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1 Overview. Random wave equations and stochastic point
processes (SPPs).

1.1 Two types of stochastic models for resonators.

One can consider several types of models for wave equations in uncertain or random
structures:

e Type 1. A stochastic medium in a bounded domain G is surrounded in RA\G by a
deterministic isotropic homogeneous outer medium.

e Type 2. A deterministic structure in G is surrounded by uncertain (or unknown)
structure that is modeled stochastically.

e Type 3. The medium is stochastic in the whole R?. In the contexts of self-averaging
and Anderson localization such models are much better studied than Type 1 and
Type 2.

Sometimes spectral properties of a structure of Type 1, Type 2, or Type 3 can be
described via a stochastic point process (in short, SPP) in R or in C = R? or via a family
of such SPPs. These SPPs will represent random (multi-)sets of random eigenvalues or
random resonances.

Since one of the ways to define stochastic media also involve SPPs in R?, SPPs become
one of the main topics of the course. We will pay a considerable attention to related
definitions, examples, and basic properties.

1.2 Main ideas about (stochastic) point processes.
Let (©,F,P) be our underlying (complete) probability space.

SPPs in R? are one of the rigorous ways to describe random collection of points in R¢,
see, e.g., the textbook [LP].

Denote by M. the set of all No-valued Borel measures in R%, where Ny = {0} UN. Let
I’\\Io =Ny u {+OO}

Let 91 be the set of all Iglo—valued measures that can be written as at most countable sums
of measures from the set 9.

Definition 1.1 (SPP).
A (stochastic) point processes in R is a random element of 9 (random here means mea-
surable in an appropriate probabilistic sense that will be specified later in this course).

This short definition is a bit too abstract and too general for most of our needs. We
mainly use the following subclass of SPPs.

Definition 1.2 (proper SPP).
A proper point processes in R is a random measure 7 : w — 17, w € £, of the form

Mo = Zéyj(W) = 25(5‘7—%‘(0‘1)), weq,
j=1

7j=1



where y1, ya, ..., are R%valued random variables, s is an No—valued random variable, and
S, = 0(x — 2) is a Dirac measure placed at the site z € RY,

We use the convention that 22:1 = 0. The random variable s in Definition rep-
resents the random number of points in the proper SPP 7. Since s is probabilistically
measurable, the set {»x = 0} = {w € Q : »(w) = 0} belongs to the o-algebra F of all
events. For n = 37,
zero measure) for all w e {3 = 0}.

dy,, the convention Z?:l = 0 means that we have n, = 0dz (the

Example 1.1 (homogeneous Poisson process on S with |S|; < ).

Let S = RY be a Borel subset with a finite (d-dimensional Lebesgue) measure |S|; € Ry =
(0,4+0). Let y1, y2, ... be independent random variables uniformly distributed in S. Let
2 be an Nyp-valued random variable with the Poisson distribution Po(v), where v > 0 is a
rate- (or intensity-) parameter. That is,

,Y'n
P{>x =n} = —e 7, n € Np.
n!

Then n = Z;’Zl dy,; is a homogeneous Poisson point process with the rate (or intensity)
equal to ﬁ.

Remark 1.1.
Strictly speaking, Example is not a definition. However, it is almost a definition (up
to equality in distributions), see Lecture 5.

1.3 Examples of random Schrodinger operators of Type 1.
We denote by R, = (0, +o0) the positive half-line and put Ry := [0, +c0).

Example 1.2 (1-d model of an amorphous solid slab, cf. [LGP) Sections 1.1.1 and 7]).
Let d = 1 and let G = (z_,x) be a bounded interval in R. Let Vo e LL (R,Ry) be an
R, -valued L®-potential with a compact support supp Vy in R. Let n be a homogeneous

comp (

Poisson SPP from Example with a certain rate v > 0. Let us introduce a random
potential V(x) = Vy(z), w e Q, by

Vw($)=fVo(fv y)nw(dy) = Z o(z — yj(w

The associated random 1-d Schrédinger operator H,, = —% + Vo, w e Q, is defined by

2
Hou(z) = —u"(x) + Vy(x)u(x), uedom <dd> = H*(R),

22
where by dom A we denote the domain (of definition) for a possibly unbounded operator
A:domAc X - X

in a Hilbert or Banach space X. In our case, X = L?(R) = L?(R,C) is a complex Hilbert
space.

Recall that the Sobolev space

H™(R) = {f € L*(R) : £ e L*(R),0 < j < n}



is a Hilbert space with the norm given by | f||%. ® = -0 g |f () 2dz.

In Example[1.2} G is bounded and Vj has a compact support. So, the support supp V,,
G + supp Vp is almost surely (a.s.) compact. That is, a.s. V,(x) = 0 for all z ¢ Z for a
certain compact interval Z. This means that outer medium in R\Z is homogeneous, while
the structure V,,(x), x € Z, of the medium inside Z is stochastic.

Example 1.3.

It is possible to simplify this construction to another random Schrédinger operator

d? d? -
Hw:—@‘FCT]:—@—FCZéw
j=1

with the potential V' given by a sum of randomly placed é-functions multiplied on a
coupling constant ¢ > 0.

Remark 1.2.

Ezxample can be without essential changes generalized for R with any d € N. Ezample
can be generalized to R with d = 2 and d = 3 with some changes needed for the
interpretation of d-potentials. For d = 4, d-potentials supported at separated points are
not well-defined (at least in the sense of Schridinger operators in L?(R%)).

For models of Type 1, it is important that the random potential has a compact support.
Let us say a few words about some cases where the support of V' is not compact.

Remark 1.3.

(a) Assume that we replace bounded G with G =R in Ezxzample . Then we obtain a
well-known Poisson-Anderson model for random media with strong structural disorder
[LGP, 1595, [BS01)]. This model is used for amorphous (or non-crystalline) solids. For
small intensity-parameter v > 0, the model can also be used for the description of
random impurities in a homogeneous medium.

(b) Let us concentrate on the simplest case where d = 1 and G =R. Let n be a ho-
mogeneous Poisson SPP with rate v > 0 on the whole R. Then, it is known that
for 1-d Poisson-Anderson operator H,, = —% + V., there exists a deterministic set
S < Ry such that S = o(Hy) with probability 1. Moreover, the complete spectral
Anderson localization takes place. This means that a.s. S = 0(Hy) = opp(Hw),
Oac(Hy) = 0sc(H,) = 9, and all eigenfunctions of H,, decay exponentially as x — +0o0.

(¢) The statement in (b) that a.s. H, has deterministic purely point spectrum S (i.e.,a.s.
S = o0(H,) = opp(Hw) and oac(Hy,) = 0sc(Hy) = @) can be reformulated in the fol-
lowing more elementary way. For almost all (a.a.) w € Q, there exists an orthonormal
basis of eigenfunctions {ufj}jeN of H, such that

Hou = 2 kj(w)(u|uZ})Lz(R)uZ) Yu € dom(H,) = H*(R)
jeN

and a.s. {kj(w)}jen = S. The complete spectral Anderson localization includes ad-

ditionally the statement that a.s. all eigenfunctions ul,(x) decay exponentially as
T — too.

(d) The complete Anderson localization for 1-d Poisson-Anderson operator H, follows



from the papers [S95, (BSO1]. First mathematically rigorous results on spectral Ander-
son localization go back to [GMPT7|.

Formally, we have not defined yet Poisson SPP on R or R?. This will be done later in
the course. Roughly speaking, it is a sum of independent Poisson SPP on the unit sells
z+[0,1)¢, 2 € Z (see Lemma 6.1).

1.4 Spectral properties of open systems and (continuation) resonances.

The spectral theory is another component of this course. We will address some basics of
the spectral theory of selfadjoint operators.

Let A:domA € X; — X5 be an abstract operator between Hilbert or Banach spaces
X1 and X5. The Banach space of all bounded operators A from X7 to X, with dom A = X3
will be denoted L£(X7, X2). If we write A : X7 — Xy, this means that dom A = Xj.

Consider now the case X1 = X5 = X. In this case, one says that A :domA < X —» X
is an operator in X. We use the notation £(X) := £(X, X). The set p(A) of all k € C such
that the inverse operator (A —k)~! := (A—kI)~! exists and belongs to £(X) is called the
resolvent set of A. The £(X)-valued function k +— (A —k)~! defined for k € p(A) is called
the resolvent of A. The resolvent (A — k)~' : p(A) — L£(X) is an analytic £(X)-valued
function, see, e.g., [Katol RS1].

The spectrum o(A) of A is defined as

o(A) :=C\p(A).
The set of eigenvalues op,(A) of A is a subset of o(A).

If A = A* in a Hilbert space X, one can define the absolutely continuous spectrum
Tac(A), the singular continuous spectrum og.(A) and the pure point spectrum op,(A), see
Lecture 13. In this case, the following equalities are valid

op(A) = opp(4)

and
0(A) = 0ac(A) U osc(A) U opp(A).

(Sometimes, e.g., in [RS1], the pure point spectrum opp(A) is defined as the set of eigen-
values; in this case, the last equality is written as 0(A) = dac(A) U 0sc(A) U opp(A)).

Exercise 1.1.

Let us take the Hilbert space X = L?(0,1). Let My : L?(0,1) — L?(0,1) be the operator of
multiplication on f € L*(R), i.e., M : u— fu. In the case f(x) = z, z € [0, 1], we obtain
the operator My, i.e., M, u(z) = zu(z) for all u € L*(0,1). Show that o,(M,) = @, but
o(Myz) =[0,1].

Exercise 1.2.
In the Hilbert space £2(N) = ¢2(N, C), let us consider the operator A defined by A(uy)neny =
(/) s+ Then ay(A) = {1/n}ncx, but o(A) = {0} U {1/}

Returning to the examples of Schrodinger operators, consider a deterministic finite
collection of points y1, ..., ¥,, € R and the associated Schrodinger operator defined as



above
d2 d2 x

Since we have assumed that Vo e LE (R, R, ), we see that V e LY (R, R,).

comp comp

Theorem 1.1.
Assume that V e LE, (R, R,). Consider H = —(%22 + V with domH = H*(R). Then
H=H" and

U(H) = RJr = O'ac(%)'

This result follows from much more general [RS3, Theorem XI.30].
In other words, in the case V € L% (R, R ), the spectrum of H = —% + V gives not
so much of information about H. To get more interesting spectral properties for H, let us

consider (continuation) resonances.

0
comp
basic statements about resonances can be adapted with some small changes to the cases

VelL® (R, VelLl, (R),oreventoV with a sufficiently fast decay at o).

comp comp

For simplicity, we keep the assumption V € L (R,R;) (many of the subsequent

We replace the spectral parameter k with & = A? and consider for A € C, := {Imz > 0}
one more version of the resolvent-function

Ru(N) = (H =X)L, Ry :Cy — LLAR)).

By Theorem Ry (N\) does not exists as an L£(L?(R))-valued function for A\ € R.
However, it is possible to continue R#(A) from C, meromorphically through R to C_ =
{Im z < 0} in a certain generalized way.

Theorem 1.2 ([DZ]).
Assume that V e LL (R, R,) and H = —%+V. Then Ry (M), A € C4, can be continued

comp

to the whole C meromorphically as an E(Lgomp(R), L2 (R))-valued function R™(N).

loc

The resonances are the poles of this generalized meromorphic continuation.

The Physics meaning of resonances is connected with the description of the long-time
behaviors of solutions and with the rate of decay of energy contained inside of the resonator
(i.e., inside of G or inside of the support supp V' of the potential).

If the operator H,, = —;—; +V,, is randomized in a reasonable way, the set of resonances
becomes random and can be sometimes described by a locally finite SPP on C.
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2 Overview (continuation). Eigenvalues and resonances in
random and deterministic open systems.

2.1 Elementary definition of resonances.

There is a great variety of resonance type effects in Mathematical Physics. One particular
type that describe spectral properties of open systems and is called continuation resonances

(in the sequel, simply resonances).

In Lecture 1, the discussion of resonances for a particular type of deterministic Schrodinger
operators has been started. We consider a deterministic finite collection of points y1, ...,
Y. € R and the Schrédinger operator

d? d? <
%Z—@JFV(@:—?JFZVO@—%),

where Vo e L2 (R, R, ). Hence

comp

V(z) = > Volw - y;) € LLmp (R, R,).
j=1

We have replaced the spectral parameter k with k& = A2 in the resolvent (H — k)~!
of the operator H and considered for A € C; := {Imz > 0} one more version of the

resolvent-function

Ru(N) = (H =X)L, Ry:C, — L(L*R)).

Theorem 1.2 has continued Ry (A) from C; meromorphically to the whole C as an
L(L2,,,(R), L% (R))-valued function R$™(X). The resonances were defined in Lecture 1

comp loc
as the poles of this meromorphic continuation.

Let us consider now another, more elementary, way to continue Ry through R and
to define the (multi-)set ¥(H) of the resonances associated with the operator #. This
approach is based on the construction of cut-off resolvent [S, [DZ].

Let B, = {x € R?: |2| < r}. In our present case d = 1, so B, = (—r,7). Let

() (2) 1, zeB,

x) = x) =

Xr XB, 0, 2¢B,

be the indicator function of B,. By M,, we denote the multiplication operator on X,

My, u(z) = xr(z)u(z), ue L3(R).

Exercise 2.1.

Show that M,, € L(L*(R)). Find M5 , p(My,), and o(M,,). What is | M,, |?

In what follows, we assume that r is large enough in such a way that suppV < B,. We
define the cut-off resolvent as

RN) = Rar(N) i= My, (H—X)"'M,,, AeC,.

10



Theorem 2.1 ([S, [DZ]).
The L(L2(R))-valued function R(\), A € C4, can be continued on C as a meromorphic
L(L2(R))-valued function R (N) = 7%3_??()\)

Definition 2.1 (Vainberg, Melrose, see [S, [DZ]).

The poles of R™()) in C (equivalently, the poles of RS™(N)) are called resonances
associated with H. We denote by X(#) the (multi-)set consisting of these poles (taking
their multiplicities into account).

Remark 2.1.

(a) The poles ofﬁgf";t()\) do not depend on 1 if r is large enough [S)]. Therefore resonances
are well-defined.

1s definition works in with every o e N.
b) This defi k R h dd de N

(c) For even d the analytic continuation has a branching point at A = 0 (even if V. =0).
So, the meromorphic continuation to the whole C is not possible. In this case, the
definition and the physical meaning of resonances are somewhat different [AGHH, DZ)].

Remark 2.2.

1
Consider the case where V € Ly,

(a) Since c(H) = Ry for H=—A+V, we see that Ry () = (H — A2)~1 is analytic for
X e Cy and so are R(\) = My, Ry (X)) My, and R(N)™ . Thus, the set of resonances
Y (H) is a subset of C_ = {Imz < 0}. Actually, Rellich’s uniqueness theorem implies
that X(H) < C_ u {0} (see [DZ, Theorem 3.33]).

(R,Ry) or Ve L® (R*R,) with odd de N.

comp

(b) If we drop the assumption of nonnegativity of V', resonances may appear in C,. For
Ve LE (RLR), the set X(H) n Cp = {v/ k;}ff;l is at most finite. The values

comp
k, are exactly negative eigenvalues of H. In this case, the resonances have physical

interpretation somewhat different from that of the next subsection.

In the case d = 1, it is possible to define resonances via the eigenvalue problem with
specific nonstandard boundary conditions. These boundary conditions include the spectral
parameter A. Namely, the set of resonances ¥(H) is the set of eigenvalues A for the
eigenproblem

—u"(z) + V(2)u(z) = Nu(z), e (-rr), (2.1)
o' (r) = idu(r), ' (=r) = —idu(r), (2.2)
where we can choose any r > 0 that is large enough to ensure supp V' < [—r,r]. It is rather

difficult to generalize this definition with special boundary conditions to multidimensional
cases.

2.2 Physical meaning of deterministic and random resonances.

Remark 2.3.
If one considers the operator HP = dx2 + V(x) with the Dirichlet boundary condition

u(z) =0, x € 0G,

then the waves modeled by the associated wave equation will reflect from the boundary 0G
and the energy will be conserved inside of G. In this case, one says that that HP models

11



a conservative system/resonator. The spectral properties of the conservative resonator are
described exactly by the spectrum o(HP) of HP and the construction with continuation

resonances is not needed. For bounded domains G and V € ngmp(G,@g, the spectrum
U(HD) = Udisc(HD) = {kn}neny € R4

is purely discrete, i.e., every point k, of o(HP) is isolated and is an eigenvalue of finite
algebraic multiplicity. These eigenvalues ky, (or A\, = ++/ky) are also sometimes called
resonances. Figenvalues k,, are resonances or eigenfrequencies of a conservative system.
However, this is a different type of resonances, and we will keep for them the name eigen-

frequencies.

The Physics meaning of (continuation) resonances is connected with the description of
the long-time behaviors of solutions of wave equations inside the resonator, i.e., inside of
a bounded domain G or inside of B,, and with the corresponding rate of (exponential)
decay of the energy. In such settings, R\G or R¥\B, is considered as the outer medium
where the energy escapes in the form of waves going to c0. One says that the resonator is
leaky, lossy, or open.

Theorem 2.2.

Assume that V e LE (R,Ry), H = —A + V. Assume additionally that all resonances

associated with H are simple, i.e., of algebraic multiplicity 1. Consider the solution w of
the acoustic-type wave equation

Pw(t,x) — Pw(t,z) + V(x)w(t,z) =0
with initial data

w(0,-) = uo() € Heomp(R)

comp

Srw(0,-) = uy (1) € L2, (R).

comp

Then, for every B > 0, the following representation of w is valid

w(t,z) = Z e Wit (z) + Ag(x,t),
Im A\;>—f3
/\jEE(’H)
where the sum is finite, the functions w; are L%OC(R)-solutions of

ij = )\jwj

in the distributional sense, and, for every r > 0 such that suppug U suppu; < B,, there

are constants C, 3 > 0 and T, g > 0 such that the remainder term Ag is estimated by
1A ) 2,y < Crp e P (HUOHHl(R) + HUIHL2(R))

forallt =T, .

i)\jt

In this theorem, e™"%*w;(x) is an exponentially decaying dissipative eigenoscillation

corresponding to the resonance \;. In the case w; # 0, its (exponential) rate of decay is

Bj = —Im)\j > 0.

12



The real part o;j = Re A; is the (real) frequency of eigenoscillations.

The spectral abscissa

Absc(H) = sup Im);
AeX(H)

corresponds to the lowest horizontal line R+iAbsc(#H) such that the whole set of resonances
is in the closed half-plane below this line. The value (—1)Absc(H) is the optimal estimate
from below on the decay rates of all eigenoscillations. In some cases, (—1)Absc(H) is the
decay rate of the energy in B, for generic initial data {ug,u1} [CZ95].

One more quantity is of interest in engineering applications. Let Z = [a1, 2] < R be
the interval of real frequencies in that the resonator is supposed to operate. Then the
interesting quantity is

dist(Z,2(H)) = inf{|A —a| : e X(H), a€ [aq,as]}.

Consider now the stochastic model with a random operator H,,, e.g., the operator from
Lecture 1

q42 2

o= =g *Tel@) =~z + Ry wen

generated by a certain SPP {y; };‘:1. The quantities of interest then the random variables
Absc(H,) and dist(Z,3(Hy)), their distributions, expectations E(Absc(H,)),
E(dist(Z, X(Hw))), and other values describing these random variables.

However, except of some almost trivial cases, it is very difficult to study directly
Absc(H,,) and dist(Z,X(H,)) even in the simplest 1-d settings of lecture 1. The ex-
isting studies usually include into the stochastic models H,, some parameter going to co or
to 0, and investigate certain limiting properties of random sets X(H,,) [S14, K16, [AK21].

2.3 Random resonances for 1-dimensional model with Anderson cut-off
potential

One of the models for random resonances [K16] is connected with the 1-d discrete Anderson
model

(Hou)(n) = (Agiscw)(n) + Vy(n)u(n) = u(n + 1) + u(n — 1) + V,(n)u(n)

in the Hilbert space ¢*(Z) = (*(Z,C). Here V,,(n) are independent identically distributed
(i.i.d.) nondeterministic random variables.

The operator
(Adiscu)(n) = u(n + 1) + u(n - 1)’ n € Z, (u(n))nez € 62(2)7

is (shifted) discrete Laplacian (or shifted graph Laplacian).
Exercise 2.2.

(a) Adisc = A} in £2 (Z)

disc

(b) Find o(Agise)-

13



(c) Prove that op(Agisc) = 9.
Actually, it is easy to prove that o(Agisc) = Tac(Adisc) and & = opp(Hew) = Ose(Hw)-

As soon as the random potential V,(n) is added, the spectral properties of H, =
Agisc + Vi, change substantially. Under very weak assumption on the common distribution
measure p of the random variables V,,(n), the complete Anderson localization is proved
for H,,.

Theorem 2.3 (JCKMS7)).

Let Hy = Agisc + Vi, with i.i.d. random variables V,,(n), n € Z, having a distribution
measure p. Suppose that supp p is not concentrated in a single point of R (i.e., random
variables V,,(n) are not deterministic). Assume additionally that

f lz°dp(x) < oo
R

for a certain § > 0.

Then, with probability 1,
U<Hw) = Upp(Hw)a g = Uac(Hw) = Usc(Hw)7

and all (discrete) eigenfunctions of H., are exponentially decaying as n — +0o0.
Klopp [K16] studied SPPs generated by the resonances of operators with cut-off random
potentials

VE(n) = Von) if—L+1<n<L
B 0, otherwise

in the limit L — co.

The paper [AK2I] considered random resonances associated with 3-d Schrédinger op-

erators
s(w)

H,=-A+ ¢ Y ma)d(x—y;(w)) “
j=1
where a generalized potential is defined by the SPP {y; };‘:1 consisting of random positions
of d-potentials.

A stochastic model of Type 2 was considered in [K24], where the leakage of energy
into the stochastic outer environment is modeled by certain random dissipative boundary
conditions on 0G for multidimensional bounded domains G = R?. These random bound-
ary conditions can be seen as a multi-dimensional generalization and randomization of

damping boundary conditions ([2.2)).
References for Lecture 2.
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3 Point processes.

3.1 Basic definitions concerning (stochastic) point processes.

A (stochastic) point process (SPP) in a measurable space (X, Fx) is a rigorous way to
describe a random collection of points in R?, see, e.g., [LP].

Let us recall that a measurable space is a pair (X, Fx) consisting of a set X and a certain
o-field Fx of subsets of X. A class F of subsets of X is called a field (on X) if the following
conditions are satisfied:

o XeF,
e A, Be Fimplies AABe F and Au Be F.

A field F closed w.r.t. countable unions is called a o-field. That is, a field F is called a
o-field if {A;}jen = F implies | J;en 4; € F.

One of the most important examples of a measurable space (X, Fx) is an arbitrary
metric space X equipped with the Borel o-field F = B(X) (which by definition is generated
by open subsets of X). We will mainly work with the measurable spaces (R, B(R?)) or
(S,B(9)), where S € B(RY). If it is not explicitly stated otherwise, for a metric space X,
we take the o-field Fx = B(X) of all Borel subsets of X as the associated o-field for the

measurable space.

Let
Ny := {0} UN, I§10 = Np u {+x0}, andﬁ::Nu{-i-oo}.

Definition 3.1.

Denote by Mgy = Neon(X) = Neon (X, Fx) the set of all Np-valued measures p : Fx — Ny
on X. Let 91 = 91(X) be the set of all I/\\Io-valued measures that can be written as at most
countable sums of measures from the set M.

An SPP in X is a random element of 91(X). However, we need to explain rigorously the
meaning of “random” here.

Let Fin = Fn(X) be the o-field on M(X) generated by all subsets of 91 of the form
{peMN :u(A) =k}, Ae Fx, keNp.

Exercise 3.1.
The o-field Fu is the smallest o-field on 91 such that

A - p(d), AR,
is a measurable function from (M, Fi) to (R, B(R)) for every A € Fx, where R = Ru {£o0}
is the standard compactification of the metric space R.
Let (2, Fq,P) be our underlying (complete) probability space.

Definition 3.2 (SPP).
A point processes n on X is a random variable with the values in (I, Fn), i.e., n: Q >N
is a measurable mapping (w.r.t. the o-fields Fqo and Fy).
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Remark 3.1 (s-finite measures).

A measure p on X with values in ]l/éJr = [0, 4] is called s-finite if p is a countable sum
of finite measures (i.e., of measures with values in Ry := [0, 4+00)). By definition, €N
implies that p is s-finite. However, an s-finite Iglo-valued measure on a measurable space
X does not necessarily belongs to N(X), as it is shown by the next exercise.

Exercise 3.2.
Let X = [0,1] and let u be Np-valued measure on [0, 1] defined by

0, |AL=0
A) = .
#A) {—iroo, 1Al > 0

Show that u is s-finite, but p ¢ 91([0, 1]).

Let us explain Definition of a point process 1. For A € Fx, let us denote by n(A) a
function
w— N(w, A) =nw)(A), we Q.

Definition means that 7(A) is an No-valued random variable for every A € Fx. The
random variable 7(A) is called the number of points in A.

Example 3.1.

Let m € Ny and let i be a probability measure on X. Let y1, ..., ¥ be i.i.d. random
variables with values in X and the distribution pu. Then the sum 7 of Dirac measures
placed at the random sites y; (w), ..., Ym(w),

=0y + + Oy,

is an SPP on X and

This SPP is called a binomial process with sample size m and sampling distribution p.

Recall that a random variable £ : 2 — R is said to have a binomial distribution Bi(m, p)
with parameters m € Ng and p € [0, 1] if

P(¢ = k) = (’Z) PFA—-p™ k. k=0,...,m.

where 0° = 1. So, in Example n(A) € Bi(m, u(A)) for every A € Fx.

Example 3.2.

Assume that X € B(RY) with 0 < |X|q < c0. The uniform distribution U = Ux on X
corresponds to the probability measure U(A) = |A|4/|X|4. Taking 1 = U in Example
one obtains on X a uniform binomial process with sample size m.

Binomial processes are simplest nontrivial examples of proper SPP arising in applica-
tions.
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3.2 Proper point processes and simple point processes

Definition 3.3 (proper SPP).
An SPP 75 is called a proper point processes if there exist X-valued random variables ¥,

Y2, ..., and a Iglo—valued random variable ¢ such that
= Z Oy,
j=1

almost surely (a.s.).

Exercise 3.3.

(a) Let n1, m2, ...be a sequence of SPPs. Then n =mn; + 72 + ... is an SPP.
(b) Let n1, m2, ...be a sequence of proper SPPs. Then n =n; +n2 +... is a proper SPP.

The question is under what conditions we can represent an SPP as at most countable
sums of §,; with certain X-valued random variables y;. It is easier to approach this question
in deterministic settings.

Exercise 3.4.
Let X = [0,1]. A measure u belongs to ([0, 1]) if and only if y is at most countable sum
of Dirac measures y = Z?:l d,, with a certain k € No and certain y; € [0,1] for 1 < j < k.

Let us discuss to what extent Fxercise [3.4] can be generalized.

Let #A be a cardinal number of elements in a set A. Assume that Y = {y,}*_, with
k e No is at most countable subset of X. Then the mapping ny : Fx — I§T0 defined by
ny (A) = #(Y n A) for every A < X is a measure on X, which is called a counting measure
supported by the set Y.

At most countable sums

k
p=>16,, kel (3.1)
j=1

of é-functions are measures on X belonging to 91. They are counting measures of ¥ =
{yn}k_, if and only if all points y; are distinct. Otherwise, some of the points y of the set
Y are multiple with multiplicities p({y}) € N. One can say that a measure of the form
is a counting measure for a multi-set ¥ = {yn}flzl (or simply a counting measure
with multiplicities).

A multi-set Y is a set where a point y € Y can be repeated and the corresponding
multiplicities mult(y) are taken into account for the comparison of the sets (and possibly
some other set operations).

Definition 3.4.

(a) A measure p € (X) is said to be simple if p({z}) < 1 for very x € X. The set of all
simple measures is denoted by 91s(X).

(b) An SPP 7 is said to be simple if P(n € Ms(X)) = 1.

Remark 3.2.
The set N(X) is measurable, i.e., Ns(X) € Fn(X) (see [LP, Proposition 6.7]). So, {n e
N (X))} € Fq and P(n € Ns(X)) is well-defined.
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Exercise says that every measure p € ([0, 1]) is a counting measure with multi-
plicities. For a general measurable space X, this is not necessarily true.

Example 3.3.

There are (rather pathological) examples of measurable spaces X and p € 91(X) such that
pv cannot be written in the form (3.1). Let us take X = [0,1] with the following non-
standard o-field F. Let F consists of all at most countable subsets of [0,1] and their
complements in [0,1] (this o-field is the smallest o-field generated by finite subsets of
[0,1]). Let pu(A) = |A|; for all A e F. Then p is Nyo-valued, and so, p € Moy € N, but
u(X) = p([0,1]) = 1 and there exists no y such that u = é,. Hence, 1 cannot be written
in the form (3.1)).

Remark 3.3.
Example immediately implies that there are measurable spaces X such that not all SPP
on X are proper.

3.3 Proper point processes on Borel spaces

Definition 3.5.

A Borel space is a measurable space (X, Fx) such that there exists a Borel measurable
bijection f from X to a Borel subset S < [0,1] such that the inverse bijection f~! is also
measurable.

The important and practical class of Borel spaces is described by the next theorem.

Let X be a Borel subset of a complete separable metric space (CSMS). Let us consider
X as a metric space with the induced metric and let Fx = B(X) be the o-field generated

by open subsets of X. The measurable space (X, Fx) is called a measurable Borel subspace
of X.

Theorem 3.1 (e.g., [K02, Theorem A.1.2], [K17, Theorem 1.1], and [LPL Theorem A.19]).
Let X be a Borel subset of a CSMS. Then the measurable Borel subspace (X, Fx) of X is
a Borel space.

Corollary 3.1.
Any Borel subset X of R? is a Borel space.

Recall that a measure p on X is said to be o-finite if there is a sequence A; € Fx, j € N,
such that u(A;) < oo for all j and (J;cy Aj = X. The Lebesgue measure | - |4 on R? is
o-finite, but is not finite. A simple example of a measure 1 that is not o-finite is given by
(3.1) with k = 400 if y; = y for all j € N (i.e., if all points y;, j € N, coincide).

Exercise 3.5.
Every Np-valued o-finite measure belongs to 9(X).

Definition 3.6.
An SPP 7 on X is said to be uniformly o-finite if there exist A; € Fx, j € N, such that
UjeN Aj = X and
P(1(4;) < ) = 1
for all j € N.

Theorem 3.2 (see, e.g., [LP, Corollary 6.5]).
A uniformly o-finite SPP on a Borel space is a proper SPP.
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Definition 3.7.
Let (X, p) be a metric space and let (X, B(X)) be the corresponding measurable space.

(a) A set B < X is called bounded if B = & or its diameter
diam(B) := sup{p(z,y) : z,y € B}
is finite.

(b) A measure p is said to be locally finite if u(B) < oo for every bounded B € B(X).

(¢) An SPP 7 on X is said to be locally finite if P(n(B) < o) = 1 for every bounded
B e B(X).

Exercise 3.6.
A locally finite SPP on a metric space X is uniformly o-finite.

Corollary 3.2.
(a) A locally finite SPP on a Borel subset X of CSMS is a proper SPP.

(b) A locally finite SPP on a Borel subset X € R? is a proper SPP.

Proof. Satetement (a) follows from Theorems and combined with Exercise
Statement (b) follows from (a). O

References for Lecture 3.
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4 Schrodinger operators with J-interactions. Abstract sym-
metric and selfadjoint operators, restrictions and exten-

sions.

Our next goal is to define rigorously random 3-d Schrodinger operators
s(w)

Hou(z) = —Au(z)+ « Z m(ag)d(x—y;(w))u(zx) u e dom(H,)  L*(R?), weq,
j=1

with point interactions of the quasi-strength 1/ag € R U {00} placed at the random sites
y;(w) € R3. If we have a proper SPP on R?

=%,
j=1

and fix a certain deterministic ag € R, then H,, becomes the Schrodinger operator associ-
ated with this SPP and with the inverse strength parameter ag.

In this lecture, we start from the deterministic version of H,. Moreover, we consider
first the 1-d case as an introduction to the main definitions. A detailed exposition of
a related deterministic and sotchastic theories until 1988 is given in the monograph of
Albeverio, Gesztesy, Hoegh-Krohn, & Holden [AGHH]. An appendix to this monograph
written by Exner gives an overview of the developments until 2005.

4.1 Point interactions in the 1-d case.

Let N € N, b = {bj};\f:l c C, and let Y = {yj}évzl c R be a collection of distinct
deterministic real numbers without finite accumulation points.

The operator
2 N

d
H = HY’b = —@ + Z bjéyj
j=1
in the Hilbert space L?(R) is defined by the differential operation
d2

. o
@.U'—) u

and the glue-type boundary conditions
W'(y; +0) —u'(y; —0) = bju(y;),  y;eY. (4.1)
Rigorously this means that Hu = —u” for all u in the domain of H
domH = {ue H'(R) n H*(R\Y) : is satisfied }.

Example 4.1.

Assume that b; = 0 for all j. Then domH = H?*(R) and H is the standard nonnegative
1-d Laplacian (—1)% = —A with the natural domain in L?(R). We denote this operator
by H° and consider it as the unperturbed case. One can say that H is the same as the
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operator in the case N = 0, i.e., there are no point interactions at all. With the use of the
1-d Fourier transformation

1
V2T

which is a unitary operator in L?(R), we can write

Fyg(z) = s-1imy o0 f e g(y)dy,

FHOF™! = My = (Mg2)*.
Here
s-lim means the limit in the sense of the norm (i.e., w.r.t. the strong convergence).
So H? = (H°)*. Moreover,
o(H®) = o(M,2) = [0, +0) (an exercise).

The associated quadratic form equals

(HOu|u) 2 = —J u'udr = J lu/|da.
R R

Definition 4.1.
An operator A : dom A € X — X is called nonnegative if the associated quadratic form
is nonnegative, i.e., if (Au|u)x = 0 for all u € dom A.

Example 4.2.
Let N =1and Y = {y1} = {0}. Using integration by parts, let us consider the quadratic
form associated with H = Hy,

(Hau)s2 = |

WTida :f P2+ biu(O)2,
R\{0} R

which on a formal (nonrigorous) level looks like
(HOulu) 2 + by J 5() u(z) Pda.
R

This justifies the expression
2

d
H = —@ + bl(syl.

In the 1-d case, the parameter b; € R is the strength of the point interaction at y;.

Remark 4.1.

Ezxample can be easily extended to the case N < oo. If additionally b; € R for all j, it
can be transformed into an alternative rigorous definition of the selfadjoint operator Hy,
with the use of the theory of (unbounded) symmetric bilinear forms, see [AGHH, [Kato,
RS2 (especially , see the Kato-Lax-Milgram-Nelson (KLMN) theorem in [RS2] and [RS2,
Ezample X.2.3]).

The case N = oo (as well as the 2-d and 3-d cases) are substantially more difficult.

Theorem 4.1 (Gesztesy & Kirsch|[GK85|, see also [AGHH, KM10]).
Assume that b = {bj}é-v:l cR.
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(a) If additionally the following uniform discreteness condition holds
inf |y; —yn| > 0, (4.2)
j#n

then My = Hy,, in L*(R).
(b) Note that N < o0 implies (4.2). So if N < o, then Hyp = Hi, in L?(R).

We will use the notation
dy = di(Y) := inf |y; — ynl|.
j#n

With this notation, the uniform discreteness condition (4.2]) can be written as dy(Y") > 0.

The uniform discreteness condition handles the cases of deterministic lattices and lat-
tices with small random displacement. For a homogeneous Poisson point process Y, (4.2)
is too restrictive.

Remark 4.2.

Let bj = by € R for all j. Let Y, = {y;(w)}jen, w € Q, be a homogeneous Poisson
SPP. Then it is easy to see that holds with probability 0. However, the operator
Hy,p = _0%22 +bg ZjeN 5yj(w) is selfadjoint with probability 1 (this follows from the results
of [M88], see also [KMNI19] and Theorem 10.2 of this lecture series). Note that we have
used the fact that a homogeneous Poisson SPP on R is proper, which follows from the fact
that homogeneous Poisson SPP is locally finite and Corollary 3.2 (b).

The uniform discreteness assumption can be relaxed, but cannot be dropped in Theorem
This can be seen from the following result of [KM10| (in a slightly reformulated form).

Theorem 4.2 (Kostenko & Malamud [KM10]).
Assume that Y can be renumbered as Y = {y;}jez in strictly increasing order such that
dj = y; —yj—1 >0 for all j € Z. Then:

(a) In the case Zd? = o0, one has H?’b = 7—[;1,717 for every b < R.

(b) Let Zd? < o0 and dj_1dj11 = d? for all j = 0. Then there exists b = {bj}jez < R
such that Hy  is symmetric, but Hy |, # H;i/,b'

In this very advanced result, one can see a much simpler effect that the selfadjointness
of unbounded operators is a more tricky property, than the selfadjointness of bounded
operators. In particular, symmetric operators are not necessarily selfadjoint.

4.2 Abstract symmetric and selfadjoint operators

Let X; and X, be Hilbert spaces with inner products (-|-)x,,. Mainly we work with
complex Hilbert spaces, but some of material can be adapted to the real case and to
Banach spaces.

Recall that a (linear) operator A from X; to X with a domain domA < X; is a
linear map defined on a linear subspace dom A of X;. The corresponding notation is
A:domA < X7 —» Xo. If dom A = X3, one can write A : X7 — X5. The Banach space
of all bounded operators A : X; — Xo (with the standard operator norm) is denoted by
L(X1, Xs).
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If X1 = X9 = X, one says that A : domA € X — X is an operator in X. Besides,
L(X)=L(X,X).

For unbounded operators in X, dom A is typically not a closed subspace of X (except
some pathological cases). If dom A is dense in X (i.e., dom A = X), one says that A
is densely defined in X. Differential operators in X = L?(G) (with open G < RY) are
typically densely defined.

Definition 4.2.
Assume that A : domA € X; — X5 is densely defined. Then the adjoint operator
A* :dom A* € Xy — X is defined in the following way:

(a) dom A* consists of all v € Xy with the property that there exists f € X; such that

(v]Au)x, = (flu)x, Vu € dom A; (4.3)

(b) A*v = f.
The assumption dom A = X7 in Definition ensures that f in (9.2)) is unique.

Definition 4.3.

(a) An operator A :domA < X — X is called selfadjoint if A = A* (in particular, this
assumes dom A = dom A*).

(b) An operator A:dom A € X — X is called symmetric if
(Aulv)x = (u|Av)x Vu,v € dom A.
Remark 4.3.
(a) Equality implies that
(Aulv)x, = (u|A*v)x,, u€domA, wvedomA*. (4.4)

(b) Equality (4.4]) implies that every selfadjoint operator is symmetric.
(c) If Ae L(X), then A is selfadjoint if and only if it is symmetric (an ezxercise).

Not every unbounded symmetric operator is selfadjoint, as we have seen in Theorem
A much simpler example of symmetric non-selfajoint operator in L?(0,1) is provided
by the 1-d Laplacian operator —AP-N defined by the differential expression (—1)% and
a combination of Dirichlet and Neumann boundary conditions. That is

dom APN = H2(0,1),

where HZ(G) is the closure of C°(G) in H?(G). Typically symmetric nonselfadjoint
boundary operators appear if one put too much boundary conditions.

Let us consider the PDE version of the last example.

Example 4.3.
Let G < R? be open and nonempty. Let

Au = —Au, A:CP(G) c L*(G) — LA(G).
Then A is symmetric, but A # A* since dom(A*) 2 dom(A) = CF(G). Indeed, by
Green’s formula dom(A*) 2 H2(G). In the case d = 1, dom(A4*) = H?(G).
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The selfadjointness of the differential operators A is important, in partucluar, because
the equation

idiu = Au (4.5)

in a Hilbert space X has good properties. Namely, A = A* if and only if (—i4) is a
generator of unitary group. This means that, in the case A = A*, the unique solution
u(t) = e %y to the initial value problem u|;—g = ug € X for exists in a certain
reasonable sense for all ¢t € R and ||u(t)||x = |uo|lx for all ¢ € R, see [Katol RS1]. In this
case, the unitary operators e 4, ¢ € R, build a group.

Theorem 4.3 (e.g., [Kato, RS1]).
If A= A*, then o(A) € R.

If the operator A is symmetric, but is not selfadjoint, then o(A4) € R. The proper-
ties of solutions to idyu = Awu are (softly speaking) not so good. For some classes of
operators, there are no nontrivial solutions on sufficiently large time intervals ¢ € [0,T].
For differential operators, the reason is typically that too much boundary conditions are
imposed.

If A= —A+ V(z) is Schrodinger operator in the classical sense, or in the general-
ized sense of this lecture, then is a time-dependent Schrédinger equation that de-
scribes, e.g., a dynamic of a quantum particle in a certain environment represented by
a potential V' depending on the position. For example, the case of generalized potential
V =00,z 0(x—n) on R or a singular case of Kronig-Penny model, which is a simplified
model of a nonrelativistic electron moving in a fixed crystal lattice. Theorem implies
that the related operator A = —;—; + b0 Dnez 6(z — n) in L%(R) is selfadjoint and there
exists an associated unitary group {e7'4*};cr.

4.3 Restrictions and extensions of operators

Definition 4.4.
The graph Gr A of an operator A : dom A € X; — X5 is a subspace of X; @ X» defined
by

GrA = { {u,Au} : ue domA}.

Definition 4.5.

Let A:domA < X; > Xy and B : dom B € X; — X5 be connected by Gr A < Gr B.
Then an operator B is called an extension of A, and the operator A is said to be a
restriction of B. One writes A = B [4om 4-

Note that Gr A < Gr B is equivalent to
dom A € dom B and Au = Bu Vu € dom A.

In operator theory, operators are often identified with their graphs and so one writes
Gr A € Gr B shorter A € B.

Proposition 4.1.
(a) If Gr A < Gr B, then Gr B* < Gr A*.

(b) A densely defined operator A in X is symmetric if and only if Gr A < Gr A*.
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(c) A restriction of a symmetric operator is a symmetric operator. In particular, a re-

striction of a selfadjoint operator is a symmetric operator.
(d) Every restriction of a nonnegative operator is a nonnegative operator.

(e) Every densely defined nonnegative operator is symmetric.

Proof. The proof of (a) easily follows from Definition Statement (b) follows from (a)
and Definition [4.3] Statement (c) follows from (b). Statement (d) follows from Definition
4.0l

Statement (e) follows from the polarization principle, see [Kato, formulae (1.6.11) and
(VL1.1)]. 0

Theorem 4.4 (von Neumann, see, e.g., [AG, Section 107] and [Kato]).
A densely defined nonnegative operator A has at least one selfadjoint extension A. Every
such selfadjoint extension A is a restriction of A*.
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5 Schrédinger operators with d-interactions in R?* and Pois-
SOl processes.
In the 2-dimensional and 3-dimensional case, it is difficult to define point interactions via

quadratic forms. That is why we consider two other methods for the 3-d case.

The 1st method is based on restrictions and extensions of operators. The 2nd method
introduces Schrodinger operators with d-interactions H via their resolvent (H — k)1,
ke p(H) < C, and is convenient for the study of the spectrum o(#H) = C\p(H).

It should be pointed out that, in RY with d > 4, Schrodinger operators with o-
interactions at isolated points do not exist at all.

5.1 Point interactions in the 3-d case defined via restrictions, extensions,
and boundary conditions.

Recall that A : dom A € X — X is a restriction of B:dom B ¢ X — X if Gr A < Gr B.
In this case, B is called an extension of A and one writes A = B [qom 4. Every densely
defined nonnegative operator A in a Hilbert space X has at least one selfadjoint extension
ﬁ, and every such selfadjoint extension A is a restriction of A* (see Theorem 4.4).

In the Hilbert space L?(R3), consider the nonnegative Laplace operator
HO = —A, domH°® = H*(R3).

Then H® = (H°)*, which can be proved using the reduction to a multiplication operator
with the use of the Fourier transform.

Let N e N, a = {aj}é-vzl c C,and let YV = {yj}j-vzl c R? be a collection of distinct
deterministic points in R3. Assume additionally that

Y has no finite accumulation points

In the terminology of Definition 3.7, the last assumption is equivalent to the statement
that the counting measure of Y is locally finite.

Consider the following restriction of H°
HP™ = HO Lo, dom HP™ = CP(RP\Y).
It follows from Proposition 4.1 that 7—[311}1“ is symmetric and nonnegative as a restriction of
the nonnegative selfadjoint operator H°.

By Theorem 4.4, there exist selfadjoint extensions H of HM and these extensions are
restrictions of the operator
Hgax - ( }rr/lin)*
The definition of the adjoint operator (Definition 4.2) implies that

Hy P u=—A , u for all u € dom HP™ = {u e L*(R?) : A_, ue L*(R%)},

R3\Y R3\Y

where the Laplacian Ams\y is understood in the sense of the space of distributions D’ (R3\Y")
in the open set R3\Y.
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The domain dom H?m can be described in another way with the use of the elliptic inner

regularity:
dom HP™> = {u e L*(R®) n HE.(R®\Y) : Aue L*(R?)},

where A is understood in the sense of the Laplacian in HZ,_(R*\Y) (see, e.g., [Al, Theorem
6.3] and [KMN19, Proposition 8]).

Let B,(y) =y +B, = {zeR%: |z —y| < r}.

Proposition 5.1 ([KMN19, Proposition 8]).
LetyeY and e > 0 be such that B.(y) n'Y = {y}. Then, for every u € dom H}P**, there
exist unique constants ug, u; € C and a function @ € H?(B.(y)) such that ti(y) = 0 and

u(z) =u2\x—y\71 +u31/+ﬁ(1:), x € B.(y).

The complex constants u2 and ugll play the role of generalized boundary values (traces)

at y. The operator
N
Hyo=—-A+ © 2 m(a;)dy; “
j=1

is defined as the restriction of Hy*** generated by the boundary conditions

uy, — 4majuy =0, 1<j<N. (5.1)

In other words, Hy,,u = —Au for all u € dom Hy,,, where

domHy,q = {u € domHy*™* : (10.1)) holds for all y; € Y'}.

As before, we put
dy = dy(Y) = inf |y; — yn|.
J#n

Theorem 5.1 (JAGHH]).
Assume that a = {aj}év:l c R.

(a) If the uniform discreteness condition dsx > 0 holds, then Hy,, = Hy, in L2(R?).
(b) If N < o0, then di >0 and Hy,q = Hy, in L?(R3).
Theorem is applicable to periodic lattices, e.g., to Y = Z3.
5.2 Comparison of the strength parameters b; and 1/a; in the 1-d and
3-d cases and their singular values

The role of parameters a; for the operators
N
Hya=—A+ “ ) m(a;)dy, ©
j=1
in L?(R?) is different from the role of the strength parameters b; for the operators
2 N

d
H = Hbe = —@ +j;bj(5yj
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in L2(R3).

Consider the case of Hy;, in L2(R). If b; = 0, the point interaction at y; disappears. If
b; = o0, then the corresponding boundary condition

u'(y; +0) — o' (y; — 0) = bju(y;), y; eY. (5.2)

takes the form of the Dirichlet boundary condition

u(y;) = 0.

Ifall b = 0 and ¥V = {y]}év: , is ordered increasingly, then the corresponding operator
Hyp in L?(RR?) is the orthogonal sum of the positive selfadjoint Dirichlet Laplace operators
(—I)AID]_, where

Ij = (yjyyj+17 AD : dom AD C L2(IJ) — LQ(I]'),
dom AP = w e H*(Z;) n HY(Z;).

This orthogonal sum is written w.r.t. the orthogonal decomposition

LR) = @ LAT)).

If d = 3, the case a; = o corresponds to the disappearance of the point interaction at
y;. In particular, if a; = oo for all j then Hy, is interpreted as the standard nonnegative
Laplace operator (—1)A in L?(R3) (with dom A = H?(R3)). The strength-type parameter
is 1/a;, but even this parameter 1/a; is not an analogue of the strength b; for the operator
in L?(R). In the 3-d case, the expression

1
—A 4+ —d,.
al Yi
has no accurate interpretation, in particular, it has no interpretation in the sense of
quadratic forms. That is why it is replaced with

Hyrar = —A+ “m(a1)dy, “

where the expression m(a1)d,, represents formally a certain renormalization of the J-
potential d,,. The value a; € C is a free parameter that emerges in this renormalization
process, see [AGHH] Section 1.1]. We have used here a more transparent approach to via
the explicit form of the boundary conditions.

5.3 Poisson point processes and associated Schrodinger operators

Consider the operator Hy o in L?(R?). Then the uniform discreteness condition dy > 0 is
not necessary for the statement that Hy,, = Hy., for every a = {a; };V: 1- We consider a
counterexample in the stochastic settings.

Recall that an Ng-valued random variable s¢ is said to have the Poisson distribution
Po(y) with rate v € [0, +0) if
n

P(3c = n) = Po(y,n) := l‘e_v, n € Np.
n!
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An Ny-valued random variable » is said to have the Poisson distribution Po(+0) with
rate 7 = +o0 if

P(sc = +0) = Po(4o0, +0) :=1, P(3c = n) = Po(+00,n) := 0 for n € Np.

Let (X, Fx) be a measurable space.

Definition 5.1 (Poisson point process).
Let u be an s-finite measure on X. An SPP 7 is called a Poisson SPP with intensity
measure p if it has the following properties:

(a) For every A € Fx, the random variable n(A) has the Poisson distribution Po(u(A)).

(b) For every m € N and pairwise disjoint sets Ay, ..., A, € Fx, the random variables
n(A1), ..., n(An) are independent.
Remark 5.1.

If a certain SPP n has property (b) of Deﬁm’tz’on then n is called completely indepen-
dent.

Definition 5.2 (homogeneous Poisson point process).

For X € B(R?), let us take (X, Fx) = (X, B(X)). Then a homogeneous (or uniform) Poisson
SPP n on X is a Poisson SPP on X such that its intensity measure p is a multiple of the
d-dimensional Lebesgue measure |-|g4, i.e., u(+) = v|-|4 with a certain constant v € [0, +00).
In this case, v is called the intensity of 7.

Corollary 5.1.
Let 1 be a homogeneous Poisson SPP on X € B(R?). Then 1 is a proper SPP.

Proof. By Definition 7 is locally finite. Corollary 3.2 implies that n is proper. O

Let 1 be a homogeneous Poisson SPP on R? with intensity v > 0. Note that the random
variable 7(IR?) has the Poisson distribution Po(+®), i.e.,

P(n(R3) = o) = 1.

By Corollary n is proper. Thus, there exist a sequence Y = {y;};jen of R3-valued
random variables y; such that a.s.
[e'e}
n= Z 5yj'
j=1

Let a = {a; };—;001 be a sequence of real numbers, or more generally, a sequence of R-valued
random variables a;. Since 7 is locally finite, we can define for a.a. w € 2 a randomized
Schrodinger operator Hy,,

N
Mypow = A+ “ ) ma;(w)dy,w) &  we, (5.3)
j=1

using the definition of Section 5.1.

Theorem 5.2 (Kaminaga, Mine, Nakano [KMN19]).

LetY = {y;}jen be a collection of random sites y; in R3 associated as above with a certain
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homogeneous Poisson SPP 1 of positive intensity. Let a = {a; }jﬁ be an arbitrary sequence

of R-valued random variables a;. Then Hy g, = H;a with probability 1.

Proposition 5.2.
In the settings of Theorem the uniform discreteness condition dy > 0 holds with
probability 0. (Recall that dy. = infj.y, |y; — ynl.)

Proof. Note that d, is a random variable. Let €, = {dx > 1/n}.

Assume that P(dy > 0) > 0. Then there exists n € N such that P(€2,,) > 0. Hence,
there exists m € N such that n,(z + [0,1)3) < m for all w € Q,, and all z € Z3.

By Definitions |5.1{ and {n(z +[0,1)%)}.czs is a collection of i.i.d. random variables
with P(n(z + [0,1)3) < m) = p < 1. Hence, P(Q,) < limj_, ;o p* = 0. This contradicts
the assumption P(d, > 0) > 0. O

5.4 Equality in distributions for point processes

We consider various additional properties of SPPs and apply them to Poisson SPPs fol-
lowing [LP, Sections 2-3].

Let n be an SPP on a measurable space (X, Fx). Then the distribution of 7 is a proba-
bility measure P, on (M, Fny) that is the distribution of 1 as an 9-valued random variable.
Recall that the measurable space (DM, Fyn) of countable sums of Ny-valued measures was
introduced in Lecture 3.

If n and £ are two SPP on X such that P, = IP¢, then one says that n and £ have the

same distribution and write n 4 £.

Proposition 5.3.
The two following statements are equivalent:

d
(a) n=2¢
(b) (n(A1),...n(An)) 4 (£(A1),...£(Ap)) as R™-valued random variables for all m € N
and all pairwise disjoint deterministic sets Ay,...,Amn € Fx.

Corollary 5.2.
Let n and £ be two Poisson SPP with the same intensity measure p. Then n 4 £.

Proof. The statement follows from Definition 5.1 (of Poisson SPP) and Proposition[5.3] [
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6 Mixed binomial SPPs. Existence of Poisson processes.
Intensity measures and transformations for general SPPs.

6.1 Mixed binomial SPPs and the existence of Poisson processes with
given intensity measures

Corollary 5.1 state that a homogeneous Poisson SPP on a Borel set B  R? is proper. An
example for Corollary 5.1 is given by Example 1.1 of Lecture 1, which we reformulate now
as a proposition.

Proposition 6.1 (homogeneous Poisson process on S with |S|; € R.).

Let S = R% be a Borel subset with |S|q € Ry = (0,+). Let y1, ya, ... be independent

random variables uniformly distributed in S. Let s be an No—valued random variable with

the Poisson distribution Po(¥) of ratey = 0. Thenn = Z;’:l by, is a homogeneous Poisson

point process with the intensity equal to v = &.
This proposition follows from the next theorem (T heorem on mixing binomial SPP

with Poisson mixing distributions.

Definition 6.1 (mixed binomial SPP).

Let py, and ps be probability measures on Ny and X, respectively. Let y1, yo, ...be i.i.d.
X-valued random variables with distribution ps. Let ¢ be an Ny-valued random variable
with distribution py, and assume that s is independent of {y;}jen. Then the proper SPP

b4
= Z Oy,
j=1

is called a mixed binomial process with mixing distribution p,, and sampling distribution
Ps-

Theorem 6.1.

Let ps be a probability measure on X and let v = 0. Let n be a a mized binomial process
with mizing distribution Po(v) and sampling distribution ps. Then n is a Poisson process
with intensity measure yps.

Proof. Step 1. Assume that disjoint sets By, By € Fx are such that By u Bs = X. Let
ki,ks € Ng and k = k1 + ko. Then

k!
P(n(B1) = k1,n(B2) = k) = P(3c = k)WpS(Bl)klpS(BQ)kQ
k 2 k.
7t K k ky _ (vps(Bi)"™  _pu(B))
= e VMPS(BI) 1ps(B2)™? _]Ulkj!e ps(Bj) (6.1)

Summing over all ko € Ny, we get that n(B1) € Po(yps(Bi)). Similarly,

n(Bz2) € Po(yps(B2)).

Hence, (6.1]) implies that n(B1) and n(Bz) are independent. We proved the properties (a)
and (b) in Definition 5.1 of Poisson SPP for the case of two mutually complementing sets.

Step 2. It remains to note that this argument for the verification of Definition 5.1 can
be extended to every m € N and disjoint By, ..., B,, € Fx such that U;Ll B; = X with
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the use of the fact that

k!
P(n(B1) =ki,...,n(B2) =kp | x=k) = 7%(31)}“1 ...ps(Bm)km,
kil k!
where k = k1 + -+ + k. O
Exercise 6.1.
Let m € N and s, ..., 5, are independent random variables with Poisson distributions
and rates 71, ..., Ym, respectively. Then Z;nzl »; has the Poisson distribution with the

rate >0 ;.

Lemma 6.1 (superposition lemma).
Let {n; };”:1, m e N, be a sequence of independent Poisson SPPs n; with s-finite intensity
measures (j (on X). Then

m m
n= Z n; 18 a Poisson SPP with intensity measure p = Z 1.
j=1 Jj=1

Proof. Step 1. By Exercise 3.3 (a), n is an SPP.

Step 2. Let m < oo0. In order to prove that 7 is a Poisson SPP with intensity measure
W= Z;”Zl fj, it is enough to use Exercise

Step 8. The case m = +00 can be proved by passing to the limit m — oo for nonde-
creasing sequences {3;7" | 7;(A)}men, A € Fx. O

Theorem 6.2 (existence of Poisson SPPs).
Let p be an s-finite measure on a measurable space (X, Fx). Then there exists a proper
Poisson SPP on X with the intensity measure .

Proof. Let u = Z;rfi pj be the sum of measures p; such that p;(X) < oo for all j. For
every such p;, Theorem implies that there exists a proper Poisson SPP 7; with the

intensity measure p; on a certain probability space (£2;,IP;). On the product space X €25,
jeN

there exists a sequence of induced independent proper Poisson SPPs n; with intensity

measures fj, j € N. It remains to apply Lemma to X mj. O

Remark 6.1.

(a) For every Poisson SPP nm1 on a measure space X, there exists a proper Poisson SPP

12 on X such that ny 4 no. This follows from Corollary 5.2 and the proof of Theorem
6.2.

(b) There exists measures spaces (X, Fx) and Poisson processes n on X with intensity
measure p such that u(X) < oo, but n is not proper (see, [LP, Exercise 3.9]). Theorem
3.2 implies that the measure space (X, Fx) in any such example is pathological in the
sense that (X, Fx) is not a Borel space.

Theorem 6.3 (partial inversion of Theorem [6.1)).
Let m be a Poisson process with intensity measure p such that u(X) < co. Then:

(a) m has the same distribution as a mized binomial process ny with mizing distribution
Po(u(X)) and sampling distribution ps = ﬁ,u.

33



(b) For very m € N, the conditional distribution

P(me-|mX)=m)

is the distribution of a binomial process of sampling size m and sampling distribution

Ps-

Proof. (a) follows from Theorem [6.1| combined with Corollary 5.2 (about equality in dis-
tributions).

(b) is obvious for 7,. In order to obtain (b) for n; it is enough to use the equality
m d 72 obtained in the statement (a). O

Definition 6.2 (restrictions of deterministic and random measures).
Let A e Fx.

(a) Let u be a measure on X. Then the restriction of p to A is the measure pu4 on X
defined by
ua(B) = u(An B), B e Fx.

(b) Let n be an SPP on X. Then the map 14 : w— n4(w), w € Q is an SPP on X, which
is called the restriction of  on A.

Theorem 6.4.
Let 1 be a Poisson SPP with intensity measure p, and let {A;}jen © Fx be a sequence of
pairwise disjoint sets such that | J;on Aj = X. Then:

(a) My, Ay, - .15 a sequence of independent Poisson SPPs with intensity measures 4, ,
HAy, -- ., TESPEctively.

(b) n= ZjGN 77Aj-

All statements of Theorem are obvious, except the independence of 14,, N4,, ...
This independence we leave as an exercise (see, e.g., the proof of [LP, Theorem 5.2]).

For every B € B(R?%) with |B|; € Ry, Proposition allows us to construct explicitly
a proper homogeneous Poisson SPP with any given intensity v € [0, +o0) (i.e., with the
intensity measure 7| - |4, where «y € [0, +00) is a constant).

Example 6.1 (explicit construction of a homogeneous Poisson SPP on R%).

Let R¢ = UjeN Bj be a decomposition of R? into a pairwise disjoint Borel subsets such
that |Bj|q < oo for all j. For every j, let 7); be a proper homogeneous Poisson SPP on B;
of intensity ~ € [0, +00) defined on a probability space §2;. The sequence {7);}jen generates
a sequence of independent SPPs {n;}jeny on the product space X jeN €1; with the property
that n; 4 n; for all j. Then n = jen 75 18 a homogeneous Poisson SPP on R? of intensity
v (an exercise).

6.2 Intensity measure for a general SPP and Campbell’s formula

Definition 6.3 (intensity measure for a general SPP).
Let n be an arbitrary SPP on a measure space X. The intensity measure u of 7 is defined
by

u(A) :=E n(A), Ae Fx. (6.2)



Remark 6.2.

Our terminology concerning intensity measures is consistent. That is:
(a) The intensity measure is indeed an [0, +00]-valued measure (an exercise).

(b) Let n be a Poisson SPP with s-finite intensity measure p defined as in Definition
5.1. Then (6.2)) holds true, and so, u is indeed the intensity measure in the sense of

Definition[6.3
Statement (b) of Remark [6.1] follows from the following basic fact:

for £ € Po(v), we have E £ = 7 (an exercise).

We denote by M (X, V) the family of measurable mappings from a measurable space X
to a measurable space V.

Let B be a Borel subset of R = [—00, +00], for example, B = Ry = [0, 4+00]. We denote
by M (X, B) the set of all measurable functions u : X — B. For v € M (X,R), the functions
ut e M(X,R,) are defined by

ut (x) := max{u(z),0}, u” = max{—u(z),0}.

Then
u=u" —u .

For every measure p on X, the integral of u € M(X,]@) w.r.t. @

e = | wteputn) = o
is defined as
Jqud,u - fu_d,u (6.3)

whenever this expression is not of the form (+00) — (4+00). If (6.3) is of the form (+o0) —
(+0), we put §udp := 0 (following [LP]). If n is an SPP, then (udn = {(n,u) is the
mapping

w— fu(:c)n(w, dz), we .

Theorem 6.5 (Campbell’s formula).
Let n be an SPP on X with intensity measure p, and let ue M(X,R). Then:

(a) Su dn is an R-valued random variable.

E Uu dn] - f w dp. (6.4)

Proof. For an indicator-function u = x4 with A € Fx, (6.4) follows from (6.2)). Then it is
extended in the usual way to u € M(X,R,), and in turn, to all u such that §|u|dy < 400,
see [LP, Proposition 2.7]. O

(b) If u =0 or §|uldu < +o0,
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6.3 Image of SPPs under measurable mappings

Let T : X — V be a measurable mapping from the measurable space (X, Fx) to a measur-
able space (V, Fy), i.e., T € M(X,V).

Definition 6.4.
For any measure p on X, the image of p under T' (or push-forward of p) is the measure
T(p)=poT 1, ie.,

T(u)(4) = u(T-14), A€ Fy.

Theorem 6.6 (mapping theorem).
Let  be an SPP on X with intensity measure p, and let T : X — V be a measurable
mapping. Let T'(n) be defined by

w—Thw), weh.
Then:

(a) T(n) is an SPP with intensity measure T'(1).

(b) If n : w— Z;’g) Oy, (), W € Q, is a proper SPP on X, then T(n) = 37, o7y, is a
proper SPP on V.

(¢) If nis a Poisson SPP, then T(n) is a Poisson SPP too.

Proof. (a) The probabilistic measurability of T'(n) follows from the definition of T'(n) and
the probabilistic measurability of . By definition, the intensity measure of T'(n) is

E[T(n)(A)] = E[n(T ™ A)] = p[T ™' A] = T(u)(4), AeFy.

(b) follows from the definition of 7'(n) applied pointwise in w € 2.

(c) If n is a Poisson SPP, it is straightforward to check the properties of Definition 5.1
(of a Poisson process) for T'(n). O
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7 Stationarity for general SPPs. Independent markings and
the Boolean model.

7.1 Transformations and stationarity for general SPPs

Let T : X — V be a measurable mapping from the measurable space X to a measurable
space V, ie.,, T € M(X,V). Let n be an SPP on X with intensity measure u. Statements
(a) and (c) of Theorem 6.6 state that, for an SPP 1 with intensity measure p, the mapping
T(n): Q — Ny defined by

W THW),  we®,

is an SPP with intensity measure T'(u). If n is a Poisson SPP, then T'(n) is a Poisson SPP
too.

Let us fix now our measurable space as X = R%.

Example 7.1.
Let 1 be a homogeneous Poisson SPP on R? of intensity v > 0. Let a € R. Let

Dil, = Dily 4
be the transformation of R¢ defined by
Dilyz = ax, zeR%
If a > 0, then Dil, is the dilation with ratio «, and
Dil, 7 is a homogeneous Poisson SPP of intensity o~ %.

Could you describe Dil, n for @ = 0 and for o < 07

For arbitrary y € R?, consider in R% the mapping Sh,, : R? — R that shifts every site
z € R% to x + y. Then for a measure ; on R?,

(Shy p)(A) = u(Sh_y A) = p(A—y),  AeBRY.

Let 9 = Dga be the measurable space of measures on R? introduced in Lecture 3.
Following [LP], we define the map 6, : 91 — N by 6, : p+— Sh_, p, ie.,

Oyu(A) = w(A+y),  AeBRY).

We denote in the same way the induced map 6, : M(2,0) — M (£2,0M) on the space of
SPPs n on RY, i.e.,

Oynuw(A) = nu(4 +y), AeB(RY), weq.

In particular, 6,6, = &y and, for a proper SPP 7 : w Z;g) Oy, (w), We have

T(n) = Z 5yj—y-
j=1
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For a general SPP 7 on R?, we have
| 9@ @) = [ge =) uas),  pem ge @R,

The family {6,},cg« builds a commutative group of measurable maps 6, : 9 — 91 with
identity #y. The induced maps 6, : M(Q,M) — M(Q2,MN) build a commutative group
{0y} ere of maps on M (2, M) with identity 6. These statements follow from the obvious
flow property

0y 00z = 01y, z,y € R

Definition 7.1.
An SPP 7 on R? is said to be stationary if 6,7 4 n for all € R%.

Example 7.2.
A homogeneous Poisson SPP 1 on R? is stationary. This follows from Theorem 6.6 and
the invariance of the intensity measure |- |4 of 7 under the transformations 6,,.

Example 7.3.
There are examples of non-Poisson stationary SPPs (see [LP), Section 8.1]). Let us consider
one such example. Let

C; = Cyga = [0,1)*

be a half-open unit cube. Let 1 € M- (RY) be a nonzero measure such that u(R¥\Cy) = 0,
ie., @ S suppp < Ci. Let € be an R%valued random variable uniformly distributed on
C;. Then

ni= D Oye

yeZa

is a stationary non-Poisson SPP with the intensity measure x(C1)| - |4 (an exercise).

Proposition 7.1.
Let 1 be a stationary SPP on R with intensity measure pu such that

7 = 1€y pa) = E n([0,1)7) < +o0
Then
w=""la
In this case, the quantity v € [0,+0) is called the intensity of the stationary SPP n.
Proof. The proof follows from the following facts:
(a) Oyp = p for all x € R? (translation invariance);

(b) the family of deterministic locally finite translation invariant measures on R? is

(o - ld}oct, -

Proposition 7.2.
Let n be a Poisson SPP on R® with intensity measure p such that

v = u(C1) = E n([0,1)) < +o0,

Then n is stationary if and only if p = |- |q4-
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Proof. The proof follows immediately from combination of Example and Proposition
[C1l O

7.2 Independent marking and Boolean model of stochastic geometry

We need a particular type of marked SPP, which are produced by a independent py-
marking of a proper SPP 7 on X.

Definition 7.2 (independent marking).

Let py be a certain probability measure on a certain measurable space V, and let vy, va,
...beii.d. V-valued random variables with distribution py. Let n = Z;’:I dy,; be a proper
SPP on a measure space X independent of {v;}jen. Then the proper SPP ¢ defined on the
product measure space X x V by

= Z O(y;,vy)

7j=1
is called an independent py-marking of 7.

This definition is a simplified version of a general definition of K-marking, see [LP]
Sections 5.2 and 16.1]. For existence of such independent py-markings, we refer to [MR],
Sections 1.4], and in more general settings in [LPl Section 5.2].

Theorem 7.1.
Let i be a proper SPP with intensity measure . Let € be an independent py-marking of
n. Then:

(a) The intensity measure of & is the product measure & py.

(b) In the case where n is a proper Poisson SPP, £ is also a proper Poisson SPP.

Proof of statement (a) of Theorem[7.1 It is enough to verify the formula for the intensity
measure on the sets A x B with A € Fx and B € Fy. Then

X{3=m} Z X{y;eA}X{v;eB}
j=1

E&AxB)= ) E[X{%—m}ZX«w,vneAxB}] = ) E
j=1

meNy meNg

= EX{ven} 2, E [X{%:m} > X{yjeA}] = pv(B) En(A) = u(A)pv(B).

mEI/\\](] j: 1

O]

We do not give a complete proof of statement (b) of Theorem One of the proofs
can be obtained using the notion of Laplace functional.

Definition 7.3.
The Laplace functional of an SPP 7 on X is the map L, : M (X,R;) — [0, 1] defined by

Ly(u) :=E e~ —E exp [— JX udn] , ue M(X,Ry).

The Laplace functional plays for SPPs the role similar to that of characteristic functions
and Laplace transforms of real-valued random variables.
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Remark 7.1.
(a) Let my and ny are two SPPs on X. Then m 4 n2 if and only if Ly, = Ly,.

(b) If n has is a binomial process on X with sample size m and sampling distribution ps,

then "
Ly(u) = (JX e“(x)ps(dx)> .

(¢) An SPP n on X is a Poisson SPP with intensity measure p if and only if
Ly = exp | [ (€0 = 1) utao)|

for allue M(X,R,).

Our main example of the use of marked SPP is the following stochastic geometry con-
struction.

Definition 7.4.
Let n =), jen 0y; be a homogeneous Poisson SPP on R? with intensity v € Ry. Let p, be
a probability measure on [0, +0), and let

§ = Z O(y;,ry)
j=1

be an independent p,-marking of n (where r; are i.i.d. R, -valued random variables with
distribution p, like in Definition [7.2)). Then the randomized set

2= UETj(yj) = U{$€Rd o=yl < gl
jeN JeN

is called (Poisson spherical) Boolean model with intensity v and radius distribution p;.

This randomized set Z : w — Z(w), w € €, is random in the sense of probabilistic
measurability explained in the next theorem.

Let Comp(R?) be the family of all compact subsets of R%. Recall that Minkowski sum
of sets 1,51 < R4 is defined by

Si+Sy={y1+y2 : y1€51, y2€ Sa}.
The sum S; + B, is called the r-parallel set of Sj.

Theorem 7.2.
Let Z be a Boolean model with intensity v and radius distribution p.. Then:

(a) Z : w — Z(w) is random in the sense of the following probabilistic measurability
statement: for every S € Comp(R?),

{ZnS=0}={we : Z(w)n S =a}e Fq.
(b) For every S € Comp(R?),

P(Z S =) =exp [—7J|S + B4 pr(dr)] .

The map S — P(Z n S = @) is called the capacity functional of Z.
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Proof. Let S € Comp(R?) be arbitrary.

(a) It is easy to see that the set

A:={(z,r) eR¥ xR, : B.(x)n S # &}

is closed. Indeed, let (zy,7,) — (z4,7%) as n — o0 and {(zn, ) }ney S A. Then there
exist y, € By, (z,) n S for all n. Since S is compact, the exists a converging subsequence
{yn, }jen with a limit y, € S. Besides, |yx — 24| < rs. Hence, (74,74) € A.

Since A is closed, we see that A € B(R? x R ). On the other hand,
{weQ: ZnS=0}={weQ: {A) =0}. (7.1)

Since ¢ is an SPP on RY xR, we see that {Zn S = @} is an event, i.e., {ZnS = &} € Fo.

(b) By Theorem ¢ is a Poisson SPP on R% x R with intensity measure p = v|-|4®p:.
Using ([7.1)), we get

P(ZnS=2)=e " —exp [—7 JR JRd xal(z,r) dz pr(dr)]

=exp|—vy X(B..(2)n xz,r) dz p.(dr
[ jR+fRd (B (2)ns22} (T:T) ( )]

_ exp [—7 j 1S +Byla pr<dr>] .
Ry

7.3 Volume fraction and covering property for Boolean models

Let Z be a Boolean model with intensity v € R4 and radius distribution p,. Let rg be an
R, -valued random variable with distribution p;.

Applying Theorem to the case S = {x}, we obtain the following result for arbitrary
r € R?, in particular, for £ = 0 = Oga.

Corollary 7.1 (volume fraction).
Let
Iy := P(0 € 2).

Then
[y =P(xe Z)=1—exp [—’y|IB§1|d E[’I“(C)l]] for all z € R,

The quantity 11y is called the volume fraction of Z.

Note that ITy > 0 if and only if P(rg # 0) > 0. In other words, IIp = 0 if and only if
ro = 0 a.s..

Proposition 7.3.
The set
{(w,2) e QA xRY: 2 e Z(w)}

is measurable in the measurable product-space Q x R?,
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Theorem 7.3.
(a) Let B e B(RY). IfTly > 0 or |B|g < 4+, then

E |Z n B|q = y|Bla4
(this formula explains the name ‘volume fraction’ for Il ).
(b) P(Z2 =R%) =1 if and only if E[rd] = +c0.
References for Lecture 7.

[LP] Last, G. and Penrose, M., 2017. Lectures on the Poisson process. Cambridge University Press.

[MR] Meester, R. and Roy, R., 1996. Continuum percolation. Cambridge University Press.
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8 Continuum percolation.

Let us recall the definition of Boolean model of stochastic geometry driven by a homoge-
neous Poisson SPP. Let = ZjGN dy; be a homogeneousfoisson SPP on R? with intensity
v€e Ry = (0,+00). Let p, be a probability measure on Ry = [0, +00), and let

§:= 2, 0y
jeN
be an independent p,-marking of 1. Then the random set
Z:= B, (y) = | J{z e R : [w —y| <15},
jeN jeN

is called Boolean model with intensity v and radius distribution p,. The set-valued map
Z :w > Z(w) is random in the sense that, for every S € Comp(R?),

{ZnS=0}={we : Z(w)n S =0}e Fq.

In the sequel, ro is an R, -valued random variable with distribution p,. Note that 71,
T9, ..., are i.i.d. random variables with the distribution p,.

8.1 Percolation functions for Boolean models on R?.

By Theorem 7.3, P(Z = R%) = 1 if and only if E[rd] = +o0. The event {Z = R%} is
an extreme example of the percolation. The (continuum) percolation for a random set is
generally understood as an existence of unbounded connected component of this random
set or the existence of the unbounded connected component of this random set that has a
nonempty intersection with a given deterministic set S, see [MR]. It seems that the first
appearance of continuum percolation models is attributed to Gilbert |[G61].

Definition 8.1 (occupied components).
Let Z : w +— Z(w) be a Boolean model on R? with intensity v € R and radius distribution

Pr.
(a) Connected components of Z(w) are called occupied components.

(b) Let S be a deterministic subset of R%. The union of all occupied components that has
a nonempty intersection with S is denoted by

W we— Wi (w).
So, W¥ is a randomized subset of R

(¢c) By W := W{%, the occupied component containing the origin 0 € R? is denoted.

Note that
{weQ: W=0}={we: 0¢ Z}.

Proposition 8.1 (percolation function).

(a) The map n(W) : w — n,(W(w)) is an No-valued random variable.
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(b) The following equality holds
P( n(W) =+4w ) =P( W is unbounded ).
The percolation function for the Boolean model Z is defined as

O(v,pr) :=P( W is unbounded ).

We leave this proposition without a proof. One of the proofs can be based on Gilbert
graphs and random-connection models, see [LP) Section 16.4] and [MR], Section 1.5]. Note
that here W : w +— W (w) is a randomized set, and so, it is not obvious that

nW) :w e J dn.,
W(w)

is a random variable. Statement (b) of this proposition follows from the fact that the
homogeneous Poisson SPP 7 is locally finite.

Definition 8.2.

(a) For two real-valued random variables a; and ag, one says that a; stochastically dom-
inates ao and writes ag < oy if for their cumulative distribution functions

Fo,(s) = P(ay < 5), seR,
the inequality
Foy (s) < Fay(s)
holds for all s € R.

(b) The property of stochastic dominance is actually property of distributions of random
variables. Therefore, we will apply this definition also to the corresponding probability
measures on R using the same notation ‘<’.

Theorem 8.1 (monotonicity of percolation functions).
Let Z;, j = 1,2, are two Boolean models with intensities v; and radius distributions pi,
j=1,2. If 1 <72 and p} < p?, then

O(v1,p1) < O(72,17).

The main question is to find sufficient and/or necessary conditions for ©(v,p;) > 0.
Percolation models are used, e.g., for modeling of dielectric breakdown and lightning
leaders [DGB™9§| (see Figure [1)).

By Theorem 7.3, the condition

+o0
E[rg] = L rd dp, = 40

ensures O(vy,p;) = 1 for every v > 0. In the case d = 1, this condition completely
characterizes the percolation.
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Figure 1: Lighting barrage [O].

8.2 Continuum percolation in 1-dimensional case.

Theorem 8.2.
Let d =1 and let Z be a Boolean model on R with intensity v € Ry and radius distribution
pr. Then the following statements hold:

(a) Let E[rg] < +00. Then all occupied components are bounded with probability 1. In
particular, ©(~,p;) = 0 for all v € Ry.

(b) Let E[ro] = +00. Then P(Z =R) =1, and so, ©(v,p:) = 1 for all vy € R,.

We leave this theorem without a proof (for the proof, see [MR], Sections 3.1-3.2]).

8.3 Continuum percolation in R? with d > 2.

Let d > 2 and let Z be a Boolean model on R? with intensity v € Ry and a radius
distribution p;. Let us assume the radius distribution p, to be fixed and let us study the
function

0(7) :=0(7,pr)
changing ~ in the interval (0, 4+0). Recall that

O(y) = P( W is unbounded ) =P( n(W) =+ ).

Theorem 8.3 (critical intensity parameter, [MR] [GO8|, [GT19]).
Suppose 0 < E[rd] < +oo. Then there exists a critical intensity Y. = Ye(pr) € (0, +0) such
that:

(a) ©(7) =0 for all v € (0,7),

(b) ©(v) >0 for all v > 7.

Remark 8.1.

(a) In other words, the phase transition takes place when v crosses the critical value 7.

(b) From Theorems and 7.3 (b), we see that (for d = 2) a nontrivial critical value
Ye € (0, +00) exists if and only if 0 < E[rd] < +o0. Indeed, if E[rd] = 0, we have with
probability 1 that allrj = 0 and Z = {y; ;rji consists of isolated points. So, E[T‘g] =0
implies ©(y) = 0 for all v € (0,+w). If E[rd] = +o0, Theorem 7.3 (b) implies that
O(y) =1 for all v € (0, 400).
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Theorem 8.4 (uniqueness of an unbounded component [MR] Theorem 3.6)).
With probability 1, Z has at most one unbounded occupied component.

Corollary 8.1.
Suppose 0 < E[rd] < +c0. Then

(a) For v € (0,7.), all occupied components are bounded with probability 1.
(b) For € (ve,+0), 0 <O(y) <1 and

O(y) < P(3 ezactly one unbounded occupied component)

= P(3 an unbounded occupied component).

Proof. Step 1. Since 7 is a stationary SPP,
P( Wi is unbounded ) = P( W% is unbounded ) = ©(y). (8.1)

for every deterministic x € R%. (While this statement is intuitively clear, its rigorous proof
is lengthy, and we take (8.1) without proof).

Step 2. The proof of (a). Let v € (0,7.). By Theorem and equality (8.1)), for every
z € R%, we have

P( W} is unbounded ) = 0.

Applying this equality to = belonging to the countable dense set Q¢, we see from the
o-additivity of the measure P(-) that

P U {w: W} is unbounded } | = 0.

xeQd

However, every unbounded occupied component contains a certain = € Q%. Thus,

P(3 an unbounded occupied component) < P U {w: W is unbounded } | = 0.

zeQd
This proves (a).
Step 3. The proof of (b). Let v € (7, +0). Theorems and imply

0 < ©(v) < P(3 an unbounded occupied component)

= P(3 exactly one unbounded occupied component).
It remains to prove O(y) < 1. Assume that ©(y) = 1. Then
O(y) = P( W is unbounded ) =1,

and so, the volume fraction of Z is Il = P(0 € Z) = 1. This and Corollary 7.1 (about

the value of the volume fraction) imply E[rg] = +co. This contradicts the assumption

E[rd] < +oo. O

Example 8.1 (the case of deterministic radius 7o = R = 1, see [MR], Theorem 3.10]).
Let p, = 6; (i.e., 7o = 1 a.s.). Then for the Boolean model on R?,

0.174 < . < 0.843.
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8.4 Scaling of continuum percolation

Let Z be a Boolean model on R? with d > 2 and

+oo
0 <E[rd] = J rd dp, < +oo.
0

Then Theorem defines the critical intensity 7. = v.(pr) as a function depending on the
radius distribution p;.

Recall that, for ae > 0, the transformation Dil, , of R" defined by
Dilypx = ax, zeR",
generates a transformation Dil, , of measures p on R™ by the formula
Dl 4(B) = pu(Dil; 4 (B)) = u(Dily 1, (B)), B e BRY.

Corollary 8.2.
Let 0 < oo < 400. Then

Ve (pr>
ad -

Ye(Dila,1pr) = (8.2)

(Note that the probability measure Dil, 1 pr supported on [0, +0) is the distribution of the
random variable ary.)

Proof. The corollary follows from Example 7.1. Indeed, the dilation Dil, 4 applied to
the Boolean model Z with intensity v and a radius distribution p, does not change the
probability P( W is unbounded ). However, the underlying homogeneous Poisson SPP
changes its intensity to o~ %y and the radius distribution becomes Dily 1 pr O

8.5 Ciritical radius for random geometric graph

Let R, Ry, Rs € (0, +00) be deterministic. Consider now the case where the radius distri-
bution

pr = 0R

is the distribution of a deterministic random variable ro = R. (The corresponding Gilbert
graph of the random connection model is called random geometric graph, see [LP), Section
16.4]).

Then (8.2)) becomes the scaling law for the associated critical intensities

Ye(6r )R] = ve(0R,) RS = 7e(61)- (8.3)

Corollary 8.3.
Let d > 2 and v € Ry be fized. For a Boolean model Z on R® with intensity v and the
deterministic radius distribution p, = 0r, we define

O(R) := O(y,6r) = P( W is unbounded ).

1/d
Then there exists the critical radius value R. = (@) € (0, +0) such that the follow-
ing statements hold:
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(a) For all R € (0, R.),
O(R) =0

and all occupied components are bounded with probability 1.

(b) For all R € (R, +),
0<O(R) <1

and

O(R) < P(3 exactly one unbounded occupied component)

= P(3 an unbounded occupied component).

Proof. In order to obtain the proof from Corollary and formula (8.3)), it is enough to

consider in R? the graph of the function R — ~.(dg) = % and its intersection with the

horizontal level line {(R,v) e R? : Re Ry }. O
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9 Closed and closable operators. Closures of operators and
connections with adjoint operators.

9.1 Abstract closed operators. Closable operators and closure.

Let V, X, X;, and X5 be Hilbert spaces. Recall the operators in this course are linear (if
it is not states explicitly otherwise). Recall that the graph of an operator

A:domAc X -V
is defined as the following linear subspace of X x V:
GrA= { {u,Au} : ue domA}.

The orthogonal sum of Hilbert spaces X @V is the Hilbert space produced by the linear
space X x V and the inner product

({z1, v1}{72, va}) x@v = (z1|72) x + (vi]v2)V™

Recall that, for a subset of S of a metric (or topological space) space, we denote by S the
closure of S.

Definition 9.1 (closed operator, e.g., [Katol).

An operator A :dom A < X — V is called closed if its graph Gr A is a closed subspace of

the orthogonal sum X @ V.

Definition 9.2 (graph norm, e.g., [Kato]).

(a) The orthogonal sum X @V is a Hilbert space that induces an inner product and a
norm on its linear subspace Gr A. This norm is called the graph norm.

(b) The associated norm on dom A

1/2
lua = (Jul) + | Au|2)"

)

is also called the graph norm of A.

The normed spaces (GrA,| - |xgv) and (domA, | - |4) can be equipped with inner
products compatible with the graph norms. An operator A is closed if and only if the
normed space (Gr A, |- | xev) is complete (or equivalently, if and only if the normed space
(dom A, | - |4) is complete). If this is the case, than (GrA,| - |xev) and (dom A, | - |l4)
are Hilbert spaces with inner products associated with the corresponding graph norms.

Definition 9.3 (kernel, range, and inverse).

(a) The kernel of an operator A :dom A < X — V is defined as

ker A:={uedomA : Au = 0y}.

(b) The operator A is injective if and only if ker A = {0}. In this case, one says that A is
invertible (we do not assume here that the inverse A~! is bounded).

(c) The domain dom A~! of the inverse operator A~! is by the definition the range ran A
of A.
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(d) The range of A is defined by

ran A = Adom A = {Au : u € dom A}.

Recall that an operator U : X — V is called unitary if it is a bijection that preserves
the value of the inner product in the sense

(UQJﬂU.%’Q)V = (33‘1’1‘2))( V:L'l,.%'g e X.

Exercise 9.1.

(a) An operator U : X — V is unitary if and only if U € L(X,V), kerU = {0}, and
U*=U""

(b) Let U be unitary. Then U is an isometry and maps orthogonal vectors to orthogonal
vectors.

Proposition 9.1.

Let A:dom A € X1 — Xo be such that ker A = {0}. Then A is closed if and only if A~

is closed.

Proof. The statement follows from Definition since Gr(A™1) = ( Ig I?) GrA. In-
1

deed,

Ix,

( 0 1)52) : X1 @ X9 — Xo @ X is a unitary operator.
Thus, Gr A and Gr(A~!) are closed or non-closed simultaneously. O

Exercise 9.2.
For A:domAc X — X,

p(A) # & = A is closed.

Recall that the resolvent set p(A) of A is the set of A € C such that ker(A — A) = {0} and
(A—-XN)"teL(X).

Definition 9.4 (closable operator, e.g., [AG| [Kato]).
An operator A : dom A € X; — X5 that has a closed extension B : dom B € X; — X5 is
called closable.

Clearly, every closed operator is closable.

Proposition 9.2 (closure of an operator).

(a) Assume that A:dom A < Xy — Xy is closable. Then
Gr A = Gr B for a certain closed operator B : dom B € X1 — X5.
Besides, this operator B is a restriction of every closed extension of A, and therefore,

B is called the closure of A and is denoted by A.

(b) An operator A is closable if and only if Gr A does not contain elements of the form
{0,1‘2} € X1 ® Xy with x9 # 0.
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Proof. The proof of (a) immediately follows from the definitions of closed and closable
operators, and the definitions of restrictions and extensions.

Statement (b) follows from (a). O

Exercise 9.3 (see, e.g., [Leis]).
Let G < R? be a nonempty open set.

(a) The operator grad : OF(G) < L*(G) — L*(G,C%) defined by u — Vu is not

comp
closed.

(b) The operator grad : H'(G) c L?(G) — L*(G,C%) defined by u — Vu is a closed

operator and is an extension of grad Hence, grad is closable. The space

comp* comp

with the graph norm (dom grad, | - | graa) is the Hilbert space H'(G).

is grad, : H}(G) c L*(G) — L*(G,C%), which is a restriction
of grad. The space (domgrady, | - |grad,) is the Hilbert space H}(G).

(c) The closure grad

comp

(d) If G = R? then grad,,,, = grad, = grad and H}(G) = H'(G), but this situation is
atypical for general G. (For a typical G, grad(G) # grad(G) and H}(G) # HY(G)).

(e) If G is a bounded domain with the boundary 0G of the Lipschitz regularity, then

gradg,,,, = grad, # grad and H;(G) & HYG).

For an operator A : X; — X, (with domA = X;), the following statements are
equivalent: (i) A is continuous (i.e., A € L£(X1,X2)), (ii) A is bounded (in the sense
|A|l := sup ||Az|x, < o), (iii) A is closed (Banach’s closed graph theorem), (iv) A is

] x, <1
closable.

We can use this equivalence to provide a pathological example of non-closable operator.
If A: X > X with dom A = X is an unbounded operator, then A is not closable.

Examples of unbounded operators A : X — X can be constructed with the use of a
Hamel basis, and sometimes are included into courses of Functional Analsysis (see [AG]).

An example of a non-closable operator that is not so pathological can be found in [AG,
Section 43].
9.2 Connection between closures and adjoint operators.
Essentially selfadjoint operators.

Recall that, for a densely defined operator A : dom A € X — V, the adjoint operator
A* :dom A* € V — X is defined in the following way:

(i) dom A* consists of all v € V' with the property that there exists f, € X such that
(v|Au)y = (folu)x Yu € dom A

(note that such f, is unique since dom A = X);
(i) A*v = f,.

One can describe this definition in terms of the inner product of X @V and the graphs
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of A and A*. Indeed, the inclusion {v, A*v} € Gr A* is equivalent to
0= (v] - Au)y + (A*vfu)x = ({v, A"v}{—Au,u})ygx Vu € dom A. (9.1)
This implies the following statement.

Proposition 9.3.
Let A:dom A € X1 — X5 be a densely defined operator. Then:

(a) The graph Gr A* c Xo @ X, is the orthogonal complement S+ to the set

S:( . 7IOX2>GI"A:{{_AU7U}€X2@X1: u € dom A}.

Ix,

(b) The graph Gr A* is closed.

(¢) The operator A* is closed.

(d) If X1 = Xo and A = A*, then A is closed.

Proof. Equation (9.1)) implies (a). Since orthogonal complemets are always closed, we
obtain (b) and (c). Statement (d) follows from (c). O

Theorem 9.1.
Let A:dom A € X; — Xo and A* . X9 — X, be densely defined operators. Then

A= A"

Proof. Checking the definition of the unitary opertor, one sees that the operator

0 —Ix
Usioxe = (1, 0°)
is unitary from X1 @ Xo to Xo @ X1 . Similarly one can define the unitary operator

0o —I
UXg@Xl = (IXZ OX1> 2X2(—DX1 —>X1 (—BXQ

We will use now the following obvious facts:

Uxsox Uxiox, = —Ix,@x,

and the fact that unitary operators maps orthogonal vectors into orthogonal vectors.

By Proposition Gr A* = S, where S = Ux,gx, Gr A. Similarly, Gr A** = S+,
where

g = Ux,ox, GrA* = UX2@X1Sl = (UX2®X1S)L
= (Uxsax,Ux,@x, Gr A)T = (—Ix,@x, Gr A)* = Gr A*.
Summarizing,
GrA™ = §t = (GrAY)t = Gr A
O

Exercise 9.4.
Let A:domA < X; — X5 be densely defined. Then A is closable if and only if A* is
densely defined.
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Recall that, by Proposition 4.1, a densely defined operator A : domA € X — X is
symmetric if and only if Gr A € Gr A*.

Corollary 9.1.
Assume that a densely defined operator A :dom A € X — X is symmetric. Then:

(a) The operator A* is densely defined.

(b) The operator A is closable and A = A**.

Proof. (a) follows immediately from Proposition 4.1 and the assumption that dom A = X.
Statement (b) follows from Exercise and Theorem (9.1 O

Definition 9.5 (essential selfadjointness).
A densely defined symmetric operator A : dom A € X — X is called essentially selfadjoint
if A is selfadjoint.

Exercise 9.5 (e.g., [Kato|).
Assume that A : dom A € X — X is essentially selfadjoint. Then:

(a) the closure A is a unique selfadjoint extension of A,
(b) A* = A.

Theorem 9.2 (von Neumann).
Let T : domT < X1 — X be densely defined and closed. Then T*T is a selfadjoint
operator in X1.

We take this theorem without proof (for the proof see [Kato, Theorem V.3.24]).

Example 9.1.
Assume that G < R be a nonempty open set. Let

A=—-Ag lero): CF(G) € L*(G) — L*(G)

where A¢ : u — Au in the distributional sense of (C§°(GQ))’.

(a) The operator A is symmetric, which follows from the Green’s formula, but is not a
closed operator.

(b) The operator A is closable. Indeed, by Theorem and Exercise A has the
following selfadjoint (and so closed) extensions

—AP := grad} grad,, —AN .= grad* grad,

which are called Dirichlet and, respectively, Neumann nonnegative Laplace operators
in G.

(c) Let G = R?. Then A is essentially selfadjoint and its closure is
A=A*=-A=(-A)*

where A : H2(RY) ¢ L?(R%) — L?(R?) is the standard nonpositive selfadjoint Lapla-
cian. In this case,
—A=—-AP = _AN,
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(c) Assume additionally that G is a bounded Lipschitz domain. Then dom A = HZ(G).
The operators A and A* are not selfadjoint. Moreover, AP # AN and

GrA< GrA g Gr(—AP) ¢ GrA*, GrA< GrAg Gr(—AN) ¢ GrA*,
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10 Schrodinger operators with Poisson-Anderson potentials
and their spectra.

10.1 The scheme of the proof of Theorem 5.2.
We follow [KMN19] and start from the deterministic part.

Let N € N and a = {aj}j-vzl. Let Y = {yj}évzl < R? be a collection of distinct deter-
ministic points such that the counting measure of Y is locally finite (i.e., Y has no finite
accumulation points).

Recall that, in Lecture 5, we defined 3 operators associated with Y and a:

e the symmetric operator with “minimal reasonable” domain

HP" = —A lop @y

e the Laplace-type operator
HP™ = —Agsyy = (HP™)*

with “maximal reasonable” domain in G' = R3\Y?;

e the deterministic operator with point interactions

N
MHya=—A+ > m(a;)dy, “ Hya:domHy, < LX(R?) — L*(R?)
j=1

defined as a restriction of Hy*** by means of special boundary conditions

u;j - 47Taju2j =0, 1<j<N, (10.1)
where
W, = i fo—gilua),ub, = i () — oyl ), we dom g

(see Proposition 5.1).

Lemma 10.1 (singular Green’s formula).
Let u,v € dom HP* be such that supp u,supp v € Comp(R?). Then

(Hy ™ ulv) 2 — (u|HY* )2 = —47 Z (u vl —u v0>

Yy
yey

(Note that the sum is finite due to the assumption suppu,suppv € Comp(R?)).

We take this lemma without proof. The proof uses the representation of Proposition
5.1 for u and v near singularities y € Y, see [KMNT19].

Let us define and additional operator

’Hcomp Hya ldompeome, dom Hcomp = {ue dom?Hy, : suppu e Comp(R?)}.
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Lemma 10.2 (adjoint of Hy, ).
The operator H;ﬁ?;np is a symmetric densely defined operator in L*(R3), and

(HZ™)* = Hy.

We take this lemma without proof (for the proof, see [KMN19]).

By Theorem 5.1, Hy,, = H3

o if di = infjzn [y; — yn| is positive. Now, the aim is to

relax the assumption dy > 0.

Assumption 10.1.
There exists R > 0 such that, for the R-parallel set of Y
B, — d . ; _ a0l <
Y +Br ={reR*: 12}1<HN|IL’ yj| < R},

all connected components are bounded.

Lemma 10.3.
Suppose that Assumption holds. Then

comp
HY,CL = HY,G .

We take this lemma without proof (for the proof, see [KMN19]).

Corollary 10.1.
Suppose that Assumption holds. Then

P
HY@ = HY,(Z'

Proof. Combining Lemmata and with Theorem 9.1, we get

/Hgkf,a = ((HCY?ZIP)*)* = H;?;np = HY,a-

O]

In other words, Assumption implies that Hy . © is essentially selfadjoint and Hy,,
is selfadjoint.

Let us recall the formulation of Theorem 5.2.
Theorem 5.2 ([KMN19]). Let Y = {y;};en be a collection of random points y; in R3

associated with a certain homogeneous Poisson SPP 1 = . d,, of positive intensity. Let

7eN
a = {a; }j:“i be an arbitrary sequence of R-valued random variables a;. Then Hy,, = HY,

with probability 1.

We see that Theorem 5.2 follows immediately from the combination of Corollary [10.1]
with Corollary 8.3.

Indeed, for a Boolean model Z on R3 with an intensity v and the deterministic radius
distribution p, = dr, there exists a critical radius R. = R.(y) > 0 such that for R < R.(7)
all occupied components are bounded with probability 1. This implies that Assumption
[10.]is fulfilled with the probability 1. Corollary [I0.1] completes the proof of Theorem 5.2.

Remark 10.1.
Analogues of Corollary and Theorem 5.2 are valid for Schriodinger operators with
point interactions in L*(R) and L*(R3), see [KMN19].

56



10.2 Spectra of Poisson-Anderson-Schrodinger operators with i.i.d.
strength-type parameters.

Let n = ZjeN dy; be a homogeneous Poisson SPP of positive intensity on R? with d = 1
or d = 3. (The case d = 2 is somewhat similar to the case d = 3, see [KMN19]).

Let ag be a certain R-valued random variable with distribution p,,. Let
5 = Z 6(yj7aj)
jeN

be an independent p,,-marking of 7 (see Definition 7.2). That is, @ = {a;}jen be a
sequence of i.i.d. R-valued random variables with the distribution p,, and an additional
property that {c;};en is independent of 7.

Let us define in L2(R?) the Poisson- Anderson-Schrédinger operator Hy,qo (in short, PAS
operator) following [KMN19]. As before, Y = {y;} en is a collection of random points y;
in R? associated with with homogeneous Poisson SPP 7.

Consider first the case d = 3. Then a PAS operator is defined by

N
Hya = =D+ Y m(a;)d,
j=1

where the strength-type parameters 1/a; are generated by the i.i.d. random variables o
of the independent marking.

Theorem 10.1 ([KMN19]).
Let Hy o be a PAS operator in L*(R3). Then:

(a) Hy o is selfadjoint with probability 1.
(b) o(Hy,) = R with probability 1 (for any distribution po, of the R-valued i.i.d. random

variables ;).

The proof of statement (a) of Theorem |10.1. The proof of statement (a) can be obtained
by the literal repetition of the proof of Theorem 5.2. O

We take statement (b) without proof (for the proof, see [KMN19, Section 3.3]).
Consider now the case d = 1. Then a PAS operator in L?(R) is defined by
d2
Hy7a = —@ + Z aj5yj,
jeN
where i.i.d. random variables a; play the role of the strength parameters.

Theorem 10.2 ([M88, KMNI9]).
Let Hy,o be a PAS operator in L*(R). Then:

(a) My is selfadjoint with probability 1.
(b) If P(awg = 0) =1 (i.e., if supp pa, < [0,+00)), then

o0(Hy,a) = [0, +00) with probability 1.
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(c) If P(ag = 0) < 1 (i.e., if SUPP Pa, N (—0,0) # &), then

o0(Hy,a) = R with probability 1.

We take this theorem without proof (for the proof, see [KMN19]). Statement (a) can
be proved by an easy adaptation of the proof of Theorem 5.2 to the 1-dimensional case
(an exercise).

Another proof of statement (a) can be obtained from the Kostenko-Malamud theorem
[KM10] (Theorem 4.2 in this lecture series) combined with the interval theorem for 1-
dimensional Poisson SPPs [LP, Section 7.1].
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11 Various types of spectra.

11.1 Eigenvalues, multiplicities, discrete and essential spectra.
Let A:dom A< X — X be an operator A :dom A € X — X in a Hilbert space X.

Definition 11.1.
The resolvent set p(A) of A is the set of points k£ € C such that the following three
conditions hold true:

(a) A— k is invertible, i.e., ker(A — kI) = {0};

(b) ran(A — k) = X, i.e., the operator A — k maps dom(A — k) := dom A onto the whole
X

(c) (A—Fk)™le L£(X),ie., (A—k)"!isabounded operator in X.

Definition 11.2.
The set o(A) := C\p(A) is called the spectrum of A.

Exercise 11.1.

(a) Definition implies the following equivalence: k € p(A) is equivalent to the state-
ment that the equation Au — ku = f has a unique solution uy for every f € X and

luflx < 1flx,  feX,

where the notation ‘<’ means that there exists a constant ¢ > 0 independent of f such
that |uysl|x < ¢||f]|x for all fe X.

(b) The set p(A) is open. Consequently, o(A) is closed.

One can say that k € p(A) if and only if the equation Au — ku = f is well posed in X
in the sense of Hadamard.

Definition 11.3.

(a) A number k € C is called an eigenvalue of A if ker(A — k) # {0}. The elements of
ker(A — k)\{0} are called eigenvectors of A associated with the eigenvalue k.

(b) We denote the set of all eigenvalues of A by o,(A) Sometimes op,(A) is called the point
spectrum of A (from Definition [11.1{(a), one sees that op,(A4) < o(A)).

¢) The geometric multiplicity mult, (k) € I§I of an eigenvalue k is by definition the dimen-
(c) g plicity g g y
sionality
dim ker(A — k)

of the linear subspace ker(A — k).

(d) The algebraic multiplicity multa(k) € N of an eigenvalue k can be defined as

mult, := lim dim(ker(4 — k)").

n—+o0

(e) An eigenvalue kg of A is called an isolated eigenvalue if kg is an isolated point of o(A).

An eigenvalue k of A is called simple if multg(k) = 1. An eigenvalue k of A is called
semi-simple if multy (k) = mult, (k).
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Definition 11.4 ([Katol ?]).

(a) We define the discrete spectrum ogisc(A) of A as the set of all isolated eigenvalues of
finite algebraic multiplicity [Kato, ?].

(b) The essential spectrum cess(A) is defined by oess(A) 1= 0(A)\oaisc(4) [?].

(¢) If 0(A) = ogisc(A), we say that A is an operator with purely discrete spectrum (cf.
[RS1]).

It should be emphasized that

e here the terminology concerning operators with purely discrete spectrum is related
to the terminology of [RS1], but is not completely standard (in the more standard
terminology of [Kato|, if 0(A) = oqisc(A), it is said that A has a discrete spectrum).

e there exists a variety of other non-equivalent definitions of the essential spectrum
(see, e.g., the discussion in [Kato, Section IV.5.6]).

Exercise 11.2.
Let A be a symmetric operator in X. Then:

(a) op(A) SR

(b) ker(A —k) = ker(A — k)" for all n € N. In particular, the geometric multiplicity of an
eigenvalue k coincides with its algebraic multiplicity.

(c) Let uj € ker(A — kj) for j = 1,2. If ky # kg, then u; L us.

(d) If X is separable, then op,(A) & R.

(e) Since selfadjoint operators form a subclass of the symmetric operators, statements
(a)-(d) are valid for all selfadjoint operators.

11.2 Basic examples, unitary equivalence, and multiplication operators

The (topological) support supp p of a (Borel) measure z on R? is the complement R%\S of
the maximal open set S such that (S) = 0. A maximal set in a certain class is understood
in the sense of the partial order ‘=’.

Exercise 11.3 (multiplication operators).
Let X = L?(R% ) be the L%-space (of equivalence classes) corresponding to a certain
locally finite measure p on R?, i.e.,

(ulv)x = fRd ut p(dz)

(note that the case of the trivial space L2(R% ;1) = {0} is not excluded). Let f € M(R9, C)
be a measurable function. The multiplication operator My : u(-) — f(-)u(-) is defined on
its natural domain

dom My = {ue L*(R% ) : fue L*RY p)}.

Then the following statements hold true:

(a) p(Myg) ={keC:pu(f *(B.(k))) = 0 for a certain £ > 0}

60



(b) Let us denote by ¢ = po f~! the image of p under f (see Lecture 7), i.e.,

p(S) = pu(f71(5),  SeB(C)

Then
o(My) = supp .

(c) k € op(My) if and only if o({k}) = u(f~'(k)) > 0. If this is the case, then the
geometric and algebraic multiplicities of k are equal to dim L? ( (k) ,u).

(d) All multiplication operators M are densely defined.

[§]

)

(e) M} =Mz

(f) All multiplication operators M are closed.

(g) A multiplication operator M is symmetric if and only if f(x) € R for almost all

w.r.t. the measure pu.

(h) A multiplication operator My is selfadjoint if and only if f(z) € R for almost all
w.r.t. the measure p (note that M is symmetric if and only if M/ is selfadjoint).

(i) A multiplication operator M is unitary in L?(R% u) if and only if |f(z)| = 1 for
almost all z w.r.t. the measure p.

Remark 11.1.
Let U : X1 — X9 be an unitary operator between Hilbert spaces X1 and X5. Consider
certain operators Aj :dom A; € X; — X for j =1,2. Then:

(a) dim X; = dim X5.

(b) Let
Ay =UTAU for a certain unitary U : X1 — Xo.

Then one says that Ay and Ay are unitary equivalent. Note that U™ : Xo — X is
also a unitary operator and that Ay = UA UL,

(c) Assume that Ay and Ag are unitary equivalent in the sense of (b). Then all “reasonable
spectral properties” of Ay and Ay coincide, e.g., 0(A1) = 0(A2) and 04(A1) = 0e(A2)
for e = p,disc,ess. The same is true for the density of domains, closedness, and
closability. If adjoint operators, closures, inverse operators or resolvents exist they
are connected by similar equalities

F=U AU, A =UTTAU, (A — k)t =U"1 (A — k) IU.

Exercise 11.4 (multiplication operators with discrete spectra).

(a) Let n € N. Let A be a selfadjoint operator in the standard Hilbert space C™ represented
by a symmetric matrix (am)gfj:l in the standard orthonormal basis. Find a measure
pon R, a function f € M(R,C), and a unitary operator U : C* — L?(R; ), such that

A=U"'M,U.

(b) Characterize multiplication operators My with purely discrete spectra.
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Multiplication operators M plays for infinite-dimensional spectral theory the same
role as diagonal matrices play for finite-dimensional spectral theory.

Proposition 11.1 (operators without eigenvalues).
Let = |- |q and X = L*>(R?) with d € N.

(a) Up(Mmz) =g = Udisc(M|x|2) and O'(M|x|2) = O'eSS(MmQ) = R_,_ = [0,+OO).

(b) For nonnegative selfadjoint Laplace operator (—1)A in L?(R?),

op(—A) = o, 0(—A) = 0ess(—A) = R4

Proof. (a) can be obtained by direct application of Exercise m

(b) can be obtained from (a) with the use of the unitary Fourier transform F : L?(R%) —
L?*(R%) and the equality
—A = F "M F

combined with Remark [[1.1]

(c) Since (—1)A has no eigenvalues, then its restriction A also has no eigenvalues.
However, for arbitrary k,

ran(A — k) € CP(RY) < LA(RY).

Thus, every k € C is a point of the spectrum of A. O

11.3 Extended spectrum and empty spectrum

Let C=Cu {oo} the standard compactification of C via the stereographic projection.

Definition 11.5.
The extended spectrum 6(A) € C of A:dom A € X — X is defined in the following way.

(a) If Ae L(X), then d(A) :=o(A).
If A is unbounded, then 6(A) := o(A) U {0}.

Theorem 11.1.
Assume that the Hilbert space X is not trivial, i.e., X # {0}. Then, for an arbitrary
operator A:dom A € X — X, we have 5(A) # @.

Example 11.1 (empty spectrum).
Consider the operator A : u — —u” in L?(0,1) with the domain

dom A = {u e H*[0,1] : u(0) = d;u(0) = 0},

where 0;u(0) is the derivative from the right. Then o(A) = @.
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11.4 Operators with compact resolvent.
We denote by G4 (X) the space of compact operators in a Hilbert space X.

Theorem 11.2.
Assume that

there exists ko € p(A) such that (A — ko) ™' € Gy (X). (11.1)

Then:
(a) (A—k)~t e &n(X) for every k € p(A).
(b) 0(A) = ogisc(A), i.e., the operator A has purely discrete spectrum.

Definition 11.6.
If an operator A satisfies ([L1.1]), one says that A is an operator with compact resolvent.

The proof of Theorem [11.2] uses the following particular case of the spectral mapping
theorem.

Theorem 11.3.
Let A be a closed invertible operator in X. Then

FA Y ={keC: = e5A)}

=

where 071 = % ;=00 and o0~ = % =0.

The most well-known application of Theorem [11.2]is the following result.

Corollary 11.1.
Let G be a bounded nonempty open set. Let (—1)AP = gradf grad, be the selfadjoint

Laplace operator in L?(G) associated with the Dirichlet boundary condition (see Lecture
9). Then:

(a) (—1)AP has compact resolvent;
(b) O-(*AD) = Udisc(*AD);
(¢) there exists an orthonormal basis {y;}jen of eigenfunctions of (—1)AP.
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12 Spectral theorem for selfadjoint operators.

12.1 Spectral theorem in the form of multiplication operators.

For X € B(C), we assume that a Borel measurable function g € M (X,C) is defined on
the whole X. Then a composition of Borel measurable functions is a Borel measurable
function.

Theorem 12.1 (e.g., [RS1]).

Let A be a selfadjoint operator in a separable Hilbert space X. Then there exists a mea-
surable space (Y, ) with p(Y) < 400, and a measurable function f € M(Y,R) such that
A is unitary equivalent to the multiplication operator My. That is, there exists a unitary
operator U : X — L*(Y; ) such that A=U"M;U.

Exercise 12.1.
Let A be a selfadjoint operator in a separable Hilbert space, which is unitary equivalent
to a multiplication operator M} in the way described in Theorem [T2.1}

(a) For a multiplication operator My of Theorem m (or, more generally, for My of
Lecture 11),

HMfH = esssup |f| = HfHLOO(Y;H)a

where the essential supremum is taken w.r.t. the measure pu.

(b) In particular, A € £(X) if and only if f € L®(Y; u). If this is the case, then

AT = £z vy

This formulation of the spectral theorem allows one to define functions g(A) of selfad-
joint operators, where g : R — C is a Borel measurable function (i.e., measurable in the
sense of Borel o-algebras B(R) and B(C))

Example 12.1.
Let A be a selfadjoint operator in a separable Hilbert space, which is unitary equivalent
to a multiplication operator M} in the way described in Theorem [12.1}

(a) Let g(z) = 22, x € R. Then it is natural to define g(A) := A2. In this case,
UAU™! = (Mg)? = Mp.

This definition can be extended to any polynomial p(x) = Z?:o cja;j with n € Ny,
¢j € C, and ¢, # 0. However, one need to define the domain of p(A) appropriately,
i.e.,

domp(A) = dom A" = {ue X : Afue domA for all 0 < j < n}

Then
Up(A) U = p(My) = Myos

(b) Note that for g(z) = z, x € R, we get g(A) = A.

(c) Let g(x) = x_—lko, x € R, kg € C\R. Then it is reasonable to define g(A) as the resolvent
at ko, i.e., g(a) = (A — ko)~!. Then

U(A—ko) U™ = (Mg —ko) ™" = M(j_gg)-1 = Mgoy.
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Note that this definition can be extended to kg € R\o,(A).
These examples show that the following definition of g(A) is resonable.

Definition 12.1.
Let A be a selfadjoint operator in a separable Hilbert space, which is unitary equivalent to
a multiplication operator /l/l # in the way described in Theorem Let g e M(R,C) (or,
more generally, g € M (R, C) is such that g(k) # oo for all k € 5,(A)). Then the function
g(A) of A can be defined by

g(A) = U Mo U.

Remark 12.1.

In the unitary equivalence for A in Theorem the choice of the measurable space (Y, )
and a function f e M(Y,R) is not unique. However, the deﬁnition of g(A) does not
depends on this choice and so g(A) is well-defined (an ezercise).

This definition allows to write the spectral theorem in the functional calculus form, see
[RS1, Theorem VIIL5].

We need another form of the spectral theorem that is written in terms of (orthogonal)-
projection-valued measures S — P°, S € B(R), where P° := y,(A).

Recall that x4 € M(R,R) is an indicator function of the set S, i.e., xs(z) =1if z € S,
and x (z) =0if z ¢ S.
12.2 Orthogonal projections
Let us recall the projection theorem (see, e.g., [RS1, Theorem I1.3] and [Katol).

Theorem 12.2 (orthogonal projection).
Let X1 be a closed subspace of a Hilbert space X, and let

Xi = {ug € X : (uz)ur)x = 0 for all uy € X1}.

Then:
(a) Xi is a closed subspace of X and (XiH)* = X;.

(b) Every uw € X has a unique decomposition

U = U + uog, ui € X1, ugeXll.

(¢) The mapping P : u — uy acting according to the decomposition (b) defines a bounded
operator P € L(X) with |P|| < 1. This operator P is called a projection on X (or
more precisely, the orthogonal projection on X1 ).

Remark 12.2.
There is another more general definition of projections that include also non-orthogonal
projections. Namely, an operator Q € L(X) is called a projection if Q*> = Q (i.e., Q
is an idempotent element of L(X) in the algebraic terminology). We will use only or-
thogonal projection defined by Theorem and simply call them projections (skipping
“orthogonal”).

Exercise 12.2.

65



(a) An operator P :dom P € X — X is a projection if and only if P? = P = P*,

(b) If P is a projection, then its range ran P = PX = {Pu : u € X} is the corresponding
closed subspace on that P projects. (Note that the zero operator Og(x) is also a
projection on the trivial subspace {0}).

(c) Let P be a projection. Then I — P is also a projection. (What is the corresponding
closed subspace?)

(d) Let U : X — Y be a unitary operator from a Hilbert space X to a Hilbert space Y.
Then, P is a projection in X if and only if UPU~! is a projection in Y.

Lemma 12.1.
Let A be a selfadjoint operator in a separable Hilbert space X, and let S € B(R). Then
X (A) is a projection.

Proof. Let A be unitary equivalent to a multiplication operator M in the way described
in Theorem m Then x4(4) = U_IMXSOfU. By Exercise it is enough to prove
that My o is a projection in L2(Y; ).

Since x4 : R — {0,1} is real-valued and bounded, we see that M;k(sof = My o5 and
that, by Exercise [12.1

HstofH = |xs 0 fHLOO(Y;u) < 1.

The equality M?

Xsof = ./\/lXS of follows from the definition of an indicator-function.

Xs (FW)xs(f(Y) = Xp-19)X5-1(5) = Xf-1(5)-
Exercise m (a) implies that My ;or is a projection. O
The projection-valued measure for a selfadjoint operator A is the mapping S — x4 (A)
defined for all S € B(R).

12.3 Various types of convergence of sequences of operators.

Let us recall the main types of convergencies for sequences {T},},eny © L£(X) of bounded
operators in a Hilbert space X.

The sequence {T},}nen is said to converge to 7' € L£(X) uniformly (or in the operator
norm) if [T — Ty, z(x)y — 0 as n — co.

The sequence T, is said to converge to T' € L(X) strongly
if, for every u e X, |[Tu — T,ullx — 0 as n — oo.

In this case, one writes
T =s-lim,, . T},

and says that T' is the strong (operator) limit of the sequence {1}, }neny < L£(X). The logic
behind the name of the strong convergence is that T' = s-lim,,_,o T}, is equivalent to the
statement that, after evaluation of {T},},eny © L£(X) on any vector u € X, the sequence
of vectors {T,u}peny © X converges to Tu strongly in X (i.e., {T,u}nen converges to Tu
w.r.t. the norm of X).
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The sequence {T, }nen is said to converge to T € L£(X) weakly
if, for every pair u,v € X, one has lim (T,u|v)x = (Tu|v)x as n — o0.
n—o0
In this case, one writes
T =w-lim, o T},
and says that T" is the weak (operator) limit of the sequence {T),}nen < L(X).
If the Hilbert space X is finite dimensional, then all three convergencies are equivalent.

If the Hilbert space X is infinite-dimensional, then these are three different (pairwise
non-equivalent) types of convergencies (see [RS1l, Section VI.1]). However,

1T —Tolgxy = 0 implies T =s-limy o Ty,

while T =s-lim, ., T, implies T = w-lim, .o T).
We use the strong operator convergence in the following section.

12.4 Spectral theorem written via projection-valued measures
Let X be a Hilbert space.

Definition 12.2 (projection-valued measure, e.g., [RS1]).
The mapping S — P from B(R) to £(X) is called a projection-valued measure if the
following conditions hold true:

Lemma 12.2.

Let S — PS be a projection-valued measure, and let us denote Py := p(=0:k)

. For every
u € X, the function k — (Pyulu)x is a Ry -valued non-decreasing function defined for all
keR.

Proof. Since Py is a projection, Exercise implies P, = Pk2 = P} and

(Pku|u)X = (P§U|U)X = (Pku]Pku)X = HP]CUHZ S @4_.

Let k1 < kg and put S; = (—o0, k1) and Sy = [k1, k). Using Definition we see
that the property (c) implies

Py, = P_oppy) = P51 + P = Py, + P,
and properties (d) and (b) imply

0= P? = pS1p% — pS2pSt — pS2p - p. P2,
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Hence,
| Pryul® = ([Phy + P%2u | [Pry + P*Ju)x = |Pryul® + 2Re(Pyu | PP2u)x + [P ul?
= |Peyul? +2 Re (PP Pyu | w)x + [ P2ul® = | Pryul® + | P2ul® = || Pyyul®.
Thus, k£ — (Pyu|u)x is non-decreasing. ]
g

Exercise 12.3.
The combination of the conditions of Definition [12.2] implies that the function

k— (Pku|u)X = ||PkuH2, ke R,
of Lemma has the following additional properties:
(a)

Jim [ Peuf% =0, | Prul% = Jlulk-
——00

lim
k—+o00
(b) S- limkﬂfoo Pk = 0, S- limkHJroo Pk =1.

(c) k — |Pyul? is left-continuous.

Definition 12.3.
For every u € X, the Lebesgue-Stieltjes integral 1, (S) := §xsd(Pyu|u)x taken first for
intervals S, and then extended to all S € B(R), defines

a finite Borel measure u,, = d(Pyulu)x on R,

which is called the spectral measure associated with the vector u (and with the projection-
valued measure S — P%).

Let u,v € X. The equality P, = P,f = P and the polarization identity

(Prufo)x = 7 (IPs(u+ o)X — [ Piu — o)k — i Pe(u + 1) 5 + i Po(u—iv)[X)

B~ =

allows us to define a complex-valued measure d(Pju|v)x on R via the linear combination

1 . .
d(PkU"U)X = Z (,Uquv = Mu—v — ytiv + lﬂfufiv) .

Proposition 12.1.
Let g € M(R,C) be a Borel measurable function.

(a) The set
Dyi={ue X : JR (k) 2d(Pyulu) x < o).

is a dense linear subspace of X .

b) There exists a unique operator T, : D, € X — X such that
g+ g

(Tyulv)x = jRg(k)d(Pku\v)X V ueD, veX. (12.1)

The most important application of this proposition is the case of the function g(k) = k,
keR.
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Theorem 12.3 (spectral theorem, e.g., [AG], RSI]).

(a) Let A be a selfadjoint operator in X . There exists a unique projection-valued measure
S — PS5 such that

domA={ueX: J k? d(Pyulu)x < o0} (12.2)
R

and

(Aufv)x f kd(Palv)y ¥ uedomA, wve X (12.3)
R
In this case, the projection-valued function k — Py is called the spectral function of A
(or the spectral family, or a resolution of identity associated with A).

(b) Let S — P be a projection-valued measure. Then there exists a unique selfadjoint

operator A such that (12.2) and (12.3)) hold true.

Remark 12.3.
Let k — Py, be the spectral function of a selfadjoint operator A like in Theorem[12.3.

(a) The functional calculus for the functions of the operator A can be defined via Propo-

sition [127), i.e.,
g(A) =1, for Borel measurable functions g.

This functional calculus is consistent with that of Definition [12.1]
(b) P° = xs(A) for all S € B(R).
The formulae (12.3)) and ([12.1]) usually are written symbolically as

A:ka AP, g(A) :ng(k)de.

However, it is possible to give a rigorous meaning to the formula
Au = J k dP,u
R

in the sense of an improper Riemann integral built with the use of the strong convergence
of vectors in X. For continuous bounded functions g : R — C with compact support

g(A) = JRg(k) dPy Vue X

exists as a Riemann integral w.r.t. the convergence in the operator norm | - |.(x), see
[AG].
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13 Classification of types of spectra of selfadjoint operators.

13.1 Norms of resolvents and spectra of selfadjoint operators.

Let T : domT < X — X be an operator in a Hilbert space X. Recall that T is closed if
the resolvent set p(7') is nonempty.

Theorem 13.1 (the 1st resolvent Neumann series, e.g., [Katol Sect.II1.6.1], [B, Thm.4.10]).
Let p(T) # @. Then:

(a) For every ko € p(T),

+0
(T — k)" = (k= ko) (T — ko) Y+ for all |k — kol < |(T —ko)~"[. (13.1)
j=0

(b) The resolvent set p(T) is open and the resolvent k — (T — k)~! is an analytic L(X)-
valued function on p(T)).

(c) For every ko € p(T),
1
— < (T —ko)7YY.
dist(ko, o (T')) It o)l

On formal level, formula is obtained by straitforward verification, but on the
rigorous level an additional step that uses the closedness of T is needed, see [Kato, B].
Statement (a) implies (b) (and so implies that o(T") is closed). Statement (c) also follows
from (a) as an estimate on the radius of convergence in (|13.1)).

Theorem 13.2.
Let A = A* and let a function g € M(R,C) be continuous on o(A). Then the norm of the
operator g(A) = § g(k)dPy, is given by

lg(A)] = llg] 2o (o(a)y) = esssup|g(k)].
keo(A)

We take this theorem without proof. For the proof of this theorem in the case of
bounded selfadjoint A, we refer to [RS1, Section VII.1]. The case where A is unbounded
can be reduced to the case of bounded selfadjoint operators by means of the decomposition

Au=A Z plntl)y, — 2 Aplrntly, = Z P["’”H)AP[”’”H)u, u € dom A,

nez nez neZ

into a sum of bounded selfadjoint operators A,, = AP+l = plnntl) g plnntl) - ghere
the summation of A,u is w.r.t. the norm | - ||x. The sum here is essentially orthogonal,
ie., if A, is perceived as an operator in the closed subspace PI™"*1 X | then this formula

A= A

neN

can be written as

Corollary 13.1.
For a selfadjoint operator A and ko € p(A),

1

1A =k) ™ = oo D)
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Note that in the case of a separable X, this corollary and Theorem 13.2 can be easily
obtained from Theorem 12.1 (the spectral theorem via a multiplication operator M).

Theorem 13.3 (e.g., [AG] Section 82]).
Let A = A*. Then

o(A):={keR: Pgic— Pp_. 7$0L(X) Ve > 0},

i.e., o(A) consists of points of growth of the operator-valued measure {PS}SeB(R) (note
that Pyie — Py = Plk=ek+e) gnd the function k — Py is nondecreasing in the sense of
Lemma 12.2).

This theorem can be obtained from Corollary

Theorem 13.4 (see [RS1], Section VIIL.2]).
Let A = A*. Let S be the mazimal open set S such that p,(S) = 0 for all w e X. Then
o(A) =R\S.

Corollary 13.2.
Let X # {0} and A = A* in X. Then o(A) # .

13.2 Absolutely continuous, singular continuous, and pure point spectra

Let Y be a metric space equipped with the Borel o-algebra, which makes it a measurable
space. A measure p on Y is called diffuse if u({y}) = 0 for every y € Y.

Definition 13.1.
Let p be a o-finite Borel measure on R.

(a) In this case, a diffuse measure p is called also continuous.

(b) A measure p is called discrete (or pure point) if there exists at most countable set
Y = {yj}é-vzl c R, N € N, such that u(R\Y) = 0.

(c) A continuous measure p is called singular continuous if there exists a Borel set S with
|S|1 = 0 such that p(R\S) = 0.

Let p be a discrete finite Borel measure. The set Y in Definition [I3.1] can be chosen in
a unique way such that p(y;) > 0 for all y; € Y. Then one can express y as

uS) = | avy,,  SeBm),

where

Upp (@) = Z 1(y;)

Y;<xT
is a jump function, and the integral is understood as the Lebesgue—Stieltjes integral.
Theorem 13.5 (Lebesgue decomposition, e.g. [KE, RST]).

Every o-finite Borel measure pn on R can be decomposed in a unique way into a sum of
Borel measures

M= fac + fsc + Hpp

such that the measure piac is absolutely continuous (w.r.t. |-|1), the measure ug. is singular
continuous, and fipy, is discrete.
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Definition 13.2.

(a) A closed subspace X is called invariant subspace of an operator T if Tu € X; for
every u € domT n Xj.

(b) Let Xj;, j = 1,2, be closed subspaces of X such that
X = Xl ® X27

and let Py, be the associated projections. The subspace X; is called a reducing
subspace for an operator 7' if, for every u € dom7', one has Px,u € domT', Px,u €
dom T, and each of the subspaces X; and X5 is invariant for T'.

Obviously a closed subspace X7 is reducing for 7' if and only if X f is so. If this is the
case and Xy = Xi, then

T = T|X1 ®T|X27

where T'| x, and T'| x, are the parts of T" in the subspaces X; having the domains dom(7'|x;) :=
X; ndomT. Note that {0} and {0} = X are reducing subspaces for every operator 7.

Proposition 13.1 (e.g., [AG]).
Let A = A* and let X1 be an invariant subspace for A. Then X is a reducing subspace
for A and A|x, is a selfadjoint operator in X;.

Theorem 13.6 (e.g., [RS1]).
Let A = A*. Let us consider the sets

Xac :={ue X : py is absolutely continuous},
Xee :={ue X : py is singular continuous},
Xpp :={ue X : p, is discrete}.
Then:

(a) Xac, Xsc, and Xy, are closed subspaces of X and each of them is a reducing subspace

for A.
(b) X = Xac @ Xsc @ pr

(¢c) The part App := Alx,, : dom Ay, © Xy, — Xy, has admits orthonormal basis {u;} e
of Xpp consisting of eigenvectors of Ay, (where J is a certain index set, not necessarily
countable).

Consequently,

Appu = Z kj(uluj) xuj, ue domAp, = X, ndom A,
jed
(u|uk)X;£0
where k; is an eigenvalue associated with an eigenvector u;.

Note that it is possible that one or several of theses subspaces Xac, X, and X, are
the zero spaces {0} (or one of them is the the whole space X).

Definition 13.3 (ac-, sc-, and pp-spectra, e.g., [RS1]).
Let A= A*.
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(a) The set 0,c(A) :

(b) The set 0g.(A) := 0(Al|x,.) is called a singular continuous spectrum.
(

(

)
)
)
)

o(Alx,.) is called an absolutely continuous spectrum.

c¢) The set op,p(A) := 0(A|x,,) is called a pure point spectrum.

d) If X = X, (and so {0} = X,c = Xc), one says that the spectrum of A is a pure point
spectrum.

13.3 Characterization of eigenvalues of selfadjoint operators in terms of
projector-valued measures

Theorem 13.7 (e.g., [AG]).
Let A = A*. Then:

k€ a,(A) if and only if P} % 0.

If ko € 0p(A), the corresponding to ko eigenspace is

ker(A — ko) = Pol X = ran ptko},

In other words, eigenvalues are jumps of the function k — Pj.

Remark 13.1.
By comparison of Definitions Theorem |13.6, and Theorem it can be obtained
that for a selfadjoint operator A,
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14 Examples of various types of spectra.

14.1 Remarks and examples related to reducing subspaces and pure
point spectra.

Let us recall that two closed subspaces X, j = 1,2, of a Hilbert space X such that
X = Xl &) X27

are called reducing for an operator A : dom A € X — X if the following conditions are
satisfied: for every u € dom A, one has Px,u € domT, Px,u € domT', and each of the
subspaces X1 and Xp is invariant for A. In this lecture, Px; is an (orthogonal) projector
to Xj.

The trivial examples of reducing subspaces for every operator are the subspaces {0} and

X. By Proposition 13.1, every invariant subspace of a selfadjoint operator A is reducing
for A.

The following theorem characterizes (independently of the functional calculus) the
projection-valued measure {P°} seB(r) associated with a selfadjoint operator A.

Theorem 14.1 (JAGl Section 75]).

Let A = A* in a Hilbert space X. Then the equality A = SR k dP.  holds for a
certain projection-valued measure {PS}Seg(R) if and only if the following two conditions
are satisfied:

(a) The space PTX is a reducing subspace for A for every interval T < (—o0, +00).

(b) For every ki, ks € R and u € dom A such that —o0 < k1 < ko < +00 and u € pleuk2] x|
the following inequality holds

killulk < (Aufu)o < kalulk.

Example 14.1 (eigenspaces as reducing subspaces).

Let A = A* and ko € o0,(A). Then the eigenspace ker(A — ko) of A corresponding to
the eigenvalue kg is a reducing subspace of A. This follows from Theorem m (or from
Proposition 13.1). Hence the orthogonal complement Xy := (ker(A — ko))t is also a
reducing subspace of A. Clearly, the part A|x, of A in X5 has no eigenvalue at k.

Proposition 14.1 ([AG, Section 75]).
LetT : domT < X — X be an operator in X . Let the family {X;}je; of closed subspaces of
X (indexed by a certain index set J, possibly uncountable) satisfy the following conditions:

(a) each X; is a reducing subspace for T;
(b) X; and X,, are mutually orthogonal if j # n.

Then the subspace

X = PX; = {Z uj: uj€X; Vi and Z |uji|? < —1—00}

jeJ jeJ jeJ

s a reducing subspace forI'. The part T = T|g of T in X has the domain dom T consisting
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of all we X such that

Px,u e domT|x; for all j and Z HTPXjuH?X < +00.
jed
Besides, the following formulae hold true for all w € dom T,

Tu=Y Tl|x, Px,u= Y TPxu= Y Px,TPxu. (14.1)
jed jed jed

For a selfadjoint A, we considered in Lecture 13 the decomposition of X
X = Xac ® Xsc @ pr
into the reducing subspaces corresponding to g.c(A), 0sc.(A), and opp(A).

Example 14.2 (X, as an orthogonal sum of eigenspaces).
Let A = A* and {k;}je; = 0p(A) be the family of all eigenvalues indexed by J without
repetitions (i.e., k; # k, if j # n) . The eigenspaces X; := ker(A — k;) are mutually
orthogonal by Exercise 11.2, and satisfy Proposition due to Example Hence,
the orthogonal sum of all eigenspaces
X = P X; = @Pker(A —kj)
jed jed

is a reducing subspace. It is easy to see that

o(Alg) = op(A) and op(Alg1) = 9.

The space X is exactly the space X, and this explains the equality

opp = 0p(A).

If additionally X = X, then A is an operator with purely point spectrum, A possess an
orthonormal basis {u; },cs of eigenvectors (indexed by a certain index set J’), and the
formula ((14.1) becomes the eigenvector expansion

Au = Z %j/ (’LL|’U,j/))(Uj/7 u € dom A,
j/EJ/

where kj is an eigenvalue corresponding to ;.

14.2 Pure point spectra of differential operators

Theorem 14.2 (Minami [M89]).
Let n = Z]EN dy; be a homogeneous proper Poisson SPP of positive intensity on R. Let
amax > 0 be a certain positive constant and oy be a certain [0, amax|-valued random variable

§= Z 5(?}1:%)

jeN

with distribution pa,. Let

be an independent pa,-marking of n. Consider in L?(R) the selfadjoint Poisson-Anderson-
Schrodinger operator

a2
Hy,o i= T Z oy,
j=1
associated with & as in Theorem 10.2. Then:
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(a) The spectrum o(Hy,o) is deterministic and pure point in the following sense: there
exists an event Uy € Fq of probability 1 such that

o(Hy,a) = opp(Hy,a) = [0, +00) Yw e Q.

(b) Besides, the event 1 € Fq of probability 1 can be chosen such that for every w €
Q1 and every eigenfunction u of Hy,, there exists a negative constant c, ., with the
property

lim sup L In|u(z)| < cuw <0 (exponential decay).
T—+00 |37| ’
The effect described by the properties (a) and (b) of Theorem is the spectral

Anderson localization for the whole spectrum. It is proved for many 1-dimensional models

with random potentials having reasonable ergodic properties.

The analogous question of the spectral Anderson localization in the multi-dimensional
case is a long standing open problem. It is presently conjectured that there are multi-
dimensional models where the spectral Anderson localization does not hold for the whole
spectrum. The 3-dimensional Poisson-Anderson-Schrédinger operator of Kaminaga-Mine-
Nakano (see Lecture 10) is possibly the least studied operator with good probabilistic
properties.

Remark 14.1.
The space L*(R) is separable. Therefore the set of eigenvalues op(Hy.o) in Theorem
1$ at most countable, but

[0, +0) = opp(Hy,a) = 0p(Hy,a)-

Thus, for all w e Qy, the set op(Hy,o) is countable and dense in [0, +0).

Proposition 14.2.
Let A = A* and 0(A) = 0qisc(A). Then o(A) = opp(A) and X, = X

This case takes place, for example, for the Laplace operator (—1)AP = gradg grad,,
with the Dirichlet boundary condition in L?(G), where G < R? is a bounded open
nonempty set. The operator (—1)AP is an invertible selfadjoint operator with compact
resolvent. Hence, (—1)(AP)~! € £(X) is compact. Besides, (—1)(AP)~! is selfadjoint due
to the next theorem.

Theorem 14.3.
Assume that T : domT < X — X be invertible and densely defined and that T~ is
densely defined. Then:

(o) (T*)~' = (T1)*
(b) If additionally T is selfadjoint, then T~ is also selfadjoint.

Proposition 14.3 (spectral theorem for compact selfadjoint operators).
Let A = A* and let A be compact. Then

X = Xpp,  Odise(A) = 0(AN0},  Gess(A) = 0.

Moreover, the following statements hold:
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(a) In the case 0 € o,(A), we have
0(A) = opp(A4) = op(A) # daise(A)-

(b) In the case 0 ¢ op,(A), we have
0(A) = opp(4) = {0} L op(4) and  op(A) = a(A\{0} = gaisc(A).

14.3 The case of a finite number of d-interactions in R3.

Let Y = {y]} Y, be a finite collection of distinct points in R®. Let a = {aj} R
be the corresponding deterministic “inverse strength” parameters. The corresponding
deterministic operator with point interactions

N
MHya=—A+“ Y ma;)dy, “, Hya:domHy, < L*(R?) - L*(R?)
j=1
was defined in Lecture 5 and, by Theorem 5.1,

Hy,o = (/HY,a)*'

Theorem 14.4.
(a) The set of eigenvalues of Hy,q is finite and is a subset of (—0,0], i.e.,

op(Hy,a) = opp(Hy,a) = {kj}i-; = (=0, 0] with a certain n € Ny.
(b) The absolutely continuous spectrum is

UaC(HY,a) = [07 +OO>'

(c) The singular continuous spectrum os.(A) is empty.
(d) o(My.a) = op(Hy.a) U 0ac(Hy.a) = {k;}j=y v [0, +00).
The set of eigenvalues can be found using the following theorem.

Theorem 14.5 (Krein-type resolvent formula, e.g., [?]).
(a) Let k € p(Hyo) and k = A? for \e Cy = {2 € C:Imz > 0}. Then the integral kernel
Kx(z,2') of the resolvent (Hy,o — k)™t = (Hy.a — A2)7! at k is given by the formula

N
Ky(z,2") = G\(z — 2) Z FYa] Gz = Yy), (14.2)

eirz—z /|

1s the integral kernel associated

where z, 7' € R3\Y and x # 2'. Here G\(x—2') := ]
with the resolvent (—A—-)\?)"! of the nonnegative selfadjoint Laplacian (—1)A in L*(R3),
whereas [Fya] , denotes the j, j'-element of the inverse to the matriz

. ~ N
Tya(A) = [ (a5 = 2) 05 = Ga (5 - Yj/)] . (14.3)

Ga(z), z#0

0 0 and 5jj/ 1s the Kronecker delta.
y L=

where Gy (z) 1= {

(b) The set of negative eigenvalues op(Hy,o)\{0} has the form {)\2}] 1, n € Ny, where
{\ }]:1 is the set of solutions to the equations

detT'yo(A) =0  on the line iR, := {ic: ce (0,+00)}.
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14.4 Deterministic and stochastic resonances

The poles A of generalized continuation of the resolvent (Hy, — A?)~! are exactly the
solutions detI'y4(A) = 0. They are the (continuation) resonances of Lectures

If the positions y; of point interactions become random, i.e., if Y is finite SPP, the set
of eigenvalues associated with the operator Hy,, becomes a locally finite SPP on (—o0, 0].
The corresponding set of resonances becomes a locally finite SPP on C. The study of
these point processes of random eigenvalues/resonances is presently in the initial stage,
see [AK21), KMN25]|.
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