conversely if T ′

has the property in (i) of the definition and U ∈ T then there exist Vα ∈ T ′
such that U =

⋃
α∈A Vα. In particular Vα ⊂ U for all α ∈ A. Now if x ∈ U

there exists an α such that x ∈ Vα.
(ii) The set B in Lemma 8.1 is a base of T and S is a subbase of T .
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Proposition 8.3. Let X be a set, let Y be a topological space. Let A be
a set and consider a collection of maps ϕα : X → Y , where α ∈ A. Let
T be the coarsest topology such that all the maps ϕα are continuous. Let
x : N→ X be a sequence. Then

xn → x∗ in T ⇐⇒ ϕα(xn)→ ϕα(x∗) ∀α ∈ A. (8.8)

Proof. ’=⇒’: This follows from the fact that continuity of ϕα implies se-
quential continuity. Details: Let W ⊂ Y be open with ϕα(x∗) ∈ W . Then
U := ϕ−1

α (W ) is open and x∗ ∈ U . Hence the set {n : xn 6∈ U} is finite.
Thus the set {n : ϕα(xn) 6∈W} is finite. Thus ϕα(xn)→ ϕ(x∗).

’⇐=’: Let U ∈ T and x∗ ∈ U . By Lemma 8.1 there exists a set V ⊂ U
with x∗ ∈ V and V =

⋂k
i=1 ϕ

−1
αi (Wi) with Wi open in Y . Thus ϕαi(x∗) ∈Wi

and the sets {n : ϕαi(xn) 6∈Wi} are finite since ϕαi(xn)→ ϕαi(x∗). Hence

{n : xn 6∈ U} ⊂ {n : xn 6∈ V } =

k⋃
i=1

{n : ϕαi(xn) /∈Wi} is finite. (8.9)

Thus xn → x∗.

Example. (i) Let X = RN be the space of sequences with values in R,
i.e., X = {x : x : N → R}. For k ∈ N let ϕk(x) := x(k) be the projection
to the k-th factor. Let T be the coarsest topology such that all the maps
ϕk : X → R are continuous. Then by Proposition 8.3 and we have x(n) → x∗
in T if and only if x(n)(k) → x∗(k) for all k ∈ N. A base of T is given by
the collection of all the Cartesian products

∏
k∈N Uk where all sets Uk ⊂ R

are open and only finitely many are different from R. Note that the (non
empty) sets in this base are all rather large in the sense that they contain
an infinite dimensional affine subspace.
(ii) (not discussed in class) If we slightly generalize the setting and consider
maps ϕα : X → Yα with possibly different topological spaces Yα we can in
the same way put a topology on an arbitrary product of topological spaces
(Xα, Tα). Let X =

∏
α∈AXα (more precisely X is the space of all maps

x : A→ ∪α∈AXα with x(α) ∈ Xα) and let the projections πα : X → Xα be
given by πα(x) = x(α). The product topology on X is defined as the coarsest
topology for which all the projections πα are continuous. We have xn → x∗
in T if and only if xn(α) → x∗(α) for all α ∈ A. A base of the product
topology is given by the collection of all sets of the form U =

∏
α∈A Uα

where Uα ∈ Tα for all α ∈ A and where only finitely many of the Uα are
different from Xα.

We now apply the above reasoning to the situation where X is a Banach
space and the family of maps on X is given by the elements of the dual
space X ′.
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Definition 8.4. Let X be a Banach space with dual X ′. The weak topology
σ(X,X ′) on X is the coarsest topology for which all x′ ∈ X ′ are continuous.

Remark. (i) Let Tstrong be the topology on X induced by the norm. Then
σ(X,X ′) ⊂ Tstrong since by definition of X ′ all x′ ∈ X ′ are continuous with
respect to Tstrong.
(ii) If X is infinite dimensional then it follows from the remark after Propo-
sition 8.6 that σ(X,X ′) 6= Tstrong, i.e., the weak topology is strictly coarser
than the norm topology. Indeed every set in σ(X,X ′) contains an (infinite)
line, while the open unit ball does not contain a line.
(iii) If X is finite dimensional then it is easy to see that σ(X,X ′) = Tstrong.

Notation: If X is a normed space with dual space X ′ and x ∈ X, x′ ∈ X ′
we write 6

〈x, x′〉X := x′(x). (8.10)

We often write 〈x, x′〉 instead of 〈x, x′〉X .

Proposition 8.5. The weak topology σ(X,X ′) is Hausdorff.

Proof. Let x, y ∈ X with x 6= y. By Corollary 6.6 there exists x′ ∈ X ′ such
that ε := 1

2〈x− y, x
′〉 6= 0. Set a = 〈x, x′〉, b = 〈y, x′〉 and

Ux := (x′)−1(B(a, ε)), Uy := (x′)−1(B(b, ε)). (8.11)

Then x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅. Moreover Ux and Uy belong to the
topology σ(X,X ′) since x′ is continuous with respect to this topology.

Proposition 8.6. Let X be a Banach space. Let x0 ∈ X and let {x′1, . . . , x′k} ⊂
X ′. Define

V (x′1, . . . , x
′
k; ε) := {x ∈ X : |〈x− x0, x

′
i〉| < ε ∀ i = 1, . . . , k}. (8.12)

Then V (x′1, . . . , x
′
k; ε) is a neighbourhood of x0 in the σ(X,X ′) topology.

Moreover the collection of sets V (x′1, . . . , x
′
k; ε) with ε > 0, k ∈ N \ {0} and

x′i ∈ X ′ for i = 1, . . . , k forms a neighbourhood base of x0 in the σ(X,X ′)
topology.

Proof. Let ai = 〈x0, x
′
i〉. The sets Vi := (x′i)

−1(B(ai, ε)) belong to σ(X,X ′).

Hence V (x′1, . . . , x
′
k; ε) =

⋂k
i=1 Vi belongs to σ(X,X ′).

Conversely let U ∈ σ(X,X ′) and x0 ∈ U . Then it follows from Lemma
8.1 that U contains a set of the form

⋂k
i=1(x′i)

−1(Wi) where Wi ⊂ K is open

6This notation deliberately resembles the notation of the scalar product and is moti-
vated by the Riesz representation theorem. If X is a Hilbert space then every element in
X ′ can be represented by the scalar product and we have 〈x,RX(y)〉 = RX(y)(x) = (x, y)X
and RX : X → X ′ is an isometric isomorphism. The notation above follows H.W. Alt’s
book. Some authors, e.g., Brezis, write 〈x′, x〉 instead of 〈x, x′〉.
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and ai = 〈x0, x
′
i〉 ∈Wi. Hence there exists an ε > 0 such that B(ai, ε) ⊂Wi

for all i = 1, . . . , k (here we use the fact that we deal only with finitely many
x′i). Thus

V (x′1, . . . , x
′
k; ε) =

k⋂
i=1

x′i
−1

(B(ai, ε)) ⊂
k⋂
i=1

x′i
−1

(Wi) ⊂ U. (8.13)

Remark. If X is infinite dimensional then all the sets V (x′1, . . . , x
′
k; ε)

(with ε > 0) contain a line (in fact an infinite dimensional affine sub-
space). Indeed set L := {y : 〈y, x′i〉 = 0 ∀ i = 1, . . . , k}. Then x0 + L ⊂
V (x′1, . . . , x

′
k; ε). To see that L 6= {0} consider the map T : X → Kk given

by T (x) = (〈x, x′1〉, . . . , 〈x, x′k〉). If L = {0} then T : X → R(T ) is bijective.
Since R(T ) is finite dimensional the space X must be finite dimensional.
This contradiction finishes the proof. More generally one sees that the quo-
tient space X/L is isomorphic to the finite dimensional space R(T ). Thus if
X is infinite dimensional, L must be infinite dimensional.

Notation: If a sequence converges in the σ(X,X ′) topology we write

xn ⇀ x∗ weakly in σ(X,X ′) (8.14)

or shorter
xn ⇀ x∗, (8.15)

i.e., we use the halfarrow ⇀ to denote convergence in the weak topology (or
’weak convergence’ for brevity). Note that the weak limit is unique since
the σ(X,X ′) topology is Hausdorff. We write

xn → x∗ strongly in X (8.16)

or shorter
xn → x∗ (8.17)

if ‖xn−x∗‖ → 0 and we call this convergence strong convergence (or ’norm-
convergence’).

[22.12. 2017, Lecture 20]
[10.1. 2018, Lecture 21]

Proposition 8.7. Let x : N→ X be a sequence. Then

(i) xn ⇀ x∗ ⇐⇒ 〈xn, x′〉 → 〈x∗, x′〉 ∀x′ ∈ X’.

(ii) If xn → x∗ then xn ⇀ x∗.
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(iii) If xn ⇀ x∗ then supn∈N ‖xn‖ <∞ and ‖x∗‖ ≤ lim infn→∞ ‖xn‖.

(iv) If xn ⇀ x∗ (weakly) and x′n → x′ (strongly) then 〈xn, x′n〉 → 〈x∗, x′∗〉.

Proof. (i): This follows from Proposition 8.3 and the definition of the σ(X,X ′)
topology.

(ii): This follows from the fact that the weak topology is coarser than the
strong topology or from (i) and the estimate |〈xn, x′〉−〈x∗, x′〉| ≤ ‖x′‖ ‖xn−
x∗‖.

(iii): The first assertion follows from the Banach-Steinhaus theorem.
More precisely define a map J : X → (X ′)′ by J(x)(x′) = 〈x, x′〉. Then
‖J(x)‖(X′)′ ≤ ‖x‖ and by Corollary 6.6 we have ‖J(x)‖(X′)′ = ‖x‖. Now for
each x′ we have

sup
n∈N
|J(xn)(x′)| = sup

n∈N
|〈xn, x′〉| <∞ since 〈xn, x′〉 → 〈x∗, x′〉. (8.18)

The Banach-Steinhaus theorem implies that supn∈N ‖J(xn)‖(X′)′ <∞. Hence
supn∈N ‖xn‖ <∞.
To prove the second assertion pass to the limit in the inequality

|〈xn, x′〉| ≤ ‖x′‖ ‖xn‖. (8.19)

This yields
|〈x∗, x′〉| ≤ ‖x′‖ lim inf

n→∞
‖xn‖. (8.20)

Using again Corollary 6.6 we get ‖x∗‖ = sup‖x′‖=1〈x∗, x′〉 ≤ lim infn→∞ ‖xn‖.
(iv): This follows from the inequality

|〈xn, x′n〉−〈x∗, x′∗〉| ≤ |〈xn, x′n−x′∗〉|+|〈xn−x∗, x′∗〉| ≤ ‖xn‖ ‖x′n−x′∗‖+|〈xn−x∗, x′∗〉|
(8.21)

combined with (i) and (iii).

Let X be a Banach space with dual X ′. So far we have two topologies
on X ′.

(i) The norm topology (or strong topology) Tstrong.

(ii) The weak topology σ(X ′, (X ′)′) defined as coarsest topology such that
all the maps x′ 7→ 〈x′, y〉X′ = y(x′) are continuous for all y in the
bidual space (X ′)′.

We now introduce a third topology on X ′, the weak* or σ(X ′, X) topol-
ogy which is the coarsest topology such that the maps x′ 7→ 〈x′, y〉X′ = y(x′)
are continuous for all y for the form y ∈ J(X) ⊂ (X ′)′ where J : X 7→ (X ′)′

is given by J(x)(x′) = x′(x) = 〈x, x′〉X .

Definition 8.8. Let X be a Banach space with dual X ′. The weak* topol-
ogy σ(X ′, X) on X ′ is the coarsest topology such that for all x ∈ X the
functionals J(x) : X ′ → K given by J(x)(x′) = 〈x, x′〉 are continuous.
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Remark. We have already seen that σ(X ′, (X ′)′) ⊂ Tstrong (and the in-
clusion is strict if and only if X is infinite dimensional). Note that also
σ(X ′, X) ⊂ σ(X ′, (X ′)′) since the definition of σ(X ′, X) involves only a
subset of functionals J(X) ⊂ (X ′)′. If J(X) = (X ′)′, then, by definition
σ(X ′, X) = σ(X ′, (X ′)′), i.e., the weak and weak* topologies agree.

Warning. If X is a Banach space and Y ⊂ X is a dense subspace then
Y ′ = X ′ since every bounded linear map on Y has a unique extension to X.
Nonetheless the σ(X ′, Y ) topology can be strictly coarser than the σ(X ′, X)
topology.

Proposition 8.9. The weak* topology is Hausdorff and a neighbourhood
base at x′0 is given by the collection of the sets

V (x1, . . . , xk; ε) := {x′ ∈ X ′ : |〈xi, x′ − x′0〉| < ε ∀ i ∈ {1, . . . , k} }, (8.22)

where k ∈ N \ {0}, ε > 0 and x1, . . . , xk ∈ X.

Proof. This is proved like Proposition 8.5 and Proposition 8.6. More pre-
cisely to show that the weak* topology is Hausdorff one uses that for x′ 6= y′

there exists x ∈ X such that 〈x, x′〉 6= 〈x, y′〉.

Notation: If a sequence x′ : N → X ′ converges in the weak* topology to
x′∗ we write

x′n
∗
⇀ x′∗. (8.23)

Proposition 8.10. Let x′ : N→ X ′ be a sequence. Then

(i) x′n
∗
⇀ x′∗ ⇐⇒ 〈x, x′n〉 → 〈x, x′∗〉 ∀x ∈ X.

(ii) If x′n → x′∗ then x′n
∗
⇀ x′∗.

(iii) If x′n
∗
⇀ x′∗ then supn∈N ‖x′n‖ <∞ and ‖x′∗‖ ≤ lim infn→∞ ‖x′n‖.

(iv) If x′n
∗
⇀ x′∗ (weakly*) and xn → x (strongly) then 〈xn, x′n〉 → 〈x∗, x′∗〉.

Proof. The proof is analogous to the proof of Proposition 8.7.

We now come to the first key compactness property.

Theorem 8.11 (Sequential weak* compactness of the closed unit ball).
Let X be a separable Banach space with dual X ′. Then the closed unit
ball B(0, 1) ⊂ X ′ is sequentially compact in the weak* topology, i.e., every
sequence x′ : N→ B(0, 1) contains a subsequence which converges to a point
x′∗ ∈ B(0, 1) in the weak* topology.
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Remark. (i) This assertion about sequential compactness does in general
not hold if X is not separable. Example: for X = l∞ consider the fk ∈ l′∞
given by fk(x) = xk. Then ‖fk‖l′∞ = 1, but the sequence k 7→ fk has no
weak* convergent subsequence. Proof: let j → kj be any strictly increasing
map from N to N and let gj = fkj . Define x ∈ l∞ by xm = (−1)m if m = kj
and xm = 0 else. Then gj(x) = (−1)j and hence gj(x) has no limit as
j →∞.

(ii) It is, however, true that for any Banach space X the closed unit ball
is compact in the weak* topology (Banach-Alaoglu theorem). The proof is
based on Tychonoff’s theorem which asserts that an arbitrary product of
compact topological spaces is compact in the product topology7.
(iii) If X is separable than one can show that the restriction of the weak*
topology to the closed unit ball is metrizable (see homework sheet 12, prob-
lem 3). Hence compactness implies sequential compactness and the above
result could be deduced from the Banach-Alaoglu theorem. We prefer to
give a short direct proof.

Proof. This is the abstract version of the example given at the beginning of
this chapter. Let y : N → X be a sequence such that y(N) is dense in X.
Let f : N→ B(0, 1) ⊂ X ′ (for ease of notation we call the sequence f rather
than x′). Then

|〈y0, fk〉| ≤ ‖y0‖ ‖fk‖ ≤ ‖y0‖. (8.24)

Hence there exists a subsequence f (0) such that

〈y0, f
(0)
k 〉 → L(y0) and |L(y0)| ≤ ‖y0‖ (8.25)

Now we can take successive subsequences f (1), f (2), . . . such that 〈ym, f (l)
k 〉 →

L(ym) as k → ∞ for all m ≤ l. Let f̃j := f
(j)
j be the diagonal sequence.

Then
〈x, f̃j〉 → L(x) and |L(x)| ≤ ‖x‖ ∀x ∈ y(N). (8.26)

Since x 7→ 〈x, f̃j〉 is linear, convergence and the estimate for L(x) also hold
for x ∈ Y := span {y(N)} and L : Y → K is linear. Since Y is dense in X it
follows that there exists a unique f∗ ∈ X ′ such that

〈y, f∗〉 = f∗(y) = L(y) ∀ y ∈ Y. (8.27)

Moreover |〈x, f∗〉| ≤ ‖x‖ for all x ∈ X and hence ‖f∗‖ ≤ 1. Finally for each
yk we have

lim sup
j→∞

|〈x, f̃j − f∗〉| (8.28)

≤ lim sup
j→∞

|〈(x− yk), f̃j − f∗〉|+ lim sup
j→∞

|〈yk, f̃j − f∗〉|︸ ︷︷ ︸
=0 by (8.26), (8.27)

≤ 2‖x− yk‖. (8.29)

7See, e.g., the book by Brezis or W. Rudin, Functional analysis. Rudin’s book also
contains a proof of Tychonoff’s theorem.
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Since y(N) is dense in X the right hand side can be made arbitrarily small

and hence f̃j
∗
⇀ f∗.

We will see shortly that a similar compactness result holds for weak
convergence if X satisfy an extra condition. First we look at some examples.

Example.

(i) Lp spaces: Let E ⊂ Rn be measurable and let p ∈ [1,∞). Recall that
there exists an isometric isomorphism Φ : Lp

′
(E)→ (Lp(E))′ given by

Φ(g)(f) =
∫
E fg dx. Thus

fk ⇀ f∗ in Lp(E) ⇐⇒
∫
E
fjg dx→

∫
E
f∗g dx ∀g ∈ Lp′ for p ∈ [1,∞).

(8.30)

fk
∗
⇀ f∗ in L∞(E) ⇐⇒

∫
E
fjg dx→

∫
E
f∗g dx ∀g ∈ L1. (8.31)

(ii) C(K) and rca (K): Let K ⊂ Rn be compact. By the Riesz-Radon
theorem (Theorem 6.12) there exists an isometric isomorphism Φ :
rca (K)→ (C(K))′ given by Φ(µ)(f) =

∫
E f dµ. Thus

µk
∗
⇀ µ∗ in rca (K) ⇐⇒

∫
K
f dµk →

∫
K
f dµ∗ ∀f ∈ C(K).

(8.32)

(iii) W 1,p(U): Let U ⊂ Rn be open. Even though we have not computed
the dual space of W 1,p(U) explicitly it is easy to see that (see Home-
work sheet 11, Problem 1)

fk ⇀ f∗ ∈W 1,p(U) ⇐⇒ fk ⇀ f∗ and ∂jfk ⇀ ∂jf∗ in Lp(U) ∀ j = 1, . . . , n
(8.33)

if p ∈ [1,∞). Similarly

fk
∗
⇀ f∗ ∈W 1,∞(U) ⇐⇒ fk

∗
⇀ f∗ and ∂jfk

∗
⇀ ∂jf∗ in L∞(U) ∀ j = 1, . . . , n.

(8.34)
The main idea is that the map j(f) := (f, ∂1f, . . . , ∂nf) is a linear and
continuous map (with continuous inverse) from W 1,p(U) to a closed
subspace of (Lp(U))n+1.

[10.1. 2018, Lecture 21]
[12.1. 2018, Lecture 22]

In Theorem 8.11 we have shown that the closed unit ball in X ′ is sequen-
tially weak* compact if X is separable. We now aim for a similar result for
weak convergence. The idea is essentially to consider a situation where X
agrees with the bidual space X ′′ := (X ′)′ and hence can be viewed as a dual
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space. More specifically we recall the definition of the map JX : X → X ′′

given by
JX(x)(x′) = x′(x) or 〈x′, JX(x)〉 := 〈x, x′〉.

We have seen in the proof of Proposition 8.7 (iii) that JX is an isometric
immersion, i.e., ‖JX(x)‖X′′ = ‖x‖X . In particular JX is injective. The
definition of JX and of weak and weak* convergence imply that

xk ⇀ x∗ in X ⇐⇒ JX(xk)
∗
⇀ J(x∗) in X ′′ (8.35)

since both statements are equivalent to 〈xk, x′〉 → 〈x∗, x′〉 for all x′ ∈ X ′.

Definition 8.12. A Banach space X is called reflexive if JX : X → X ′′ is
surjective.

Equivalently X is reflexive if JX : X → X ′′ is an isometry. In particular
for a reflexive space X ′′ is isometrically isomorphic to X.

Proposition 8.13. Let X be a Banach space. Then the following assertions
hold.

(i) If X is reflexive then the weak and the weak* topology on X ′ are iden-
tical.

(ii) If X is reflexive and Y ⊂ X is a closed subspace than Y is reflexive.

(iii) If Y is a Banach space and T : X → Y is an isomorphism then

X reflexive ⇐⇒ Y reflexive. (8.36)

(iv) X reflexive ⇐⇒ X ′ reflexive.

Remark. One can show we that X is reflexive if and only if the weak and
the weak* topology on X ′ agree.

Proof. (i): The weak topology on X ′ is by definition the coarsest topology
such that all the maps

x′ 7→ 〈x′, x′′〉 (8.37)

are continuous for all x′′ ∈ X ′′. The weak* topology on X ′ is by definition
the coarsest topology such that all the maps

x′ 7→ 〈x, x′〉 (8.38)

are continuous for all x ∈ X. If JX is surjective then

〈x′, x′′〉 = 〈J−1
X (x′′), x′〉, (8.39)
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Hence the class of maps considered for the weak and weak* topology is the
same and thus these two topologies agree.

(ii) Let y′′ ∈ Y ′′. Define x′′ : X ′ → K by

x′′(x′) = 〈x′|Y , y
′′〉. (8.40)

Then x′′ ∈ X ′′ and thus there exists x ∈ X such that JXx = x′′. Hence

〈x′|Y , y
′′〉 = x′′(x′) = 〈x, x′〉. (8.41)

We now claim that x ∈ Y . Indeed if x /∈ Y then by Theorem 6.5 there exists
x′ ∈ X ′ such that x′|Y = 0 and x′(x) = dist (x, Y ). Then (8.41) yields the
contradiction

0 6= dist (x, Y ) = 〈x, x′〉 = 〈x′|Y , y
′′〉 = 〈0, y′′〉 = 0. (8.42)

Thus x ∈ Y and JX(x) = x′′.
Finally we show that JY (x) = y′′. Let y′ ∈ Y ′. By the Hahn-Banach

theorem (Theorem 6.4) there exists an x′ ∈ X ′ such x′|Y = y′. Thus (8.41)
yields

〈x, y′〉Y = 〈x, x′〉X = 〈x′|Y , y
′′〉Y ′ = 〈y′, y′′〉Y ′ , (8.43)

i.e. JY (x) = y′′.
(iii): It suffices to show X reflexive =⇒ Y reflexive, since the roles of

X and Y can be interchanged. Let y′′ ∈ Y ′′. Define x′′ by

x′′(x′) := 〈x′ ◦ T−1, y′′〉. (8.44)

Then ‖x′ ◦ T−1‖X′ ≤ ‖x′‖X′‖T−1‖L(X) and thus

‖x′′(x′)‖ ≤ ‖y′′‖ ‖x′ ◦ T−1‖ ≤ ‖y′′‖ ‖x′‖ ‖T−1‖. (8.45)

Thus x′′ ∈ X ′′. Let x = J−1
X x′′. For y′ ∈ Y ′ let x′ := y′ ◦ T . Then x′ ∈ X ′

and
〈y′, y′′〉 = 〈x′ ◦ T−1, y′′〉 = 〈x′, x′′〉 = x′(x) = y′(Tx). (8.46)

Thus y′′ = JY (Tx).
(iv): We first show X reflexive =⇒ X ′ reflexive. Set X ′′′ := (X ′′)′ and

let x′′′ ∈ X ′′′. Define x′ by

x′(x) := 〈JXx, x′′′〉. (8.47)

Then x′ ∈ X ′ and

〈x′, x′′〉 = 〈J−1
X (x′′), x′〉 = 〈x′′, x′′′〉 (8.48)

for all x′′ ∈ X ′′. Thus JX′x
′ = x′′′. This shows that JX′ is surjective and

thus X ′ is reflexive.
Now we show X ′ reflexive =⇒ X reflexive. From what we have already

shown it follows that X ′′ is reflexive. Let Y = JX(X) ⊂ X ′′. Then Y is a
closed subspace because JX is an isometry. By (ii) the space Y is reflexive.
Then by (iii) the space X is reflexive.
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Theorem 8.14. Let X be a reflexive Banach space. Then the closed unit
ball B(0, 1) is sequentially compact, i.e., every sequence in B(0, 1) contains
a subsequence which converges weakly in B(0, 1).

Lemma 8.15. Let X be a Banach space. Then

X ′ separable =⇒ X separable (8.49)

Proof. Homework sheet 9, Problem 2.

Proof of Theorem 8.14. Consider a sequence x : N → B(0, 1) ⊂ X. Let
Y := span {xk : k ∈ N}. Then Y is separable. Moreover Y is a closed
subspace of the reflexive space X and hence reflexive. Thus Y ′′ = JY (Y )
and therefore Y ′′ is separable. By Lemma 8.15 the space Y ′ is also separable.

Let zk := JY xk. Then zk ⊂ B(0, 1) ⊂ Y ′′ since JY is an isometry. Since
Y ′ is separable the closed unit ball in Y ′′ is weak* sequentially compact by
Theorem 8.11. Thus

zkj
∗
⇀ z∗ in B(0, 1) ⊂ Y ′′ (8.50)

Set x∗ = J−1
Y (z∗) ∈ Y . Then for all y′ ∈ Y

〈xk, y′〉 = 〈y′, JY (xkj )〉 → 〈y
′, z∗〉 = 〈x∗, y′〉. (8.51)

Finally for x′ ∈ X ′ we have x′|Y ∈ Y
′ and thus

〈xkj , x
′〉 = 〈xkj , x

′
|Y 〉 → 〈x∗, x

′
|Y 〉 = 〈x∗, x′〉 (8.52)

for all x′ ∈ X ′. Thus xkj ⇀ x∗ in X.

Examples.

(i) Every Hilbert space X is reflexive.
Let x′′ ∈ X ′′. We have to show that there exists x ∈ X such that

x′′(y′) = y′(x) ∀y′ ∈ X ′ (8.53)

Let R : X → X ′ the Riesz isomorphism introduced in Theorem 5.1.
We have shown that R is a conjugately linear isometric isomorphism.
Define x′ by

x′(y) := x′′(Ry). (8.54)

Then x′ is linear (not just conjugately linear) and bounded. Thus
x′ ∈ X ′. By the Riesz representation theorem ( Theorem 5.1) there
exists an x ∈ X with Rx = x′. Therefore

x′(y) = (y, x) ∀y ∈ Y (8.55)

and
x′′(Ry) = (y, x) = (x, y) = Ry(x) ∀y ∈ X. (8.56)

Since R : Y → Y ′ is surjective this finishes the proof of (8.53).
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(ii) Let p ∈ (1,∞). Then Lp(E,µ) is reflexive.
We write Lp instead of Lp(E,µ). Let f ′′ ∈ (Lp)′′. We have to show
that there exist f ∈ Lp such that

f ′′(g′) = g′(f) ∀g′ ∈ (Lp)′. (8.57)

Let

(Jpf)(g) :=

∫
E
gf dµ. (8.58)

In Theorem 6.1 we have shown that Jp defines a conjugately linear
isometric isomorphism from Lp

′
to (Lp)′. Thus we can define

f ′(g) := f ′′(Jpg) ∀g ∈ Lp′ . (8.59)

Then f ′ is linear and bounded on Lp
′
. Again by Theorem 6.1 (applied

with p′ instead of p) Jp′ is surjective. Taking into account that (p′)′ = p
we see that there exists an f ∈ Lp such that f ′ = Jp′f . Thus

f ′(g) =

∫
E
gf dµ (8.60)

and

f ′′(Jpg) = f ′(g) =

∫
E
fg dµ = (Jpg)(f) ∀g ∈ Lp′ . (8.61)

Since Jp : Lp′ → (Lp)′ is surjective this proves (8.57).

(iii) Let p ∈ (1,∞), let U ⊂ Rn be open. Then W 1,p(Rn) is reflexive.
(Exercise. Hint: map W 1,p bijectively to a closed subspace of (Lp)n+1

as homework sheet 11, Problem 2, and use Proposition 8.13).

(iv) The spaces l1, l∞, L1(E,µ), L∞(E,µ), C(K) and rca (K) are not
reflexive. Hint: if X is reflexive and separable then X ′ is separable.
Note that for any infinite, compact set K the space rca (K) is not
separable since for any x, y ∈ K we have ‖δx − δy‖rca (K) = 2 if x 6= y.

8.3 Weak convergence in Lp spaces

The results in the subsection were not discussed in class, but on the home-
work sheets 12 and 13.

The most important examples for weak convergence will be weak con-
vergence in Lp (for p <∞) and weak* convergence in L∞. We have already
shown (see 8.30 and 8.31)

fk ⇀ f∗ in Lp(E) ⇐⇒
∫
E
fjg dx→

∫
E
f∗g dx ∀g ∈ Lp′ for p ∈ [1,∞).

(8.62)
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fk
∗
⇀ f∗ in L∞(E) ⇐⇒

∫
E
fjg dx→

∫
E
f∗g dx ∀g ∈ L1. (8.63)

Thus for weak convergence we only require convergence of suitable averages
rather then pointwise convergence (almost everywhere) or convergence in
measures. For bounded domains E there are two prototypical examples of
weakly, but not strongly, convergent sequence.

(i) (’oscillation’) First let Q = (0, 1). Let h : R → R be 1-periodic, i.e.,
h(x+ 1) = h(x) for all x ∈ R and assume that ‖h‖Lp(Q) <∞. Let

fk(x) = h(kx). (8.64)

If p ∈ [1,∞) then

fk ⇀ const. in Lp(Q), where const. =

∫
Q
h(z) dz. (8.65)

For p = ∞ one has similarly fk
∗
⇀ const.. Similar results hold in the

higher dimensions. Let Q = (0, 1)n, assume that h : Rn → Rn is 1-
periodic in each coordinate, i.e., h(x + z) = h(x) for all z ∈ Zn, and
let fk(x) = h(kx). If ‖h‖Lp(Q) < ∞ and p ∈ [1,∞) then (8.65) holds.
The corresponding result with weak* convergence holds if p =∞.
For the proof of these results for p > 1, see Homework sheet 12. For
p = 1 and uses the fact that for each ε > 0 there exists a decomposition
h = h1 + h2 with h1 ∈ L∞(Q) and ‖h2‖L1(Q) ≤ ε and the first apply
the result for h1.

Weak convergence and nonlinar functions: For fk(x) = sin 2πkx

fk
∗
⇀ 0, f2

k
∗
⇀

1

2
in L∞((0, 1)). (8.66)

This shows that weak convergence does not commute with nonlinear
functions. This is a weakness of weak convergence but not surprising.
Taking averages only commutes with applying a function if f is affine.

(ii) (’concentration’) Let p ∈ (1,∞), ket E = B(0, 1) ⊂ Rn and let h ∈
Lp(Rn) with supph ⊂ B(0, R) for some R > 0. Set

fk(x) = kn/ph(kx). (8.67)

Then
fk ⇀ 0 in Lp(E). (8.68)

Note that ‖fk‖Lp(E) = ‖h‖Lp(Rn) if k > R. Hence fk does not converge
strongly to 0 (unless h = 0 a.e.).
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Hint for the proof of (8.68): let g ∈ Lp′ and note that p′ < ∞ since
p > 1. Note that for k > R∣∣∣∣∣

∫
B(0,1)

fk(x)g(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
B(0,R

k
)
fk(x)g(x) dx

∣∣∣∣∣ (8.69)

and use Hölder’s inequality.

If E is unbounded, e.g., if E = Rn, then two further prototypical exam-
ples can arise.

(i) (’espace to infinity by translation’) Let p ∈ (1,∞]. Let h ∈ Lp(Rn).
Let e ∈ Rn \ 0 and set

fk(x) := h(x− ke). (8.70)

Then
hk ⇀ 0 in Lp(Rn) if p <∞ (8.71)

and hk
∗
⇀ 0 in L∞(Rn) if p =∞. Moreover ‖fk‖Lp = ‖h‖Lp .

(ii) (’vanishing’/ ’escape to infinity by dilation’) Let p ∈ (1,∞) and let
h ∈ Lp(Rn). For k ∈ N \ {0} let

fk(x) =
1

kn/p
h(
x

k
). (8.72)

Then
fk ⇀ 0 in Lp(Rn) (8.73)

and ‖fk‖Lp = ‖h‖Lp

Hint for the proof of weak convergence in (i) and (ii): use Lemma 8.16 below
with D = C∞c (Rn).

We know that weakly or weakly* convergent sequences are bounded. If
we know already that a sequence is bounded, then it suffices to check the
conditions for weak or weak* convergence on a dense subset.

Lemma 8.16 (Criterion for weak convergence of bounded sequences). Let
X be a Banach space.

(i) Let x : N→ X with supk∈N ‖xk‖ <∞. If D ⊂ X ′ and spanD is dense
in X ′ then

xk ⇀ x∗ ⇐⇒ 〈xk, x′〉 → 〈x∗, x′〉 ∀x′ ∈ D.

(ii) Let x′ : N→ X with supk∈N ‖x′k‖ <∞. If D ⊂ X and spanD is dense
in X then

x′k
∗
⇀ x′∗ ⇐⇒ 〈x, x′k〉 → 〈x, x′∗〉 ∀x ∈ D.
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Proof. We only show (i) since the proof of (ii) is analogous. The implication
=⇒ is obvious. To show the reverse implication let M = supk∈N ‖xk‖, let
x′ ∈ X ′ and let ε > 0. By linearity we have

〈xk, z′〉 → 〈x∗, z′〉 ∀z′ ∈ span (D).

Since span (D) is dense in X ′ there exist a z′ ∈ span (D) such that ‖x′−z′‖ ≤
ε. Thus

lim sup
k→∞

〈xk − x∗, x′〉 = lim sup
k→∞

〈xk − x∗, x′ − z′〉 ≤ (M + ‖x∗‖)ε.

Since ε > 0 was arbitrary this implies the assertion.

8.4 Convex sets, Mazur’s lemma, and existence of minimiz-
ers for convex variational problems

We now study in a general setting the relation between weak convergence
and convexity.

Theorem 8.17. Let X be a normed space and let M ⊂ X be convex and
closed. If the sequence x : N→M converges weakly to x∗ then x∗ ∈M .

Remark. (i) One can also show that M is closed in the weak topology.
Thus strongly closed sets which are convex are also weakly closed.
(ii) Warning: the corresponding assertion for weak* convergence is in general
not true.

Proof. Suppose that x∗ /∈ M . By the separation theorem (Theorem 6.8)
there exists x′ ∈ X ′ and α ∈ R such that

Re〈x∗, x′〉 > α, Re〈y, x′〉 ≤ α ∀y ∈M. (8.74)

By assumption 〈xk, x′〉 → 〈x∗, x′〉. Since xk ∈ M this gives Re〈x∗, x′〉 ≤ α,
a contradiction.

Theorem 8.18 (Mazur’s lemma). Let X be a normed space an assume that
the sequence x : N→ X converges weakly to x∗. Then

x∗ ∈ conv {xk : k ∈ N} (8.75)

(where the closure is taken in the norm topology).

Notation: for a subset E of a vector space X the set convE is defined
as the smallest convex set which contains E. It is easy to see that convE is
given by all finite convex combinations of elements of E, that is,

convE = {z : z =

K∑
k=1

λkxk, K ∈ N \ {0}, xk ∈ E, λk ≥ 0,

K∑
k=1

λk = 1}.
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Proof. Apply the previous theorem with M := conv {xk : k ∈ N}.

Corollary 8.19. Let X be a normed space and suppose that xk ⇀ x∗ in
X. Then a suitable convex combination of the xk converges strongly to x∗.
More precisely there exist λj,k such that

λj,k ≥ 0,

Kj∑
k=j

λj,k = 1, (8.76)

zj :=

Kj∑
k=j

λj,kxk → x. (8.77)

Proof. Consider the sets Mj := conv {xk : k ≥ j} and note that by Mazur’s
lemma x∗ ∈Mj . Thus there exist zj ∈Mj such that ‖zj − x∗‖ ≤ 1

j .

Theorem 8.20. Let X be a reflexive Banach space and let M ⊂ X be
closed, convex and not empty. Let y ∈ X Then there exists an x∗ ∈M such
that

‖x∗ − y‖ = dist (y,M) (8.78)

Remark. We have shown earlier in Theorem 3.7 that such an x∗ exists
if X is uniformly convex. The Milman-Pettis theorem states that every
uniformly convex Banach space is reflexive (see, e.g., Brezis, Theorem 3.31).

Proof. By definition of the distance there exist xj such that

‖xj − y‖ ≤ dist (y,M) +
1

j + 1
. (8.79)

In particular
‖xj‖ ≤ ‖y‖+ dist (y,M) + 1 (8.80)

and thus the sequence j 7→ xj is bounded. Since X is reflexive there exists
a weakly convergent subsequence

xjk ⇀ x∗ (8.81)

Since M is closed and convex we have x∗ ∈M . Finally weak lower semicon-
tinuity of the norm (see Proposition 8.7 (iii)) yields that

‖x∗ − y‖ ≤ lim inf
k→∞

‖xjk − y‖ ≤ dist (y,M). (8.82)

Since y ∈M we must have equality and the proof is finished.

We now consider existence results for more general convex variational
problems. These problems were not discussed in class but on homework
sheets 12 and 13.
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Theorem 8.21. Let U ⊂ Rn be open and bounded and assume that f ∈
L2(U). For u ∈W 1,2

0 (U) let

E(u) :=
1

2

∫
U
|∇u|2 dLn −

∫
U
fu dLn. (8.83)

Let M ⊂ W 1,2
0 (U) be closed, convex and not empty. Then the following

assertions hold.

(i) The functional E attains its minimum in M , i.e., there exists u ∈M
such that

E(u) ≤ E(v) ∀v ∈M. (8.84)

(ii) An element u ∈ M is a minimizer of E if and only if u satisfies the
variational inequality∫

U

n∑
i=1

∂i(u− v)∂iu− (u− v)f dLn ≤ 0 ∀v ∈M (8.85)

(iii) If M is a closed subspace then (8.85) is equivalent to the weak form of
the Euler-Lagrange equation∫

U

n∑
i=1

∂iw∂iu− wf dLn = 0 ∀w ∈M (8.86)

Remark. The analogous assertions hold if
∫
U |∇u|

2 is replaced by
∫
U

∑
i,j aij∂iu∂ju

with aij = aji, aij ∈ L∞(U) and the ellipticity condition

∃c > 0 ∀ξ ∈ Rn
∑
i,j

aijξiξj ≥ c|ξ|2 (8.87)

holds. In this setting assertion (iii) with M = W 1,2
0 (U) provides an alterna-

tive proof of the existence of a weak solution of the problem

−
∑
i,j

∂i(aij∂ju) = f in U and u = 0 on ∂U. (8.88)

Proof. See homework sheet 13.

Example. (Obstacle problem) Let ϕ ∈W 1,2(U) with ϕ+ = max(ϕ, 0) ∈
W 1,2

0 and let

M := {u ∈W 1,2
0 (U) : u ≥ ϕ a.e.}. (8.89)

Then M is clearly convex. Moreover M is closed. Indeed, if uk ≥ ϕ a.e. and
uk → u in L2(U) then there exists a subsequence such that ukj → u a.e.
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Hence u ≥ ϕ a.e. Moreover M is not empty since ϕ+ ∈ M . If we assume
that the minimizer u is in W 2,2 then we get∫

U
w(−∆u− f) dx ≥ 0 if u+ w ∈M (8.90)

Since every positive w ∈W 1,2
0 is admissible we get

−∆u− f ≥ 0 a.e. in U. (8.91)

Moreover if u and ϕ are in addition continuous we get

−∆u− f = 0 a.e. on the open set {x : u(x) > ϕ(x)}. (8.92)

One can show8 see that under suitable assumptions on f , ϕ and U the
minimizer u is indeed in W 2,2 and even in W 2,∞ (and hence in particular
C1). Even in one dimension and for f = 0 the minimizer is is general not in
C2.

8.5 Completely continuous operators

We finally discuss briefly the relation between compactness and weak con-
vergence.

Definition 8.22. Let X and Y be Banach spaces. Then a linear map T :
X → Y is called completely continuous if

xn ⇀ x∗ in X =⇒ Txn → Tx∗ in Y. (8.93)

Proposition 8.23. Let X be a reflexive Banach space and let Y be a Banach
space. Then

T : X → Y completely continuous ⇐⇒ T ∈ L(X,Y ) and T compact.
(8.94)

Proof. Homework. Hint: for ’⇐=’ show first that for T ∈ L(X,Y ) the
convergence xn ⇀ x∗ in X implies Txn ⇀ Tx∗ in Y .

[12.1. 2018, Lecture 22]
[17.1. 2018, Lecture 23]

8For a general introduction see D. Kinderlehrer, G. Stampacchia, An introduction to
variational inequalities and their applications, reprinted by SIAM, 2000.
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9 Finite dimensional approximation

Definition 9.1 (Hamel basis). Let X be a vector space. A set A ⊂ X is
called a Hamel basis of X if every x ∈ X can be written in a unique way as
a finite linear combination of elements of A.

Every vector space posesses a Hamel basis (this follows from Zorn’s
lemma: order the set of all linear independent subsets of X by inclusion).
From the point of view of analysis a Hamel basis is, however, not very use-
ful. Indeed, if X is an infinite dimensional Banach space then it cannot have
a countable Hamel basis (exercise; hint: otherwise X can be written as a
countable union of finite dimensional subspace and this contradicts Baire’s
theorem)

Definition 9.2 (Schauder basis). Let X be a normed space. A sequence
e : N→ X is called a Schauder basis if for every x ∈ X there exist uniquely
determined αk ∈ K such that

lim
n→∞

n∑
k=0

αkek = x (9.1)

Remark. We write x =
∑∞

k=0 αkek. Note that it is not required that
the sum converges absolutely. Thus a reordering of a Schauder basis is not
necessarily a Schauder basis.

¿From uniqueness of αk one easily deduces that the map e′k : x 7→ αk is
linear. If X is a Banach space then one can show that e′k is a continuous map
from X to K, i.e., an element of X ′. In this case the sequence e′ : N → X ′

is called the dual base9 and it is characterized by the property

e′k(el) = δkl ∀k, l ∈ N. (9.2)

To prove that the e′k are continuous if X is a Banach space one considers
the space of sequences

Y := {α : N→ K : lim
n→∞

n∑
k=0

αkek exists} (9.3)

with the norm ‖α‖Y := supn∈N ‖
∑n

k=0 αkek‖. One defines T : Y → X by
T (α) = limn→∞

∑n
k=0 αkek. Then it is easy to see that T ∈ L(Y,X). By

definition of a Schauder basis T is bijective. The main point is to show
that Y is complete. Then the inverse operator theorem implies that T−1

is continuous and this easily yields the continuity of the maps e′k (see Alt’s
book for the details).

9Note the so-called ’dual basis’ is not necessarily a Schauder basis of the dual space
X ′. Indeed if X = l1 then X ′ = l∞ and X ′ is not separable and hence cannot have a
Schauder basis

117 [February 2, 2018]



Let X and Y be Banach spaces with Schauder bases e and f , respec-
tively, and let T ∈ L(X,Y ). Then there are unique tjk such that Tek =
limn→∞

∑n
j=0 tjkfj . Moreover x =

∑∞
k=0 αkek implies that Tx =

∑∞
j=1 βjfj

with

βj = f ′j(Tx) =
∞∑
k=0

tjkαk. (9.4)

In this way a bounded operator can be identified with an infinite matrix.
One has to be careful, however, in performing calculation with these matrices
since the sums involved do not need to converge absolutely.

If X has a Schauder basis then X is necessarily separable (approximate
the coefficients by rational coefficients). It was quite a surprise that there
exists a separable Banach space which does not have Schauder basis10. Many
of the standard spaces such as Lp(U) for p ∈ [1,∞) do have a Schauder basis.

In separable Hilbert spaces one can construct a particularly nice Schauder
basis by using orthogonality. We begin with the definition of an orthonormal
system.

Definition 9.3 (Orthonormal system). Let X be a pre-Hilbert space. Let
N ⊂ N be finite or infinite. A map e : N → X is an orthogonal system if

(ek, el) = 0 if k 6= l and ek 6= 0 ∀k (9.5)

and an orthonormal system if

(ek, el) = δkl ∀k, l. (9.6)

Lemma 9.4 (Bessel’s inequality). Let e0, . . . , en be a finite orthonormal
system of the pre-Hilbert space X. Then

0 ≤ ‖x‖2 −
n∑
k=0

|(x, ek)|2 (9.7)

=

∥∥∥∥∥x−
n∑
k=0

(x, ek)ek

∥∥∥∥∥
2

= dist 2(x, span {e0, . . . , en}). (9.8)

Proof. For α0, . . . αn ∈ K we have∥∥∥∥∥x−
n∑
k=0

αkek

∥∥∥∥∥
2

= ‖x‖2 −
n∑
k=0

(x, ek)αk −
n∑
k=0

(ek, x)αk +
n∑
k=0

|αk|2 (9.9)

= ‖x‖2 −
n∑
k=0

|(x, ek)|2 +
n∑
k=0

|(x, ek)− αk|2. (9.10)

The expression on the right hand side becomes minimal if αk = (x, ek) and
the minimum is given by ‖x‖2 −

∑n
k=0 |(x, ek)|2.

10Per Enflo, A counterexample to the approximation problem in Banach spaces. Acta
Math. 130 (1973), 309–317
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Definition 9.5 (Orthonormal basis). Let X be a pre-Hilbert space and let
e : N→ X be an orthonormal system. Then e is called an orthonormal basis
if

span {ek : k ∈ N} is dense in X. (9.11)

Theorem 9.6. Let X be a pre-Hilbert space and let e : N → X be an
orthonormal system. Then the following assertions are equivalent

(i) e is an orthonormal basis.

(ii) e is a Schauder basis of X.

(iii) (representation formula)

x =
∞∑
k=0

(x, ek)ek ∀x ∈ X. (9.12)

(iv) (Parseval identity)

(x, y) =

∞∑
k=0

(x, ek)(y, ek) ∀x, y ∈ X. (9.13)

(v) (completeness relation)

‖x‖2 =

∞∑
k=0

|(x, ek)|2 ∀x ∈ X (9.14)

¿From the completeness relation and the orthonormality relation one
easily sees that the sequence k 7→ (x, ek)ek converges absolutely. Hence a
reordering of an orthonormal basis is still an orthonormal basis.

Proof. We show that (i) =⇒ (iii) =⇒ (ii) =⇒ (i) and (iii) =⇒ (iv) =⇒ (v)
=⇒ (iii).

(i) =⇒ (iii): Let x ∈ X. By (i) there exist xn =
∑mn

k=0 αn,kek with
xn → x. For m ≥ mn Bessel’s inequality yields∥∥∥∥∥x−

m∑
k=0

(x, ek)ek

∥∥∥∥∥
2

= dist 2(x, span {e0, . . . , em}) (9.15)

≤ dist 2(x, span {e0, . . . , emn)} = ‖x− xn‖2. (9.16)

Thus lim supm→∞ ‖x−
∑m

k=0(x, ek)ek‖ ≤ ‖x−xn‖. This holds for all n ∈ N
and taking n→∞ we get (iii).

(iii) =⇒ (ii): We have to show uniqueness of the coefficients. Assume
that

0 =

∞∑
k=0

αkek. (9.17)
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By the continuity of the scalar product we have for all l

0 = (

∞∑
k=0

αkek, el) =

∞∑
k=0

(αkek, el)︸ ︷︷ ︸
αkδkl

= αl. (9.18)

(ii) =⇒ (i): Let x ∈ X. By definition of the Schauder basis there exist
αk ∈ K such that xn :=

∑n
k=0 αkek → x. Since xn ∈ span {ek : k ∈ N} this

proves (i).
(iii) =⇒ (iv): By the continuity of the scalar product we have

(x, y) = lim
n→∞

(
n∑
k=0

(x, ek)ek,
n∑
l=0

(y, el)el

)
(9.19)

= lim
n→∞

n∑
k,l=0

(x, ek)(y, el) (ek, el)︸ ︷︷ ︸
δkl

= lim
n→∞

n∑
k=0

(x, ek)(y, ek). (9.20)

(iv) =⇒ (v): Take y = x.
(v) =⇒ (iii): Bessel’s inequality yields∥∥∥∥∥x−

n∑
k=0

(x, ek)ek

∥∥∥∥∥
2

= ‖x‖2 −
n∑
k=0

|(x, ek)|2 → 0 as n→∞. (9.21)

Theorem 9.7. Let X be an infinite-dimensional Hilbert space. Then the
following statements are equivalent.

(i) X is separable.

(ii) X has an orthonormal basis.

(iii) X is isometrically isomorphic to l2.

Proof. (i) =⇒ (ii) (Schmidt orthogonalization):
This was not discussed in detail in class
Let E ⊂ X be a countable dense subset and let y : N→ E be a bijection. Let
z : N→ E be a subsequence such that {z0, . . . zk} is linear independent for all
k and Xk = span {z0, . . . , zk} ⊃ span {y0, . . . , yk}. Note that dimXk = k+1.
Set ê0 := z0/‖z0‖ and define ên inductively as follows. Let en ∈ Xn \Xn−1

and set

ẽn := en −
n−1∑
k=0

(en, êk)êk (9.22)

ên :=
ẽn
‖ẽn‖

(9.23)
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Note that ẽn 6= 0 since en /∈ Xn−1 but
∑n−1

k=0(en, êk)êk ∈ Xn−1. Then
n 7→ ên is an orthonormal system. Moreover span {ê0, . . . , ên} = Xn and
∪n∈NXn ⊃ E is dense in X. Hence ê is an orthonormal basis.

(ii) =⇒ (iii): Let e be an orthonormal basis of X. By Theorem 9.6 the
map

T (α) =

∞∑
k=0

αkek (9.24)

defines an isometry from l2 to X.
(iii) =⇒ (i): Clear since l2 is separable.

Example. (Fourier series) Let X = L2((−π, π);C). Then the functions

ek(x) =
1√
2π
eikz, k ∈ Z (9.25)

form an orthonormal basis. Indeed, e : Z → X is clearly an orthonormal
system. To see that the span of the ek is dense let

Y := {f|(−π,π) : f ∈ C2(R), f(x+ 2π) = f(x) ∀x ∈ R}. (9.26)

We have shown in Analysis 1 (or see Lemma 9.8 below) that for f ∈ Y∥∥∥∥∥∥f −
∑

k∈Z,|k|≤n

(f, ek)ek

∥∥∥∥∥∥
L2((−π,π))

→ 0 as n→∞. (9.27)

Thus span (ek : k ∈ Z) ⊃ Y . Now Y is dense in L2((−π, π);C). This can be
easily seen by considering the extension g ∈ L2((−π, π);C) to a 2π-periodic
function on R and approximating the extended function in the usual way by
convolution. Thus span (ek : k ∈ Z) = L2((−π, π);C).

Lemma 9.8 (Convergence of Fourier series of C2 functions). Let Y be given
by (9.26), let f ∈ Y and define

fn =
∑

k∈Z,|k|≤n

(f, ek)ek.

Then (9.27) holds. fn → f uniformly and in particular (9.27) holds.

Proof. Not discussed in class.
Integration by parts shows for k ∈ N \ {0}

(f, ek) =
1

ik
(f ′, ek) = − 1

k2
(f ′′, ek) ≤

1

k2

√
2π sup ‖f ′′‖.
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Since sup |ek| ≤ 1 it follows that fn is a Cauchy sequence in C0(R) and
hence convergence uniformly to a 2π periodic function f∗. It only remains
to show that f∗(x) = f(x) for all x ∈ (−π, π). We have

(f, ek)ek(x) =
1

2π

∫ π

π
f(y)e−iky dy eikx =

∫ π

−π

1

2π
eik(x−y)f(y) dy.

Thus

fn(x) =

∫ π

−π
Kn(x− y)f(y) dy

where

Kn(z) =
n∑

k=−n
eiz = e−inz

2n+1∑
k=0

eikz = e−inz
1− ei(2n+1)z

1− eiz
.

Thus

Kn(z) =
sin(n+ 1

2)z

sin 1
2z

.

Since
∫
−π πe

ikz = 0 for k ∈ Z \ {0} we have∫ π

−π
Kn(z) dz = 1. (9.28)

Therefore we get

fn(x) =

∫ π

−π
Kn(x− y)f(y) dy =

∫ x+π

x−π
K(z)f(x− z) dz.

Now for a 2π periodic function h we have
∫ a+π
a−π h(z) dz =

∫ π
−π h(z) dz. In

view of (9.28) it follows that

fn(x)−f(x) =

∫ π

−π
K(z)[f(x−z)−f(x)] =

∫ π

−π
sin (n+

1

2
)z
f(x− z)− f(x)

sin 1
2z

dz.

Set

g(z) :=
f(x− z)− f(x)

sin 1
2z

.

A short calculation shows that f ∈ C2 implies that g ∈ C1(−π, π) and
integration by parts and the fact that cos(n+ 1

2)z = 0 for z = ±π yield

fn(x)− f(x) =
1

n+ 1
2

∫
−π
π cos(n+

1

2
)z g′(z) dz → 0 as n→∞.

Thus f∗(x) = f(x).

[17.1. 2018, Lecture 23]
[19.1. 2018, Lecture 24]
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10 Compact operators and Sobolev embeddings

10.1 Sobolev embeddings

Theorem 10.1. Let U ⊂ Rn be open, 1 ≤ p < n and let

p∗ :=
np

n− p
or, equivalently,

1

p∗
=

1

p
− 1

n
. (10.1)

Then there exists a constant Cn,p which only depends on n and p such that

‖u‖Lp∗ ≤ Cn,p‖∇u‖Lp ∀u ∈W 1,p
0 (U). (10.2)

Proof. Step 1: u ∈ C1
c (U), p = 1

We extend u by zero to a function in C1
c (Rn). Since u has compact support

the fundamental theorem of calculus yields

u(x1, x2, . . . , xn) =

∫ x1

−∞
∂1u(y1, x2, . . . , xn) dy1 (10.3)

and thus

|u(x)| ≤
∫
R
|∂1u|(y1, x2, . . . , xn)| dy1 (10.4)

and similarly

|u(x)| ≤
∫
R
|∂iu|(x1, . . . , yi, . . . , xn)| dyi. (10.5)

We now illustrate the argument by considering the case n = 3. We raise
(10.5) to the power 1

n−1 = 1
2 and multiply over i = 1, . . . , n. Moreover we

abbreviate the right hand side of (10.5) by
∫
R |∂iu| dyi. This yields

|u(x)|
3
2 ≤

( ∫
R
|∂1u| dy1︸ ︷︷ ︸
h1(x2,x3)

) 1
2
( ∫

R
|∂2u| dy2︸ ︷︷ ︸
h2(x1,x3)

) 1
2
( ∫

R
|∂3u| dy3︸ ︷︷ ︸
h3(x1,x2)

) 1
2 . (10.6)

Now we integrate over x1, note that the first term on the right does not
depend on x1 and for the other two terms use Hölder’s inequality in the
form

∫
R f

1
2 g

1
2 ≤ (

∫
R f)

1
2 (
∫
R g)

1
2 (for f, g ≥ 0). This gives

∫
R
|u(x)|

3
2 dx1 ≤ h1(x2, x3)

1
2

(∫
R
h2(x1, x3) dx1

) 1
2
(∫

R
h3(x1, x2) dx1

) 1
2

(10.7)
Now we integrate with respect to x2 use again Hölder’s inequality (in this
case for the first and third term, since the second term is independent of
x2. Finally we integrate with respect to x3 and use once more Hölder’s
inequality. Thus we get
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∫
R3

|u(x)|
3
2 dx

≤
(∫

R2

h1(x2, x3) dx2dx3

) 1
2
(∫

R2

h2(x1, x3) dx1dx3

) 1
2
(∫

R2

h3(x1, x2) dx1dx2

) 1
2

=

(∫
R3

|∂1u| dx
) 1

2
(∫

R3

|∂2u| dx
) 1

2
(∫

R3

|∂3u| dx
) 1

2

≤
(∫

R3

|∇u| dx
) 3

2

(10.8)

This proves the estimate for p = 1 and n = 3. For general n we start from
the estimate

|u(x)|
n
n−1 ≤

n∏
i=1

(∫
R
|∂iu| dyi

) 1
n−1

(10.9)

and use the generalized Hölder inequality
∫
R f

1
n−1

1 . . . f
1

n−1

n−1 ≤ (
∫
R f1)

1
n−1 . . . (

∫
R fn−1)

1
n−1 .

Step 2: u ∈ C1
c (U), p ∈ (1, n)

Note that for γ > 1 we have by the chain rule |u|γ in C1
c (Rn) and

|∇|u|γ | ≤ γ|u|γ−1 |∇u|. (10.10)

Thus by the result for p = 1 and the Hölder inequality

1

γ
‖u‖γLγ n

n−1
=

1

γ
‖|u|γ‖

L
n
n−1
≤ ‖|u|γ−1|∇u|‖L1

≤‖|u|γ−1‖Lp′ ‖∇u‖Lp ≤ ‖u‖
γ−1

Lp
′(γ−1)

‖∇u‖Lp . (10.11)

Now let

γ =
(n− 1)p

n− p
=
np− p
n− p

. (10.12)

Then γ > 1 and

(γ − 1)p′ =
np− n
n− p

p

p− 1
=

np

n− p
= p∗ = γ

n

n− 1
. (10.13)

Thus (10.11) yields the desired estimate for u ∈ C1
c (U).

Step 3: u ∈W 1,p
0 (U), p = 1

Let u ∈ W 1,p
0 . By the definition of W 1,p

0 there exist uk ∈ C1
c (U) such that

uk → u in W 1,p
0 . Since we have shown that (10.1) holds for uk it follows

that k 7→ uk is a Cauchy sequence in Lp∗(U). Hence there exist v ∈ Lp∗(U)
such that uk → v in Lp∗(U) and

‖v‖Lp∗ = lim
k→∞

‖uk‖Lp∗ ≤ Cn,p lim sup
k→∞

‖∇uk‖Lp ≤ Cn,p‖∇u‖Lp . (10.14)

On the other hand uk → u in Lp(u). Thus u = v a.e. and this finishes the
proof.
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Theorem 10.2. Let U ⊂ Rn be open, let p ∈ (n,∞] and let

α := 1− n

p
, with α = 1 for p =∞. (10.15)

Then every u ∈W 1,p
0 (U) has a Hölder continuous representative u and

[u]C0,α := sup
x 6=y

|u(x)− u(y)|
|x− y|α

≤ Cp‖∇u‖Lp . (10.16)

Warning. Note that the case p = n is excluded in Theorems 10.1 and
in Theorem 10.2. Indeed for n ≥ 2 the function u(x) = ln | ln |x| | belongs
to W 1,n(B(0, 1

2) but is not in L∞ (see Homework sheet 13). For n = 1
we have shown in Theorem 2.42 that every W 1,1 function has a continuous
representative.

Remark. (i) Assume that U is bounded. Since u = 0 on ∂U the estimate
10.2 implies that

sup
U
|u| ≤ Cp‖∇u‖Lp(diamU)α. (10.17)

(ii) We will show that for p = ∞ the estimate holds with Cp = 1. One
call also show a converse statement: if v ∈ C0,1(U) then v ∈ W 1,∞(U)
and ‖∇v‖L∞ ≤ [v]C0,1 . Idea of proof: extend v to a Lipschitz function
on Rn (with the same Lipschitz constant) and then consider the difference
quotients

g(k)
a (x) := k(v(x+

1

k
a)− u(x)).

Then |g(k)| ≤ [v]C0,1 |a|. Thus for each a there exists a subsequence kj such
that

g
(kj)
a

∗
⇀ g∗a in L∞(Rn) as j →∞.

Now∫
Rn
g(k)
a ϕdx =

∫
Rn
v(x)k(ϕ(x− 1

k
a)− ϕ(x)) dx ∀ϕ ∈ C∞c (Rn). (10.18)

Taking a subsequence which converges for a ∈ {e1, . . . , en} and passing to
the limit we get∫

Rn
g∗eiϕdx = −

∫
Rn
v∂iϕdx ∀ϕ ∈ C∞c (Rn).

Thus v is weakly differentiable and the weak derivatives ∂iv are given by
g∗ei ∈ L

∞. Hence v ∈ W 1,∞(Rn). Moreover we the weak* sequential lower
semicontinuity of the L∞ norm (see Proposition 8.10 (iii))) we get

‖∂iv‖L∞ = ‖g∗ei‖L∞ ≤ [v]C0,1 .
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To show that even |∇v(x)| = (
∑n

i=1 |∇vi|2)1/2 ≤ [v]C0,1 one can argue as
follows. Let D be a countable dense subset of Rn. By taking a diagonal

sequence we can find a subsequence such that g
(kj
a

∗
⇀ g∗a in L∞(Rn) for all

a ∈ D. Passing to the limit in (10.18) we get∫
Rn
g∗aϕdx = −

∫
Rn
v

n∑
i=1

ai∂iϕdx =

∫
Rn

∑
i=1

ai∂ivi ϕdx ∀ϕ ∈ C∞c (Rn).

Since |g(k)
a | ≤ [v]C0,1 weak* lower semicontinuity of the L∞ norm gives |g∗a| ≤

[v]C0,1

(a,∇v(x)) =
∑
i=1

ai∂ivi(x) = ga(x) ≤ [v]C0,1 |a| ∀x ∈ Rn \N ∀a ∈ D

where N is a null set. Since D is dense we get (a,∇v(x)) ≤≤ [v]C0,1 |a| for all
a ∈ Rn and all x ∈ Rn \N we get the desired assertion by taking a = ∇v(x)
(if ∇v(x) 6= 0).

Lemma 10.3. Let u ∈ C1
c (Rn) and let p ∈ (n,∞]. Then for all x ∈ Rn∫

B(x,1)
|u(y)− u(x)| dy ≤ 1

n

∫
B(x,1

|∇u(z)|
|z − x|n−1

dz (10.19)

≤Cn,p‖∇u‖Lp(B(x,1). (10.20)

Proof. The second inequality follows from Hölder’s inequality since p′ <
n′ = n

n−1 . To prove the first inequality we may assume that x = 0. Using
polar coordinates y = rω we get∫

B(0,1)
|u(y)−u(0)| dy =

∫ 1

0

∫
Sn−1

|u(rω)−u(0)| dHn−1(ω) rn−1 dr. (10.21)

By the fundamental theorem of calculus we get

|u(rω)− u(0)| =
∣∣∣∣∫ r

0

d

ds
u(sω) ds

∣∣∣∣ ≤ ∫ r

0
|∇u(sω)| ds. (10.22)

Hence∫
Sn−1

|u(rω)− u(0)| dHn−1(ω) ≤
∫ r

0

∫
Sn−1

|∇u(sω)|
sn−1

dHn−1(ω) sn−1 ds

=

∫
B(0,r)

|∇u(z)|
|z|n−1

dz ≤
∫
B(0,1

|∇u(z)|
|z|n−1

dz. (10.23)

Now the assertion follows by multiplying by rn−1, integrating over r and
using (10.21).
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Proof of Theorem 10.2. First assume p ∈ (n,∞) and u ∈ C1
c (Rn). Extend

u by zero to Rn.
Step 1: For x, z ∈ Rn with |x− z| = 1 we have

|u(x)− u(z)| ≤ C ′n,p

(∫
B(x,2)

|∇u|p dLn
) 1

p

. (10.24)

We have for all y ∈ B(x, 1) ∩B(z, 1)

|u(x)− u(z)| ≤ |u(x)− u(y)|+ |u(y)− u(z)| (10.25)

and integration over B(x, 1) ∩B(z, 1) yields in connection with the lemma

Ln(B(x, 1) ∩B(y, 1)) |u(x)− u(z)|

≤
∫
B(x,1)∩B(z,1)

|u(x)− u(y)|+ |u(z)− u(y)| dy

≤Cn,p

(∫
B(x,1)

|∇u(y)|p dy

) 1
p

+ Cn,p

(∫
B(z,1)

|∇u(y)|p dy

) 1
p

= 2Cn,p

(∫
B(x,2)

|∇u(y)|p dy

) 1
p

(10.26)

since B(y, 1) ⊂ B(x, 2). The assertion follows since Ln(B(x, 1) ∩B(z, 1)) >
0.

Step 2: For x, z ∈ Rn with |x− z| = r we have

|u(x)− u(z)| ≤ C ′n,p r
1−n

p

(∫
B(x,2r)

|∇u|p dLn
) 1

p

. (10.27)

Let x′ = x
r , z′ = z

r and apply the estimate in Step 1 to the function v(ξ) :=
u(rξ). and the points x′ and z′. Now ∇v(ξ) = r(∇u)(rξ) and thus∫

B(x′,2)
|∇v(ξ)|p dξ =

∫
B(x′,2)

rp|∇u(rξ)|p dξ =

∫
B(x,2r)

rp−n|∇u(y)| dy.

(10.28)
Taking the p-th root we obtain the desired estimate.

Step 3: The estimate holds for u ∈W 1,p
0 (U) and p ∈ (n,∞).

This follows by density as in the proof of Theorem 10.1. Let uk ∈ C1
c (U)

such that uk → u in W 1,p
0 (U). Extend uk by zero to Rn. By Step 2 (and

the fact that U is bounded) the sequence k 7→ uk is a Cauchy sequence in
C0,α(U). Hence uk → u in C0,α(U) and [u]0,α ≤ C‖∇u‖p. On the other
hand uk → u in Lp(U). Thus u = u a.e. This finishes the proof for p 6=∞.

Step 4: p =∞.
For u ∈ C1(Rn) we have

|u(z)− u(x)| =
∣∣∣∣∫ 1

0
∇u((1− t)x+ tz) · (z − x) dt

∣∣∣∣ ≤ ‖∇u‖L∞ |z − x|.
(10.29)
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Let u ∈ W 1,∞
0 (U). Extend u by zero outside U . Then u ∈ W 1,∞(Rn) (see

the examples of Definition 2.44). Let V = B1(U) = {x : dist (x, U) < 1}.
Then V is open and bounded and U ⊂ V . Thus exist uk ∈ C1

c (V ) such that

uk → u in W 1,p
0 (V ) for all p <∞ and ‖∇uk‖L∞ ≤ ‖∇u‖L∞ .

(10.30)
To see approximate u as usual by convolution. Hence by the result for
p ∈ (n,∞) we have uk → u in C0,α(V ) for all α < 1. Thus for all x, z ∈ Rn

|u(x)−u(z)| = lim
k→∞

|uk(x)−uk(z)| ≤ lim sup
k→∞

‖∇uk‖L∞ ≤ ‖∇u‖L∞ . (10.31)

Moreover uk → u in Lp(U). Thus u = u a.e. in U .

By induction one can easily obtain corresponding results for the space
Wm,p

0 and we will state them below. Before doing so we show that the
exponents in the embedding theorem as p∗ = np

n−p and α = 1− n
p above are

determined entirely by scaling. Let

u ∈ C∞c (B(0, 1)) ur(x) := u(rx). (10.32)

Then (with the change of variables y = rx)(∫
Rn
|∇mur(x)|p dx

) 1
p

= r
m−n

p

(∫
Rn
|∇mu(y)|p dy

) 1
p

(10.33)

The exponent m − n
p is sometimes called the Sobolev number of the space

Wm,p. An estimate of the form ‖f‖Lq ≤ C‖∇mf‖Lp can only hold for all
f ∈ C∞c (Rn) it holds for all the functions ur. This yields the necessary
condition −n

q = m − n
p , i.e., if the Sobolev numbers of Wm,p and Lq must

agree. For m = 1 we recover the condition q = p∗.
If we want the estimate only for function with the support in a fixed

bounded set, e.g., the unit ball, then we need the estimate for all ur with
r > 1. This leads to the necessary condition −n

q ≤ m−
n
p , i.e., the Sobolev

number of Lq has to be less than or equal to the Sobolev number of Wm,p.
A similar reasoning applies to the Hölder spaces. We have

[∇kur]C0,β = rk+β[∇ku]C0,β . (10.34)

Hence for an estimate [∇kf ]C0,β ≤ C‖∇mf‖Lp for all f ∈ C∞c (Rn) we need
k + β = m − n

p . For k = 0 and m = 1 we recover the condition β = 1 − n
p .

On bounded domains we obtain the corresponding inequality as a necessary
condition.

We now show that the above conditions on the Sobolev number are also
sufficient.
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Theorem 10.4 (Sobolev embedding). Let U ⊂ Rn be open and bounded.
Assume that

m ∈ N \ {0}, p ∈ [1,∞], (10.35)

l ∈ N, q ∈ [1,∞), β ∈ (0, 1) (10.36)

Then

(i) Wm,p
0 (U) ⊂W l,q

0 (U) if l ≤ m and l − n
q ≤ m−

n
p .

(ii) Wm,p
0 (U) ⊂ Ck,β(U) if k + β ≤ m− n

p .

Moreover the corresponding injections are continuous, i.e., the W l,q norm
or the Ck,β norm can be estimated by the Wm,p norm.

Proof. This follows by induction from Theorems 10.1 and 10.2 as well as
the relation ‖f‖Lq(U) ≤ C(U)‖f‖Lr for bounded sets and q < r. The details
were not discussed in class.

(i): If U is bounded then Ls(U) ⊂ Lr(U) if s ≥ r. Thus Theorem 10.1
shows that (for p < n)

W 1,p
0 (U) ⊂ Lq(U) if

1

q
≥ 1

p
− 1

n
. (10.37)

This condition can be rewritten as −n
q ≤ 1 − n

p or m − 1 − n
q ≤ m − n

p . If
we apply (10.37) to all partial derivative of order ≤ m − 1 of a function in
Wm.p

0 (U) we get

Wm,p
0 (U) ⊂Wm−1,q(U) if m− 1− n

q
≤ m− n

p
. (10.38)

By density of C∞c we get in fact Wm,p
0 (U) ⊂Wm−1,q

0 (U) if m−1− n
q ≤ m−

n
p .

Now assertion (i) follows (for p < n) by induction. If p > n assertion (i)
follows from assertion (ii) with k = m− 1. If p = n and q = n assertion (i)
is trivial. Finally if p = n we can use that u ∈ W 1,p̃

0 (U) for all p̃ < n. Thus

u ∈Wm−1,q
0 (U) for all q <∞.

(ii): If k = 0 this follows directly from 10.2. Now suppose u ∈Wm,p
0 (U)

and the condition is satisfied for some k > 0. Then all (weak) derivatives

of u up to order k belong to Wm−k,p
0 and hence have a representative in

C0,α. From this one easily concludes that u has a representative in Ck,α(U)
(one possibility is to show that if uk ∈ C∞c (U) converges in Wm,p

0 then uk
is Cauchy sequence in Ck,β(U)). The limit in Ck,β(U) must agree a.e. with
the limit in Wm,p

0 (U).

[19.1. 2018, Lecture 24]
[24.1. 2018, Lecture 25]
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We now ask when the identity map from Wm,p
0 to W l.q

0 is not only
continuous but compact. Recall that for normed spaces X and Y a map
T ∈ L(X,Y ) is compact if and only if T (B(0, 1)) is compact. We note that

T (B(0, 1)) compact ⇐⇒
every sequence y : N→ T (B(0, 1)) has a subsequence which converges in Y

(10.39)

The implication =⇒ is clear since compactness of T (B(0, 1)) implies sequen-
tial compactness. To show the implication ⇐= we show that T (B(0, 1)) is
sequentially compact. Let z : N → T (B(0, 1)). By definition of the closure
there exist y : N → T (B(0, 1)) such that ‖zk − yk‖ ≤ 2−k. By assump-
tion there exists a subsequence ykj → y∗ in X. Then y∗ ∈ T (B(0, 1)) and

zkj → y∗. Thus T (B(0, 1)) is sequentially compact and hence compact.

Theorem 10.5 (Compact Sobolev embedding). Under the conditions of

Theorem 10.4 the identity map from Wm,p
0 (U) to W l,q

0 (U) or Ck,β(U) are
compact if

l < m and l − n

q
< m− n

p
(10.40)

and
k + β < m− n

p
, (10.41)

respectively.

Remark. The scaling uk(x) = k
n
p
−m

u(kx) shows that the embedding is
not compact if l − n

q = m − n
p (or if k + β = m − n

p ). Highly oscillating

functions of the form uk(x) = k−m sin kx show that the embedding is not
compact if l = m, even for n = 1 and U = (0, 1).

Proof. Regarding (10.40) it suffices to consider the case m = 1, l = 0. The
other cases follow from Theorem 10.4 and the fact that the composition of a
bounded operator and a compact operator is a compact operator. To show
that the identity is a compact operator from W 1,p

0 (U) to Lq(U) for q < p∗
we have to show that every sequence in u : N → B(0, 1) ⊂ W 1,p(U) has a
convergent subsequence in Lq(U). We know that

ukj → u in Lp(U) (10.42)

(see the example after Lemma 3.17). Hence we are done if q ≤ p (since U is
bounded). If p < q < p∗ we use the interpolation inequality

‖f‖q ≤ ‖f‖θp1 ‖f‖
1−θ
p2 , where θ is uniquely defined by

1

q
= θ

1

p1

+ (1− θ)1

p2
(10.43)
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which follows from Hölder’s inequality
∫
gh ≤ ‖g‖s ‖h‖s′ with g = |f |θq,

h = |f |(1−θ)q, s = p1
qθ and s′ = p2

q(1−θ) . Since ukj is bounded in Lp∗ and a
Cauchy sequence in Lp this shows that j 7→ ukj is a Cauchy sequence in
Lq(U) and hence convergent.

The proof of (10.41) is similar. It suffices to show that the identity map
from C0,α(U) to C0,β(U) is compact if 0 ≤ β < α ≤ 1. Let u : N →
B(0, 1) ⊂ C0,α(U). By the Arzela-Ascoli theorem (Theorem 3.15) there
exists a subsequence such that ukj → u∗ uniformly. This finishes the proof
for β = 0. Now let θ = β/α

|v(x)− v(y)|
|x− y|β

=
|v(x)− v(y)|θ

|x− y|θα
|v(x)− v(y)|1−θ (10.44)

which implies that
[v]C0,β ≤ [v]θC0,α21−θ‖v‖1−θ

C0 . (10.45)

Thus j 7→ ukj is a Cauchy sequence in C0,β(U) and hence convergent.

Theorem 10.6. Let U ⊂ Rn be open and bounded with Lipschitz boundary.
Then the results in Theorems 10.4 and 10.5 also hold with Wm,p

0 (U) replaced
by Wm,p(U).

Idea of proof. . Let U ⊂⊂ V ⊂⊂ Rn. Then one can show that there exist a
bounded extension operator E : W 1,p(U) → W 1,p

0 (V ) such that Ef|U = f .
Then the assertion follows for m = 1 and l = 0 or k = 0 by applying the
result for W 1,p

0 (V ). The general case follows by induction as in the proof of
Theorem 10.4.

To construct E for a function with support near ∂U one uses a suitable
local reflection and a cut-off. For general f one first uses a partition of unity.
For details see, e.g., the book of H.W Alt.

11 Spectral theory

11.1 The spectrum and the resolvent

For a linear map A : Cn → Cn we have

A injective ⇐⇒ A surjective ⇐⇒ A invertible. (11.1)

Moreover there exist finitely many values (the eigenvalues of A) λ1, . . . λk ∈
C such that A− λiId is not invertible. There exists a basis of Cn such that
the matrix of A in this basis has Jordan normal form with the values λi on
the diagonal. If A is self-adjoint, i.e. if (Ax, y) = (x,Ay) for all x, y ∈ Cn
then all eigenvalues are real and there exists an orthonormal basis such that
A is diagonal in this basis (thus the elements of the basis are eigenvectors).

We aim for an extension of these results to bounded operators T ∈ L(X)
on a complex Banach space X. In this case the situation is more complicated
since the counterpart of (11.1) is not true.
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Example. (i) Let X = l2 and let T : l2 → l2 be the shift operator,
i.e., (Tx)k+1 = xk, (Tx)0 = 0. Then T is injective but not surjective.
More precisely the range R(T ) is a closed subspace of l2 and we have l2 =
R(T )⊕ span (e0). Similarly the left shift operator defined by (Tx)k = xk+1

is surjective but not injective.
(ii) Let X = l2 and let T : l2 → l2 be given by (Tx)k = 2−kxk. Then T is
injective and R(T ) is dense in l2 since R(T ) contains all sequences which
have only finitely many non-zero entries. We have, however, R(T ) 6= l2,
since, e.g., the sequence y ∈ l2 given by yk = 2−k/2 is not in R(T ), Indeed
every sequence x ∈ l2 is bounded. Hence every sequence y ∈ R(T ) must
satisfies |yk| ≤ C2−k for some C ∈ R and all k ∈ N.

These examples motivate the following definition.

Definition 11.1 (Spectrum of an operator). Let X be a Banach space of C
and let T ∈ L(X). Then we define the spectrum of T as

σ(T ) := {λ ∈ C : T − λId is not invertible (11.2)

and we set

σp(T ) := {λ ∈ C : N (T − λId ) 6= {0}}, (11.3)

σc(T ) := {λ ∈ C : N (T − λId ) = {0},R(T − λId ) 6= X,R(T − λId ) = X},
(11.4)

σr(T ) := {λ ∈ C : N (T − λId ) = {0},R(T − λId ) 6= X}. (11.5)

These sets are referred to as the point spectrum, the continuous spectrum
and the residual spectrum. The elements of σp(T ) are called eigenvalues.

By the inverse operator theorem we have σ(T ) = σp(T )∪ σc(T )∪ σr(T ).

Notation For T ∈ L(X) and λ ∈ C we write

T − λ as an abbreviation of T − λ Id (11.6)

Theorem 11.2. The resolvent set

ρ(T ) := C \ σ(T ) (11.7)

is open and the map

λ 7→ R(λ) := (λ− T )−1

(11.8)

ρ(T )→ L(X) (11.9)

is analytic.
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Proof. Let λ ∈ ρ(T ). Then

(λ+ µ)− T = λ− T + µ = (λ− T )(Id+ µ(λ− T )−1. (11.10)

Now for |µ| < r := 1/‖(λ − T )−1 we can express (Id + µ(λ − T )−1 as a
convergent Neumann series, see Theorem 4.8. This shows that ρ(T ) contains
the disc B(λ, r) and that the resolvent maps is analytic in B(λ, r). Hence
ρ(T ) is open and the resolvent map is analytic in ρ(T ).

11.2 Fredholm operators, index, Fredholm alternative

We next consider a class of operators which are almost invertible, in the
sense that they are invertible up to a finite dimensional correction in the
domain and the image.

Definition 11.3 (Fredholm operator). . Let X and Y be Banach spaces.
An operator F ∈ L(X,Y ) is called a Fredholm operator if

(i) dimN (F ) <∞,

(ii) R(F ) is closed,

(iii) codimR(F ) < ∞ i.e., there exists a finite dimensional space Y0 such
that

Y = R(F )⊕ Y0, dimY0 <∞ (11.11)

Proposition 11.4. Let Y be a Banach space and Z, Y0 and Y1 be closed
subspaces. Assume that

Y = Z ⊕ Y0 = Z ⊕ Y1. (11.12)

Then Y0 and Y1 are isometrically isomorphic. In particular if Y0 is finite
dimensional then Y1 is finite dimensional and dimY0 = dimY1.

Proof. Consider the maps Ai := Z × Yi → Y given by A(z, yi) = z + yi.
Then A is bijective (by the definition of the direct sum) and bounded (since
the product norm is given by ‖(z, yi)‖ = ‖z‖ + ‖yi‖. Hence by the inverse
operator theorem the operators Ai are invertible. Now define B : Y1 → Y0 by
By1 := π2A

−1
0 y1, where π2(z, y0) = y0. Then B is bounded. Moreover B is

injective since By1 = 0 implies that A−1
0 y1 = (z, 0). Thus z + 0 = y1, which

implies y1 = 0. Finally B is surjective. Indeed if y0 ∈ Y0 then π2A
−1
1 y0 ∈ Y1.

Thus there exists a z ∈ Z such that y1 + z = y0. Hence A−1
0 (y1) = (−z, y0)

and By1 = y0. By the inverse operator theorem B is invertible and hence
Y0 and Y1 are isometrically isomorphic.

[24.1. 2018, Lecture 25]
[26.1. 2018, Lecture 26]
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Definition 11.5. Let F ∈ L(X,Y ) be a Fredholm operator. Then we define
codimR(F ) = dimY0 if R(F )⊕ Y0 = Y and we define the index of T as

indF := dimN (F )− codimR(F ). (11.13)

Theorem 11.6. Let X be a Banach space and let T ∈ L(X) be compact.
Then

A := Id − T (11.14)

is a Fredholm operator with index zero. In particular we have

(i) dimN (A) <∞;

(ii) R(A) closed;

(iii) N (A) = {0} =⇒ R(A) = X;

(iv) R(A) = X =⇒ N (A) = {0};

(v) codimR(A) ≤ dimN (A):

(vi) dimN (A) ≤ codimR(A).

Proof. Many arguments of the proof are modelled on the argument that the
closed unit ball in a Banach space is only compact if the space is finite di-
mensional (Theorem 3.13). It might be helpful to reread this short argument
as a preparation.

We use the following facts for a closed subspace Z ⊂ X with Z 6= X.

∀x ∈ X ∃z ∈ Z ‖x− z‖ ≤ 2dist (x, Z), (11.15)

∃y ∈ X ‖y‖ = 1, dist (y, Z) ≥ 1

2
. (11.16)

Indeed the first assertion clearly holds if dist (x, Z) = 0 because closedness
of Z then implies x ∈ Z and we can take z = x. If dist (x, Z) > 0 then
the definition of the distance implies that for each ε > 0 there exists z ∈ Z
such that ‖x − z‖ < dist (x, Z) + ε. Taking ε = dist (x, Z) we get (11.15).
The second assertion is contained in Lemma 3.8. It follows from the first be
taking x ∈ X \ Z and y = (x− z)/‖x− z‖.

(i): Note that
Ax = 0 ⇐⇒ x = Tx. (11.17)

Let B1(0) ∩ N (A) be the closed unit ball in N (A). Now B1(0) ∩ N (A) =
T (B1(0)) therefore

B1(0) ∩N (A) ⊂ T (B1(0)) (11.18)

Hence B1(0) ∩N (A) is compact which implies dimN (A) <∞.
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(ii): Suppose that Axn → y. Since N (A) is closed there exists an an ∈
N (T ) such that

‖xn − an‖ ≤ 2dist (xn,N (A)). (11.19)

We may assume that an = 0. Otherwise we consider the sequence x̃n :=
xn − an.

Case 1: supn ‖xn‖ <∞.
We have

xn = Axn + Txn. (11.20)

Since T is compact there exists a subsequence such that Txnj → y∗ and
hence xnj → y + y∗. Therefore

y ← Axnj → A(y + y∗). (11.21)

Thus y = A(y + y∗) and y ∈ R(A). Hence R(A) is closed.
Case 2: supn ‖xn‖ =∞.

Then there exists a subsequence (which for simplicity we still denote by xn)
such that ‖xn‖ → ∞. Set

yn :=
xn
‖xn‖

, so that ‖yn‖ = 1, Ayn =
Axn
‖xn‖

→ 0. (11.22)

Now the compactness of T implies that for a subsequence

ynj = Aynj + Tynj → y∗. (11.23)

The continuity of A yields

Ay∗ = lim
j→∞

Aynj = 0. (11.24)

Hence y∗ ∈ N (A) and thus

‖ynj − y∗‖ ≥ dist (ynj ,N (A)) =
dist (xnj ,N (A))

‖xnj‖
≥ 1

2
(11.25)

where we used (11.19) with an = 0 in the last step. This contradicts the
convergence ynj → y∗.

(iii): We always have R(An+1) = An(A(X)) ⊂ R(An). We claim that if
N (A) = {0} and R(A) 6= X then

R(An) 6= R(An+1) ∀n ∈ N.

Indeed let x ∈ X \ R(A). We claim that then

Anx ∈ R(An) \ R(An+1) ∀n ≥ 0 (11.26)
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If there existed y ∈ X such that Anx = An+1y then An(x−Ay) = 0. Since
N (A) = {0} this implies that An−1(x − Ay) = 0 and by induction we get
x−Ay. This contradicts the assumption x 6∈ R(A).

Moreover R(An+1) is closed. Indeed

An+1 = (I − T )n+1 = I +
n+1∑
k=1

(
n+ 1

k

)
(−T )k︸ ︷︷ ︸

compact operator

(11.27)

and thus R(An+1) is closed by (ii).
Thus there exists xn ∈ R(An) \ R(An+1) such that

‖xn‖ = 1, dist (xn,R(An+1) ≥ 1

2
.

For m > n we have Axn + (xm −Axm) ∈ R(An+1). Thus

‖Txn−Txm‖ = ‖xn−(Axn+xm−Axm)‖ ≥ dist (xn,R(An+1)) ≥ 1

2
∀m > n.

Therefore the sequence n 7→ Txn cannot contain a convergent subsequence.
This contradicts the compactness of T .

(iv): We follow a similar approach as in the proof of (iii). Let x1 ∈ N (A)
with x1 6= 0. SinceR(A) = X we can define inductively xk such Axk = xk−1.
Then xk ∈ N (Ak) \ N (Ak−1). Since Ak is continuous the subspaces N (Ak)
are closed. By Lemma 3.8 there exist zk ∈ N (Ak) \ N (Ak−1) such that

‖zk‖ = 1 and dist (zk,N (Ak−1)) ≥ 1

2
. (11.28)

Thus for l > k we have Axl + xk −Axk ∈ N (Al−1) and hence

‖Txl − Txk‖ = ‖xl − (Axl + xk −Axk)‖ ≥
1

2
. (11.29)

Hence the sequence k 7→ Txk cannot contain a convergent subsequence.
This contradicts the compactness of T .

(v): We reduce this to (iii). By (i) we have n := dimN (A) < ∞. Let
x1, . . . , xn be a basis of N(A). Assume the assertion was false. Then there
exist linear independent y1, . . . , yn ∈ X such thatR(A)⊕span {y1, . . . , yn} 6=
X.

Every x ∈ N(A) has a unique decomposition x =
∑n

i=1 αixi and the
maps x 7→ αi are linear and hence bounded since N(A) is finite dimensional.
It follows from the Hahn-Banach theorem that these map can be extended
to a maps x′1, . . . , x

′
n ∈ X ′. We have

〈xj , x′k〉 = δjk ∀j, k = 1, . . . , n. (11.30)
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Set

T̃ x := Tx−
n∑
j=1

〈x, xj〉yj . (11.31)

The operator T̃ − T is compact because its range is contained in the finite
dimensional space span (y1, . . . , yn). Hence T̃ is compact. Set

Ã := Id − T̃ so that Ãx = Ax+
n∑
j=1

〈x, xj〉yj . (11.32)

We claim that N (Ã) = {0}. Indeed if

0 = Ãx = Ax︸︷︷︸
∈R(A)

+
n∑
j=1

〈x, xj〉yj︸ ︷︷ ︸
∈span (y1,...yn}

. (11.33)

then we get Ax = 0 and
∑n

j=1〈x, xj〉yj = 0 since we assumed that the
sum R(A) ⊕ span {y1, . . . , yn} is direct. Thus x ∈ N (A) and since the yj
are linearly independent we get 〈x, x′j〉 = 0. Now x ∈ N (A) implies that
x =

∑n
i=1 αixi. The condition 〈x, x′j〉 = 0 and (11.30) then imply that x = 0.

Thus assertion (iii) yields that R(Ã) = X. On the other hand the
definition of Ã implies that R(Ã) ⊂ R(A) ⊕ span (y1, . . . , yn) 6= X. This
contradiction finishes the proof of (iv).

(vi): We reduce this to (iv). By (v) we have m := codimR(A) ≤ n :=
dimN (A). Let x1, . . . , xn and x′1, . . . , x

′
n be as in the proof of (iv) and let

y1, . . . , ym be such that

R(A)⊕ span (y1, . . . , ym) = X. (11.34)

Consider the map

x 7→ T̃ x := Tx−
m∑
i=1

〈x, x′i〉yi. (11.35)

Then T̃ is compact. We claim that Ã = Id − T̃ is surjective. Indeed every
y ∈ Y can be written as y = z +

∑m
i=1 βiyi with z ∈ R(A), i.e. z = Ax. Set

x0 =
∑m

i=1 αixi. Then x0 ∈ N (A) and thus A(x+ x0) = z and

Ã(x+ x0) = z +

m∑
i=1

(〈x, x′i〉+ αi)yi. (11.36)

The choice αi = βi − 〈x, x′i〉 shows that Ã(x+ x0) = y. Thus R(Ã) = X by
(iv) we get N (Ã) = {0}. If n > m then 〈xn, x′i〉 = 0 for all i ≤ m and hence
Ãxn = Axn = 0. Thus n = m.
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Theorem 11.7 (Fredholm alternative). Let X be a Banach space, let T ∈
L(X) be compact and let A = Id − T . Then either (i) or (ii) holds.

(i) For each y ∈ X the equation Ax = y has a unique solution. Moreover
A−1 ∈ L(X).

(ii) The equation Ax = 0 has a nontrivial solution and R(A) 6= X.

Proof. By Theorem 11.6 the operator A is a Fredholm operator of index 0.
Case 1: N (A) = {0}.

Then R(A) = Y and thus the equation Ax = y has a unique solution for
every y ∈ X, i.e., A : X → X is bijective. By the inverse operator theorem
A−1 ∈ L(X). Thus alternative (i) holds.

Case 2: N (A) 6= {0}.
ThenAx = 0 has a nontrivial solution. By Theorem 11.6 we have codim (R(A)) ≥
1 and thus R(A) 6= X. Thus alternative (ii) holds.

[26.1. 2018, Lecture 26]
[31.1. 2018, Lecture 27]

11.3 Further examples and properties of Fredholm operators

The subsection was only discussed very briefly.

Proposition 11.8. Let X be a Banach space.

(i) If Y ⊂ X is finite dimensional then there exists a closed subspace
Z ⊂ X such that X = Y ⊕ Z. Moreover the injection J : Z → X is a
Fredholm operator.

(ii) If X = Y ⊕ Z, Z is a closed subspace and Y is a finite dimensional
subspace then there exist R ∈ L(X,Z) with R|Z = Id Z , R(R) = Z,
N (R) = Y . In particular R is a Fredholm operator.

(iii) Let X,Y, Z and R be as in (ii) and let J : Z → X be the injection.
Then P := JR is a projection (i.e. P 2 = P ) N (P ) = Y , R(P ) = Z.
Hence P is Fredholm. Moreover R(Id − P ) = Y and in particular
Id − P is compact.

Proof. (i): Let y1, . . . yn be a basis of Y and let y′1, . . . y
′
n ∈ X ′ be the dual

basis, i.e., 〈yk, y′l〉 = δkl. Set

Qx =

n∑
i=1

〈x, y′i〉yi (11.37)

Then Q ∈ L(X), R(Q) = Y and Q2 = Q. Set Z = N (Q). Then Z is closed.
Moreover x −Qx ∈ Z for all x ∈ X, since Q2 = Q. Since every x ∈ X can
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be written as x = Qx + (x − Qx) we get X = Y + Z. If x ∈ Y ∩ Z then
x = Qx′ for some x′ ∈ X and 0 = Qx = Q2x′ = Qx′ = x and therefore
X = Y ⊕ Z. Finally N (J) = {0} and R(J) = Z is closed and has finite
codimension. Hence J is a Fredholm operator.

(ii): The space Y ×Z is a Banach space with norm ‖(y, z)‖ = ‖y‖+ ‖z‖
and the projection π2 : Y × Z → Z given by π(y, z) = z is continuous. The
map L : Y × Z → X given by L(y, z) = y + z is continuous and bijective
and hence has a continuous inverse. Set R = π2L

−1. Then R ∈ L(X,Z)
and R|Z = Id Z . Moreover N (R) = Y . Hence R is a Fredholm operator.

(iii) From the properties of R and J we see that Pz = z for z ∈ Z and
Py = 0 for y ∈ Y . Hence P (y + z) = z. It follows that R(P ) = Z, N (P ) =
Y . In particular P is a Fredholm operator. Moreover P 2 = P . Finally it
follows that (Id −P )z = 0 and (Id −P )y = y and hence R(Id −P ) = Y .

Theorem 11.9. Let X,Y and Z be Banach spaces. Then the following
assertions hold.

(i) Let B ∈ L(X,Y ) and A ∈ L(Y,Z). If two of the three operators A,
B, AB are Fredholm operators, then the third operator is a Fredholm
operator and

indAB = indA+ indB. (11.38)

(ii) The set F(X,Y ) of all Fredholm operators from X to Y is an open
subset of L(X,Y ) and the index is locally constant in F(X,Y ).

Remark. Note that while the index is locally constant it is in general
not true that dimN (A) or codimR(A) are locally constant (not even for
X = Y = Rn; look at a neighbourhood of 0).

Proof. The proof of (i) is essentially a nice exercise in linear algebra (the
details of the proof were not discussed in the lecture).

Step 1: Linear algebra.
We first discuss only the aspects of linear algebra, i.e., we consider all the
spaces only as vector spaces and all the maps only as linear maps, ignoring
questions of closedness or continuity. This argument can be expressed very
concisely in the language of exact sequences (see below). For the convenience
of the reader we first give a proof that does not use that language.

Preliminaries from linear algebra: If V is a vector space and V1 is a
subspace then there exists a subspace V2 such that V = V1⊕V2 (this follows
from Zorn’s lemma11). Moreover V2 ' V/V1 in the sense that there exists

11One approach is to argue as in the proof of the Hahn-Banach theorem and to construct
a linear projection P : V → V with R(P ) = V1 and Pv = v for v ∈ V1 (see 7.13 in Alt’s
book). Then one can take V2 = N (P ). Alternatively one can start from a Hamel basis
B1 of V1 and show that there exists a Hamel basis B of V which contains B1. Then one
sets V2 = span (B \B1).
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a bijective linear map from V2 to the quotient space V/V1. Indeed the
restriction of the canonical projection projection π : V → V/V1 given by
π(x) = x+ V1 to V2 is bijective. In particular if V = V1 ⊕ Ṽ2 then V2 ' Ṽ2.
Thus we can define codimV1 := dimV2 = dimV/V1 (where we allow the
value ∞).

We main assertion is that under the assumption of (i) we have

dimN (AB) = dimN (B) + dim(N (A) ∩R(B)) (11.39)

codimR(AB) = codimR(A) + codim (N (A) +R(B))

= codimR(A) + codimR(B)− dimN (A) + dim(N (A) ∩R(B)).
(11.40)

and that all the numbers which appear in these formulae are finite.
To prove (11.39) we use there exists a subspace X0 such that X =

N (B)⊕X0. Moreover B|X0
is injective and we have

R(B|X0
) = R(B) and B−1(E) = N (B)⊕B−1

|X0
(E)

for any subspace E ⊂ Y . Thus

N (AB) = B−1(N (A) ∩R(B)) = N (B)⊕B−1
|X0

(N (A) ∩R(B)). (11.41)

This implies (11.39) since BX0 is a bijective map from X0 to R(B). Note
also that all the spaces which appear in the formula are finite dimensional.
Indeed if A and B are Fredholm operators then both space on the right hand
side are finite dimensional. If AB is a Fredholm operator then N (AB) is
finite dimensional and hence both space on the right are finite dimensional.

To prove (11.40) we use the decompositions

Y = R(B)⊕ Y0 (11.42)

Y = (R(B) +N(A))⊕ Y1

N (A) = (R(B) ∩N (A))⊕ Y2 (11.43)

R(B) = Y3 ⊕ (R(B) ∩N (A)). (11.44)

Then R(B) +N (A) = R(B)⊕ Y2 and

Y = R(B)⊕ Y2 ⊕ Y1 = Y3 ⊕ (R(B) ∩N (A))⊕ Y2︸ ︷︷ ︸
=N (A)

⊕Y1. (11.45)

Thus
Y0 ' Y1 ⊕ Y2. (11.46)

It follows from (11.45) that A|Y3⊕Y1 is injective, that A is a bijective map
from Y3 ⊕ Y1 to R(A) and that

R(A) = AY3 ⊕AY1 = A(Y3 ⊕N (A))⊕AY1 = R(AB)⊕AY1.
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Thus

Z = R(A)⊕ Z0 = R(AB)⊕AY1 ⊕ Z0 and AY1 ' Y1. (11.47)

We now claim that if three of the operators A, B, AB are Fredholm then
the spaces Y1, Y2, Z0 and N (A) are finite dimensional. Since we already
know that R(B) ∩N (A) is finite dimensional this yields

codimR(AB) =
(11.47)

codimR(A) + dimY1

=
(11.46),(11.42)

codimR(A) + codimR(B)− dimY2

=
(11.43)

codimR(A) + codimR(B)− dimN (A) + dim(R(B) ∩N (A)).

(11.48)

This gives (11.40). To see that the spaces Y1, Y2, Z and N (A) are indeed
finite dimensional assume first that A and B are Fredholm. Then Y0 is
finite dimensional and hence Y1 and Y2 are finite dimensional. Moreover
dimZ0 = codimR(A) <∞ and dimN (A) <∞.

Now assume that AB and B are Fredholm. Then Y0 and hence Y1 and Y2

are finite dimensional. Moreover dimZ = codimR(A) ≤ codimR(AB) <
∞. Finally dimN (A) = dimY2 + dim(R(B) ∩N (A)) <∞.

Finally consider the case that AB and A are Fredholm. Then AY1 ⊕Z0

is finite dimensonal and hence Z0 and Y1 are finite dimensional. Moreover
N (A) is finite dimensional which implies that Y2 is finite dimensional. Thus
Y0 ' Y1 ⊕ Y2 is finite dimensional.

The calculations so far can be summarized in the statement that the
following two sequences are exact.

0 −→ N (B) −→ N (AB)
B−→ N (A) ∩R(B) −→ 0, (11.49)

0 −→ R(B) +N (A)

R(B)
−→ Y

R(B)

A−→ Z

R(AB)
−→ Z

R(A)
−→ 0. (11.50)

Moreover one can easily check that if two of the three operators A,
B and AB are Fredholm then in each sequence at most one space is not
finite dimensional. Exactness then implies that all the spaces are finite
dimensional.

Step 2: Closedness of the range.
Assume thatR(A) andR(B) are Fredholm. ThenR(AB) = AY3. Moreover
A is a bijective map from Y1⊕Y3 to R(A) and R(A) is closed by assumption.
Proposition 11.8 (i) implies that Y3 can be chosen as a closed subspace since
N (A) ∩ R(B) ⊂ N (A) is finite dimensional. Since dimY1 ≤ dimY0 < ∞
the space Y1 ⊕ Y3 is also closed and hence a Banach space. Thus A is an
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invertible operator from Y1 ⊕ Y3 to R(A) and hence the image of the closed
subspace Y3 is closed.
Alternative proof: It suffices to show that R(AB) is closed in R(A). The
map A is bijective as a map from the quotient space12 Y/N (A)→ R(A) and
hence invertible. Now R(B)+N (A) is closed since R(B) is closed and N (A)
is finite dimensional. Hence (R(B)+N (A))/N (A) is closed in Y/N (A) and
thus R(AB) = A(R(B)+N (A))/N (A)) is closed in R(A) as A is invertible.

Now assume that AB and B are Fredholm operators. Then dimY1 ≤
dimY0 <∞ and R(A) = R(AB)⊕AY1. Since R(AB) is closed and AY1 is
finite dimensional it follows that R(A) is closed.

Finally assume that AB and A are Fredholm operators. By Proposition
11.8 there exists a closed space X1 ⊂ X such that X = N (AB) ⊕X1. Let
J : X1 → X be the injection and let R : Z → R(AB) the restriction as in
Proposition 11.8. We first show that R(BJ) is closed. Then C := RABJ :
X1 → R(AB) is bijective and hence invertible. This implies that R(BJ) is
closed. Indeed let yn = BJxn and assume that yn → y∗. Then RAyn →
RAy∗ and thus xn = C−1RAyn → C−1RAy∗ =: x∗. Thus BJxn → BJx∗
and hence y∗ ∈ R(BJ). To show that R(AB) we used that N (B) ⊃ N (AB)
is finite dimensional. Hence there exists a finite dimensional space X2 such
that N (AB) = N (B)⊕X2. Hence X = N (B)⊕X2⊕X1 and thus R(B) =
BX2 ⊕ BX1 = BX2 ⊕ R(BJ). Since BX2 is finite dimensional it follows
that R(AB) is closed.

(ii): The main point is to reduce the problem from Fredholm operators
to invertible operators. Let A ∈ L(X,Y ) be a Fredholm operator. By
Proposition 11.8 there exists a closed subspaceX0 such that X = N (A)⊕X0.
Let the injection J : X0 → X and the restriction R : Y → R(A) be as in
Proposition 11.8. Then J and P are Fredholm operators. Define

A0 : X0 → R(A) by A0 := PAJ. (11.51)

Then A0 is bijective and continuous and hence invertible. In particular A0

is a Fredholm operator with index 0. Now assume that B ∈ L(X,Y ) and
‖B −A‖ < ε. Set

B0 := PBJ. (11.52)

Then ‖B0 − A0‖ < ‖P‖ ‖J‖ ε. Since the set of invertible operators is open
(see Corollary 4.9) the operator B0 is invertible if ε > 0 is sufficiently small.

12If X is a normed space and Y is a subspace then the quotient space X/Y consists of
equivalence classes [x] := x + Y , for x ∈ X. If Y is closed then ‖[x]‖ := infy∈Y ‖x + y‖
defines a norm on X/Y and if X is a Banach space so is X/Y (see homework sheet 10,
problem 3). The canonical projection π : X → X/Y given by π(x) = x + Y a Lipschitz
continuous map. We claim that π(E) is closed in X/Y if and only if E + Y is closed
in X. Indeed if π(E) is closed then E + Y = π−1(π(E)) is closed since π is continuous.
Conversely assume that E+Y is closed and that π(xn)→ z∗ for xn ∈ E. Let x∗ ∈ π−1(z∗).
Then there exist yn ∈ Y such that xn + yn converges to x∗. Since xn + yn ∈ E + Y and
since this set is closed we have x∗ ∈ E + Y . Thus z∗ ∈ π(E + Y ).
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In particular B0 is a Fredholm operator of index 0. Since P and J are
Fredholm operators it follows from (i) that B is a Fredholm operator and
indB = indA since indB0 = indA0 = 0.

Here is another interesting result which gives a precise meaning to the
intuition that Fredholm operators are almost invertible or ’invertible modulo
compact operators’.

Theorem 11.10 (Atkinson’s theorem). Let X and Y be Banach spaces and
let A ∈ L(X,Y ). Then A is a Fredholm operator if and only if there exists
B ∈ L(Y,X) such that

AB − Id and BA− Id are compact operators. (11.53)

The operator B is often called a parametrix of A; it is determined up to
the addition of a compact operator.

11.4 The spectral theorem for compact self-adjoint operators

Definition 11.11. Let X be a Hilbert space and let T ∈ L(X). Then the
adjoint operator T ∗ is defined by

(T ∗x, y) = (x, Ty) ∀x, y ∈ X. (11.54)

The operator T is called self-adjoint if T ∗ = T , i.e., if

(Tx, y) = (x, Ty) ∀x, y ∈ X. (11.55)

If A : Cn → Cn is selfadjoint then there exist and orthonormal basis
e1, . . . , en of Cn such that A is diagonal, i.e., Ax =

∑n
k=1 λk(x, ek)ek. We

now prove a counterpart of this for compact operators on a complex Hilbert
space.

Notation. If X is a Hilbert space and Y and Z are subspace we write

Y ⊥ Z ⇐⇒ (y, z) = 0 ∀y ∈ Y, z ∈ Z, (11.56)

i.e., if the spaces Y and Z are orthogonal. Note that in this case in particular
Y ∩ Z = {0}

Theorem 11.12 (Spectral theorem for compact self-adjoint operators). Let
X be a Hilbert space over C and let T ∈ L(X) be self-adjoint and compact,
with T 6= 0. Then the following assertions hold.

(i) σ(T ) \ {0} consists only of eigenvalues and for each λ ∈ σ(T ) \ {0}
the eigenspace N (T −λ) is finite dimensional. Moreover σ(T ) \ {0} is
finite or countable and the only possibly accumulation point is 0.
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(ii) We have σ(T ) ⊂ R and there exists an orthonormal system e : N → X
and a sequence λ : N → R \ {0} mit N ⊂ N such that

Tek = λkek ∀k ∈ N, σ(T ) \ {0} = {λk : k ∈ N} (11.57)

and

N(T − λ) ⊂ span (ek : k ∈ N) ∀λ ∈ σ(T ) \ {0}. (11.58)

If N is infinite then λk → 0 as k →∞.

(iii) N (T ) ⊥ span (ek : k ∈ N) and X = N (T )⊕ span (ek : k ∈ N).

(iv) x = PN (T )x+
∑

k∈N (x, ek)ek, Tx =
∑

k∈N λk(x, ek)ek ∀x ∈ X.

Remark. (not discussed in class) (i) By the usual complexification argu-
ment one can show that the same assertion holds Y is a Hilbert space over
R and S ∈ L(Y ) is compact and self-adjoint. Indeed we can extend S to a
compact self-adjoint operator T on the complexified space X = Y + iY by
T (a+ ib) = S(a) + iS(b). If ek is an eigenfunction of T for the eigenvalue λk
then the complex conjugate ek is an eigenfunction for the same eigenvalue
(since λk ∈ R). Thus Re ek or Im ek is an eigenfunction for S.
(ii) If T is a normal operator, i.e., if TT ∗ = T ∗T then the same conclusions
holds with the exception that the spectrum may lie in C rather than in R
and thus λ : N → C \ {0}.
(iii) Operator calculus. It follows from assertion (iii) that

Akx =
∑
k∈N

λk(x, ek)ek. (11.59)

Thus for f : R→ R we define f(A) by

f(A)x := f(0)PN (T )x+
∑
k∈N

f(λ)(x, ek, ek). (11.60)

For analytic f this agrees with the definition of f(A) via a power series.
(iv) There is a counterpart of assertion (iii) for merely bounded self-adjoint
operators. First note that the assertion for compact T can also be written
as

x =
∑

λ∈σ(T )

Qλx, Tx =
∑

λ∈σ(T )

λQλx, (11.61)

where Qλ denotes the orthogonal projection to the eigenspace N (T − λ).
Note we have shown that different eigenspaces are orthogonal, i.e., QλQµ = 0
if λ 6= µ. In the case of bounded operators the sum is replaced by a suitable
Lebesgue-Stieltjes integral, i.e.,

(Tx, y) =

∫
R
λ dPλ(x, y) (11.62)
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where the Pλ are orthogonal projections that are mutually orthogonal in
the sense that for λ > µ we have (Pλ − Pµ+)Pµ = 0 where Pµ+(x, y) =
limt↓0 Pµ+t. For compact T the Pλ can be defined by Pλ =

∑
µ∈σ(T ):µ<λQµ.

Then the map λ 7→ (Pλx, y) is piecewise constant and has jumps at all values
µ ∈ σ(T ) with limt↓0(Pµ+tx, y)− (Pµ−tx, y) = (Qλx, y).
There is also an extension to unbounded self-adjoint operators T : D(A)→
X where D(A) is a dense subset of X. In this case care has to be taken with
the definition of self-adjointness.

Proof. (i): Step 1: σ(T ) \ {0} consists only of eigenvalues and for each
λ ∈ σ(T ) \ {0} the eigenspace N (T − λ) is finite dimensional.
Suppose that λ 6= 0 and that λId − T is not invertible. Then A := Id − 1

λT
is not invertible. By the Fredholm alternative we must have N (A) 6= {0}.
Thus λ is an eigenvalue of T and the corresponding eigenspace is finite
dimensional by Theorem 11.6.

Step 2: σ(T ) \ {0} is countable and the only possible accumulation point
of this set is zero.
It suffices to show that the set Sk := σ(T ) \ B(0, 1

k ) is finite for all k ≥ 1.
First note that by definition of ‖T‖ we have |λ| ≤ ‖T‖ for every eigenvalue λ.
Thus, if Sk is infinite then there exist a sequence λj → λ with λj ∈ Sk and
λ 6= 0. We may assume that the λj are all different. Since the eigenspaces
Zj := N (T − λj) are closed and finite dimensional there exist zj ∈ Zj such

that ‖zj‖ = 1 and dist (zj ,
⋃j−1
l=1 Zl) ≥

1
2 . Thus

‖zj − zk‖ ≥
1

2
if k < j (11.63)

Now

zj =
1

λj
Tzj (11.64)

and since T is compact and since λj → λ 6= 0 the sequence j 7→ zj contains
a convergent subsequence. This contradicts (11.63).

(ii): Let λ ∈ σ(T )\{0} be an eigenvalue and let x 6= 0 be an eigenvector.

λ‖x‖2 = (λx, x) = (Tx, x) = (x, Tx) = λ‖x‖2. (11.65)

Hence λ ∈ R.
Now let λ, µ ∈ σ(T )\{0} with λ 6= µ. Let x ∈ N (T−λ) and y ∈ N (T−µ)

we have
λ(x, y) = (Tx, y) = (x, Ty) = µ(x, y). (11.66)

Thus (x, y) = 0 and the eigenspaces N (T − λ) and N (T − µ) are orthogo-
nal. Therefore we can choose a finite orthonormal basis in each eigenspace.
Since the number of eigenspaces is at most countable we obtain an at most
countable orthonormal system of eigenvectors that contains a basis of each
eigenspace N (T − λ) with λ 6= 0.
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(iii): Let Y := span (ek : k ∈ N). Then Y ⊥ = {z ∈ X : (z, y) = 0 ∀y ∈
Y } is a Hilbert space and by the projection theorem we have X = Y ⊕ Y ⊥.
We claim that Y ⊥ = N (T ).

Step 1: N (T ) ⊂ Y ⊥
For x ∈ N (T ) we have

λk(ek, x) = (Tek, x) = (ek, Tx) = 0. (11.67)

Since λk 6= 0 it follows that (ek, x) = 0 for all k ∈ N. By continuity of the
scalar product we get x ∈ Y ⊥.

Step 2: Y ⊥ ⊂ N (T ).
We first show that T maps Y ⊥ to itself. Indeed for z ∈ Y ⊥ we have for all
k ∈ N

(Tz, ek) = (z, Tek) = λk(z, ek) = 0. (11.68)

Thus by continuity of the scalar product Tz ∈ Y ⊥.
Let S = T|Y ⊥ . Then S is compact, self-adjoint operator on Y ⊥. If S = 0

then we are done. If S 6= 0 then by Theorem 11.13 below S has a non-zero
eigenvalue. Thus there exist µ 6= 0 and x ∈ Y ⊥ \ {0} with

Tx = Sx = µx. (11.69)

Thus µ ∈ σ(T ) \ {0} and by (ii) we must have x ∈ span (ek : k ∈ N) ⊂ Y .
This contradicts the definition of Y ⊥.

(iv) By (iii) we have y := x−PN (T )x ∈ Y = span (ek : k ∈ N). Since the
e : N→ X is an orthonormal system in X it is actually on orthonormal basis
of Y . Thus by Theorem 9.6 we have y :=

∑
k∈N(y, ek)ek =

∑
k∈N(x, ek)ek.

Finally the formula for Tx follows from the absolute convergence of the
series

∑
k∈N(x, ek)ek and the boundedness of T .

Note that for a self-adjoint operator T the expression (Tx, x) is real since
(x, Tx) = (x, Tx) = (Tx, x). The following result extends the characteriza-
tion of the maximal and minimal eigenvalue of a symmetric or hermitean
matrix.

Theorem 11.13 (Rayleigh quotient). Let X be a Hilbert space and let T ∈
L(X) be a self-adjoint and compact. Set

λmin := inf
‖x‖=1

(Tx, x) = inf
x 6=0

(Tx, x)

(x, x)
, λmax := sup

‖x‖=1
(Tx, x) = sup

x 6=0

(Tx, x)

(x, x)
.

(11.70)
Then the following assertions hold.
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(i) If λmax > 0 then there exists x∗ ∈ X with ‖x∗‖ = 1 and

(Tx∗, x∗) = λmax, Tx∗ = λmaxx∗. (11.71)

(ii) If λmin < 0 then there exists x∗ ∈ X with ‖x∗‖ = 1 and

(Tx∗, x∗) = λmin, Tx∗ = λminx∗. (11.72)

(iii) If λmax = λmin = 0 then T = 0.

Remark. If X is infinite dimensional then λmax ≥ 0λmin. Proof: let
e : N → X be an infinite orthonormal system (such a system exists by
the Schmidt orthonormalization procecure). Since

∑
k∈N (x, ek)

2 ≤ ‖x‖2 we
have limk→∞(x, ek) = 0 for all x. Thus ek ⇀ 0. Since T is compact this
implies Tek → 0 and thus (Tek, ek)→ 0.

Proof. (i) Let xk be a maximizing sequence, i.e., ‖xk‖ = 1 and (Txk, xk)→
λmax. Since every Hilbert space is reflexive there exists a subsequence such
that xkj ⇀ x∗. Since compact operators are completely continuous (see
Proposition 8.23) we get Txkj → Tx∗ (strong convergence !). Hence

(Tx∗, x∗) = lim
j→∞

(Txkj , xkj ) = λmax. (11.73)

By the weak lower semicontinuity of the norm we have ‖x∗‖ ≤ 1. Indeed we
must have equality. First x∗ 6= 0 since λmax > 0. Now if 0 < ‖x∗‖ < 1 we
have ‖x∗/‖x∗‖ ‖ = 1 and

(T
x∗
‖x∗‖

,
x∗
‖x∗‖

) =
(Tx∗, x∗)

‖x∗‖2
> λmax (11.74)

and this contradicts the definition of λmax. Hence x∗ realizes the infimum.
Then the function

h(t) :=
T (x∗ + ty, x∗ + ty)

(x∗ + ty, x∗ + ty)
(11.75)

has a maximum at t = 0. Differentiation gives (taking into account that
‖x∗‖ = 1)

0 = h′(0) = (Ty, x∗)+(Tx∗, y)−(Tx∗, x∗)((y, x∗)+(x∗, y)) = 2 Re(Tx∗−λmaxx∗, y).
(11.76)

Taking y = Tx∗ − λmaxx∗ we obtain the assertion.
(ii): Apply (i) to −T .
(iii): In this case (Tx, x) = 0 for all x ∈ X. This yields

4 Re(Tx, y) = (T (x+ y), x+ y)− (T (x− y), x− y) = 0. (11.77)

Taking y = Tx we get the assertion.
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11.5 An orthonormal system of eigenfunctions for second or-
der elliptic PDE

Theorem 11.14. Let U ⊂ Rn be open and bounded. Then there exists and
orthonormal basis e : N → L2(U) which consists of eigenfunctions of −∆,
i.e.,

−∆ek = λkek in U, ek = 0 on ∂U. (11.78)

Moreover the eigenvalues λk satisfy λk > 0 and limk→∞ λk =∞.

Remark. (i) The eigenvalue equation is understood in the sense of weak
solutions, i.e., ek ∈W 1,2

0 (U) and∫
U
∇ϕ · ∇ek dLn =

∫
U
ϕλkek dLn ∀ϕ ∈W 1,2

0 (U). (11.79)

One can show that ek ∈ C∞(U) and that (11.78) actually holds in the clas-
sical sense.
(ii) The analogous result (without the regularity statement and with the
weaker inequality infk λk > −∞) holds for the operator L with Lu =
−
∑

i,j ∂i(aij(x)∂ju) + c(x)u, if aij = aji and aij , c ∈ L∞(U).

(iii) More generally many interesting orthonormal bases of L2 and other
Hilbert space arise as eigenfunctions of suitable differential operators.

Proof. Set T := (−∆)−1. More precisely we have shown in Theorem 5.7
that for f ∈ L2(U) there exists a unique u ∈W 1,2(U) such that

(∇ϕ,∇u)L2 = (ϕ, f)L2 ∀ϕ ∈W 1,2
0 (U) (11.80)

and we set u = Tf . Then u is the weak solution of −∆u = f with zero
boundary conditions.

Step 1: T is a compact operator from L2(U) to L2(U).
By Theorem 5.7 T is a bounded operator from L2(U) → W 1,2

0 (U). This

implies the assertion since the embedding from W 1,2
0 (U) to L2(U) is compact

(see the example after Lemma 3.17 or Theorem 10.5).
Step2: T is self-adjoint on L2(U).

Let Tf = u and Tg = v. Then the definition of u yields

(Tg, f)L2 = (v, f)L2 = (∇v,∇u) (11.81)

while the definition of v gives

(Tf, g)L2 = (u, g)L2 = (∇u,∇v). (11.82)

Thus (Tg, f) = (Tf, g) = (g, Tf) since we work in a real Hilbert space.
Step 3: N (T ) = {0}.

If Tf = 0 then (∇ϕ, 0)L2 = (f, ϕ)L2 for all ϕ ∈ W 1,2
0 (U). Since C∞c (U) ⊂

W 1,2
0 (U) is dense in L2(U) we get f = 0.
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Step 4: Conclusion.
It follows from the spectral theorem, Theorem 11.12, that there exist an
orthonormal basis e : N→ L2(U) and a sequence µ : N→ R \ {0} such that

Tek = µkek (11.83)

(note that the set N in Theorem 11.12 cannot be finite since L2(U) is not
finite dimensional. Hence we may take N = N). By the definition of T we
have µkek in W 1,2

0 (U) and

(∇ϕ,∇(µkek)) = (ϕ, ek) ∀ϕ ∈W 1,2
0 (U). (11.84)

Set λk = 1
µk

then (11.84) is equivalent to (11.79).
The choice ϕ = ek shows that µk > 0 and hence λk > 0. The spectral

theorem states that the only accumulation point of µ is zero. Hence the
sequence λ must converge to ∞.

The following applications of where only discussed briefly in class.
Theorem 11.14 has many interesting applications. As an example we con-
sider the initial-boundary value problem for the heat equation

∂tu−∆u = 0 in U × (0,∞), (11.85)

u = 0 on ∂U × (0,∞), (11.86)

u(x, 0) = u0(x, 0) (11.87)

for a given function u0 ∈ L2(U). We look for solutions of the form

u(x, t) =
∑
k∈N

ak(t)ek(x) (11.88)

and ak(0) = (u0, ek). The heat equation then reduces to a family of decou-
pled ordinary differential equations

a′k(t)− λkak(t) = 0. (11.89)

This yields

u(x, t) =
∑
k∈N

e−tλk(u0, ek)ek. (11.90)

One can easily check that u is indeed a solution of the heat equation and
that t 7→ u(·, t) is a continuous map from [0,∞) to L2(U). Symbolically one
can write u as

u(·, t) = et∆u0. (11.91)

Similarly the choice

u(·, t) = sin(t(−∆)
1
2 )(−∆)−

1
2u1 + cos(t(−∆)

1
2 )u0 (11.92)
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provides a solution to the wave equation

∂2
t u−∆u = 0 (11.93)

with initial values

u(·, 0) = u0 ∈W 1,2
0 (U), ∂tu(·, 0) = u1 ∈ L2(U). (11.94)

More precisely the symbolic notation in (11.92) means

u(x, t) =
∑
k∈N

sin(tλ
1
2
k )λ

− 1
2

k (u1, ek)ek + cos(tλ
1
2
k )(u0, ek)ek. (11.95)

The formula can be written even more concisely if one the introduces the
complex variable z = (−∆)

1
2u+ i∂tu. Then

z(·, t) = exp(−it(−∆)
1
2 )z0 (11.96)

and one sees immediately that the map z0 7→ z(·, t) is an L2 isometry.

11.6 The Fredholm altenative for second order elliptic oper-
ators

This was not discussed in class.

Lemma 11.15 (Fredholm alternative in Hilbert spaces). Let X be a Hilbert
space, let T ∈ L(X) be compact and let A = Id − T . Then

(i) R(A) = N (A∗)⊥,

(ii) dimN (A) = dimN (A∗).

Proof. (i): We have

y ∈ N (A∗) ⇐⇒ ∀x ∈ X (x,A∗y) = 0 ⇐⇒ ∀x ∈ X (Ax, y) = 0

⇐⇒ y ∈ R(A)⊥. (11.97)

Thus R(A)⊥ = N (A∗). Since R(A) is closed we have (R(A)⊥)⊥ = R(A)
which implies the assertion.

(ii) : By Theorem 11.6 the operator A has index zero. Hence

dimN (A) = codimR(A) =
(i)

dimN (A∗). (11.98)
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We now apply the Fredholm alternative to the existence of weak solutions
of the equation Lu = f where

Lu := −
n∑

i,j=1

∂i(aij∂ju)−
n∑
i=1

∂i(biu) +
n∑
i=1

ci∂iu+ d. (11.99)

We assume that
aij , bi, ci, d ∈ L∞(U) (11.100)

and that the coefficients aij are elliptic, i.e.,

∃ c > 0
n∑

i,j=1

aij(x)ξiξj ≥ c|ξ|2 for a.e. x. (11.101)

Associated to L is the bilinear form

B(v, u) =

∫
U

n∑
i,j=1

∂iv aij∂ju+

n∑
i=1

∂iv biu+

n∑
i=1

vci∂iu+ dvu dLn. (11.102)

We recall that u is a weak solution of the boundary value problem

Lu = f in U, u = 0 on ∂U (11.103)

if u ∈W 1,2
0 (U) and

B(v, u) =

∫
U
vf dLn ∀v ∈W 1,2

0 (U). (11.104)

Let
N (L) := {u ∈W 1,2

0 : B(v, u) = 0 ∀v ∈W 1,2
0 (U)}. (11.105)

We define the formal adjoint L∗ by

L∗u = −
n∑

i,j=1

(∂iaji∂ju)−
n∑
i=1

∂i(ciu) +
n∑
i=1

bi∂iu+ d. (11.106)

The corresponding bilinear form is given by

B∗(v, u) = B(u, v). (11.107)

Theorem 11.16 (Fredholm alternative for second order elliptic operators).
Assume (11.100) and (11.101). Then either (i) or (ii) holds.

(i) For all f ∈ L2(U) there exists a unique weak solution of the boundary
value problem (11.103).
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(ii) N (L) 6= {0} and the boundary value problem (11.103) has a weak
solution if and only if

(v, f)L2 = 0 ∀v ∈ N (L∗). (11.108)

Moreover
dimN (L∗) = dimN (L) <∞. (11.109)

Proof. Step 1: Reduction to compact operators
Using the Cauchy Schwarz inequality and Young’s inequality we get

B(u, u) ≥ c‖∇u‖2L2 − C1‖u‖L2 ‖∇u‖L2 − C2‖u‖2L2

≥ c

2
‖∇u‖2L2 − C‖u‖2L2 . (11.110)

For γ ∈ R set

Lγu = Lu+ γu, Bγ(v, u) = B(v, u) + γ(v, u). (11.111)

If γ ≥ C we have by the Poincaré inequality

Bγ(u, u) ≥ c

2
‖∇u‖2L2 ≥ c̃‖u‖2W 1,2

0

. (11.112)

Thus by the Lax-Milgram theorem for each f ∈ L2 the boundary value
problem for Lγu has a unique weak solution in W 1,2

0 (U). Denote the solution
by u = L−1

γ f . Then

Lu = f ⇐⇒ Lu+ γu = γu+ f

⇐⇒ u = γL−1
γ u+ L−1

γ f ⇐⇒ u−Ku = h, (11.113)

where
K := γL−1

γ and h := L−1
γ f. (11.114)

Note that K is bounded as an operator from L2(U) to W 1,2
0 (U) and hence

compact as an operator from L2(U) to L2(U). Note also that (11.113)
implies that

u−Ku = 0 ⇐⇒ u ∈ N (L). (11.115)

Similarly one can show that (see Step 3 below for the details)

u−K∗u = 0 ⇐⇒ u ∈ N (L∗). (11.116)

Step 2: Application of the Fredholm alternative.

First case: N (L) = {0}.
ThenN (Id−K) = {0} and thus by the Fredholm alternative, Theorem 11.7,
we have R(Id − K) = L2(U). Thus u − Ku = h has a solution for every
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h ∈ L2 and hence the boundary value problem (11.103) has a weak solution
for each f ∈ L2(U). Moreover the solution is unique since N (L) = {0}.

Second case N (L) 6= {0}.
Then N (Id − K) 6= {0}. By Lemma 11.15 we have N (Id − K∗) 6= {0}.
Moreover the equation u−Ku = h has a solution if and only if

(v, h) = 0 ∀v ∈ N (Id −K∗). (11.117)

Now for v ∈ N (Id −K∗) we get from (11.114)

(v, h) =
1

γ
(v,Kf) =

1

γ
(K∗v, f) =

1

γ
(v, f). (11.118)

In view of (11.113) the boundary value problem (11.103) has a weak solution
if and only if (v, f) = 0 for all v ∈ N (Id − K∗). By (11.116) we have
N (Id −K∗) = N (L∗).

Finally the assertion dimN (L) = dimN (L∗) follows from (11.115),
(11.116) and Lemma 11.15 (ii).

Step 3: Computation of K∗.
(This argument was not discussed in class). For completeness we give a
detailed proof of (11.116) which is similar to the proof the (−∆)−1 is self-
adjoint. If suffices to show that K∗ = γ(L∗γ)−1. Then the assertion follows
from (11.113) with L replaced by L∗. To compute K∗ let f, g ∈ L2(U) and
set u = γL−1

γ f = Kf , v = γ(L∗γ)−1g. Then the definition of L−1
γ gives

Bγ(v, u) = γ(v, f)L2 (11.119)

Similarly the definition of (L∗γ)−1 gives

B∗γ(u, v) = γ(u, g)L2 = (Kf, g)L2 (11.120)

Since B∗γ(u, v) = B(v, u) we get (f, v) = (v, f) = (Kf, g) and thus v = K∗g,
as desired.
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12 Overview

12.1 Abstract results

12.1.1 Hilbert spaces

(i) Cauchy-Schwarz inequality

(ii) Strict convexity, parallelogram identity

(iii) Projection on closed convex sets and closed subspaces

(iv) Riesz representation theorem

(v) Lax-Milgram theorem and its consequences

(vi) Orthonormal basis, Parseval’s identity

12.1.2 Metric spaces and Banach spaces

(i) Compactness = sequential compactness = precompact and complete;
compactness and existence of minimizers

(ii) Projection theorem in uniformly convex spaces

(iii) The Hahn-Banach theorem and its consequences (separation of sub-
spaces and convex sets)

(iv) The Baire category theorem and its consequences

• Uniform boundedness principle/ Banach-Steinhaus theorem

• Open mapping thm./ inverse operator thm./ closed graph thm.

12.1.3 Weak convergence

(i) Definition of the weak and weak* topology and convergence

(ii) X separable =⇒ B(0, 1) ⊂ X ′ weak* sequentially compact

(iii) If X is reflexive then B(0, 1) ⊂ X is weakly sequentially compact.

(iv) Mazur’s lemma and convex minimization problems

12.1.4 Spectral theory

(i) Definition of the spectrum and its subsets, analyticity of the resolvent

(ii) Fredholm operator, Fredholm alternative, Continuity of the index

(iii) Spectral theorem for compact self-adjoint operators
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12.2 Applications

12.2.1 Function spaces

(i) Definition and properties of C(X;Y ), Ck, Ck,α, completeness, separa-
bility

(ii) Lp spaces and Sobolev spaces (Definition, completeness, approxima-
tion, product rule, chain rule, boundary values)

(iii) Criteria for compactness in C0 (Arzela-Ascoli) and Lp (Frechet-Kolmogorov-
M. Riesz)

(iv) Duality: (Lp)′ = Lp
′

for 1 ≤ p <∞, C(K)′ = rca(K) for K compact

(v) Weak convergence in Lp and W k,p

(vi) Examples of reflexive and non reflexive spaces

(vii) Fourier series in L2

(viii) (Compact) Sobolev embeddings

12.2.2 Partial differential equations

(i) Weakly harmonic functions by the projection theorem in W 1,2
0 (U)

(ii) Lax-Milgram and weak solutions of second order elliptic pde

(iii) Non-solvability results by the closed graph theorem

(iv) Minimizers of convex variational problems (weak convergence and Mazur’s
lemma), obstacle problem

(v) Existence of an L2 orthonormal basis of eigenfunctions for second order
elliptic operators
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Notes

The course and the lecture notes follow very closely the book [Alt] by H.W.
Alt, usually with identical proofs.

The material in Section 1 is standard is taken from various sources.
Section 2.1 is taken from [Alt] 1.1–1.7, for the separability statements

see Alt 2.17. Section 2.2 is classical and is based on the lecture notes from
Analysis 3. For a nice very short summary of the properties of the Lebesuge
integral and Lp spaces, see also [Brezis]. Section 2.3 on Sobolev spaces
follows [GT]. In [Alt] Sobolev spaces are defined by completion and it is
then shown that this agrees with the definition by weak derivatives. The
one dimensional results are discussed in [Alt] U1.6–1.8. The assertion that
Sobolev functions have representatives which are absolutely continuous on
a.e. line can, e.g., be found in [EG], Section 4.9.2, Theorem 2. Many further
interesting results on pointwise properties of Sobolev functions on lower
dimensional sets can be found in in that book, too.
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Section 3 is taken from Alt 2.1–2.4, except for Example 3.4 and the dis-
cussion of uniformly convex spaces. For uniform convexity see, e.g. [Brezis]
Section 3.7 and Theorem 4.10. Section 3.2 is taken from Alt 2.5–2.9. The
presentation of the Arzela-Ascoli theorem and the Frechet-Kolmogorov-Riesz
theorem is taken from Alt 2.11–2.15, with minor modifications. The Arzela-
Ascoli theorem is directly proven for functions with values in a Banach space
and the discussion of the approximation by convolution is adapted to the
material discussed in the section on Lp spaces. The proof of the compact
embedding from W 1,p

0 (U) to Lp(U) is standard.
Section 4 on linear operators is directly taken from Alt 3.1–3.10 and

3.12, while Sections 5.1 and 5.2 are taken from [Alt] 4.1–4.3 and 4.4–4.8,
respectively.

The proof of the duality relation (Lp)′ ' Lp
′

by uniform convexity is
standard and the uniform convexity follows from Clarkson’s inequalities; see,
e.g., [Brezis] Theorem 4.10 and 4.11, or [Adams] Theorem 2.28, Corollary
2.29 and Theorem 2.33. The rest of the material in Section 6 is taken from
[Alt] 4.14–4.23. For Remark 6.14 and a much more comprehensive study of
the spaces ba and rca as well as related spaces and their duality relations
see [DS].

The material in Section 7 on Baire’s category theorem and its conse-
quences is taken from [Alt] 5.1–5.9, with the exception of Proposition 7.9.
The result is classical, I know no particular reference for the argument given.

The motivation and definition of the weak topology in Section 8 is taken
from [Brezis] Chapter 3.1–3.4. The results starting with the weak* sequential
compactness of the closed unit ball in X ′ are taken from [Alt] 6.4, 6.5, 6.8–
6.17. The short discussion of completely continuous operators is based on
[Alt] 8.1 and 8.2(i).

The discussion of finite dimensional approximation in Section 9 is taken
from [Alt] 7.3–7.9. The proof of the Sobolev embeddings in Section 10
follows [GT] Theorem 7.10 and Corollary 7.11 and [Alt] 8.7–8.13. Many
further results, also for the borderline case W 1,n can be found in [GT], see
also [Adams]. More details on extension operators can be found [Alt] A6.12
and, for higher order Sobolev spaces, in [Stein] Chapter VI.2 and VI.3.

Section 11.1 is taken from [Alt] 9.1–9.3. The results in Section 11.2 up
to the Fredholm alternative are taken from [Alt] 9.6, 9.8, and 9.11, The
results on the continuity of the index and Atkinson’s theorem are adapted
from [Notes]. The spectral theorem in Section 11.4 is a special case of [Alt]
10.12, where normal operators are covered. The variational characterization
of the largest and smallest eigenvalue is taken from [Alt] 10.14. The result on
the eigenfunctions of the Laplace operator and its application to evolution
equations follow [Alt] 10.16. The Fredholm alternative in Hilbert spaces
follows from [Alt] 10.8 if one takes into account that the dual operator and
the adjoint operator are related by the Riesz isomorphism: T ∗ = R−1

X T ′RX .
The proof of the Fredholm alternative for second order elliptic PDE is taken
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from [Evans], Section 6.2.3, Theorem 4.

Further reading

Many interesting topics covered in [Alt] and [Brezis] could not be covered
in the course: Distributions, functions of bounded variations, definition of
boundary values for Sobolev functions by trace operators, Lp estimates for
elliptic operators (Calderon-Zygmund theory), Ck,α estimates for elliptic
operators (Schauder theory), maximal monotone operators and evolution
equations, more general spectral theorems, ...

There are of course many further classical and modern books on func-
tional analysis and on its applications to partial differential equations. The
following is a deliberately short list, meant as a starting point to inspire
further reading beyond the books by H.W. Alt and H. Brezis.

• For partial differential equations: [GT] and [Evans]

• For further properties of Sobolev spaces: [GT], [Adams] and [EG]

• For a more general set-up (with locally convex topological spaces in-
stead of normed spaces), distributions and their Fourier transform,
spectral theory on Banach algebras, and various applications of func-
tional analytic methods: [Rudin]
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