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[Kato] Kato, T., Perturbation theory for linear operators. Springer Science & Business

Media, 2013.

[LP] Last, G. and Penrose, M., 2017. Lectures on the Poisson process. Cambridge Univer-

sity Press.

[MR] Meester, R. and Roy, R., 1996. Continuum percolation. Cambridge University Press.

[RS1] Reed, M. and Simon, B., 1980. Methods of modern mathematical physics. Vol. I:

Functional analysis. Academic Press.

[RS4] Reed, M. and Simon, B. Methods of modern mathematical physics. IV: Analysis of

operators. Academic Press, New York, 1978.

The list of all references used in the course is given at the end of these notes.

1



Contents

1 Overview. Random wave equations and stochastic point processes (SPPs). 4

1.1 Two types of stochastic models for resonators. . . . . . . . . . . . . . . . . . 4

1.2 Main ideas about (stochastic) point processes. . . . . . . . . . . . . . . . . . 4

1.3 Examples of random Schrödinger operators of Type 1. . . . . . . . . . . . . 5

1.4 Spectral properties of open systems and (continuation) resonances. . . . . . 7

2 Overview (continuation). Eigenvalues and resonances in random and

deterministic open systems. 10

2.1 Elementary definition of resonances. . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Physical meaning of deterministic and random resonances. . . . . . . . . . . 11

2.3 Random resonances for 1-dimensional model with Anderson cut-off potential 13

3 Point processes. 16

3.1 Basic definitions concerning (stochastic) point processes. . . . . . . . . . . . 16

3.2 Proper point processes and simple point processes . . . . . . . . . . . . . . 18

3.3 Proper point processes on Borel spaces . . . . . . . . . . . . . . . . . . . . . 19

4 Schrödinger operators with δ-interactions. Abstract symmetric and self-

adjoint operators, restrictions and extensions. 21

4.1 Point interactions in the 1-d case. . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Abstract symmetric and selfadjoint operators . . . . . . . . . . . . . . . . . 23

4.3 Restrictions and extensions of operators . . . . . . . . . . . . . . . . . . . . 25

5 Schrödinger operators with δ-interactions in R3 and Poisson processes. 27

5.1 Point interactions in the 3-d case defined via restrictions, extensions, and

boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Comparison of the strength parameters bj and 1{aj in the 1-d and 3-d cases

and their singular values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Poisson point processes and associated Schrödinger operators . . . . . . . . 29

5.4 Equality in distributions for point processes . . . . . . . . . . . . . . . . . . 31

6 Mixed binomial SPPs. Existence of Poisson processes. Intensity mea-

sures and transformations for general SPPs. 32

6.1 Mixed binomial SPPs and the existence of Poisson processes with given

intensity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Intensity measure for a general SPP and Campbell’s formula . . . . . . . . 34

6.3 Image of SPPs under measurable mappings . . . . . . . . . . . . . . . . . . 36

7 Stationarity for general SPPs. Independent markings and the Boolean

model. 37

7.1 Transformations and stationarity for general SPPs . . . . . . . . . . . . . . 37

7.2 Independent marking and Boolean model of stochastic geometry . . . . . . 39

7.3 Volume fraction and covering property for Boolean models . . . . . . . . . . 41

8 Continuum percolation. 43

8.1 Percolation functions for Boolean models on Rd. . . . . . . . . . . . . . . . 43

2



8.2 Continuum percolation in 1-dimensional case. . . . . . . . . . . . . . . . . . 45

8.3 Continuum percolation in Rd with d ě 2. . . . . . . . . . . . . . . . . . . . 45

8.4 Scaling of continuum percolation . . . . . . . . . . . . . . . . . . . . . . . . 47

8.5 Critical radius for random geometric graph . . . . . . . . . . . . . . . . . . 47

9 Closed and closable operators. Closures of operators and connections

with adjoint operators. 49

9.1 Abstract closed operators. Closable operators and closure. . . . . . . . . . . 49

9.2 Connection between closures and adjoint operators.

Essentially selfadjoint operators. . . . . . . . . . . . . . . . . . . . . . . . . 51

10 Schrödinger operators with Poisson-Anderson potentials and their spec-

tra. 55

10.1 The scheme of the proof of Theorem 5.2. . . . . . . . . . . . . . . . . . . . . 55

10.2 Spectra of Poisson-Anderson-Schrödinger operators with i.i.d.

strength-type parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

11 Various types of spectra. 59

11.1 Eigenvalues, multiplicities, discrete and essential spectra. . . . . . . . . . . . 59

11.2 Basic examples, unitary equivalence, and multiplication operators . . . . . . 60

11.3 Extended spectrum and empty spectrum . . . . . . . . . . . . . . . . . . . . 62

11.4 Operators with compact resolvent. . . . . . . . . . . . . . . . . . . . . . . . 63

12 Spectral theorem for selfadjoint operators. 64

12.1 Spectral theorem in the form of multiplication operators. . . . . . . . . . . 64

12.2 Orthogonal projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

12.3 Various types of convergence of sequences of operators. . . . . . . . . . . . . 66

12.4 Spectral theorem written via projection-valued measures . . . . . . . . . . . 67

13 Classification of types of spectra of selfadjoint operators. 70

13.1 Norms of resolvents and spectra of selfadjoint operators. . . . . . . . . . . . 70

13.2 Absolutely continuous, singular continuous, and pure point spectra . . . . . 71

13.3 Characterization of eigenvalues of selfadjoint operators in terms of projector-

valued measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

14 Examples of various types of spectra. 74

14.1 Remarks and examples related to reducing subspaces and pure point spectra. 74

14.2 Pure point spectra of differential operators . . . . . . . . . . . . . . . . . . . 75

14.3 The case of a finite number of δ-interactions in R3. . . . . . . . . . . . . . . 77

14.4 Deterministic and stochastic resonances . . . . . . . . . . . . . . . . . . . . 78

15 Complete list of references. 79

3



1 Overview. Random wave equations and stochastic point

processes (SPPs).

1.1 Two types of stochastic models for resonators.

One can consider several types of models for wave equations in uncertain or random

structures:

• Type 1. A stochastic medium in a bounded domain G is surrounded in RdzG by a

deterministic isotropic homogeneous outer medium.

• Type 2. A deterministic structure in G is surrounded by uncertain (or unknown)

structure that is modeled stochastically.

• Type 3. The medium is stochastic in the whole Rd. In the contexts of self-averaging

and Anderson localization such models are much better studied than Type 1 and

Type 2.

Sometimes spectral properties of a structure of Type 1, Type 2, or Type 3 can be

described via a stochastic point process (in short, SPP) in R or in C – R2 or via a family

of such SPPs. These SPPs will represent random (multi-)sets of random eigenvalues or

random resonances.

Since one of the ways to define stochastic media also involve SPPs in Rd, SPPs become

one of the main topics of the course. We will pay a considerable attention to related

definitions, examples, and basic properties.

1.2 Main ideas about (stochastic) point processes.

Let pΩ,F,Pq be our underlying (complete) probability space.

SPPs in Rd are one of the rigorous ways to describe random collection of points in Rd,

see, e.g., the textbook [LP].

Denote by Nă8 the set of all N0-valued Borel measures in Rd, where N0 “ t0u YN. Let

pN0 :“ N0 Y t`8u.

Let N be the set of all pN0-valued measures that can be written as at most countable sums

of measures from the set Nă8.

Definition 1.1 (SPP).

A (stochastic) point processes in Rd is a random element of N (random here means mea-

surable in an appropriate probabilistic sense that will be specified later in this course).

This short definition is a bit too abstract and too general for most of our needs. We

mainly use the following subclass of SPPs.

Definition 1.2 (proper SPP).

A proper point processes in Rd is a random measure η : ω ÞÑ ηω, ω P Ω, of the form

ηω “

κ
ÿ

j“1

δyjpωq “

κ
ÿ

j“1

δpx ´ yjpωqq, ω P Ω,
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where y1, y2, . . . , are Rd-valued random variables, κ is an pN0-valued random variable, and

δz “ δpx ´ zq is a Dirac measure placed at the site z P Rd.

We use the convention that
ř0

j“1 “ 0. The random variable κ in Definition 3.3 rep-

resents the random number of points in the proper SPP η. Since κ is probabilistically

measurable, the set tκ “ 0u “ tω P Ω : κpωq “ 0u belongs to the σ-algebra F of all

events. For η “
řκ

j“1 δyj , the convention
ř0

j“1 “ 0 means that we have ηω “ 0dx (the

zero measure) for all ω P tκ “ 0u.

Example 1.1 (homogeneous Poisson process on S with |S|d ă 8).

Let S Ă Rd be a Borel subset with a finite (d-dimensional Lebesgue) measure |S|d P R` “

p0,`8q. Let y1, y2, . . . be independent random variables uniformly distributed in S. Let

κ be an N0-valued random variable with the Poisson distribution Popγq, where γ ě 0 is a

rate- (or intensity-) parameter. That is,

Ptκ “ nu “
γn

n!
e´γ , n P N0.

Then η “
řκ

j“1 δyj is a homogeneous Poisson point process with the rate (or intensity)

equal to γ
|S|d

.

Remark 1.1.

Strictly speaking, Example 1.1 is not a definition. However, it is almost a definition (up

to equality in distributions), see Lecture 5.

1.3 Examples of random Schrödinger operators of Type 1.

We denote by R` “ p0,`8q the positive half-line and put R` :“ r0,`8q.

Example 1.2 (1-d model of an amorphous solid slab, cf. [LGP, Sections 1.1.1 and 7]).

Let d “ 1 and let G “ px´, x`q be a bounded interval in R. Let V0 P L8
comppR,R`q be an

R`-valued L8-potential with a compact support suppV0 in R. Let η be a homogeneous

Poisson SPP from Example 1.1 with a certain rate γ ą 0. Let us introduce a random

potential V pxq “ Vωpxq, ω P Ω, by

Vωpxq “

ż

V0px ´ yqηωpdyq “

κ
ÿ

j“1

V0px ´ yjpωqq.

The associated random 1-d Schrödinger operator Hω “ ´ d2

dx2 ` Vω, ω P Ω, is defined by

Hωupxq “ ´u2pxq ` Vωpxqupxq, u P dom

ˆ

d2

dx2

˙

“ H2pRq,

where by domA we denote the domain (of definition) for a possibly unbounded operator

A : domA Ď X Ñ X

in a Hilbert or Banach space X. In our case, X “ L2pRq “ L2pR,Cq is a complex Hilbert

space.

Recall that the Sobolev space

HnpRq “ tf P L2pRq : f pjq P L2pRq, 0 ď j ď nu
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is a Hilbert space with the norm given by }f}2HnpRq
“

řn
j“0

ş

R |f pjq|2dx.

In Example 1.2, G is bounded and V0 has a compact support. So, the support suppVω Ď

G ` suppV0 is almost surely (a.s.) compact. That is, a.s. Vωpxq “ 0 for all x R I for a

certain compact interval I. This means that outer medium in RzI is homogeneous, while

the structure Vωpxq, x P I, of the medium inside I is stochastic.

Example 1.3.

It is possible to simplify this construction to another random Schrödinger operator

Hω “ ´
d2

dx2
` cη “ ´

d2

dx2
` c

κ
ÿ

j“1

δyj

with the potential V given by a sum of randomly placed δ-functions multiplied on a

coupling constant c ą 0.

Remark 1.2.

Example 1.2 can be without essential changes generalized for Rd with any d P N. Example

1.3 can be generalized to Rd with d “ 2 and d “ 3 with some changes needed for the

interpretation of δ-potentials. For d ě 4, δ-potentials supported at separated points are

not well-defined (at least in the sense of Schrödinger operators in L2pRdq).

For models of Type 1, it is important that the random potential has a compact support.

Let us say a few words about some cases where the support of V is not compact.

Remark 1.3.

(a) Assume that we replace bounded G with rG “ Rd in Example 1.2. Then we obtain a

well-known Poisson-Anderson model for random media with strong structural disorder

[LGP, S95, BS01]. This model is used for amorphous (or non-crystalline) solids. For

small intensity-parameter γ ą 0, the model can also be used for the description of

random impurities in a homogeneous medium.

(b) Let us concentrate on the simplest case where d “ 1 and rG “ R. Let η be a ho-

mogeneous Poisson SPP with rate γ ą 0 on the whole R. Then, it is known that

for 1-d Poisson-Anderson operator Hω “ ´ d2

dx2 ` Vω there exists a deterministic set

S Ă R` such that S “ σpHωq with probability 1. Moreover, the complete spectral

Anderson localization takes place. This means that a.s. S “ σpHωq “ σpppHωq,

σacpHωq “ σscpHωq “ ∅, and all eigenfunctions of Hω decay exponentially as x Ñ ˘8.

(c) The statement in (b) that a.s. Hω has deterministic purely point spectrum S (i.e.,a.s.

S “ σpHωq “ σpppHωq and σacpHωq “ σscpHωq “ ∅) can be reformulated in the fol-

lowing more elementary way. For almost all (a.a.) ω P Ω, there exists an orthonormal

basis of eigenfunctions tujωujPN of Hω such that

Hωu “
ÿ

jPN
kjpωqpu|ujωqL2pRqu

j
ω @u P dompHωq “ H2pRq

and a.s. tkjpωqujPN “ S. The complete spectral Anderson localization includes ad-

ditionally the statement that a.s. all eigenfunctions ujωpxq decay exponentially as

x Ñ ˘8.

(d) The complete Anderson localization for 1-d Poisson-Anderson operator Hω follows
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from the papers [S95, BS01]. First mathematically rigorous results on spectral Ander-

son localization go back to [GMP77].

Formally, we have not defined yet Poisson SPP on R or Rd. This will be done later in

the course. Roughly speaking, it is a sum of independent Poisson SPP on the unit sells

x ` r0, 1qd, x P Zd (see Lemma 6.1).

1.4 Spectral properties of open systems and (continuation) resonances.

The spectral theory is another component of this course. We will address some basics of

the spectral theory of selfadjoint operators.

Let A : domA Ď X1 Ñ X2 be an abstract operator between Hilbert or Banach spaces

X1 andX2. The Banach space of all bounded operators A fromX1 toX2 with domA “ X1

will be denoted LpX1, X2q. If we write A : X1 Ñ X2, this means that domA “ X1.

Consider now the case X1 “ X2 “ X. In this case, one says that A : domA Ď X Ñ X

is an operator in X. We use the notation LpXq :“ LpX,Xq. The set ρpAq of all k P C such

that the inverse operator pA´kq´1 :“ pA´kIq´1 exists and belongs to LpXq is called the

resolvent set of A. The LpXq-valued function k ÞÑ pA´ kq´1 defined for k P ρpAq is called

the resolvent of A. The resolvent pA ´ kq´1 : ρpAq Ñ LpXq is an analytic LpXq-valued

function, see, e.g., [Kato, RS1].

The spectrum σpAq of A is defined as

σpAq :“ CzρpAq.

The set of eigenvalues σppAq of A is a subset of σpAq.

If A “ A˚ in a Hilbert space X, one can define the absolutely continuous spectrum

σacpAq, the singular continuous spectrum σscpAq and the pure point spectrum σpppAq, see

Lecture 13. In this case, the following equalities are valid

σppAq “ σpppAq

and

σpAq “ σacpAq Y σscpAq Y σpppAq.

(Sometimes, e.g., in [RS1], the pure point spectrum σpppAq is defined as the set of eigen-

values; in this case, the last equality is written as σpAq “ σacpAq Y σscpAq Y σpppAq).

Exercise 1.1.

Let us take the Hilbert spaceX “ L2p0, 1q. LetMf : L2p0, 1q Ñ L2p0, 1q be the operator of

multiplication on f P L8pRq, i.e., Mf : u ÞÑ fu. In the case fpxq “ x, x P r0, 1s, we obtain

the operator Mx, i.e., Mx upxq “ xupxq for all u P L2p0, 1q. Show that σppMxq “ ∅, but

σpMxq “ r0, 1s.

Exercise 1.2.

In the Hilbert space ℓ2pNq “ ℓ2pN,Cq, let us consider the operator A defined by ApunqnPN “

pun{nqnPN. Then σppAq “ t1{nunPN, but σpAq “ t0u Y t1{nunPN.

Returning to the examples of Schrödinger operators, consider a deterministic finite

collection of points y1, . . . , yκ P R and the associated Schrödinger operator defined as
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above

H “ ´
d2

dx2
` V pxq “ ´

d2

dx2
`

κ
ÿ

j“1

V0px ´ yjq.

Since we have assumed that V0 P L8
comppR,R`q, we see that V P L8

comppR,R`q.

Theorem 1.1.

Assume that V P L8
comppR,R`q. Consider H “ ´ d2

dx2 ` V with domH “ H2pRq. Then

H “ H˚ and

σpHq “ R` “ σacpHq.

This result follows from much more general [RS3, Theorem XI.30].

In other words, in the case V P L8
comppR,R`q, the spectrum of H “ ´ d2

dx2 `V gives not

so much of information about H. To get more interesting spectral properties for H, let us

consider (continuation) resonances.

For simplicity, we keep the assumption V P L8
comppR,R`q (many of the subsequent

basic statements about resonances can be adapted with some small changes to the cases

V P L8
comppRdq, V P L1

comppRq, or even to V with a sufficiently fast decay at 8).

We replace the spectral parameter k with k “ λ2 and consider for λ P C` :“ tIm z ą 0u

one more version of the resolvent-function

RHpλq “ pH ´ λ2q´1, RH : C` Ñ LpL2pRqq.

By Theorem 1.1, RHpλq does not exists as an LpL2pRqq-valued function for λ P R.
However, it is possible to continue RHpλq from C` meromorphically through R to C´ “

tIm z ă 0u in a certain generalized way.

Theorem 1.2 ([DZ]).

Assume that V P L8
comppR,R`q and H “ ´ d2

dx2 `V . Then RHpλq, λ P C`, can be continued

to the whole C meromorphically as an LpL2
comppRq, L2

locpRqq-valued function Rcont
H pλq.

The resonances are the poles of this generalized meromorphic continuation.

The Physics meaning of resonances is connected with the description of the long-time

behaviors of solutions and with the rate of decay of energy contained inside of the resonator

(i.e., inside of G or inside of the support suppV of the potential).

If the operator Hω “ ´ d2

dx2 `Vω is randomized in a reasonable way, the set of resonances

becomes random and can be sometimes described by a locally finite SPP on C.
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2 Overview (continuation). Eigenvalues and resonances in

random and deterministic open systems.

2.1 Elementary definition of resonances.

There is a great variety of resonance type effects in Mathematical Physics. One particular

type that describe spectral properties of open systems and is called continuation resonances

(in the sequel, simply resonances).

In Lecture 1, the discussion of resonances for a particular type of deterministic Schrödinger

operators has been started. We consider a deterministic finite collection of points y1, . . . ,

yκ P R and the Schrödinger operator

H “ ´
d2

dx2
` V pxq “ ´

d2

dx2
`

κ
ÿ

j“1

V0px ´ yjq,

where V0 P L8
comppR,R`q. Hence

V pxq “

κ
ÿ

j“1

V0px ´ yjq P L8
comppR,R`q.

We have replaced the spectral parameter k with k “ λ2 in the resolvent pH ´ kq´1

of the operator H and considered for λ P C` :“ tIm z ą 0u one more version of the

resolvent-function

RHpλq “ pH ´ λ2q´1, RH : C` Ñ LpL2pRqq.

Theorem 1.2 has continued RHpλq from C` meromorphically to the whole C as an

LpL2
comppRq, L2

locpRqq-valued function Rcont
H pλq. The resonances were defined in Lecture 1

as the poles of this meromorphic continuation.

Let us consider now another, more elementary, way to continue RH through R and

to define the (multi-)set ΣpHq of the resonances associated with the operator H. This

approach is based on the construction of cut-off resolvent [S, DZ].

Let Br “ tx P Rd : |x| ă ru. In our present case d “ 1, so Br “ p´r, rq. Let

χrpxq “ χBrpxq :“

#

1, x P Br

0, x R Br

be the indicator function of Br. By Mχr we denote the multiplication operator on χr,

Mχr upxq “ χrpxqupxq, u P L2pRq.

Exercise 2.1.

Show that Mχr P LpL2pRqq. Find M˚
χr
, ρpMχrq, and σpMχrq. What is }Mχr }?

In what follows, we assume that r is large enough in such a way that suppV Ă Br. We

define the cut-off resolvent as

rRpλq “ rRH,rpλq :“ MχrpH ´ λ2q´1Mχr , λ P C`.
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Theorem 2.1 ([S, DZ]).

The LpL2pRqq-valued function rRpλq, λ P C`, can be continued on C as a meromorphic

LpL2pRqq-valued function rRcontpλq “ rRcont
H,r pλq.

Definition 2.1 (Vainberg, Melrose, see [S, DZ]).

The poles of rRcontpλq in C (equivalently, the poles of Rcont
H pλq) are called resonances

associated with H. We denote by ΣpHq the (multi-)set consisting of these poles (taking

their multiplicities into account).

Remark 2.1.

(a) The poles of rRcont
H,r pλq do not depend on r if r is large enough [S]. Therefore resonances

are well-defined.

(b) This definition works in Rd with every odd d P N.

(c) For even d the analytic continuation has a branching point at λ “ 0 (even if V ” 0).

So, the meromorphic continuation to the whole C is not possible. In this case, the

definition and the physical meaning of resonances are somewhat different [AGHH, DZ].

Remark 2.2.

Consider the case where V P L1
comppR,R`q or V P L8

comppRd,R`q with odd d P N.

(a) Since σpHq “ R` for H “ ´∆ ` V , we see that RHpλq “ pH ´ λ2q´1 is analytic for

λ P C` and so are rRpλq “ Mχr RHpλqMχr and rRpλqcont. Thus, the set of resonances

ΣpHq is a subset of C´ “ tIm z ď 0u. Actually, Rellich’s uniqueness theorem implies

that ΣpHq Ă C´ Y t0u (see [DZ, Theorem 3.33]).

(b) If we drop the assumption of nonnegativity of V , resonances may appear in C`. For

V P L8
comppRd,Rq, the set ΣpHq X C` “ t

a

k´
n u

N´

n“1 is at most finite. The values

k´
n are exactly negative eigenvalues of H. In this case, the resonances have physical

interpretation somewhat different from that of the next subsection.

In the case d “ 1, it is possible to define resonances via the eigenvalue problem with

specific nonstandard boundary conditions. These boundary conditions include the spectral

parameter λ. Namely, the set of resonances ΣpHq is the set of eigenvalues λ for the

eigenproblem

´u2pxq ` V pxqupxq “ λ2upxq, x P p´r, rq, (2.1)

u1prq “ iλuprq, u1p´rq “ ´iλuprq, (2.2)

where we can choose any r ą 0 that is large enough to ensure suppV Ă r´r, rs. It is rather

difficult to generalize this definition with special boundary conditions to multidimensional

cases.

2.2 Physical meaning of deterministic and random resonances.

Remark 2.3.

If one considers the operator HD “ ´ d2

dx2 ` V pxq with the Dirichlet boundary condition

upxq “ 0, x P BG,

then the waves modeled by the associated wave equation will reflect from the boundary BG

and the energy will be conserved inside of G. In this case, one says that that HD models

11



a conservative system/resonator. The spectral properties of the conservative resonator are

described exactly by the spectrum σpHDq of HD and the construction with continuation

resonances is not needed. For bounded domains G and V P L8
comppG,R`q, the spectrum

σpHDq “ σdiscpHDq “ tknunPN Ă R`

is purely discrete, i.e., every point kn of σpHDq is isolated and is an eigenvalue of finite

algebraic multiplicity. These eigenvalues kn (or λn “ ˘
?
kn) are also sometimes called

resonances. Eigenvalues kn are resonances or eigenfrequencies of a conservative system.

However, this is a different type of resonances, and we will keep for them the name eigen-

frequencies.

The Physics meaning of (continuation) resonances is connected with the description of

the long-time behaviors of solutions of wave equations inside the resonator, i.e., inside of

a bounded domain G or inside of Br, and with the corresponding rate of (exponential)

decay of the energy. In such settings, RdzG or RdzBr is considered as the outer medium

where the energy escapes in the form of waves going to 8. One says that the resonator is

leaky, lossy, or open.

Theorem 2.2.

Assume that V P L8
comppR,R`q, H “ ´∆ ` V . Assume additionally that all resonances

associated with H are simple, i.e., of algebraic multiplicity 1. Consider the solution w of

the acoustic-type wave equation

B2
twpt, xq ´ B2

xwpt, xq ` V pxqwpt, xq “ 0

with initial data

wp0, ¨q “ u0p¨q P H1
comppRq,

Btwp0, ¨q “ u1p¨q P L2
comppRq.

Then, for every β ą 0, the following representation of w is valid

wpt, xq “
ÿ

Imλją´β
λjPΣpHq

e´iλjtwjpxq ` Aβpx, tq,

where the sum is finite, the functions wj are L2
locpRq-solutions of

Hwj “ λjwj

in the distributional sense, and, for every r ą 0 such that suppu0 Y suppu1 Ă Br, there

are constants Cr,β ą 0 and Tr,β ą 0 such that the remainder term Aβ is estimated by

}Aβp¨, tq}H2pBrq ď Cr,β e´tβ
`

}u0}H1pRq ` }u1}L2pRq

˘

for all t ě Tr,β.

In this theorem, e´iλjtwjpxq is an exponentially decaying dissipative eigenoscillation

corresponding to the resonance λj . In the case wj ı 0, its (exponential) rate of decay is

βj “ ´ Imλj ą 0.

12



The real part αj “ Reλj is the (real) frequency of eigenoscillations.

The spectral abscissa

AbscpHq “ sup
λPΣpHq

Imλj

corresponds to the lowest horizontal line R`iAbscpHq such that the whole set of resonances

is in the closed half-plane below this line. The value p´1qAbscpHq is the optimal estimate

from below on the decay rates of all eigenoscillations. In some cases, p´1qAbscpHq is the

decay rate of the energy in Br for generic initial data tu0, u1u [CZ95].

One more quantity is of interest in engineering applications. Let I “ rα1, α2s Ă R be

the interval of real frequencies in that the resonator is supposed to operate. Then the

interesting quantity is

distpI,ΣpHqq “ inft|λ ´ α| : λ P ΣpHq, α P rα1, α2su.

Consider now the stochastic model with a random operator Hω, e.g., the operator from

Lecture 1

Hω “ ´
d2

dx2
` Vωpxq “ ´

d2

dx2
`

κpωq
ÿ

j“1

V0px ´ yjpωqq, ω P Ω,

generated by a certain SPP tyju
κ
j“1. The quantities of interest then the random variables

AbscpHωq and distpI,ΣpHωqq, their distributions, expectations EpAbscpHωqq,

EpdistpI,ΣpHωqqq, and other values describing these random variables.

However, except of some almost trivial cases, it is very difficult to study directly

AbscpHωq and distpI,ΣpHωqq even in the simplest 1-d settings of lecture 1. The ex-

isting studies usually include into the stochastic models Hω some parameter going to 8 or

to 0, and investigate certain limiting properties of random sets ΣpHωq [S14, K16, AK21].

2.3 Random resonances for 1-dimensional model with Anderson cut-off

potential

One of the models for random resonances [K16] is connected with the 1-d discrete Anderson

model

pHωuqpnq “ p∆discuqpnq ` Vωpnqupnq “ upn ` 1q ` upn ´ 1q ` Vωpnqupnq

in the Hilbert space ℓ2pZq “ ℓ2pZ,Cq. Here Vωpnq are independent identically distributed

(i.i.d.) nondeterministic random variables.

The operator

p∆discuqpnq “ upn ` 1q ` upn ´ 1q, n P Z, pupnqqnPZ P ℓ2pZq,

is (shifted) discrete Laplacian (or shifted graph Laplacian).

Exercise 2.2.

(a) ∆disc “ ∆˚
disc in ℓ2pZq.

(b) Find σp∆discq.
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(c) Prove that σpp∆discq “ ∅.

Actually, it is easy to prove that σp∆discq “ σacp∆discq and ∅ “ σpppHωq “ σscpHωq.

As soon as the random potential Vωpnq is added, the spectral properties of Hω “

∆disc `Vω change substantially. Under very weak assumption on the common distribution

measure µ of the random variables Vωpnq, the complete Anderson localization is proved

for Hω.

Theorem 2.3 ([CKM87]).

Let Hω “ ∆disc ` Vω with i.i.d. random variables Vωpnq, n P Z, having a distribution

measure µ. Suppose that suppµ is not concentrated in a single point of R (i.e., random

variables Vωpnq are not deterministic). Assume additionally that

ż

R
|x|δdµpxq ă 8

for a certain δ ą 0.

Then, with probability 1,

σpHωq “ σpppHωq, ∅ “ σacpHωq “ σscpHωq,

and all (discrete) eigenfunctions of Hω are exponentially decaying as n Ñ ˘8.

Klopp [K16] studied SPPs generated by the resonances of operators with cut-off random

potentials

V L
ω pnq “

#

Vωpnq if ´ L ` 1 ď n ď L

0, otherwise

in the limit L Ñ 8.

The paper [AK21] considered random resonances associated with 3-d Schrödinger op-

erators

Hω “ ´∆ ` “

κpωq
ÿ

j“1

mpaqδpx ´ yjpωqq “,

where a generalized potential is defined by the SPP tyju
κ
j“1 consisting of random positions

of δ-potentials.

A stochastic model of Type 2 was considered in [K24], where the leakage of energy

into the stochastic outer environment is modeled by certain random dissipative boundary

conditions on BG for multidimensional bounded domains G Ă Rd. These random bound-

ary conditions can be seen as a multi-dimensional generalization and randomization of

damping boundary conditions (2.2).
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3 Point processes.

3.1 Basic definitions concerning (stochastic) point processes.

A (stochastic) point process (SPP) in a measurable space pX,FXq is a rigorous way to

describe a random collection of points in Rd, see, e.g., [LP].

Let us recall that a measurable space is a pair pX,FXq consisting of a set X and a certain

σ-field FX of subsets of X. A class F of subsets of X is called a field (on X) if the following
conditions are satisfied:

• X P F ,

• A,B P F implies AzB P F and A Y B P F .

A field F closed w.r.t. countable unions is called a σ-field. That is, a field F is called a

σ-field if tAjujPN Ă F implies
Ť

jPNAj P F .

One of the most important examples of a measurable space pX,FXq is an arbitrary

metric space X equipped with the Borel σ-field F “ BpXq (which by definition is generated

by open subsets of X). We will mainly work with the measurable spaces pRd,BpRdqq or

pS,BpSqq, where S P BpRdq. If it is not explicitly stated otherwise, for a metric space X,
we take the σ-field FX “ BpXq of all Borel subsets of X as the associated σ-field for the

measurable space.

Let

N0 :“ t0u Y N, pN0 :“ N0 Y t`8u, and pN :“ N Y t`8u.

Definition 3.1.

Denote by Nă8 “ Nă8pXq “ Nă8pX,FXq the set of all N0-valued measures µ : FX Ñ N0

on X. Let N “ NpXq be the set of all pN0-valued measures that can be written as at most

countable sums of measures from the set Nă8.

An SPP in X is a random element of NpXq. However, we need to explain rigorously the

meaning of “random” here.

Let FN “ FNpXq be the σ-field on NpXq generated by all subsets of N of the form

tµ P N : µpAq “ ku, A P FX, k P N0.

Exercise 3.1.

The σ-field FN is the smallest σ-field on N such that

fA : µ ÞÑ µpAq, fA : N Ñ pR,

is a measurable function from pN,FNq to pR,BppRqq for every A P FX, where pR “ RYt˘8u

is the standard compactification of the metric space R.

Let pΩ,FΩ,Pq be our underlying (complete) probability space.

Definition 3.2 (SPP).

A point processes η on X is a random variable with the values in pN,FNq, i.e., η : Ω Ñ N

is a measurable mapping (w.r.t. the σ-fields FΩ and FN).
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Remark 3.1 (s-finite measures).

A measure µ on X with values in pR` “ r0,`8s is called s-finite if µ is a countable sum

of finite measures (i.e., of measures with values in R` :“ r0,`8q). By definition, µ P N

implies that µ is s-finite. However, an s-finite pN0-valued measure on a measurable space

X does not necessarily belongs to NpXq, as it is shown by the next exercise.

Exercise 3.2.

Let X “ r0, 1s and let µ be pN0-valued measure on r0, 1s defined by

µpAq “

#

0, |A|1 “ 0

`8, |A|1 ą 0
.

Show that µ is s-finite, but µ R Npr0, 1sq.

Let us explain Definition 3.2 of a point process η. For A P FX, let us denote by ηpAq a

function

ω ÞÑ ηpω,Aq “ ηpωqpAq, ω P Ω.

Definition 3.2 means that ηpAq is an pN0-valued random variable for every A P FX. The

random variable ηpAq is called the number of points in A.

Example 3.1.

Let m P N0 and let µ be a probability measure on X. Let y1, . . . , ym be i.i.d. random

variables with values in X and the distribution µ. Then the sum η of Dirac measures

placed at the random sites y1pωq, . . . , ympωq,

η “ δy1 ` ¨ ¨ ¨ ` δym ,

is an SPP on X and

PpηpAq “ kq “

˜

m

k

¸

µpAqkp1 ´ µpAqqm´k, k “ 0, . . . ,m, A P FX.

This SPP is called a binomial process with sample size m and sampling distribution µ.

Recall that a random variable ξ : Ω Ñ R is said to have a binomial distribution Bipm, pq

with parameters m P N0 and p P r0, 1s if

Ppξ “ kq “

˜

m

k

¸

pkp1 ´ pqm´k, k “ 0, . . . ,m.

where 00 “ 1. So, in Example 3.1, ηpAq P Bipm,µpAqq for every A P FX.

Example 3.2.

Assume that X P BpRdq with 0 ă |X|d ă 8. The uniform distribution U “ UX on X
corresponds to the probability measure UpAq “ |A|d{|X|d. Taking µ “ U in Example 3.1

one obtains on X a uniform binomial process with sample size m.

Binomial processes are simplest nontrivial examples of proper SPP arising in applica-

tions.
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3.2 Proper point processes and simple point processes

Definition 3.3 (proper SPP).

An SPP η is called a proper point processes if there exist X-valued random variables y1,

y2, . . . , and a pN0-valued random variable κ such that

η “

κ
ÿ

j“1

δyj

almost surely (a.s.).

Exercise 3.3.

(a) Let η1, η2, . . . be a sequence of SPPs. Then η “ η1 ` η2 ` . . . is an SPP.

(b) Let η1, η2, . . . be a sequence of proper SPPs. Then η “ η1 ` η2 ` . . . is a proper SPP.

The question is under what conditions we can represent an SPP as at most countable

sums of δyj with certain X-valued random variables yj . It is easier to approach this question

in deterministic settings.

Exercise 3.4.

Let X “ r0, 1s. A measure µ belongs to Npr0, 1sq if and only if µ is at most countable sum

of Dirac measures µ “
řk

j“1 δyj with a certain k P pN0 and certain yj P r0, 1s for 1 ď j ď k.

Let us discuss to what extent Exercise 3.4 can be generalized.

Let #A be a cardinal number of elements in a set A. Assume that Y “ tynukn“1 with

k P pN0 is at most countable subset of X. Then the mapping ηY : FX Ñ pN0 defined by

ηY pAq “ #pY XAq for every A Ď X is a measure on X, which is called a counting measure

supported by the set Y .

At most countable sums

µ “

k
ÿ

j“1

δyj , k P pN0, (3.1)

of δ-functions are measures on X belonging to N. They are counting measures of Y “

tynukn“1 if and only if all points yj are distinct. Otherwise, some of the points y of the set

Y are multiple with multiplicities µptyuq P pN. One can say that a measure of the form

(3.1) is a counting measure for a multi-set Y “ tynukn“1 (or simply a counting measure

with multiplicities).

A multi-set Y is a set where a point y P Y can be repeated and the corresponding

multiplicities multpyq are taken into account for the comparison of the sets (and possibly

some other set operations).

Definition 3.4.

(a) A measure µ P NpXq is said to be simple if µptxuq ď 1 for very x P X. The set of all

simple measures is denoted by NspXq.

(b) An SPP η is said to be simple if Ppη P NspXqq “ 1.

Remark 3.2.

The set NspXq is measurable, i.e., NspXq P FNpXq (see [LP, Proposition 6.7]). So, tη P

NspXqqu P FΩ and Ppη P NspXqq is well-defined.
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Exercise 3.4 says that every measure µ P Npr0, 1sq is a counting measure with multi-

plicities. For a general measurable space X, this is not necessarily true.

Example 3.3.

There are (rather pathological) examples of measurable spaces X and µ P NpXq such that

µ cannot be written in the form (3.1). Let us take X “ r0, 1s with the following non-

standard σ-field F . Let F consists of all at most countable subsets of r0, 1s and their

complements in r0, 1s (this σ-field is the smallest σ-field generated by finite subsets of

r0, 1s). Let µpAq “ |A|1 for all A P F . Then µ is N0-valued, and so, µ P Nă8 Ď N, but

µpXq “ µpr0, 1sq “ 1 and there exists no y such that µ “ δy. Hence, µ cannot be written

in the form (3.1).

Remark 3.3.

Example 3.3 immediately implies that there are measurable spaces X such that not all SPP

on X are proper.

3.3 Proper point processes on Borel spaces

Definition 3.5.

A Borel space is a measurable space pX,FXq such that there exists a Borel measurable

bijection f from X to a Borel subset S Ď r0, 1s such that the inverse bijection f´1 is also

measurable.

The important and practical class of Borel spaces is described by the next theorem.

Let X be a Borel subset of a complete separable metric space (CSMS). Let us consider

X as a metric space with the induced metric and let FX “ BpXq be the σ-field generated

by open subsets of X. The measurable space pX,FXq is called a measurable Borel subspace

of X.

Theorem 3.1 (e.g., [K02, Theorem A.1.2], [K17, Theorem 1.1], and [LP, Theorem A.19]).

Let X be a Borel subset of a CSMS. Then the measurable Borel subspace pX,FXq of X is

a Borel space.

Corollary 3.1.

Any Borel subset X of Rd is a Borel space.

Recall that a measure µ on X is said to be σ-finite if there is a sequence Aj P FX, j P N,
such that µpAjq ă 8 for all j and

Ť

jPNAj “ X. The Lebesgue measure | ¨ |d on Rd is

σ-finite, but is not finite. A simple example of a measure µ that is not σ-finite is given by

(3.1) with k “ `8 if yj “ y for all j P N (i.e., if all points yj , j P N, coincide).

Exercise 3.5.

Every pN0-valued σ-finite measure belongs to NpXq.

Definition 3.6.

An SPP η on X is said to be uniformly σ-finite if there exist Aj P FX, j P N, such that
Ť

jPNAj “ X and

PpηpAjq ă 8q “ 1

for all j P N.

Theorem 3.2 (see, e.g., [LP, Corollary 6.5]).

A uniformly σ-finite SPP on a Borel space is a proper SPP.
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Definition 3.7.

Let pX, ρq be a metric space and let pX,BpXqq be the corresponding measurable space.

(a) A set B Ď X is called bounded if B “ ∅ or its diameter

diampBq :“ suptρpx, yq : x, y P Bu

is finite.

(b) A measure µ is said to be locally finite if µpBq ă 8 for every bounded B P BpXq.

(c) An SPP η on X is said to be locally finite if PpηpBq ă 8q “ 1 for every bounded

B P BpXq.

Exercise 3.6.

A locally finite SPP on a metric space X is uniformly σ-finite.

Corollary 3.2.

(a) A locally finite SPP on a Borel subset X of CSMS is a proper SPP.

(b) A locally finite SPP on a Borel subset X Ď Rd is a proper SPP.

Proof. Satetement (a) follows from Theorems 3.1 and 3.2 combined with Exercise 3.6.

Statement (b) follows from (a).

References for Lecture 3.
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[LP] Last, G. and Penrose, M., 2017. Lectures on the Poisson process. Cambridge University Press.
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4 Schrödinger operators with δ-interactions. Abstract sym-

metric and selfadjoint operators, restrictions and exten-

sions.

Our next goal is to define rigorously random 3-d Schrödinger operators

Hωupxq “ ´∆upxq` “

κpωq
ÿ

j“1

mpa0qδpx´yjpωqqupxq “, u P dompHωq Ă L2pR3q, ω P Ω,

with point interactions of the quasi-strength 1{a0 P R Y t8u placed at the random sites

yjpωq P R3. If we have a proper SPP on R3

Υ “

κ
ÿ

j“1

δyj

and fix a certain deterministic a0 P R, then Hω becomes the Schrödinger operator associ-

ated with this SPP and with the inverse strength parameter a0.

In this lecture, we start from the deterministic version of Hω. Moreover, we consider

first the 1-d case as an introduction to the main definitions. A detailed exposition of

a related deterministic and sotchastic theories until 1988 is given in the monograph of

Albeverio, Gesztesy, Hoegh-Krohn, & Holden [AGHH]. An appendix to this monograph

written by Exner gives an overview of the developments until 2005.

4.1 Point interactions in the 1-d case.

Let N P pN, b “ tbju
N
j“1 Ă C, and let Y “ tyju

N
j“1 Ă R be a collection of distinct

deterministic real numbers without finite accumulation points.

The operator

H “ HY,b “ ´
d2

dx2
`

N
ÿ

j“1

bjδyj

in the Hilbert space L2pRq is defined by the differential operation

´
d2

dx2
: u ÞÑ ´u2

and the glue-type boundary conditions

u1pyj ` 0q ´ u1pyj ´ 0q “ bjupyjq, yj P Y. (4.1)

Rigorously this means that Hu “ ´u2 for all u in the domain of H

domH “ tu P H1pRq X H2pRzY q : (5.2) is satisfied u.

Example 4.1.

Assume that bj “ 0 for all j. Then domH “ H2pRq and H is the standard nonnegative

1-d Laplacian p´1q d2

dx2 “ ´∆ with the natural domain in L2pRq. We denote this operator

by H0 and consider it as the unperturbed case. One can say that H0 is the same as the
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operator in the case N “ 0, i.e., there are no point interactions at all. With the use of the

1-d Fourier transformation

Fgpxq “
1

?
2π

s- limrÑ8

ż r

´r
e´ixygpyqdy,

which is a unitary operator in L2pRq, we can write

FH0F´1 “ Mx2 “ pMx2q˚.

Here

s- lim means the limit in the sense of the norm (i.e., w.r.t. the strong convergence).

So H0 “ pH0q˚. Moreover,

σpH0q “ σpMx2q “ r0,`8q (an exercise).

The associated quadratic form equals

pH0u|uqL2 “ ´

ż

R
u2udx “

ż

R
|u1|dx.

Definition 4.1.

An operator A : domA Ď X Ñ X is called nonnegative if the associated quadratic form

is nonnegative, i.e., if pAu|uqX ě 0 for all u P domA.

Example 4.2.

Let N “ 1 and Y “ ty1u “ t0u. Using integration by parts, let us consider the quadratic

form associated with H “ HY,b,

pHu|uqL2 “

ż

Rzt0u

u2udx “

ż

R
|u1|2 ` b1|up0q|2,

which on a formal (nonrigorous) level looks like

pH0u|uqL2 ` b1

ż

R
δpxq|upxq|2dx.

This justifies the expression

H “ ´
d2

dx2
` b1δy1 .

In the 1-d case, the parameter b1 P R is the strength of the point interaction at y1.

Remark 4.1.

Example 4.2 can be easily extended to the case N ă 8. If additionally bj P R for all j, it

can be transformed into an alternative rigorous definition of the selfadjoint operator HY,b

with the use of the theory of (unbounded) symmetric bilinear forms, see [AGHH, Kato,

RS2] (especially , see the Kato-Lax-Milgram-Nelson (KLMN) theorem in [RS2] and [RS2,

Example X.2.3]).

The case N “ 8 (as well as the 2-d and 3-d cases) are substantially more difficult.

Theorem 4.1 (Gesztesy & Kirsch[GK85], see also [AGHH, KM10]).

Assume that b “ tbju
N
j“1 Ă R .
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(a) If additionally the following uniform discreteness condition holds

inf
j‰n

|yj ´ yn| ą 0, (4.2)

then HY,b “ H˚
Y,b in L2pRq.

(b) Note that N ă 8 implies (4.2). So if N ă 8, then HY,b “ H˚
Y,b in L2pRq.

We will use the notation

d˚ “ d˚pY q :“ inf
j‰n

|yj ´ yn|.

With this notation, the uniform discreteness condition (4.2) can be written as d˚pY q ą 0.

The uniform discreteness condition handles the cases of deterministic lattices and lat-

tices with small random displacement. For a homogeneous Poisson point process Yω, (4.2)

is too restrictive.

Remark 4.2.

Let bj “ b0 P R for all j. Let Yω “ tyjpωqujPN, ω P Ω, be a homogeneous Poisson

SPP. Then it is easy to see that (4.2) holds with probability 0. However, the operator

HYω ,b “ ´ d2

dx2 ` b0
ř

jPN δyjpωq is selfadjoint with probability 1 (this follows from the results

of [M88], see also [KMN19] and Theorem 10.2 of this lecture series). Note that we have

used the fact that a homogeneous Poisson SPP on R is proper, which follows from the fact

that homogeneous Poisson SPP is locally finite and Corollary 3.2 (b).

The uniform discreteness assumption can be relaxed, but cannot be dropped in Theorem

4.1. This can be seen from the following result of [KM10] (in a slightly reformulated form).

Theorem 4.2 (Kostenko & Malamud [KM10]).

Assume that Y can be renumbered as rY “ tyjujPZ in strictly increasing order such that

dj “ yj ´ yj´1 ą 0 for all j P Z. Then:

(a) In the case
ř

d2j “ 8, one has H
rY ,b

“ H˚
rY ,b

for every b Ă R.

(b) Let
ř

d2j ă 8 and dj´1dj`1 ě d2j for all j ě 0. Then there exists b “ tbjujPZ Ă R
such that H

rY ,b
is symmetric, but H

rY ,b
‰ H˚

rY ,b
.

In this very advanced result, one can see a much simpler effect that the selfadjointness

of unbounded operators is a more tricky property, than the selfadjointness of bounded

operators. In particular, symmetric operators are not necessarily selfadjoint.

4.2 Abstract symmetric and selfadjoint operators

Let X1 and X2 be Hilbert spaces with inner products p¨|¨qX1,2 . Mainly we work with

complex Hilbert spaces, but some of material can be adapted to the real case and to

Banach spaces.

Recall that a (linear) operator A from X1 to X2 with a domain domA Ď X1 is a

linear map defined on a linear subspace domA of X1. The corresponding notation is

A : domA Ď X1 Ñ X2. If domA “ X1, one can write A : X1 Ñ X2. The Banach space

of all bounded operators A : X1 Ñ X2 (with the standard operator norm) is denoted by

LpX1, X2q.
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If X1 “ X2 “ X, one says that A : domA Ď X Ñ X is an operator in X. Besides,

LpXq “ LpX,Xq.

For unbounded operators in X, domA is typically not a closed subspace of X (except

some pathological cases). If domA is dense in X (i.e., domA “ X), one says that A

is densely defined in X. Differential operators in X “ L2pGq (with open G Ď Rd) are

typically densely defined.

Definition 4.2.

Assume that A : domA Ď X1 Ñ X2 is densely defined. Then the adjoint operator

A˚ : domA˚ Ď X2 Ñ X1 is defined in the following way:

(a) domA˚ consists of all v P X2 with the property that there exists f P X1 such that

pv|AuqX2 “ pf |uqX1 @u P domA; (4.3)

(b) A˚v “ f .

The assumption domA “ X1 in Definition 4.2 ensures that f in (9.2) is unique.

Definition 4.3.

(a) An operator A : domA Ď X Ñ X is called selfadjoint if A “ A˚ (in particular, this

assumes domA “ domA˚).

(b) An operator A : domA Ď X Ñ X is called symmetric if

pAu|vqX “ pu|AvqX @u, v P domA.

Remark 4.3.

(a) Equality (9.2) implies that

pAu|vqX2 “ pu|A˚vqX1 , u P domA, v P domA˚. (4.4)

(b) Equality (4.4) implies that every selfadjoint operator is symmetric.

(c) If A P LpXq, then A is selfadjoint if and only if it is symmetric (an exercise).

Not every unbounded symmetric operator is selfadjoint, as we have seen in Theorem

4.2. A much simpler example of symmetric non-selfajoint operator in L2p0, 1q is provided

by the 1-d Laplacian operator ´∆D,N defined by the differential expression p´1q d2

dx2 and

a combination of Dirichlet and Neumann boundary conditions. That is

dom∆D,N “ H2
0 p0, 1q,

where H2
0 pGq is the closure of C8

0 pGq in H2pGq. Typically symmetric nonselfadjoint

boundary operators appear if one put too much boundary conditions.

Let us consider the PDE version of the last example.

Example 4.3.

Let G Ď Rd be open and nonempty. Let

Au “ ´∆u, A : C8
0 pGq Ă L2pGq Ñ L2pGq.

Then A is symmetric, but A ‰ A˚ since dompA˚q Ś dompAq “ C8
0 pGq. Indeed, by

Green’s formula dompA˚q Ě H2pGq. In the case d “ 1, dompA˚q “ H2pGq.
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The selfadjointness of the differential operators A is important, in partucluar, because

the equation

iBtu “ Au (4.5)

in a Hilbert space X has good properties. Namely, A “ A˚ if and only if p´iAq is a

generator of unitary group. This means that, in the case A “ A˚, the unique solution

uptq “ e´iAtu0 to the initial value problem u|t“0 “ u0 P X for (4.5) exists in a certain

reasonable sense for all t P R and }uptq}X “ }u0}X for all t P R, see [Kato, RS1]. In this

case, the unitary operators e´iAt, t P R, build a group.

Theorem 4.3 (e.g., [Kato, RS1]).

If A “ A˚, then σpAq Ď R.

If the operator A is symmetric, but is not selfadjoint, then σpAq Ę R. The proper-

ties of solutions to iBtu “ Au are (softly speaking) not so good. For some classes of

operators, there are no nontrivial solutions on sufficiently large time intervals t P r0, T s.

For differential operators, the reason is typically that too much boundary conditions are

imposed.

If A “ ´∆ ` V pxq is Schrödinger operator in the classical sense, or in the general-

ized sense of this lecture, then (4.5) is a time-dependent Schrödinger equation that de-

scribes, e.g., a dynamic of a quantum particle in a certain environment represented by

a potential V depending on the position. For example, the case of generalized potential

V “ b0
ř

nPZ δpx´nq on R or a singular case of Kronig-Penny model, which is a simplified

model of a nonrelativistic electron moving in a fixed crystal lattice. Theorem 4.1 implies

that the related operator A “ ´ d2

dx2 ` b0
ř

nPZ δpx ´ nq in L2pRq is selfadjoint and there

exists an associated unitary group te´iAtutPR.

4.3 Restrictions and extensions of operators

Definition 4.4.

The graph GrA of an operator A : domA Ď X1 Ñ X2 is a subspace of X1 ‘ X2 defined

by

GrA “ t tu,Auu : u P domAu.

Definition 4.5.

Let A : domA Ď X1 Ñ X2 and B : domB Ď X1 Ñ X2 be connected by GrA Ď GrB.

Then an operator B is called an extension of A, and the operator A is said to be a

restriction of B. One writes A “ B ædomA.

Note that GrA Ď GrB is equivalent to

domA Ď domB and Au “ Bu @u P domA.

In operator theory, operators are often identified with their graphs and so one writes

GrA Ď GrB shorter A Ď B.

Proposition 4.1.

(a) If GrA Ď GrB, then GrB˚ Ď GrA˚.

(b) A densely defined operator A in X is symmetric if and only if GrA Ď GrA˚.
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(c) A restriction of a symmetric operator is a symmetric operator. In particular, a re-

striction of a selfadjoint operator is a symmetric operator.

(d) Every restriction of a nonnegative operator is a nonnegative operator.

(e) Every densely defined nonnegative operator is symmetric.

Proof. The proof of (a) easily follows from Definition 4.2. Statement (b) follows from (a)

and Definition 4.3. Statement (c) follows from (b). Statement (d) follows from Definition

4.5.

Statement (e) follows from the polarization principle, see [Kato, formulae (I.6.11) and

(VI.1.1)].

Theorem 4.4 (von Neumann, see, e.g., [AG, Section 107] and [Kato]).

A densely defined nonnegative operator A has at least one selfadjoint extension pA. Every

such selfadjoint extension pA is a restriction of A˚.

References for Lecture 4.

[AG] Akhiezer, N.I. and Glazman, I.M., 1993. Theory of linear operators in Hilbert space. Dover.

[AGHH] Albeverio, S., Gesztesy, F., Hoegh-Krohn, R. and Holden, H., 2005. Solvable models in

quantum mechanics. With an Appendix by Exner, P. Springer Science & Business Media.

[GK85] Gesztesy, F. and Kirsch, W., 1985. One-dimensional Schrödinger operators with inter-

actions singular on a discrete set. Journal für die reine und angewandte Mathematik, 362,

pp.28-50.

[KMN19] Kaminaga, M., Mine, T., Nakano, F., 2019. A self-adjointness criterion for the

Schrödinger operator with infinitely many point interactions and its application to random

operators, F. Ann. Henri Poincaré 21 (2), 405-435.
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5 Schrödinger operators with δ-interactions in R3 and Pois-

son processes.

In the 2-dimensional and 3-dimensional case, it is difficult to define point interactions via

quadratic forms. That is why we consider two other methods for the 3-d case.

The 1st method is based on restrictions and extensions of operators. The 2nd method

introduces Schrödinger operators with δ-interactions H via their resolvent pH ´ kq´1,

k P ρpHq Ă C, and is convenient for the study of the spectrum σpHq “ CzρpHq.

It should be pointed out that, in Rd with d ě 4, Schrödinger operators with δ-

interactions at isolated points do not exist at all.

5.1 Point interactions in the 3-d case defined via restrictions, extensions,

and boundary conditions.

Recall that A : domA Ď X Ñ X is a restriction of B : domB Ď X Ñ X if GrA Ă GrB.

In this case, B is called an extension of A and one writes A “ B ædomA. Every densely

defined nonnegative operator A in a Hilbert space X has at least one selfadjoint extension
pA, and every such selfadjoint extension pA is a restriction of A˚ (see Theorem 4.4).

In the Hilbert space L2pR3q, consider the nonnegative Laplace operator

H0 :“ ´∆, domH0 “ H2pR3q.

Then H0 “ pH0q˚, which can be proved using the reduction to a multiplication operator

with the use of the Fourier transform.

Let N P pN, a “ taju
N
j“1 Ă C, and let Y “ tyju

N
j“1 Ă R3 be a collection of distinct

deterministic points in R3. Assume additionally that

Y has no finite accumulation points

In the terminology of Definition 3.7, the last assumption is equivalent to the statement

that the counting measure of Y is locally finite.

Consider the following restriction of H0

Hmin
Y :“ H0 ædomHmin

Y
, domHmin

Y “ C8
0 pR3zY q.

It follows from Proposition 4.1 that Hmin
Y is symmetric and nonnegative as a restriction of

the nonnegative selfadjoint operator H0.

By Theorem 4.4, there exist selfadjoint extensions pH of Hmin
Y and these extensions are

restrictions of the operator

Hmax
Y :“ pHmin

Y q˚.

The definition of the adjoint operator (Definition 4.2) implies that

Hmax
Y u “ ´∆

R3zY
u for all u P domHmax

Y “ tu P L2pR3q : ∆
R3zY

u P L2pR3qu,

where the Laplacian ∆
R3zY

is understood in the sense of the space of distributionsD1pR3zY q

in the open set R3zY .
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The domain domHmin
Y can be described in another way with the use of the elliptic inner

regularity:

domHmax
Y “ tu P L2pR3q X H2

locpR3zY q : ∆u P L2pR3qu,

where ∆ is understood in the sense of the Laplacian in H2
locpR3zY q (see, e.g., [A, Theorem

6.3] and [KMN19, Proposition 8]).

Let Brpyq “ y ` Br “ tx P Rd : |x ´ y| ă ru.

Proposition 5.1 ([KMN19, Proposition 8]).

Let y P Y and ε ą 0 be such that Bεpyq X Y “ tyu. Then, for every u P domHmax
Y , there

exist unique constants u0y, u
1
y P C and a function ru P H2pBεpyqq such that rupyq “ 0 and

upxq “ u0y|x ´ y|´1 ` u1y ` rupxq, x P Bεpyq.

The complex constants u0y and u1y play the role of generalized boundary values (traces)

at y. The operator

HY,a “ ´∆ ` “
N
ÿ

j“1

mpajqδyj “

is defined as the restriction of Hmax
Y generated by the boundary conditions

u1yj ´ 4πaju
0
yj “ 0, 1 ď j ď N. (5.1)

In other words, HY,au “ ´∆u for all u P domHY,a, where

domHY,a “ tu P domHmax
Y : (10.1) holds for all yj P Y u.

As before, we put

d˚ “ d˚pY q :“ inf
j‰n

|yj ´ yn|.

Theorem 5.1 ([AGHH]).

Assume that a “ taju
N
j“1 Ă R.

(a) If the uniform discreteness condition d˚ ą 0 holds, then HY,a “ H˚
Y,a in L2pR3q.

(b) If N ă 8, then d˚ ą 0 and HY,a “ H˚
Y,a in L2pR3q.

Theorem 5.1 is applicable to periodic lattices, e.g., to Y “ Z3.

5.2 Comparison of the strength parameters bj and 1{aj in the 1-d and

3-d cases and their singular values

The role of parameters aj for the operators

HY,a “ ´∆ ` “
N
ÿ

j“1

mpajqδyj “

in L2pR3q is different from the role of the strength parameters bj for the operators

H “ HY,b “ ´
d2

dx2
`

N
ÿ

j“1

bjδyj
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in L2pR3q.

Consider the case of HY,b in L2pRq. If bj “ 0, the point interaction at yj disappears. If

bj “ 8, then the corresponding boundary condition

u1pyj ` 0q ´ u1pyj ´ 0q “ bjupyjq, yj P Y. (5.2)

takes the form of the Dirichlet boundary condition

upyjq “ 0.

If all bj “ 8 and Y “ tyju
N
j“1 is ordered increasingly, then the corresponding operator

HY,b in L2pR3q is the orthogonal sum of the positive selfadjoint Dirichlet Laplace operators

p´1q∆D
Ij , where

Ij “ pyj , yj`1, ∆D : dom∆D Ă L2pIjq Ñ L2pIjq,
dom∆D “ u P H2pIjq X H1

0 pIjq.

This orthogonal sum is written w.r.t. the orthogonal decomposition

L2pRq “
à

j

L2pIjq.

If d “ 3, the case aj “ 8 corresponds to the disappearance of the point interaction at

yj . In particular, if aj “ 8 for all j then HY,a is interpreted as the standard nonnegative

Laplace operator p´1q∆ in L2pR3q (with dom∆ “ H2pR3q). The strength-type parameter

is 1{aj , but even this parameter 1{aj is not an analogue of the strength bj for the operator

in L2pRq. In the 3-d case, the expression

´∆ `
1

a1
δyj

has no accurate interpretation, in particular, it has no interpretation in the sense of

quadratic forms. That is why it is replaced with

Hy1,a1 “ ´∆ ` “mpa1qδy1 “,

where the expression mpa1qδy1 represents formally a certain renormalization of the δ-

potential δy1 . The value a1 P C is a free parameter that emerges in this renormalization

process, see [AGHH, Section 1.1]. We have used here a more transparent approach to via

the explicit form of the boundary conditions.

5.3 Poisson point processes and associated Schrödinger operators

Consider the operator HY,a in L2pR3q. Then the uniform discreteness condition d˚ ą 0 is

not necessary for the statement that HY,a “ H˚
Y,a for every a “ taju

N
j“1. We consider a

counterexample in the stochastic settings.

Recall that an N0-valued random variable κ is said to have the Poisson distribution

Popγq with rate γ P r0,`8q if

Ppκ “ nq “ Popγ, nq :“
γn

n!
e´γ , n P N0.
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An pN0-valued random variable κ is said to have the Poisson distribution Pop`8q with

rate γ “ `8 if

Ppκ “ `8q “ Pop`8,`8q :“ 1, Ppκ “ nq “ Pop`8, nq :“ 0 for n P N0.

Let pX,FXq be a measurable space.

Definition 5.1 (Poisson point process).

Let µ be an s-finite measure on X. An SPP η is called a Poisson SPP with intensity

measure µ if it has the following properties:

(a) For every A P FX, the random variable ηpAq has the Poisson distribution PopµpAqq.

(b) For every m P N and pairwise disjoint sets A1, . . . , Am P FX, the random variables

ηpA1q, . . . , ηpAmq are independent.

Remark 5.1.

If a certain SPP η has property (b) of Definition 5.1, then η is called completely indepen-

dent.

Definition 5.2 (homogeneous Poisson point process).

For X P BpRdq, let us take pX,FXq “ pX,BpXqq. Then a homogeneous (or uniform) Poisson

SPP η on X is a Poisson SPP on X such that its intensity measure µ is a multiple of the

d-dimensional Lebesgue measure |¨|d, i.e., µp¨q “ γ|¨|d with a certain constant γ P r0,`8q.

In this case, γ is called the intensity of η.

Corollary 5.1.

Let η be a homogeneous Poisson SPP on X P BpRdq. Then η is a proper SPP.

Proof. By Definition 5.2, η is locally finite. Corollary 3.2 implies that η is proper.

Let η be a homogeneous Poisson SPP on R3 with intensity γ ą 0. Note that the random

variable ηpR3q has the Poisson distribution Pop`8q, i.e.,

PpηpR3q “ 8q “ 1.

By Corollary 5.1, η is proper. Thus, there exist a sequence Y “ tyjujPN of R3-valued

random variables yj such that a.s.

η “

8
ÿ

j“1

δyj .

Let a “ taju
`8
j“1 be a sequence of real numbers, or more generally, a sequence of R-valued

random variables aj . Since η is locally finite, we can define for a.a. ω P Ω a randomized

Schrödinger operator HY,a

HYω ,αω “ ´∆ ` “
N
ÿ

j“1

mpajpωqqδyjpωq “, ω P Ω, (5.3)

using the definition of Section 5.1.

Theorem 5.2 (Kaminaga, Mine, Nakano [KMN19]).

Let Y “ tyjujPN be a collection of random sites yj in R3 associated as above with a certain
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homogeneous Poisson SPP η of positive intensity. Let a “ taju
`8
j“1 be an arbitrary sequence

of R-valued random variables aj. Then HY,a “ H˚
Y,a with probability 1.

Proposition 5.2.

In the settings of Theorem 5.2, the uniform discreteness condition d˚ ą 0 holds with

probability 0. (Recall that d˚ “ infj‰n |yj ´ yn|.)

Proof. Note that d˚ is a random variable. Let Ωn “ td˚ ą 1{nu.

Assume that Ppd˚ ą 0q ą 0. Then there exists n P N such that PpΩnq ą 0. Hence,

there exists m P N such that ηωpz ` r0, 1q3q ď m for all ω P Ωn and all z P Z3.

By Definitions 5.1 and 5.2, tηpz ` r0, 1q3quzPZ3 is a collection of i.i.d. random variables

with Ppηpz ` r0, 1q3q ď mq “ p ă 1. Hence, PpΩnq ď limkÑ`8 pk “ 0. This contradicts

the assumption Ppd˚ ą 0q ą 0.

5.4 Equality in distributions for point processes

We consider various additional properties of SPPs and apply them to Poisson SPPs fol-

lowing [LP, Sections 2-3].

Let η be an SPP on a measurable space pX,FXq. Then the distribution of η is a proba-

bility measure Pη on pN,FNq that is the distribution of η as an N-valued random variable.

Recall that the measurable space pN,FNq of countable sums of N0-valued measures was

introduced in Lecture 3.

If η and ξ are two SPP on X such that Pη “ Pξ, then one says that η and ξ have the

same distribution and write η
d
“ ξ.

Proposition 5.3.

The two following statements are equivalent:

(a) η
d
“ ξ

(b) pηpA1q, . . . ηpAmqq
d
“ pξpA1q, . . . ξpAmqq as Rm-valued random variables for all m P N

and all pairwise disjoint deterministic sets A1, . . . , Am P FX.

Corollary 5.2.

Let η and ξ be two Poisson SPP with the same intensity measure µ. Then η
d
“ ξ.

Proof. The statement follows from Definition 5.1 (of Poisson SPP) and Proposition 5.3.
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6 Mixed binomial SPPs. Existence of Poisson processes.

Intensity measures and transformations for general SPPs.

6.1 Mixed binomial SPPs and the existence of Poisson processes with

given intensity measures

Corollary 5.1 state that a homogeneous Poisson SPP on a Borel set B Ă Rd is proper. An

example for Corollary 5.1 is given by Example 1.1 of Lecture 1, which we reformulate now

as a proposition.

Proposition 6.1 (homogeneous Poisson process on S with |S|d P R`).

Let S Ă Rd be a Borel subset with |S|d P R` “ p0,`8q. Let y1, y2, . . . be independent

random variables uniformly distributed in S. Let κ be an pN0-valued random variable with

the Poisson distribution Poprγq of rate rγ ě 0. Then η “
řκ

j“1 δyj is a homogeneous Poisson

point process with the intensity equal to γ “
rγ

|S|d
.

This proposition follows from the next theorem (Theorem 6.1) on mixing binomial SPP

with Poisson mixing distributions.

Definition 6.1 (mixed binomial SPP).

Let pm and ps be probability measures on N0 and X, respectively. Let y1, y2, . . . be i.i.d.

X-valued random variables with distribution ps. Let κ be an N0-valued random variable

with distribution pm and assume that κ is independent of tyjujPN. Then the proper SPP

η :“
κ

ÿ

j“1

δyj

is called a mixed binomial process with mixing distribution pm and sampling distribution

ps.

Theorem 6.1.

Let ps be a probability measure on X and let γ ě 0. Let η be a a mixed binomial process

with mixing distribution Popγq and sampling distribution ps. Then η is a Poisson process

with intensity measure γps.

Proof. Step 1. Assume that disjoint sets B1, B2 P FX are such that B1 Y B2 “ X. Let

k1, k2 P N0 and k “ k1 ` k2. Then

PpηpB1q “ k1, ηpB2q “ k2q “ Ppκ “ kq
k!

k1!k2!
pspB1qk1pspB2qk2

“
γk

k!
e´γ k!

k1!k2!
pspB1qk1pspB2qk2 “

2
ź

j“1

pγpspBjqqkj

kj !
e´γpspBjq. (6.1)

Summing over all k2 P N0, we get that ηpB1q P PopγpspB1qq. Similarly,

ηpB2q P PopγpspB2qq.

Hence, (6.1) implies that ηpB1q and ηpB2q are independent. We proved the properties (a)

and (b) in Definition 5.1 of Poisson SPP for the case of two mutually complementing sets.

Step 2. It remains to note that this argument for the verification of Definition 5.1 can

be extended to every m P N and disjoint B1, . . . , Bm P FX such that
Ťm

j“1Bj “ X with
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the use of the fact that

P pηpB1q “ k1, . . . , ηpB2q “ km | κ “ kq “
k!

k1! . . . km!
pspB1qk1 . . . pspBmqkm ,

where k “ k1 ` ¨ ¨ ¨ ` km.

Exercise 6.1.

Let m P N and κ1, . . . , κm are independent random variables with Poisson distributions

and rates γ1, . . . , γm, respectively. Then
řm

j“1 κj has the Poisson distribution with the

rate
řm

j“1 γj .

Lemma 6.1 (superposition lemma).

Let tηju
m
j“1, m P pN, be a sequence of independent Poisson SPPs ηj with s-finite intensity

measures µj (on X). Then

η “

m
ÿ

j“1

ηj is a Poisson SPP with intensity measure µ “

m
ÿ

j“1

µj.

Proof. Step 1. By Exercise 3.3 (a), η is an SPP.

Step 2. Let m ă 8. In order to prove that η is a Poisson SPP with intensity measure

µ “
řm

j“1 µj , it is enough to use Exercise 6.1.

Step 3. The case m “ `8 can be proved by passing to the limit rm Ñ 8 for nonde-

creasing sequences t
ř

rm
j“1 ηjpAqu

rmPN, A P FX.

Theorem 6.2 (existence of Poisson SPPs).

Let µ be an s-finite measure on a measurable space pX,FXq. Then there exists a proper

Poisson SPP on X with the intensity measure µ.

Proof. Let µ “
ř`8

j“1 µj be the sum of measures µj such that µjpXq ă 8 for all j. For

every such µj , Theorem 6.1 implies that there exists a proper Poisson SPP rηj with the

intensity measure µj on a certain probability space pΩj ,Pjq. On the product space
Ś

jPN
Ωj ,

there exists a sequence of induced independent proper Poisson SPPs ηj with intensity

measures µj , j P N. It remains to apply Lemma 6.1 to
ř

ηj .

Remark 6.1.

(a) For every Poisson SPP η1 on a measure space X, there exists a proper Poisson SPP

η2 on X such that η1
d
“ η2. This follows from Corollary 5.2 and the proof of Theorem

6.2.

(b) There exists measures spaces pX,FXq and Poisson processes η on X with intensity

measure µ such that µpXq ă 8, but η is not proper (see, [LP, Exercise 3.9]). Theorem

3.2 implies that the measure space pX,FXq in any such example is pathological in the

sense that pX,FXq is not a Borel space.

Theorem 6.3 (partial inversion of Theorem 6.1).

Let η1 be a Poisson process with intensity measure µ such that µpXq ă 8. Then:

(a) η1 has the same distribution as a mixed binomial process η2 with mixing distribution

PopµpXqq and sampling distribution ps “ 1
µpXq

µ.
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(b) For very m P N, the conditional distribution

P pη1 P ¨ | η1pXq “ mq

is the distribution of a binomial process of sampling size m and sampling distribution

ps.

Proof. (a) follows from Theorem 6.1 combined with Corollary 5.2 (about equality in dis-

tributions).

(b) is obvious for η2. In order to obtain (b) for η1 it is enough to use the equality

η1
d
“ η2 obtained in the statement (a).

Definition 6.2 (restrictions of deterministic and random measures).

Let A P FX.

(a) Let µ be a measure on X. Then the restriction of µ to A is the measure µA on X
defined by

µApBq “ µpA X Bq, B P FX.

(b) Let η be an SPP on X. Then the map ηA : ω ÞÑ ηApωq, ω P Ω is an SPP on X, which
is called the restriction of η on A.

Theorem 6.4.

Let η be a Poisson SPP with intensity measure µ, and let tAjujPN Ă FX be a sequence of

pairwise disjoint sets such that
Ť

jPNAj “ X. Then:

(a) ηA1, ηA2, . . . is a sequence of independent Poisson SPPs with intensity measures µA1,

µA2, . . . , respectively.

(b) η “
ř

jPN ηAj .

All statements of Theorem 6.4 are obvious, except the independence of ηA1 , ηA2 , . . . .

This independence we leave as an exercise (see, e.g., the proof of [LP, Theorem 5.2]).

For every B P BpRdq with |B|d P R`, Proposition 6.1 allows us to construct explicitly

a proper homogeneous Poisson SPP with any given intensity γ P r0,`8q (i.e., with the

intensity measure γ| ¨ |d, where γ P r0,`8q is a constant).

Example 6.1 (explicit construction of a homogeneous Poisson SPP on Rd).

Let Rd “
Ť

jPNBj be a decomposition of Rd into a pairwise disjoint Borel subsets such

that |Bj |d ă 8 for all j. For every j, let rηj be a proper homogeneous Poisson SPP on Bj

of intensity γ P r0,`8q defined on a probability space Ωj . The sequence trηjujPN generates

a sequence of independent SPPs tηjujPN on the product space
Ś

jPNΩj with the property

that ηj
d
“ rηj for all j. Then η “

ř

jPN ηj is a homogeneous Poisson SPP on Rd of intensity

γ (an exercise).

6.2 Intensity measure for a general SPP and Campbell’s formula

Definition 6.3 (intensity measure for a general SPP).

Let η be an arbitrary SPP on a measure space X. The intensity measure µ of η is defined

by

µpAq :“ E ηpAq, A P FX. (6.2)
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Remark 6.2.

Our terminology concerning intensity measures is consistent. That is:

(a) The intensity measure is indeed an r0,`8s-valued measure (an exercise).

(b) Let η be a Poisson SPP with s-finite intensity measure µ defined as in Definition

5.1. Then (6.2) holds true, and so, µ is indeed the intensity measure in the sense of

Definition 6.3.

Statement (b) of Remark 6.1 follows from the following basic fact:

for ξ P Popγq, we have E ξ “ γ (an exercise).

We denote by MpX,Vq the family of measurable mappings from a measurable space X
to a measurable space V.

Let B be a Borel subset of pR “ r´8,`8s, for example, B “ pR` :“ r0,`8s. We denote

by MpX, Bq the set of all measurable functions u : X Ñ B. For u P MpX, pRq, the functions

u˘ P MpX, pR`q are defined by

u`pxq :“ maxtupxq, 0u, u´ :“ maxt´upxq, 0u.

Then

u “ u` ´ u´.

For every measure µ on X, the integral of u P MpX, pRq w.r.t. µ

ż

udµ “

ż

X
upxqµpdxq “: xµ, uy

is defined as
ż

u`dµ ´

ż

u´dµ (6.3)

whenever this expression is not of the form p`8q ´ p`8q. If (6.3) is of the form p`8q ´

p`8q, we put
ş

udµ :“ 0 (following [LP]). If η is an SPP, then
ş

udη “ xη, uy is the

mapping

ω ÞÑ

ż

upxqηpω,dxq, ω P Ω.

Theorem 6.5 (Campbell’s formula).

Let η be an SPP on X with intensity measure µ, and let u P MpX, pRq. Then:

(a)
ş

u dη is an pR-valued random variable.

(b) If u ě 0 or
ş

|u|dµ ă `8,

E
„

ż

u dη

ȷ

“

ż

u dµ. (6.4)

Proof. For an indicator-function u “ χA with A P FX, (6.4) follows from (6.2). Then it is

extended in the usual way to u P MpX, pR`q, and in turn, to all u such that
ş

|u|dµ ă `8,

see [LP, Proposition 2.7].
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6.3 Image of SPPs under measurable mappings

Let T : X Ñ V be a measurable mapping from the measurable space pX,FXq to a measur-

able space pV,FVq, i.e., T P MpX,Vq.

Definition 6.4.

For any measure µ on X, the image of µ under T (or push-forward of µ) is the measure

T pµq “ µ ˝ T´1, i.e.,

T pµqpAq “ µpT´1Aq, A P FV.

Theorem 6.6 (mapping theorem).

Let η be an SPP on X with intensity measure µ, and let T : X Ñ V be a measurable

mapping. Let T pηq be defined by

ω ÞÑ T pηpωqq, ω P Ω.

Then:

(a) T pηq is an SPP with intensity measure T pµq.

(b) If η : ω ÞÑ
řκpωq

j“1 δyjpωq, ω P Ω, is a proper SPP on X, then T pηq “
řκ

j“1 δT pyjq is a

proper SPP on V.

(c) If η is a Poisson SPP, then T pηq is a Poisson SPP too.

Proof. (a) The probabilistic measurability of T pηq follows from the definition of T pηq and

the probabilistic measurability of η. By definition, the intensity measure of T pηq is

ErT pηqpAqs “ ErηpT´1Aqs “ µrT´1As “ T pµqpAq, A P FV.

(b) follows from the definition of T pηq applied pointwise in ω P Ω.

(c) If η is a Poisson SPP, it is straightforward to check the properties of Definition 5.1

(of a Poisson process) for T pηq.

References for Lecture 6.

[LP] Last, G. and Penrose, M., 2017. Lectures on the Poisson process. Cambridge University Press.
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7 Stationarity for general SPPs. Independent markings and

the Boolean model.

7.1 Transformations and stationarity for general SPPs

Let T : X Ñ V be a measurable mapping from the measurable space X to a measurable

space V, i.e., T P MpX,Vq. Let η be an SPP on X with intensity measure µ. Statements

(a) and (c) of Theorem 6.6 state that, for an SPP η with intensity measure µ, the mapping

T pηq : Ω Ñ NV defined by

ω ÞÑ T pηpωqq, ω P Ω,

is an SPP with intensity measure T pµq. If η is a Poisson SPP, then T pηq is a Poisson SPP

too.

Let us fix now our measurable space as X “ Rd.

Example 7.1.

Let η be a homogeneous Poisson SPP on Rd of intensity γ ě 0. Let α P R. Let

Dilα “ Dilα,d

be the transformation of Rd defined by

Dilα x “ αx, x P Rd.

If α ą 0, then Dilα is the dilation with ratio α, and

Dilα η is a homogeneous Poisson SPP of intensity α´dγ.

Could you describe Dilα η for α “ 0 and for α ă 0?

For arbitrary y P Rd, consider in Rd the mapping Shy : Rd Ñ Rd that shifts every site

x P Rd to x ` y. Then for a measure µ on Rd,

pShy µqpAq “ µpSh´y Aq “ µpA ´ yq, A P BpRdq.

Let N “ NRd be the measurable space of measures on Rd introduced in Lecture 3.

Following [LP], we define the map θy : N Ñ N by θy : µ ÞÑ Sh´y µ, i.e.,

θyµpAq “ µpA ` yq, A P BpRdq.

We denote in the same way the induced map θy : MpΩ,Nq Ñ MpΩ,Nq on the space of

SPPs η on Rd, i.e.,

θyηωpAq “ ηωpA ` yq, A P BpRdq, ω P Ω.

In particular, θyδy “ δ0 and, for a proper SPP η : ω ÞÑ
řκpωq

j“1 δyjpωq, we have

T pηq “

κ
ÿ

j“1

δyj´y.
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For a general SPP η on Rd, we have
ż

gpxq pθyµqpdxq “

ż

gpx ´ yq µpdxq, µ P N, g P MpRd,R`q.

The family tθyuyPRd builds a commutative group of measurable maps θy : N Ñ N with

identity θ0. The induced maps θy : MpΩ,Nq Ñ MpΩ,Nq build a commutative group

tθyuyPRd of maps on MpΩ,Nq with identity θ0. These statements follow from the obvious

flow property

θy ˝ θx “ θx`y, x, y P Rd.

Definition 7.1.

An SPP η on Rd is said to be stationary if θxη
d
“ η for all x P Rd.

Example 7.2.

A homogeneous Poisson SPP η on Rd is stationary. This follows from Theorem 6.6 and

the invariance of the intensity measure γ| ¨ |d of η under the transformations θy.

Example 7.3.

There are examples of non-Poisson stationary SPPs (see [LP, Section 8.1]). Let us consider

one such example. Let

C1 “ C1,Rd :“ r0, 1qd

be a half-open unit cube. Let µ P Nă8pRdq be a nonzero measure such that µpRdzC1q “ 0,

i.e., ∅ Ř suppµ Ď C1. Let ξ be an Rd-valued random variable uniformly distributed on

C1. Then
η :“

ÿ

yPZd

θy`ξ µ

is a stationary non-Poisson SPP with the intensity measure µpC1q| ¨ |d (an exercise).

Proposition 7.1.

Let η be a stationary SPP on Rd with intensity measure µ such that

γ :“ µpC1,Rdq “ E ηpr0, 1qdq ă `8

Then

µ “ γ| ¨ |d.

In this case, the quantity γ P r0,`8q is called the intensity of the stationary SPP η.

Proof. The proof follows from the following facts:

(a) θxµ “ µ for all x P Rd (translation invariance);

(b) the family of deterministic locally finite translation invariant measures on Rd is

tα| ¨ |duαPR`
.

Proposition 7.2.

Let η be a Poisson SPP on Rd with intensity measure µ such that

γ :“ µpC1q “ E ηpr0, 1qdq ă `8.

Then η is stationary if and only if µ “ γ| ¨ |d.
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Proof. The proof follows immediately from combination of Example 7.2 and Proposition

7.1.

7.2 Independent marking and Boolean model of stochastic geometry

We need a particular type of marked SPP, which are produced by a independent pV-

marking of a proper SPP η on X.

Definition 7.2 (independent marking).

Let pV be a certain probability measure on a certain measurable space V, and let v1, v2,

. . . be i.i.d. V-valued random variables with distribution pV. Let η “
řκ

j“1 δyj be a proper

SPP on a measure space X independent of tvjujPN. Then the proper SPP ξ defined on the

product measure space X ˆ V by

ξ :“
κ

ÿ

j“1

δpyj ,vjq

is called an independent pV-marking of η.

This definition is a simplified version of a general definition of K-marking, see [LP,

Sections 5.2 and 16.1]. For existence of such independent pV-markings, we refer to [MR,

Sections 1.4], and in more general settings in [LP, Section 5.2].

Theorem 7.1.

Let η be a proper SPP with intensity measure µ. Let ξ be an independent pV-marking of

η. Then:

(a) The intensity measure of ξ is the product measure µ b pV.

(b) In the case where η is a proper Poisson SPP, ξ is also a proper Poisson SPP.

Proof of statement (a) of Theorem 7.1. It is enough to verify the formula for the intensity

measure on the sets A ˆ B with A P FX and B P FV. Then

E ξpA ˆ Bq “
ÿ

mPpN0

E

«

χtκ“mu

m
ÿ

j“1

χtpyj ,vjqPAˆBu

ff

“
ÿ

mPpN0

E

«

χtκ“mu

m
ÿ

j“1

χtyjPAuχtvjPBu

ff

“ EχtvjPBu

ÿ

mPpN0

E

«

χtκ“mu

m
ÿ

j“1

χtyjPAu

ff

“ pVpBq E ηpAq “ µpAqpVpBq.

We do not give a complete proof of statement (b) of Theorem 7.1. One of the proofs

can be obtained using the notion of Laplace functional.

Definition 7.3.

The Laplace functional of an SPP η on X is the map Lη : MpX,R`q Ñ r0, 1s defined by

Lηpuq :“ E e´xη,uy “ E exp

„

´

ż

X
udη

ȷ

, u P MpX,R`q.

The Laplace functional plays for SPPs the role similar to that of characteristic functions

and Laplace transforms of real-valued random variables.
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Remark 7.1.

(a) Let η1 and η2 are two SPPs on X. Then η1
d
“ η2 if and only if Lη1 “ Lη2.

(b) If η has is a binomial process on X with sample size m and sampling distribution ps,

then

Lηpuq “

ˆ
ż

X
e´upxqpspdxq

˙m

.

(c) An SPP η on X is a Poisson SPP with intensity measure µ if and only if

Lηpuq “ exp

„
ż

pe´upxq ´ 1q µpdxq

ȷ

for all u P MpX,R`q.

Our main example of the use of marked SPP is the following stochastic geometry con-

struction.

Definition 7.4.

Let η “
ř

jPN δyj be a homogeneous Poisson SPP on Rd with intensity γ P R`. Let pr be

a probability measure on r0,`8q, and let

ξ :“
κ

ÿ

j“1

δpyj ,rjq

be an independent pr-marking of η (where rj are i.i.d. R`-valued random variables with

distribution pr like in Definition 7.2). Then the randomized set

Z :“
ď

jPN
Brj pyjq “

ď

jPN
tx P Rd : |x ´ yj | ď rju,

is called (Poisson spherical) Boolean model with intensity γ and radius distribution pr.

This randomized set Z : ω ÞÑ Zpωq, ω P Ω, is random in the sense of probabilistic

measurability explained in the next theorem.

Let ComppRdq be the family of all compact subsets of Rd. Recall that Minkowski sum

of sets S1, S1 Ď Rd is defined by

S1 ` S2 “ t y1 ` y2 : y1 P S1, y2 P S2u.

The sum S1 ` Br is called the r-parallel set of S1.

Theorem 7.2.

Let Z be a Boolean model with intensity γ and radius distribution pr. Then:

(a) Z : ω ÞÑ Zpωq is random in the sense of the following probabilistic measurability

statement: for every S P ComppRdq,

tZ X S “ ∅u “ tω P Ω : Zpωq X S “ ∅u P FΩ.

(b) For every S P ComppRdq,

PpZ X S “ ∅q “ exp

„

´γ

ż

|S ` Br|d prpdrq

ȷ

.

The map S ÞÑ PpZ X S “ ∅q is called the capacity functional of Z.
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Proof. Let S P ComppRdq be arbitrary.

(a) It is easy to see that the set

A :“ tpx, rq P Rd ˆ R` : Brpxq X S ‰ ∅u

is closed. Indeed, let pxn, rnq Ñ px˚, r˚q as n Ñ 8 and tpxn, rnqunPN Ď A. Then there

exist yn P Brnpxnq X S for all n. Since S is compact, the exists a converging subsequence

tynjujPN with a limit y˚ P S. Besides, |y˚ ´ x˚| ď r˚. Hence, px˚, r˚q P A.

Since A is closed, we see that A P BpRd ˆ R`q. On the other hand,

tω P Ω : Z X S “ ∅u “ tω P Ω : ξpAq “ 0u. (7.1)

Since ξ is an SPP on RdˆR`, we see that tZXS “ ∅u is an event, i.e., tZXS “ ∅u P FΩ.

(b) By Theorem 7.1, ξ is a Poisson SPP on RdˆR` with intensity measure µ “ γ|¨|dbpr.

Using (7.1), we get

PpZ X S “ ∅q “ e´µpAq “ exp

«

´γ

ż

R`

ż

Rd

χApx, rq dx prpdrq

ff

“ exp

«

´γ

ż

R`

ż

Rd

χ
tBrpxqXS‰∅u

px, rq dx prpdrq

ff

“ exp

«

´γ

ż

R`

|S ` Br|d prpdrq

ff

.

7.3 Volume fraction and covering property for Boolean models

Let Z be a Boolean model with intensity γ P R` and radius distribution pr. Let r0 be an

R`-valued random variable with distribution pr.

Applying Theorem 7.2 to the case S “ txu, we obtain the following result for arbitrary

x P Rd, in particular, for x “ 0 “ 0Rd .

Corollary 7.1 (volume fraction).

Let

Π0 :“ Pp0 P Zq.

Then

Π0 “ Ppx P Zq “ 1 ´ exp
”

´γ|B1|d Errd0s

ı

for all x P Rd.

The quantity Π0 is called the volume fraction of Z.

Note that Π0 ą 0 if and only if Ppr0 ‰ 0q ą 0. In other words, Π0 “ 0 if and only if

r0 “ 0 a.s..

Proposition 7.3.

The set

tpω, xq P Ω ˆ Rd : x P Zpωqu

is measurable in the measurable product-space Ω ˆ Rd.
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Theorem 7.3.

(a) Let B P BpRdq. If Π0 ą 0 or |B|d ă `8, then

E |Z X B|d “ Π0|B|d

(this formula explains the name ‘volume fraction’ for Π0).

(b) PpZ “ Rdq “ 1 if and only if Errd0s “ `8.

References for Lecture 7.

[LP] Last, G. and Penrose, M., 2017. Lectures on the Poisson process. Cambridge University Press.

[MR] Meester, R. and Roy, R., 1996. Continuum percolation. Cambridge University Press.

42



8 Continuum percolation.

Let us recall the definition of Boolean model of stochastic geometry driven by a homoge-

neous Poisson SPP. Let η “
ř

jPN δyj be a homogeneous Poisson SPP on Rd with intensity

γ P R` “ p0,`8q. Let pr be a probability measure on R` “ r0,`8q, and let

ξ :“
ÿ

jPN
δpyj ,rjq

be an independent pr-marking of η. Then the random set

Z :“
ď

jPN
Brj pyjq “

ď

jPN
tx P Rd : |x ´ yj | ď rju,

is called Boolean model with intensity γ and radius distribution pr. The set-valued map

Z : ω ÞÑ Zpωq is random in the sense that, for every S P ComppRdq,

tZ X S “ ∅u “ tω P Ω : Zpωq X S “ ∅u P FΩ.

In the sequel, r0 is an R`-valued random variable with distribution pr. Note that r1,

r2, . . . , are i.i.d. random variables with the distribution pr.

8.1 Percolation functions for Boolean models on Rd.

By Theorem 7.3, PpZ “ Rdq “ 1 if and only if Errd0s “ `8. The event tZ “ Rdu is

an extreme example of the percolation. The (continuum) percolation for a random set is

generally understood as an existence of unbounded connected component of this random

set or the existence of the unbounded connected component of this random set that has a

nonempty intersection with a given deterministic set S, see [MR]. It seems that the first

appearance of continuum percolation models is attributed to Gilbert [G61].

Definition 8.1 (occupied components).

Let Z : ω ÞÑ Zpωq be a Boolean model on Rd with intensity γ P R` and radius distribution

pr.

(a) Connected components of Zpωq are called occupied components.

(b) Let S be a deterministic subset of Rd. The union of all occupied components that has

a nonempty intersection with S is denoted by

WS : ω ÞÑ WSpωq.

So, WS is a randomized subset of Rd.

(c) By W :“ W t0u, the occupied component containing the origin 0 P Rd is denoted.

Note that

tω P Ω : W “ ∅u “ tω P Ω : 0 R Zu.

Proposition 8.1 (percolation function).

(a) The map ηpW q : ω ÞÑ ηωpW pωqq is an pN0-valued random variable.
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(b) The following equality holds

Pp ηpW q “ `8 q “ Pp W is unbounded q.

The percolation function for the Boolean model Z is defined as

Θpγ, prq :“ Pp W is unbounded q.

We leave this proposition without a proof. One of the proofs can be based on Gilbert

graphs and random-connection models, see [LP, Section 16.4] and [MR, Section 1.5]. Note

that here W : ω ÞÑ W pωq is a randomized set, and so, it is not obvious that

ηpW q : ω ÞÑ

ż

W pωq

dηω

is a random variable. Statement (b) of this proposition follows from the fact that the

homogeneous Poisson SPP η is locally finite.

Definition 8.2.

(a) For two real-valued random variables α1 and α2, one says that α1 stochastically dom-

inates α2 and writes α2 ĺ α1 if for their cumulative distribution functions

Fαj psq “ Ppαj ď sq, s P R,

the inequality

Fα1psq ď Fα2psq

holds for all s P R.

(b) The property of stochastic dominance is actually property of distributions of random

variables. Therefore, we will apply this definition also to the corresponding probability

measures on R using the same notation ‘ĺ’.

Theorem 8.1 (monotonicity of percolation functions).

Let Zj, j “ 1, 2, are two Boolean models with intensities γj and radius distributions pjr ,

j “ 1, 2. If γ1 ď γ2 and p1r ĺ p2r , then

Θpγ1, p
1
r q ď Θpγ2, p

2
r q.

The main question is to find sufficient and/or necessary conditions for Θpγ, prq ą 0.

Percolation models are used, e.g., for modeling of dielectric breakdown and lightning

leaders [DGB`98] (see Figure 1).

By Theorem 7.3, the condition

Errd0s “

ż `8

0
rd dpr “ `8

ensures Θpγ, prq “ 1 for every γ ą 0. In the case d “ 1, this condition completely

characterizes the percolation.
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Figure 1: Lighting barrage [O].

8.2 Continuum percolation in 1-dimensional case.

Theorem 8.2.

Let d “ 1 and let Z be a Boolean model on R with intensity γ P R` and radius distribution

pr. Then the following statements hold:

(a) Let Err0s ă `8. Then all occupied components are bounded with probability 1. In

particular, Θpγ, prq “ 0 for all γ P R`.

(b) Let Err0s “ `8. Then PpZ “ Rq “ 1, and so, Θpγ, prq “ 1 for all γ P R`.

We leave this theorem without a proof (for the proof, see [MR, Sections 3.1-3.2]).

8.3 Continuum percolation in Rd with d ě 2.

Let d ě 2 and let Z be a Boolean model on Rd with intensity γ P R` and a radius

distribution pr. Let us assume the radius distribution pr to be fixed and let us study the

function

Θpγq :“ Θpγ, prq

changing γ in the interval p0,`8q. Recall that

Θpγq “ Pp W is unbounded q “ Pp ηpW q “ `8 q.

Theorem 8.3 (critical intensity parameter, [MR, G08, GT19]).

Suppose 0 ă Errd0s ă `8. Then there exists a critical intensity γc “ γcpprq P p0,`8q such

that:

(a) Θpγq “ 0 for all γ P p0, γcq,

(b) Θpγq ą 0 for all γ ą γc.

Remark 8.1.

(a) In other words, the phase transition takes place when γ crosses the critical value γc.

(b) From Theorems 8.3 and 7.3 (b), we see that (for d ě 2) a nontrivial critical value

γc P p0,`8q exists if and only if 0 ă Errd0s ă `8. Indeed, if Errd0s “ 0, we have with

probability 1 that all rj “ 0 and Z “ tyju
`8
j“1 consists of isolated points. So, Errd0s “ 0

implies Θpγq “ 0 for all γ P p0,`8q. If Errd0s “ `8, Theorem 7.3 (b) implies that

Θpγq “ 1 for all γ P p0,`8q.
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Theorem 8.4 (uniqueness of an unbounded component [MR, Theorem 3.6]).

With probability 1, Z has at most one unbounded occupied component.

Corollary 8.1.

Suppose 0 ă Errd0s ă `8. Then

(a) For γ P p0, γcq, all occupied components are bounded with probability 1.

(b) For γ P pγc,`8q, 0 ă Θpγq ă 1 and

Θpγq ď PpD exactly one unbounded occupied componentq

“ PpD an unbounded occupied componentq.

Proof. Step 1. Since η is a stationary SPP,

Pp W txu is unbounded q “ Pp W t0u is unbounded q “ Θpγq. (8.1)

for every deterministic x P Rd. (While this statement is intuitively clear, its rigorous proof

is lengthy, and we take (8.1) without proof).

Step 2. The proof of (a). Let γ P p0, γcq. By Theorem 8.3 and equality (8.1), for every

x P Rd, we have

Pp W txu is unbounded q “ 0.

Applying this equality to x belonging to the countable dense set Qd, we see from the

σ-additivity of the measure Pp¨q that

P

¨

˝

ď

xPQd

tω : W txu is unbounded u

˛

‚“ 0.

However, every unbounded occupied component contains a certain x P Qd. Thus,

PpD an unbounded occupied componentq ď P

¨

˝

ď

xPQd

tω : W txu is unbounded u

˛

‚“ 0.

This proves (a).

Step 3. The proof of (b). Let γ P pγc,`8q. Theorems 8.3 and 8.4 imply

0 ă Θpγq ď PpD an unbounded occupied componentq

“ PpD exactly one unbounded occupied componentq.

It remains to prove Θpγq ă 1. Assume that Θpγq “ 1. Then

Θpγq “ Pp W is unbounded q “ 1,

and so, the volume fraction of Z is Π0 “ Pp0 P Zq “ 1. This and Corollary 7.1 (about

the value of the volume fraction) imply Errd0s “ `8. This contradicts the assumption

Errd0s ă `8.

Example 8.1 (the case of deterministic radius r0 ” R “ 1, see [MR, Theorem 3.10]).

Let pr “ δ1 (i.e., r0 “ 1 a.s.). Then for the Boolean model on R2,

0.174 ă γc ă 0.843.
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8.4 Scaling of continuum percolation

Let Z be a Boolean model on Rd with d ě 2 and

0 ă Errd0s “

ż `8

0
rd dpr ă `8.

Then Theorem 8.3 defines the critical intensity γc “ γcpprq as a function depending on the

radius distribution pr.

Recall that, for α ą 0, the transformation Dilα,n of Rn defined by

Dilα,n x “ αx, x P Rn,

generates a transformation Dilα,n of measures µ on Rn by the formula

Dilα,n µpBq “ µpDil´1
α,npBqq “ µpDilα´1,npBqq, B P BpRnq.

Corollary 8.2.

Let 0 ă α ă `8. Then

γcpDilα,1 prq “
γcpprq

αd
. (8.2)

(Note that the probability measure Dilα,1 pr supported on r0,`8q is the distribution of the

random variable αr0.)

Proof. The corollary follows from Example 7.1. Indeed, the dilation Dilα,d applied to

the Boolean model Z with intensity γ and a radius distribution pr does not change the

probability Pp W is unbounded q. However, the underlying homogeneous Poisson SPP

changes its intensity to α´dγ and the radius distribution becomes Dilα,1 pr.

8.5 Critical radius for random geometric graph

Let R,R1, R2 P p0,`8q be deterministic. Consider now the case where the radius distri-

bution

pr “ δR

is the distribution of a deterministic random variable r0 ” R. (The corresponding Gilbert

graph of the random connection model is called random geometric graph, see [LP, Section

16.4]).

Then (8.2) becomes the scaling law for the associated critical intensities

γcpδR1qRd
1 “ γcpδR2qRd

2 “ γcpδ1q. (8.3)

Corollary 8.3.

Let d ě 2 and γ P R` be fixed. For a Boolean model Z on Rd with intensity γ and the

deterministic radius distribution pr “ δR, we define

rΘpRq :“ Θpγ, δRq “ Pp W is unbounded q.

Then there exists the critical radius value Rc “

´

γcpδ1q

γ

¯1{d
P p0,`8q such that the follow-

ing statements hold:
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(a) For all R P p0, Rcq,
rΘpRq “ 0

and all occupied components are bounded with probability 1.

(b) For all R P pRc,`8q,

0 ă rΘpRq ă 1

and

rΘpRq ď PpD exactly one unbounded occupied componentq

“ PpD an unbounded occupied componentq.

Proof. In order to obtain the proof from Corollary 8.1 and formula (8.3), it is enough to

consider in R2 the graph of the function R ÞÑ γcpδRq “
γcpδ1q

Rd and its intersection with the

horizontal level line tpR, γq P R2 : R P R`u.
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9 Closed and closable operators. Closures of operators and

connections with adjoint operators.

9.1 Abstract closed operators. Closable operators and closure.

Let V , X, X1, and X2 be Hilbert spaces. Recall the operators in this course are linear (if

it is not states explicitly otherwise). Recall that the graph of an operator

A : domA Ď X Ñ V

is defined as the following linear subspace of X ˆ V :

GrA “

!

tu,Auu : u P domA
)

.

The orthogonal sum of Hilbert spaces X ‘ V is the Hilbert space produced by the linear

space X ˆ V and the inner product

ptx1, v1u|tx2, v2uqX‘V :“ px1|x2qX ` pv1|v2qV .

Recall that, for a subset of S of a metric (or topological space) space, we denote by S the

closure of S.

Definition 9.1 (closed operator, e.g., [Kato]).

An operator A : domA Ď X Ñ V is called closed if its graph GrA is a closed subspace of

the orthogonal sum X ‘ V .

Definition 9.2 (graph norm, e.g., [Kato]).

(a) The orthogonal sum X ‘ V is a Hilbert space that induces an inner product and a

norm on its linear subspace GrA. This norm is called the graph norm.

(b) The associated norm on domA

}u}A :“
`

}u}2X ` }Au}2V

˘1{2
,

is also called the graph norm of A.

The normed spaces pGrA, } ¨ }X‘V q and pdomA, } ¨ }Aq can be equipped with inner

products compatible with the graph norms. An operator A is closed if and only if the

normed space pGrA, } ¨ }X‘V q is complete (or equivalently, if and only if the normed space

pdomA, } ¨ }Aq is complete). If this is the case, than pGrA, } ¨ }X‘V q and pdomA, } ¨ }Aq

are Hilbert spaces with inner products associated with the corresponding graph norms.

Definition 9.3 (kernel, range, and inverse).

(a) The kernel of an operator A : domA Ď X Ñ V is defined as

kerA :“ tu P domA : Au “ 0V u.

(b) The operator A is injective if and only if kerA “ t0u. In this case, one says that A is

invertible (we do not assume here that the inverse A´1 is bounded).

(c) The domain domA´1 of the inverse operator A´1 is by the definition the range ranA

of A.
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(d) The range of A is defined by

ranA “ A domA “ tAu : u P domAu.

Recall that an operator U : X Ñ V is called unitary if it is a bijection that preserves

the value of the inner product in the sense

pUx1|Ux2qV “ px1|x2qX @x1, x2 P X.

Exercise 9.1.

(a) An operator U : X Ñ V is unitary if and only if U P LpX,V q, kerU “ t0u, and

U˚ “ U´1.

(b) Let U be unitary. Then U is an isometry and maps orthogonal vectors to orthogonal

vectors.

Proposition 9.1.

Let A : domA Ď X1 Ñ X2 be such that kerA “ t0u. Then A is closed if and only if A´1

is closed.

Proof. The statement follows from Definition 9.1 since GrpA´1q “

´

0 IX2
IX1

0

¯

GrA. In-

deed,
´

0 IX2
IX1

0

¯

: X1 ‘ X2 Ñ X2 ‘ X1 is a unitary operator.

Thus, GrA and GrpA´1q are closed or non-closed simultaneously.

Exercise 9.2.

For A : domA Ď X Ñ X,

ρpAq ‰ ∅ ùñ A is closed.

Recall that the resolvent set ρpAq of A is the set of λ P C such that kerpA ´ λq “ t0u and

pA ´ λq´1 P LpXq.

Definition 9.4 (closable operator, e.g., [AG, Kato]).

An operator A : domA Ď X1 Ñ X2 that has a closed extension B : domB Ď X1 Ñ X2 is

called closable.

Clearly, every closed operator is closable.

Proposition 9.2 (closure of an operator).

(a) Assume that A : domA Ď X1 Ñ X2 is closable. Then

GrA “ GrB for a certain closed operator B : domB Ď X1 Ñ X2.

Besides, this operator B is a restriction of every closed extension of A, and therefore,

B is called the closure of A and is denoted by A.

(b) An operator A is closable if and only if GrA does not contain elements of the form

t0, x2u P X1 ‘ X2 with x2 ‰ 0.
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Proof. The proof of (a) immediately follows from the definitions of closed and closable

operators, and the definitions of restrictions and extensions.

Statement (b) follows from (a).

Exercise 9.3 (see, e.g., [Leis]).

Let G Ď Rd be a nonempty open set.

(a) The operator gradcomp : C8
0 pGq Ă L2pGq Ñ L2pG,Cdq defined by u ÞÑ ∇u is not

closed.

(b) The operator grad : H1pGq Ă L2pGq Ñ L2pG,Cdq defined by u ÞÑ ∇u is a closed

operator and is an extension of gradcomp. Hence, gradcomp is closable. The space

with the graph norm pdomgrad, } ¨ }gradq is the Hilbert space H1pGq.

(c) The closure gradcomp is grad0 : H1
0 pGq Ă L2pGq Ñ L2pG,Cdq, which is a restriction

of grad. The space pdomgrad0, } ¨ }grad0
q is the Hilbert space H1

0 pGq.

(d) If G “ Rd ,then gradComp “ grad0 “ grad and H1
0 pGq “ H1pGq, but this situation is

atypical for general G. (For a typical G, grad0pGq ‰ gradpGq and H1
0 pGq ‰ H1pGq).

(e) If G is a bounded domain with the boundary BG of the Lipschitz regularity, then

gradComp “ grad0 ‰ grad and H1
0 pGq Ř H1pGq.

For an operator A : X1 Ñ X2 (with domA “ X1), the following statements are

equivalent: (i) A is continuous (i.e., A P LpX1, X2q), (ii) A is bounded (in the sense

}A} :“ sup
}x}X1

ď1
}Ax}X2 ă 8), (iii) A is closed (Banach’s closed graph theorem), (iv) A is

closable.

We can use this equivalence to provide a pathological example of non-closable operator.

If A : X Ñ X with domA “ X is an unbounded operator, then A is not closable.

Examples of unbounded operators A : X Ñ X can be constructed with the use of a

Hamel basis, and sometimes are included into courses of Functional Analsysis (see [AG]).

An example of a non-closable operator that is not so pathological can be found in [AG,

Section 43].

9.2 Connection between closures and adjoint operators.

Essentially selfadjoint operators.

Recall that, for a densely defined operator A : domA Ď X Ñ V , the adjoint operator

A˚ : domA˚ Ď V Ñ X is defined in the following way:

(i) domA˚ consists of all v P V with the property that there exists fv P X such that

pv|AuqV “ pfv|uqX @u P domA

(note that such fv is unique since domA “ X);

(ii) A˚v “ fv.

One can describe this definition in terms of the inner product of X ‘ V and the graphs
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of A and A˚. Indeed, the inclusion tv,A˚vu P GrA˚ is equivalent to

0 “ pv| ´ AuqV ` pA˚v|uqX “ ptv,A˚vu|t´Au, uuqV ‘X @u P domA. (9.1)

This implies the following statement.

Proposition 9.3.

Let A : domA Ď X1 Ñ X2 be a densely defined operator. Then:

(a) The graph GrA˚ Ă X2 ‘ X1 is the orthogonal complement SK to the set

S “

´

0 ´IX2
IX1

0

¯

GrA “ tt´Au, uu P X2 ‘ X1 : u P domAu.

(b) The graph GrA˚ is closed.

(c) The operator A˚ is closed.

(d) If X1 “ X2 and A “ A˚, then A is closed.

Proof. Equation (9.1) implies (a). Since orthogonal complemets are always closed, we

obtain (b) and (c). Statement (d) follows from (c).

Theorem 9.1.

Let A : domA Ď X1 Ñ X2 and A˚ :Ď X2 Ñ X1 be densely defined operators. Then

A “ A˚˚.

Proof. Checking the definition of the unitary opertor, one sees that the operator

UX1‘X2 “

´

0 ´IX2
IX1

0

¯

is unitary from X1 ‘ X2 to X2 ‘ X1 . Similarly one can define the unitary operator

UX2‘X1 “

´

0 ´IX1
IX2

0

¯

: X2 ‘ X1 Ñ X1 ‘ X2.

We will use now the following obvious facts:

UX2‘X1UX1‘X2 “ ´IX1‘X2

and the fact that unitary operators maps orthogonal vectors into orthogonal vectors.

By Proposition 9.3, GrA˚ “ SK, where S “ UX1‘X2 GrA. Similarly, GrA˚˚ “ rSK,

where

rS “ UX2‘X1 GrA˚ “ UX2‘X1S
K “ pUX2‘X1SqK

“ pUX2‘X1UX1‘X2 GrAqK “ p´IX1‘X2 GrAqK “ GrAK.

Summarizing,

GrA˚˚ “ rSK “ pGrAKqK “ GrA.

Exercise 9.4.

Let A : domA Ď X1 Ñ X2 be densely defined. Then A is closable if and only if A˚ is

densely defined.
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Recall that, by Proposition 4.1, a densely defined operator A : domA Ď X Ñ X is

symmetric if and only if GrA Ď GrA˚.

Corollary 9.1.

Assume that a densely defined operator A : domA Ď X Ñ X is symmetric. Then:

(a) The operator A˚ is densely defined.

(b) The operator A is closable and A “ A˚˚.

Proof. (a) follows immediately from Proposition 4.1 and the assumption that domA “ X.

Statement (b) follows from Exercise 9.4 and Theorem 9.1.

Definition 9.5 (essential selfadjointness).

A densely defined symmetric operator A : domA Ď X Ñ X is called essentially selfadjoint

if A is selfadjoint.

Exercise 9.5 (e.g., [Kato]).

Assume that A : domA Ď X Ñ X is essentially selfadjoint. Then:

(a) the closure A is a unique selfadjoint extension of A,

(b) A˚ “ A.

Theorem 9.2 (von Neumann).

Let T : domT Ď X1 Ñ X2 be densely defined and closed. Then T ˚T is a selfadjoint

operator in X1.

We take this theorem without proof (for the proof see [Kato, Theorem V.3.24]).

Example 9.1.

Assume that G Ď Rd be a nonempty open set. Let

A “ ´∆G æC8
0 pGq: C

8
0 pGq Ă L2pGq Ñ L2pGq

where ∆G : u ÞÑ ∆u in the distributional sense of pC8
0 pGqq1.

(a) The operator A is symmetric, which follows from the Green’s formula, but is not a

closed operator.

(b) The operator A is closable. Indeed, by Theorem 9.2 and Exercise 9.3, A has the

following selfadjoint (and so closed) extensions

´∆D :“ grad˚
0 grad0, ´∆N :“ grad˚ grad,

which are called Dirichlet and, respectively, Neumann nonnegative Laplace operators

in G.

(c) Let G “ Rd. Then A is essentially selfadjoint and its closure is

A “ A˚ “ ´∆ “ p´∆q˚,

where ∆ : H2pRdq Ă L2pRdq Ñ L2pRdq is the standard nonpositive selfadjoint Lapla-

cian. In this case,

´∆ “ ´∆D “ ´∆N.
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(c) Assume additionally that G is a bounded Lipschitz domain. Then domA “ H2
0 pGq.

The operators A and A˚ are not selfadjoint. Moreover, ∆D ‰ ∆N and

GrA Ř GrA Ř Grp´∆Dq Ř GrA˚, GrA Ř GrA Ř Grp´∆Nq Ř GrA˚.
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10 Schrödinger operators with Poisson-Anderson potentials

and their spectra.

10.1 The scheme of the proof of Theorem 5.2.

We follow [KMN19] and start from the deterministic part.

Let N P pN and a “ taju
N
j“1. Let Y “ tyju

N
j“1 Ă R3 be a collection of distinct deter-

ministic points such that the counting measure of Y is locally finite (i.e., Y has no finite

accumulation points).

Recall that, in Lecture 5, we defined 3 operators associated with Y and a:

• the symmetric operator with “minimal reasonable” domain

Hmin
Y :“ ´∆ æC8

0 pR3zY q;

• the Laplace-type operator

Hmax
Y “ ´∆R3zY :“ pHmin

Y q˚

with “maximal reasonable” domain in G “ R3zY 3;

• the deterministic operator with point interactions

HY,a “ ´∆ ` “
N
ÿ

j“1

mpajqδyj “, HY,a : domHY,a Ă L2pR3q Ñ L2pR3q

defined as a restriction of Hmax
Y by means of special boundary conditions

u1yj ´ 4πaju
0
yj “ 0, 1 ď j ď N, (10.1)

where

u0yj “ lim
xÑyj

|x ´ yj |upxq, u1yj “ lim
xÑyj

pupxq ´ u0yj |x ´ yj |
´1q, u P domHmax

Y

(see Proposition 5.1).

Lemma 10.1 (singular Green’s formula).

Let u, v P domHmax
Y be such that suppu, supp v P ComppR3q. Then

pHmax
Y u|vqL2 ´ pu|Hmax

Y vqL2 “ ´4π
ÿ

yPY

´

u0yv
1
y ´ u1yv

0
y

¯

.

(Note that the sum is finite due to the assumption suppu, supp v P ComppR3q).

We take this lemma without proof. The proof uses the representation of Proposition

5.1 for u and v near singularities y P Y , see [KMN19].

Let us define and additional operator

Hcomp
Y,a :“ HY,a ædomHcomp

Y,a
, domHcomp

Y,a “ tu P domHY,a : suppu P ComppR3qu.
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Lemma 10.2 (adjoint of Hcomp
Y,a ).

The operator Hcomp
Y,a is a symmetric densely defined operator in L2pR3q, and

pHcomp
Y,a q˚ “ HY,a.

We take this lemma without proof (for the proof, see [KMN19]).

By Theorem 5.1, HY,a “ H˚
Y,a if d˚ “ infj‰n |yj ´ yn| is positive. Now, the aim is to

relax the assumption d˚ ą 0.

Assumption 10.1.

There exists R ą 0 such that, for the R-parallel set of Y

Y ` BR “ tx P Rd : min
1ďjďN

|x ´ yj | ď Ru,

all connected components are bounded.

Lemma 10.3.

Suppose that Assumption 10.1 holds. Then

Hcomp
Y,a “ HY,a.

We take this lemma without proof (for the proof, see [KMN19]).

Corollary 10.1.

Suppose that Assumption 10.1 holds. Then

HY,a “ H˚
Y,a.

Proof. Combining Lemmata 10.3 and 10.2 with Theorem 9.1, we get

H˚
Y,a “ ppHcomp

Y,a q˚q˚ “ Hcomp
Y,a “ HY,a.

In other words, Assumption 10.1 implies that Hcomp
Y,a is essentially selfadjoint and HY,a

is selfadjoint.

Let us recall the formulation of Theorem 5.2.

Theorem 5.2 ([KMN19]). Let Y “ tyjujPN be a collection of random points yj in R3

associated with a certain homogeneous Poisson SPP η “
ř

jPN δyj of positive intensity. Let

a “ taju
`8
j“1 be an arbitrary sequence of R-valued random variables aj . Then HY,a “ H˚

Y,a

with probability 1.

We see that Theorem 5.2 follows immediately from the combination of Corollary 10.1

with Corollary 8.3.

Indeed, for a Boolean model Z on R3 with an intensity γ and the deterministic radius

distribution pr “ δR, there exists a critical radius Rc “ Rcpγq ą 0 such that for R ă Rcpγq

all occupied components are bounded with probability 1. This implies that Assumption

10.1 is fulfilled with the probability 1. Corollary 10.1 completes the proof of Theorem 5.2.

Remark 10.1.

Analogues of Corollary 10.3 and Theorem 5.2 are valid for Schrödinger operators with

point interactions in L2pRq and L2pR3q, see [KMN19].
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10.2 Spectra of Poisson-Anderson-Schrödinger operators with i.i.d.

strength-type parameters.

Let η “
ř

jPN δyj be a homogeneous Poisson SPP of positive intensity on Rd with d “ 1

or d “ 3. (The case d “ 2 is somewhat similar to the case d “ 3, see [KMN19]).

Let α0 be a certain R-valued random variable with distribution pα0 . Let

ξ “
ÿ

jPN
δpyj ,αjq

be an independent pα0-marking of η (see Definition 7.2). That is, α “ tαjujPN be a

sequence of i.i.d. R-valued random variables with the distribution pα0 and an additional

property that tαjujPN is independent of η.

Let us define in L2pRdq the Poisson-Anderson-Schrödinger operator HY,α (in short, PAS

operator) following [KMN19]. As before, Y “ tyjujPN is a collection of random points yj
in Rd associated with with homogeneous Poisson SPP η.

Consider first the case d “ 3. Then a PAS operator is defined by

HY,α :“ ´∆ ` “
N
ÿ

j“1

mpαjqδyj “

where the strength-type parameters 1{αj are generated by the i.i.d. random variables αj

of the independent marking.

Theorem 10.1 ([KMN19]).

Let HY,α be a PAS operator in L2pR3q. Then:

(a) HY,α is selfadjoint with probability 1.

(b) σpHY,αq “ R with probability 1 (for any distribution pα0 of the R-valued i.i.d. random

variables αj).

The proof of statement (a) of Theorem 10.1. The proof of statement (a) can be obtained

by the literal repetition of the proof of Theorem 5.2.

We take statement (b) without proof (for the proof, see [KMN19, Section 3.3]).

Consider now the case d “ 1. Then a PAS operator in L2pRq is defined by

HY,α :“ ´
d2

dx2
`

ÿ

jPN
αjδyj ,

where i.i.d. random variables αj play the role of the strength parameters.

Theorem 10.2 ([M88, KMN19]).

Let HY,α be a PAS operator in L2pRq. Then:

(a) HY,α is selfadjoint with probability 1.

(b) If Ppα0 ě 0q “ 1 (i.e., if supp pα0 Ď r0,`8q), then

σpHY,αq “ r0,`8q with probability 1.
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(c) If Ppα0 ě 0q ă 1 (i.e., if supp pα0 X p´8, 0q ‰ ∅), then

σpHY,αq “ R with probability 1.

We take this theorem without proof (for the proof, see [KMN19]). Statement (a) can

be proved by an easy adaptation of the proof of Theorem 5.2 to the 1-dimensional case

(an exercise).

Another proof of statement (a) can be obtained from the Kostenko-Malamud theorem

[KM10] (Theorem 4.2 in this lecture series) combined with the interval theorem for 1-

dimensional Poisson SPPs [LP, Section 7.1].
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[KM10] Kostenko, A.S. and Malamud, M.M., 2010. 1-D Schrödinger operators with local point

interactions on a discrete set. Journal of Differential Equations, 249(2), pp.253-304.

[LP] Last, G. and Penrose, M., 2017. Lectures on the Poisson process. Cambridge University Press.

[M88] Minami, N., 1988. Schrödinger operator with potential which is the derivative of a tempo-
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11 Various types of spectra.

11.1 Eigenvalues, multiplicities, discrete and essential spectra.

Let A : domA Ď X Ñ X be an operator A : domA Ď X Ñ X in a Hilbert space X.

Definition 11.1.

The resolvent set ρpAq of A is the set of points k P C such that the following three

conditions hold true:

(a) A ´ k is invertible, i.e., kerpA ´ kIq “ t0u;

(b) ranpA ´ kq “ X, i.e., the operator A ´ k maps dompA ´ kq :“ domA onto the whole

X;

(c) pA ´ kq´1 P LpXq, i.e., pA ´ kq´1 is a bounded operator in X.

Definition 11.2.

The set σpAq :“ CzρpAq is called the spectrum of A.

Exercise 11.1.

(a) Definition 11.1 implies the following equivalence: k P ρpAq is equivalent to the state-

ment that the equation Au ´ ku “ f has a unique solution uf for every f P X and

}uf }X À }f}X , f P X,

where the notation ‘À’ means that there exists a constant c ą 0 independent of f such

that }uf }X ď c}f}X for all f P X.

(b) The set ρpAq is open. Consequently, σpAq is closed.

One can say that k P ρpAq if and only if the equation Au ´ ku “ f is well posed in X

in the sense of Hadamard.

Definition 11.3.

(a) A number k P C is called an eigenvalue of A if kerpA ´ kq ‰ t0u. The elements of

kerpA ´ kqzt0u are called eigenvectors of A associated with the eigenvalue k.

(b) We denote the set of all eigenvalues of A by σppAq Sometimes σppAq is called the point

spectrum of A (from Definition 11.1(a), one sees that σppAq Ď σpAq).

(c) The geometric multiplicity multgpkq P pN of an eigenvalue k is by definition the dimen-

sionality

dimkerpA ´ kq

of the linear subspace kerpA ´ kq.

(d) The algebraic multiplicity multapkq P pN of an eigenvalue k can be defined as

multa :“ lim
nÑ`8

dimpkerpA ´ kqnq.

(e) An eigenvalue k0 of A is called an isolated eigenvalue if k0 is an isolated point of σpAq.

An eigenvalue k of A is called simple if multgpkq “ 1. An eigenvalue k of A is called

semi-simple if multgpkq “ multapkq.
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Definition 11.4 ([Kato, ?]).

(a) We define the discrete spectrum σdiscpAq of A as the set of all isolated eigenvalues of

finite algebraic multiplicity [Kato, ?].

(b) The essential spectrum σesspAq is defined by σesspAq :“ σpAqzσdiscpAq [?].

(c) If σpAq “ σdiscpAq, we say that A is an operator with purely discrete spectrum (cf.

[RS1]).

It should be emphasized that

• here the terminology concerning operators with purely discrete spectrum is related

to the terminology of [RS1], but is not completely standard (in the more standard

terminology of [Kato], if σpAq “ σdiscpAq, it is said that A has a discrete spectrum).

• there exists a variety of other non-equivalent definitions of the essential spectrum

(see, e.g., the discussion in [Kato, Section IV.5.6]).

Exercise 11.2.

Let A be a symmetric operator in X. Then:

(a) σppAq Ď R

(b) kerpA´ kq “ kerpA´ kqn for all n P N. In particular, the geometric multiplicity of an

eigenvalue k coincides with its algebraic multiplicity.

(c) Let uj P kerpA ´ kjq for j “ 1, 2. If k1 ‰ k2, then u1 K u2.

(d) If X is separable, then σppAq Ř R.

(e) Since selfadjoint operators form a subclass of the symmetric operators, statements

(a)-(d) are valid for all selfadjoint operators.

11.2 Basic examples, unitary equivalence, and multiplication operators

The (topological) support suppµ of a (Borel) measure µ on Rd is the complement RdzS of

the maximal open set S such that µpSq “ 0. A maximal set in a certain class is understood

in the sense of the partial order ‘Ď’.

Exercise 11.3 (multiplication operators).

Let X “ L2pRd;µq be the L2-space (of equivalence classes) corresponding to a certain

locally finite measure µ on Rd, i.e.,

pu|vqX “

ż

Rd

uv µpdxq

(note that the case of the trivial space L2pRd;µq “ t0u is not excluded). Let f P MpRd,Cq

be a measurable function. The multiplication operator Mf : up¨q ÞÑ fp¨qup¨q is defined on

its natural domain

domMf “ tu P L2pRd;µq : fu P L2pRd;µqu.

Then the following statements hold true:

(a) ρpMf q “ tk P C : µpf´1pBεpkqqq “ 0 for a certain ε ą 0u
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(b) Let us denote by φ “ µ ˝ f´1 the image of µ under f (see Lecture 7), i.e.,

φpSq “ µpf´1pSqq, S P BpCq.

Then

σpMf q “ suppφ.

(c) k P σppMf q if and only if φptkuq “ µpf´1pkqq ą 0. If this is the case, then the

geometric and algebraic multiplicities of k are equal to dimL2
`

f´1pkq;µ
˘

.

(d) All multiplication operators Mf are densely defined.

(e) M˚
f “ Mf .

(f) All multiplication operators Mf are closed.

(g) A multiplication operator Mf is symmetric if and only if fpxq P R for almost all x

w.r.t. the measure µ.

(h) A multiplication operator Mf is selfadjoint if and only if fpxq P R for almost all x

w.r.t. the measure µ (note that Mf is symmetric if and only if Mf is selfadjoint).

(i) A multiplication operator Mf is unitary in L2pRd;µq if and only if |fpxq| “ 1 for

almost all x w.r.t. the measure µ.

Remark 11.1.

Let U : X1 Ñ X2 be an unitary operator between Hilbert spaces X1 and X2. Consider

certain operators Aj : domAj Ď Xj Ñ Xj for j “ 1, 2. Then:

(a) dimX1 “ dimX2.

(b) Let

A1 “ U´1A2U for a certain unitary U : X1 Ñ X2.

Then one says that A1 and A2 are unitary equivalent. Note that U´1 : X2 Ñ X1 is

also a unitary operator and that A2 “ UA1U
´1.

(c) Assume that A1 and A2 are unitary equivalent in the sense of (b). Then all “reasonable

spectral properties” of A1 and A2 coincide, e.g., σpA1q “ σpA2q and σ‚pA1q “ σ‚pA2q

for ‚ “ p, disc, ess. The same is true for the density of domains, closedness, and

closability. If adjoint operators, closures, inverse operators or resolvents exist they

are connected by similar equalities

A˚
1 “ U´1A˚

2U, A1 “ U´1A2U, pA1 ´ kq´1 “ U´1pA2 ´ kq´1U.

Exercise 11.4 (multiplication operators with discrete spectra).

(a) Let n P N. Let A be a selfadjoint operator in the standard Hilbert space Cn represented

by a symmetric matrix pai,jq
n
i,j“1 in the standard orthonormal basis. Find a measure

µ on R, a function f P MpR,Cq, and a unitary operator U : Cn Ñ L2pR;µq, such that

A “ U´1MfU.

(b) Characterize multiplication operators Mf with purely discrete spectra.
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Multiplication operators Mf plays for infinite-dimensional spectral theory the same

role as diagonal matrices play for finite-dimensional spectral theory.

Proposition 11.1 (operators without eigenvalues).

Let µ “ | ¨ |d and X “ L2pRdq with d P N.

(a) σppM|x|2q “ ∅ “ σdiscpM|x|2q and σpM|x|2q “ σesspM|x|2q “ R` “ r0,`8q.

(b) For nonnegative selfadjoint Laplace operator p´1q∆ in L2pRdq,

σpp´∆q “ ∅, σp´∆q “ σessp´∆q “ R`

(c) Consider the following symmetric restriction A “ ´∆ æC8
0 pRnq. Then

σppAq “ ∅, σpAq “ σesspAq “ C.

Proof. (a) can be obtained by direct application of Exercise 11.3.

(b) can be obtained from (a) with the use of the unitary Fourier transform F : L2pRdq Ñ

L2pRdq and the equality

´∆ “ F´1M|x2|F

combined with Remark 11.1.

(c) Since p´1q∆ has no eigenvalues, then its restriction A also has no eigenvalues.

However, for arbitrary k,

ranpA ´ kq Ď C8
0 pRdq Ř L2pRdq.

Thus, every k P C is a point of the spectrum of A.

11.3 Extended spectrum and empty spectrum

Let pC “ C Y t8u the standard compactification of C via the stereographic projection.

Definition 11.5.

The extended spectrum rσpAq Ď pC of A : domA Ď X Ñ X is defined in the following way.

(a) If A P LpXq, then rσpAq :“ σpAq.

If A is unbounded, then rσpAq :“ σpAq Y t8u.

Theorem 11.1.

Assume that the Hilbert space X is not trivial, i.e., X ‰ t0u. Then, for an arbitrary

operator A : domA Ď X Ñ X, we have rσpAq ‰ ∅.

Example 11.1 (empty spectrum).

Consider the operator A : u ÞÑ ´u2 in L2p0, 1q with the domain

domA “ tu P H2r0, 1s : up0q “ B`up0q “ 0u,

where B`up0q is the derivative from the right. Then σpAq “ ∅.
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11.4 Operators with compact resolvent.

We denote by S8pXq the space of compact operators in a Hilbert space X.

Theorem 11.2.

Assume that

there exists k0 P ρpAq such that pA ´ k0q´1 P S8pXq. (11.1)

Then:

(a) pA ´ kq´1 P S8pXq for every k P ρpAq.

(b) σpAq “ σdiscpAq, i.e., the operator A has purely discrete spectrum.

Definition 11.6.

If an operator A satisfies (11.1), one says that A is an operator with compact resolvent.

The proof of Theorem 11.2 uses the following particular case of the spectral mapping

theorem.

Theorem 11.3.

Let A be a closed invertible operator in X. Then

rσpA´1q “ tk P pC :
1

k
P rσpAqu,

where 0´1 “ 1
0 :“ 8 and 8´1 “ 1

8
:“ 0.

The most well-known application of Theorem 11.2 is the following result.

Corollary 11.1.

Let G be a bounded nonempty open set. Let p´1q∆D “ grad˚
0 grad0 be the selfadjoint

Laplace operator in L2pGq associated with the Dirichlet boundary condition (see Lecture

9). Then:

(a) p´1q∆D has compact resolvent;

(b) σp´∆Dq “ σdiscp´∆Dq;

(c) there exists an orthonormal basis tyjujPN of eigenfunctions of p´1q∆D.
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12 Spectral theorem for selfadjoint operators.

12.1 Spectral theorem in the form of multiplication operators.

For X P BpCq, we assume that a Borel measurable function g P MpX,Cq is defined on

the whole X. Then a composition of Borel measurable functions is a Borel measurable

function.

Theorem 12.1 (e.g., [RS1]).

Let A be a selfadjoint operator in a separable Hilbert space X. Then there exists a mea-

surable space pY, µq with µpYq ă `8, and a measurable function f P MpY,Rq such that

A is unitary equivalent to the multiplication operator Mf . That is, there exists a unitary

operator U : X Ñ L2pY;µq such that A “ U´1MfU .

Exercise 12.1.

Let A be a selfadjoint operator in a separable Hilbert space, which is unitary equivalent

to a multiplication operator Mf in the way described in Theorem 12.1.

(a) For a multiplication operator Mf of Theorem 12.1 (or, more generally, for Mf of

Lecture 11),

}Mf } “ ess sup |f | “ }f}L8pY;µq,

where the essential supremum is taken w.r.t. the measure µ.

(b) In particular, A P LpXq if and only if f P L8pY;µq. If this is the case, then

}A} “ }f}L8pY;µq.

This formulation of the spectral theorem allows one to define functions gpAq of selfad-

joint operators, where g : R Ñ C is a Borel measurable function (i.e., measurable in the

sense of Borel σ-algebras BpRq and BpCq)

Example 12.1.

Let A be a selfadjoint operator in a separable Hilbert space, which is unitary equivalent

to a multiplication operator Mf in the way described in Theorem 12.1.

(a) Let gpxq “ x2, x P R. Then it is natural to define gpAq :“ A2. In this case,

UA2U´1 “ pMf q2 “ Mf2 .

This definition can be extended to any polynomial ppxq “
řn

j“0 cjx
j with n P N0,

cj P C, and cn ‰ 0. However, one need to define the domain of ppAq appropriately,

i.e.,

dom ppAq “ domAn “ tu P X : Aju P domA for all 0 ď j ă nu

Then

UppAqU´1 “ ppMf q “ Mp˝f

(b) Note that for gpxq “ x, x P R, we get gpAq “ A.

(c) Let gpxq “ 1
x´k0

, x P R, k0 P CzR. Then it is reasonable to define gpAq as the resolvent

at k0, i.e., gpaq “ pA ´ k0q´1. Then

UpA ´ k0q´1U´1 “ pMf ´ k0q´1 “ Mpf´k0q´1 “ Mg˝f .
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Note that this definition can be extended to k0 P RzσppAq.

These examples show that the following definition of gpAq is resonable.

Definition 12.1.

Let A be a selfadjoint operator in a separable Hilbert space, which is unitary equivalent to

a multiplication operator Mf in the way described in Theorem 12.1. Let g P MpR,Cq (or,

more generally, g P MpR, pCq is such that gpkq ‰ 8 for all k P σppAq). Then the function

gpAq of A can be defined by

gpAq “ U´1Mg˝fU.

Remark 12.1.

In the unitary equivalence for A in Theorem 12.1, the choice of the measurable space pY, µq

and a function f P MpY,Rq is not unique. However, the definition 12.1 of gpAq does not

depends on this choice and so gpAq is well-defined (an exercise).

This definition allows to write the spectral theorem in the functional calculus form, see

[RS1, Theorem VIII.5].

We need another form of the spectral theorem that is written in terms of (orthogonal)-

projection-valued measures S ÞÑ PS , S P BpRq, where PS :“ χS pAq.

Recall that χS P MpR,Rq is an indicator function of the set S, i.e., χS pxq “ 1 if x P S,

and χS pxq “ 0 if x R S.

12.2 Orthogonal projections

Let us recall the projection theorem (see, e.g., [RS1, Theorem II.3] and [Kato]).

Theorem 12.2 (orthogonal projection).

Let X1 be a closed subspace of a Hilbert space X, and let

XK
1 :“ tu2 P X : pu2|u1qX “ 0 for all u1 P X1u.

Then:

(a) XK
1 is a closed subspace of X and pXK

1 qK “ X1.

(b) Every u P X has a unique decomposition

u “ u1 ` u2, u1 P X1, u2 P XK
1 .

(c) The mapping P : u ÞÑ u1 acting according to the decomposition (b) defines a bounded

operator P P LpXq with }P } ď 1. This operator P is called a projection on X1 (or

more precisely, the orthogonal projection on X1).

Remark 12.2.

There is another more general definition of projections that include also non-orthogonal

projections. Namely, an operator Q P LpXq is called a projection if Q2 “ Q (i.e., Q

is an idempotent element of LpXq in the algebraic terminology). We will use only or-

thogonal projection defined by Theorem 12.2, and simply call them projections (skipping

“orthogonal”).

Exercise 12.2.
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(a) An operator P : domP Ď X Ñ X is a projection if and only if P 2 “ P “ P ˚.

(b) If P is a projection, then its range ranP “ PX “ tPu : u P Xu is the corresponding

closed subspace on that P projects. (Note that the zero operator 0LpXq is also a

projection on the trivial subspace t0u).

(c) Let P be a projection. Then I ´ P is also a projection. (What is the corresponding

closed subspace?)

(d) Let U : X Ñ Y be a unitary operator from a Hilbert space X to a Hilbert space Y .

Then, P is a projection in X if and only if UPU´1 is a projection in Y .

Lemma 12.1.

Let A be a selfadjoint operator in a separable Hilbert space X, and let S P BpRq. Then

χS pAq is a projection.

Proof. Let A be unitary equivalent to a multiplication operator Mf in the way described

in Theorem 12.1. Then χS pAq “ U´1Mχ
S

˝fU . By Exercise 12.2, it is enough to prove

that Mχ
S

˝f is a projection in L2pY;µq.

Since χS : R Ñ t0, 1u is real-valued and bounded, we see that M˚
χ
S

˝f “ Mχ
S

˝f and

that, by Exercise 12.1,

}Mχ
S

˝f } “ }χS ˝ f}L8pY;µq ď 1.

The equality M2
χ
S

˝f “ Mχ
S

˝f follows from the definition of an indicator-function.

χS pfpyqqχS pfpyqq “ χf´1pSqχf´1pSq “ χf´1pSq.

Exercise 12.2 (a) implies that Mχ
S

˝f is a projection.

The projection-valued measure for a selfadjoint operator A is the mapping S ÞÑ χS pAq

defined for all S P BpRq.

12.3 Various types of convergence of sequences of operators.

Let us recall the main types of convergencies for sequences tTnunPN Ă LpXq of bounded

operators in a Hilbert space X.

The sequence tTnunPN is said to converge to T P LpXq uniformly (or in the operator

norm) if }T ´ Tn}LpXq Ñ 0 as n Ñ 8.

The sequence Tn is said to converge to T P LpXq strongly

if, for every u P X, }Tu ´ Tnu}X Ñ 0 as n Ñ 8.

In this case, one writes

T “ s- limnÑ8 Tn

and says that T is the strong (operator) limit of the sequence tTnunPN Ă LpXq. The logic

behind the name of the strong convergence is that T “ s- limnÑ8 Tn is equivalent to the

statement that, after evaluation of tTnunPN Ă LpXq on any vector u P X, the sequence

of vectors tTnuunPN Ă X converges to Tu strongly in X (i.e., tTnuunPN converges to Tu

w.r.t. the norm of X).
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The sequence tTnunPN is said to converge to T P LpXq weakly

if, for every pair u, v P X, one has lim
nÑ8

pTnu|vqX “ pTu|vqX as n Ñ 8.

In this case, one writes

T “ w- limnÑ8 Tn

and says that T is the weak (operator) limit of the sequence tTnunPN Ă LpXq.

If the Hilbert space X is finite dimensional, then all three convergencies are equivalent.

If the Hilbert space X is infinite-dimensional, then these are three different (pairwise

non-equivalent) types of convergencies (see [RS1, Section VI.1]). However,

}T ´ Tn}LpXq Ñ 0 implies T “ s- limnÑ8 Tn,

while T “ s- limnÑ8 Tn implies T “ w- limnÑ8 Tn.

We use the strong operator convergence in the following section.

12.4 Spectral theorem written via projection-valued measures

Let X be a Hilbert space.

Definition 12.2 (projection-valued measure, e.g., [RS1]).

The mapping S Ñ PS from BpRq to LpXq is called a projection-valued measure if the

following conditions hold true:

(a) For each S P BpRq, the operator PS is a projection.

(b) P∅ “ 0LpXq and PR “ I.

(c) If S “
Ť

jPN Sj is a union of disjunct sets Sj , then PS “ s- limnÑ8

řn
j“1 P

Sj .

(d) PS1PS2 “ PS1XS2

Lemma 12.2.

Let S Ñ PS be a projection-valued measure, and let us denote Pk :“ P p´8,kq. For every

u P X, the function k ÞÑ pPku|uqX is a R`-valued non-decreasing function defined for all

k P R.

Proof. Since Pk is a projection, Exercise 12.2 implies Pk “ P 2
k “ P ˚

k and

pPku|uqX “ pP 2
ku|uqX “ pPku|PkuqX “ }Pku}2 P R`.

Let k1 ă k2 and put S1 “ p´8, k1q and S2 “ rk1, k2q. Using Definition 12.2, we see

that the property (c) implies

Pk2 “ Pp´8,k2q “ PS1 ` PS2 “ Pk1 ` PS2 ,

and properties (d) and (b) imply

0 “ P∅ “ PS1PS2 “ PS2PS1 “ PS2Pk1 “ Pk1P
S2 .
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Hence,

}Pk2u}2 “ prPk1 ` PS2su | rPk1 ` PS2suqX “ }Pk1u}2 ` 2RepPk1u | PS2uqX ` }PS2u}2

“ }Pk1u}2 ` 2 Re pPS2Pk1u | uqX ` }PS2u}2 “ }Pk1u}2 ` }PS2u}2 ě }Pk1u}2.

Thus, k ÞÑ pPku|uqX is non-decreasing.

Exercise 12.3.

The combination of the conditions of Definition 12.2 implies that the function

k ÞÑ pPku|uqX “ }Pku}2, k P R,

of Lemma 12.2 has the following additional properties:

(a)

lim
kÑ´8

}Pku}2X “ 0, lim
kÑ`8

}Pku}2X “ }u}2X .

(b) s- limkÑ´8 Pk “ 0, s- limkÑ`8 Pk “ I.

(c) k ÞÑ }Pku}2 is left-continuous.

Definition 12.3.

For every u P X, the Lebesgue–Stieltjes integral µupSq :“
ş

χSdpPku|uqX taken first for

intervals S, and then extended to all S P BpRq, defines

a finite Borel measure µu “ dpPku|uqX on R,

which is called the spectral measure associated with the vector u (and with the projection-

valued measure S Ñ PS).

Let u, v P X. The equality Pk “ P 2
k “ P ˚

k and the polarization identity

pPku|vqX “
1

4

`

}Pkpu ` vq}2X ´ }Pkpu ´ vq}2X ´ i}Pkpu ` ivq}2X ` i}Pkpu ´ ivq}2X

˘

allows us to define a complex-valued measure dpPku|vqX on R via the linear combination

dpPku|vqX “
1

4
pµu`v ´ µu´v ´ iµu`iv ` iµu´ivq .

Proposition 12.1.

Let g P MpR,Cq be a Borel measurable function.

(a) The set

Dg :“ tu P X :

ż

R
|gpkq|2dpPku|uqX ă 8u.

is a dense linear subspace of X.

(b) There exists a unique operator Tg : Dg Ď X Ñ X such that

pTgu|vqX “

ż

R
gpkqdpPku|vqX @ u P Dg, v P X. (12.1)

The most important application of this proposition is the case of the function gpkq “ k,

k P R.
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Theorem 12.3 (spectral theorem, e.g., [AG, RS1]).

(a) Let A be a selfadjoint operator in X. There exists a unique projection-valued measure

S Ñ PS such that

domA “ tu P X :

ż

R
k2 dpPku|uqX ă 8u (12.2)

and

pAu|vqX “

ż

R
k dpPku|vqX @ u P domA, v P X. (12.3)

In this case, the projection-valued function k ÞÑ Pk is called the spectral function of A

(or the spectral family, or a resolution of identity associated with A).

(b) Let S Ñ PS be a projection-valued measure. Then there exists a unique selfadjoint

operator A such that (12.2) and (12.3) hold true.

Remark 12.3.

Let k ÞÑ Pk be the spectral function of a selfadjoint operator A like in Theorem 12.3.

(a) The functional calculus for the functions of the operator A can be defined via Propo-

sition 12.1, i.e.,

gpAq :“ Tg for Borel measurable functions g.

This functional calculus is consistent with that of Definition 12.1.

(b) PS “ χSpAq for all S P BpRq.

The formulae (12.3) and (12.1) usually are written symbolically as

A “

ż

R
k dPk, gpAq “

ż

R
gpkqdPk.

However, it is possible to give a rigorous meaning to the formula

Au “

ż

R
k dPku

in the sense of an improper Riemann integral built with the use of the strong convergence

of vectors in X. For continuous bounded functions g : R Ñ C with compact support

gpAq “

ż

R
gpkq dPk @u P X

exists as a Riemann integral w.r.t. the convergence in the operator norm } ¨ }LpXq, see

[AG].

References for Lecture 12.

[AG] Akhiezer, N.I. and Glazman, I.M., 1993. Theory of linear operators in Hilbert space. Dover.

[Kato] Kato, T., Perturbation theory for linear operators. Springer Science & Business Media,

2013.

[RS1] Reed, M. and Simon, B., 1980. Methods of modern mathematical physics. Vol. I: Functional

analysis. Academic Press.

69



13 Classification of types of spectra of selfadjoint operators.

13.1 Norms of resolvents and spectra of selfadjoint operators.

Let T : domT Ď X Ñ X be an operator in a Hilbert space X. Recall that T is closed if

the resolvent set ρpT q is nonempty.

Theorem 13.1 (the 1st resolvent Neumann series, e.g., [Kato, Sect.III.6.1], [B, Thm.4.10]).

Let ρpT q ‰ ∅. Then:

(a) For every k0 P ρpT q,

pT ´ kq´1 “

`8
ÿ

j“0

pk ´ k0qjppT ´ k0q´1qj`1 for all |k ´ k0| ă }pT ´ k0q´1}. (13.1)

(b) The resolvent set ρpT q is open and the resolvent k ÞÑ pT ´ kq´1 is an analytic LpXq-

valued function on ρpT q.

(c) For every k0 P ρpT q,
1

distpk0, σpT qq
ď }pT ´ k0q´1}.

On formal level, formula (13.1) is obtained by straitforward verification, but on the

rigorous level an additional step that uses the closedness of T is needed, see [Kato, B].

Statement (a) implies (b) (and so implies that σpT q is closed). Statement (c) also follows

from (a) as an estimate on the radius of convergence in (13.1).

Theorem 13.2.

Let A “ A˚ and let a function g P MpR,Cq be continuous on σpAq. Then the norm of the

operator gpAq “
ş

R gpkqdPk is given by

}gpAq} “ }g}L8pσpAqq “ ess sup
kPσpAq

|gpkq|.

We take this theorem without proof. For the proof of this theorem in the case of

bounded selfadjoint A, we refer to [RS1, Section VII.1]. The case where A is unbounded

can be reduced to the case of bounded selfadjoint operators by means of the decomposition

Au “ A
ÿ

nPZ
P rn,n`1qu “

ÿ

nPZ
AP rn,n`1qu “

ÿ

nPZ
P rn,n`1qAP rn,n`1qu, u P domA,

into a sum of bounded selfadjoint operators An “ AP rn,n`1q “ P rn,n`1qAP rn,n`1q, where

the summation of Anu is w.r.t. the norm } ¨ }X . The sum here is essentially orthogonal,

i.e., if An is perceived as an operator in the closed subspace P rn,n`1qX, then this formula

can be written as

A “
à

nPN
An.

Corollary 13.1.

For a selfadjoint operator A and k0 P ρpAq,

}pA ´ k0q´1} “
1

distpk0, σpT qq
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Note that in the case of a separable X, this corollary and Theorem 13.2 can be easily

obtained from Theorem 12.1 (the spectral theorem via a multiplication operator Mf ).

Theorem 13.3 (e.g., [AG, Section 82]).

Let A “ A˚. Then

σpAq :“ tk P R : Pk`ε ´ Pk´ε ‰ 0LpXq @ε ą 0u,

i.e., σpAq consists of points of growth of the operator-valued measure tPSuSPBpRq (note

that Pk`ε ´ Pk´ε “ P rk´ε,k`εq and the function k ÞÑ Pk is nondecreasing in the sense of

Lemma 12.2).

This theorem can be obtained from Corollary 13.1.

Theorem 13.4 (see [RS1, Section VII.2]).

Let A “ A˚. Let S be the maximal open set S such that µupSq “ 0 for all u P X. Then

σpAq “ RzS.

Corollary 13.2.

Let X ‰ t0u and A “ A˚ in X. Then σpAq ‰ ∅.

13.2 Absolutely continuous, singular continuous, and pure point spectra

Let Y be a metric space equipped with the Borel σ-algebra, which makes it a measurable

space. A measure µ on Y is called diffuse if µptyuq “ 0 for every y P Y.

Definition 13.1.

Let µ be a σ-finite Borel measure on R.

(a) In this case, a diffuse measure µ is called also continuous.

(b) A measure µ is called discrete (or pure point) if there exists at most countable set

Y “ tyju
N
j“1 Ă R, N P pN, such that µpRzY q “ 0.

(c) A continuous measure µ is called singular continuous if there exists a Borel set S with

|S|1 “ 0 such that µpRzSq “ 0.

Let µ be a discrete finite Borel measure. The set Y in Definition 13.1 can be chosen in

a unique way such that µpyjq ą 0 for all yj P Y . Then one can express µ as

µpSq “

ż

S
dΨpp, S P BpRq,

where

Ψpppxq “
ÿ

yjăx

µpyjq

is a jump function, and the integral is understood as the Lebesgue–Stieltjes integral.

Theorem 13.5 (Lebesgue decomposition, e.g. [KF, RS1]).

Every σ-finite Borel measure µ on R can be decomposed in a unique way into a sum of

Borel measures

µ “ µac ` µsc ` µpp

such that the measure µac is absolutely continuous (w.r.t. | ¨ |1), the measure µsc is singular

continuous, and µpp is discrete.
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Definition 13.2.

(a) A closed subspace X1 is called invariant subspace of an operator T if Tu P X1 for

every u P domT X X1.

(b) Let Xj , j “ 1, 2, be closed subspaces of X such that

X “ X1 ‘ X2,

and let PXj be the associated projections. The subspace X1 is called a reducing

subspace for an operator T if, for every u P domT , one has PX1u P domT , PX2u P

domT , and each of the subspaces X1 and X2 is invariant for T .

Obviously a closed subspace X1 is reducing for T if and only if XK
1 is so. If this is the

case and X2 “ XK
1 , then

T “ T |X1 ‘ T |X2 ,

where T |X1 and T |X2 are the parts of T in the subspacesXj having the domains dompT |Xj q :“

Xj X domT . Note that t0u and t0uK “ X are reducing subspaces for every operator T .

Proposition 13.1 (e.g., [AG]).

Let A “ A˚ and let X1 be an invariant subspace for A. Then X1 is a reducing subspace

for A and A|X1 is a selfadjoint operator in X1.

Theorem 13.6 (e.g., [RS1]).

Let A “ A˚. Let us consider the sets

Xac :“ tu P X : µu is absolutely continuousu,

Xsc :“ tu P X : µu is singular continuousu,

Xpp :“ tu P X : µu is discreteu.

Then:

(a) Xac, Xsc, and Xpp are closed subspaces of X and each of them is a reducing subspace

for A.

(b) X “ Xac ‘ Xsc ‘ Xpp

(c) The part App :“ A|Xpp : domApp Ď Xpp Ñ Xpp has admits orthonormal basis tujujPJ

of Xpp consisting of eigenvectors of App (where J is a certain index set, not necessarily

countable).

Consequently,

Appu “
ÿ

jPJ
pu|ukqX‰0

kjpu|ujqXuj , u P domApp “ Xpp X domA,

where kj is an eigenvalue associated with an eigenvector uj .

Note that it is possible that one or several of theses subspaces Xac, Xsc, and Xpp are

the zero spaces t0u (or one of them is the the whole space X).

Definition 13.3 (ac-, sc-, and pp-spectra, e.g., [RS1]).

Let A “ A˚.
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(a) The set σacpAq :“ σpA|Xacq is called an absolutely continuous spectrum.

(b) The set σscpAq :“ σpA|Xscq is called a singular continuous spectrum.

(c) The set σpppAq :“ σpA|Xppq is called a pure point spectrum.

(d) If X “ Xpp (and so t0u “ Xac “ Xsc), one says that the spectrum of A is a pure point

spectrum.

13.3 Characterization of eigenvalues of selfadjoint operators in terms of

projector-valued measures

Theorem 13.7 (e.g., [AG]).

Let A “ A˚. Then:

k P σppAq if and only if P tk0u ‰ 0.

If k0 P σppAq, the corresponding to k0 eigenspace is

kerpA ´ k0q “ P tk0uX “ ranP tk0u.

In other words, eigenvalues are jumps of the function k ÞÑ Pk.

Remark 13.1.

By comparison of Definitions 13.3, Theorem 13.6, and Theorem 13.7, it can be obtained

that for a selfadjoint operator A,

σpppAq “ σppAq.
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14 Examples of various types of spectra.

14.1 Remarks and examples related to reducing subspaces and pure

point spectra.

Let us recall that two closed subspaces Xj , j “ 1, 2, of a Hilbert space X such that

X “ X1 ‘ X2,

are called reducing for an operator A : domA Ď X Ñ X if the following conditions are

satisfied: for every u P domA, one has PX1u P domT , PX2u P domT , and each of the

subspaces X1 and X2 is invariant for A. In this lecture, PXj is an (orthogonal) projector

to Xj .

The trivial examples of reducing subspaces for every operator are the subspaces t0u and

X. By Proposition 13.1, every invariant subspace of a selfadjoint operator A is reducing

for A.

The following theorem characterizes (independently of the functional calculus) the

projection-valued measure tPSuSPBpRq associated with a selfadjoint operator A.

Theorem 14.1 ([AG, Section 75]).

Let A “ A˚ in a Hilbert space X. Then the equality A “
ş

R k dPk holds for a

certain projection-valued measure tPSuSPBpRq if and only if the following two conditions

are satisfied:

(a) The space P IX is a reducing subspace for A for every interval I Ď p´8,`8q.

(b) For every k1, k2 P R and u P domA such that ´8 ď k1 ă k2 ď `8 and u P P pk1,k2sX,

the following inequality holds

k1}u}2X ď pAu|uqx ď k2}u}2X .

Example 14.1 (eigenspaces as reducing subspaces).

Let A “ A˚ and k0 P σppAq. Then the eigenspace kerpA ´ k0q of A corresponding to

the eigenvalue k0 is a reducing subspace of A. This follows from Theorem 14.1 (or from

Proposition 13.1). Hence the orthogonal complement X2 :“ pkerpA ´ k0qqK is also a

reducing subspace of A. Clearly, the part A|X2 of A in X2 has no eigenvalue at k0.

Proposition 14.1 ([AG, Section 75]).

Let T : domT Ď X Ñ X be an operator in X. Let the family tXjujPJ of closed subspaces of

X (indexed by a certain index set J , possibly uncountable) satisfy the following conditions:

(a) each Xj is a reducing subspace for T ;

(b) Xj and Xn are mutually orthogonal if j ‰ n.

Then the subspace

rX “
à

jPJ

Xj :“

#

ÿ

jPJ

uj : uj P Xj @j and
ÿ

jPJ

}uj}
2 ă `8

+

is a reducing subspace for T . The part rT “ T |
rX
of T in rX has the domain dom rT consisting
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of all u P X such that

PXju P domT |Xj for all j and
ÿ

jPJ

}TPXju}2X ă `8.

Besides, the following formulae hold true for all u P dom rT ,

Tu “
ÿ

jPJ

T |Xj PXj u “
ÿ

jPJ

TPXju “
ÿ

jPJ

PXjTPXju. (14.1)

For a selfadjoint A, we considered in Lecture 13 the decomposition of X

X “ Xac ‘ Xsc ‘ Xpp

into the reducing subspaces corresponding to σacpAq, σscpAq, and σpppAq.

Example 14.2 (Xpp as an orthogonal sum of eigenspaces).

Let A “ A˚ and tkjujPJ “ σppAq be the family of all eigenvalues indexed by J without

repetitions (i.e., kj ‰ kn if j ‰ n) . The eigenspaces Xj :“ kerpA ´ kjq are mutually

orthogonal by Exercise 11.2, and satisfy Proposition 14.1 due to Example 14.1. Hence,

the orthogonal sum of all eigenspaces

rX “
à

jPJ

Xj “
à

jPJ

kerpA ´ kjq

is a reducing subspace. It is easy to see that

σpA|
rX

q “ σppAq and σppA|
rXKq “ ∅.

The space rX is exactly the space Xpp, and this explains the equality

σpp “ σppAq.

If additionally X “ Xpp, then A is an operator with purely point spectrum, A possess an

orthonormal basis tuj1uj1PJ 1 of eigenvectors (indexed by a certain index set J 1), and the

formula (14.1) becomes the eigenvector expansion

Au “
ÿ

j1PJ 1

rkj1pu|uj1qXuj1 , u P domA,

where rkj1 is an eigenvalue corresponding to uj1 .

14.2 Pure point spectra of differential operators

Theorem 14.2 (Minami [M89]).

Let η “
ř

jPN δyj be a homogeneous proper Poisson SPP of positive intensity on R. Let

amax ą 0 be a certain positive constant and α0 be a certain r0, amaxs-valued random variable

with distribution pα0. Let

ξ “
ÿ

jPN
δpyj ,αjq

be an independent pα0-marking of η. Consider in L2pRq the selfadjoint Poisson-Anderson-

Schrödinger operator

HY,α :“ ´
d2

dx2
`

N
ÿ

j“1

αjδyj

associated with ξ as in Theorem 10.2. Then:
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(a) The spectrum σpHY,αq is deterministic and pure point in the following sense: there

exists an event Ω1 P FΩ of probability 1 such that

σpHY,αq “ σpppHY,αq “ r0,`8q @ω P Ω1.

(b) Besides, the event Ω1 P FΩ of probability 1 can be chosen such that for every ω P

Ω1 and every eigenfunction u of HY,α there exists a negative constant cu,ω with the

property

lim sup
xÑ˘8

1

|x|
ln |upxq| ď cu,ω ă 0 (exponential decay).

The effect described by the properties (a) and (b) of Theorem 14.2 is the spectral

Anderson localization for the whole spectrum. It is proved for many 1-dimensional models

with random potentials having reasonable ergodic properties.

The analogous question of the spectral Anderson localization in the multi-dimensional

case is a long standing open problem. It is presently conjectured that there are multi-

dimensional models where the spectral Anderson localization does not hold for the whole

spectrum. The 3-dimensional Poisson-Anderson-Schrödinger operator of Kaminaga-Mine-

Nakano (see Lecture 10) is possibly the least studied operator with good probabilistic

properties.

Remark 14.1.

The space L2pRq is separable. Therefore the set of eigenvalues σppHY,αq in Theorem 14.2

is at most countable, but

r0,`8q “ σpppHY,αq “ σppHY,αq.

Thus, for all ω P Ω1, the set σppHY,αq is countable and dense in r0,`8q.

Proposition 14.2.

Let A “ A˚ and σpAq “ σdiscpAq. Then σpAq “ σpppAq and Xpp “ X.

This case takes place, for example, for the Laplace operator p´1q∆D “ grad˚
0 grad0

with the Dirichlet boundary condition in L2pGq, where G Ă Rd is a bounded open

nonempty set. The operator p´1q∆D is an invertible selfadjoint operator with compact

resolvent. Hence, p´1qp∆Dq´1 P LpXq is compact. Besides, p´1qp∆Dq´1 is selfadjoint due

to the next theorem.

Theorem 14.3.

Assume that T : domT Ď X Ñ X be invertible and densely defined and that T´1 is

densely defined. Then:

(a) pT ˚q´1 “ pT´1q˚

(b) If additionally T is selfadjoint, then T´1 is also selfadjoint.

Proposition 14.3 (spectral theorem for compact selfadjoint operators).

Let A “ A˚ and let A be compact. Then

X “ Xpp, σdiscpAq “ σpAqzt0u, σesspAq “ 0.

Moreover, the following statements hold:
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(a) In the case 0 P σppAq, we have

σpAq “ σpppAq “ σppAq ‰ σdiscpAq.

(b) In the case 0 R σppAq, we have

σpAq “ σpppAq “ t0u Y σppAq and σppAq “ σpAqzt0u “ σdiscpAq.

14.3 The case of a finite number of δ-interactions in R3.

Let Y “ tyju
N
j“1 be a finite collection of distinct points in R3. Let a “ taju

N
j“1 Ă R

be the corresponding deterministic “inverse strength” parameters. The corresponding

deterministic operator with point interactions

HY,a “ ´∆ ` “
N
ÿ

j“1

mpajqδyj “, HY,a : domHY,a Ă L2pR3q Ñ L2pR3q

was defined in Lecture 5 and, by Theorem 5.1,

HY,a “ pHY,aq˚.

Theorem 14.4.

(a) The set of eigenvalues of HY,a is finite and is a subset of p´8, 0s, i.e.,

σppHY,aq “ σpppHY,aq “ tkju
n
j“1 Ă p´8, 0s with a certain n P N0.

(b) The absolutely continuous spectrum is

σacpHY,aq “ r0,`8q.

(c) The singular continuous spectrum σscpAq is empty.

(d) σpHY,aq “ σppHY,aq Y σacpHY,aq “ tkju
n
j“1 Y r0,`8q.

The set of eigenvalues can be found using the following theorem.

Theorem 14.5 (Krein-type resolvent formula, e.g., [?]).

(a) Let k P ρpHY,aq and k “ λ2 for λ P C` “ tz P C : Im z ą 0u. Then the integral kernel

Kλpx, x1q of the resolvent pHY,a ´ κq´1 “ pHY,a ´ λ2q´1 at k is given by the formula

Kλpx, x1q “ Gλpx ´ x1q `

N
ÿ

j,j1“1

Gλpx ´ Yjq rΓY,as
´1
j,j1 Gλpx1 ´ Yj1q, (14.2)

where x, x1 P R3zY and x ‰ x1. Here Gλpx´x1q :“ eiλ|x´x1|

4π|x´x1|
is the integral kernel associated

with the resolvent p´∆´λ2q´1 of the nonnegative selfadjoint Laplacian p´1q∆ in L2pR3q,

whereas rΓY,as
´1
j,j1 denotes the j, j1-element of the inverse to the matrix

ΓY,apλq “

”

`

aj ´ iλ
4π

˘

δjj1 ´ rGλpYj ´ Yj1q

ıN

j,j1“1
, (14.3)

where rGλpxq :“

#

Gλpxq, x ‰ 0

0, x “ 0
and δjj1 is the Kronecker delta.

(b) The set of negative eigenvalues σppHY,aqzt0u has the form tλ2
jurn

j“1, rn P N0, where

tλju
rn
j“1 is the set of solutions to the equations

det ΓY,apλq “ 0 on the line iR` :“ tic : c P p0,`8qu.
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14.4 Deterministic and stochastic resonances

The poles λ of generalized continuation of the resolvent pHY,a ´ λ2q´1 are exactly the

solutions det ΓY,apλq “ 0. They are the (continuation) resonances of Lectures 1-2.

If the positions yj of point interactions become random, i.e., if Y is finite SPP, the set

of eigenvalues associated with the operator HY,a becomes a locally finite SPP on p´8, 0s.

The corresponding set of resonances becomes a locally finite SPP on C. The study of

these point processes of random eigenvalues/resonances is presently in the initial stage,

see [AK21, KMN25].
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