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[CL96] Cox, S., and Lipton, R., 1996. Extremal eigenvalue problems for two-phase con-

ductors. Archive for Rational Mechanics and Analysis 136(2), pp.101–118.

[H06] Henrot, A., Extremum problems for eigenvalues of elliptic operators. Springer Sci-

ence & Business Media, 2006.

[JKO12] Jikov, V.V., Kozlov, S.M. and Oleinik, O.A., Homogenization of differential op-

erators and integral functionals. Springer Science & Business Media, 2012.

[K79] Kesavan, S., 1979. Homogenization of elliptic eigenvalue problems: Part 1. Applied

Mathematics and Optimization, 5, pp.153-167.

The complete list of references is given at the end of the script.

2



Contents

1 Overview: Two main topics in examples. 5

1.1 Example of optimization of termal conductivity via eigenvalues. . . . . . . . 5

1.2 Reasonable feasible families. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 H-convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 H-closure and the existence of optimizers. . . . . . . . . . . . . . . . . . . . 9

1.5 Applications of eigenvalue optimization to wave equations. . . . . . . . . . . 10

2 Convergence of eigenvalues and existence of optimizers. 11

2.1 Dirichlet eigenvalues of 2-nd order elliptic operators. . . . . . . . . . . . . . 11

2.2 Spectral convergence under the homogenization. . . . . . . . . . . . . . . . 12

2.3 H-compactness, weak-*-compactness, and metrizability. . . . . . . . . . . . 13

2.4 Existence of optimizers for functionals λkp¨q. . . . . . . . . . . . . . . . . . . 14

2.5 General theorem on the existence of optimizers for λkpA, ρq. . . . . . . . . . 15

2.6 Existence of optimal non-homogeneous membranes. . . . . . . . . . . . . . . 16

3 Properties of homogenization-convergencies. 17

3.1 Metrizability of weak-* convergences. . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Additional properties of weak-* and weak convergencies. . . . . . . . . . . . 19

3.3 The space of distributions H´1pΩq. . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Exercises for the construction of the space H´1pΩq. . . . . . . . . . . . . . . 21

3.5 Metrizability of the H-convergence. . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Solvability of the Dirichlet problem. . . . . . . . . . . . . . . . . . . . . . . 23

3.7 Proof of Theorem 3.2 (on the metrizability of H-convergence). . . . . . . . . 26

4 Abstract G-convergence and weak operator convergence. 29

4.1 Weak convergence and compactness for operators. . . . . . . . . . . . . . . 29

4.2 Abstract G-convergence of operators. . . . . . . . . . . . . . . . . . . . . . . 31

5 The space pH1pΩqq1 and oscillatory test functions. 33

5.1 Oscillating test functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 The space pH1pΩqq1 and weak convergence in H1pΩq. . . . . . . . . . . . . . 34

5.3 The proof of Lemma 5.1 (on oscillating test functions). . . . . . . . . . . . . 35

6 Compensated compactness and G-convergence for 2nd order elliptic

equations. 36

6.1 Compensated compactness. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 The proof of Theorem 2.3 (on the H-compactness of L8pΩ,Mα,βq). . . . . . 38

6.3 G-convergence for 2nd order elliptic equations. . . . . . . . . . . . . . . . . 41

7 Convergence of eigenvalues. 42

7.1 Preparational results for the eigenvalue convergence. . . . . . . . . . . . . . 42

7.2 Convergence of eigenvalues. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Lamination, periodic homogenization, and Gθ-closure. 48

8.1 H-limits of layered structures. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3



8.2 Laminates and locality of H-convergence. . . . . . . . . . . . . . . . . . . . 49

8.3 Periodic homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.4 G- and Gθ-closure problems for two-phase composites. . . . . . . . . . . . . 52

4



1 Overview: Two main topics in examples.

1.1 Example of optimization of termal conductivity via eigenvalues.

Consider the evolution of temperature upx, tq in a mixture of two materials with termal

conductivities α1 and α2, 0 ă α1 ă α2. The heat equation is

Btupx, tq “ ∇ ¨pa∇upx, tqq, x P Ω, (1.1)

where a “ apxq “ α1χωpxq ` α2χΩzωpxq is the conductivity function, Ω Ă Rd is a domain,

ω Ă Ω is a measurable set, and

χEpxq “

#

1, x P E

0, x R E

is the indicator function of E.

Definition 1.1.

A set D Ă Rd is a domain if D is nonempty, bounded, open, and connected.

The equation is equipped with the “ice bath” boundary condition and an initial bound-

ary condition:

upx, tq “ 0 for x P BΩ, t ą 0, (1.2)

upx, 0q “ u0pxq for x P BΩ (1.3)

where u0 ě 0 almost everywhere. For simplicity we assume also

u0 P L2pΩq “ L2pΩ,Rq.

Here BΩ is the boundary of Ω. With the differential expression

ℓpuq “ ℓapuq “ ´∇ ¨pa∇uq “ ´div a gradu

and with the boundary condition (1.2), one can associate a selfadjoint operator L “ La in

the complex Hilbert space L2pΩ,Cq. The spectrum σpLq of L is a nondecreasing sequence

of eigenvalues tλkukPN,

0 ă λ1 ă λ2 ď λ3 ď . . . . (1.4)

Corresponding eigenfunctions ukp¨q can be chosen such that all uk are real-valued and

tukukPN is an orthonormal basis in L2pΩq. The latter means, in particular, that the

eigenvalues are repeated in the sequence tλkukPN according to their geometric multiplicities

(since L is a selfadjoint operator, the geometric and algebraic multiplicities of eigenvalues

coincide, see [K13] for details).

Remark 1.1.

This description of the spectrum of L follows from the spectral theorem [K13, Theorem

III.6.29 and Sect. V.3.5] for selfadjoint operators T “ T ˚ with a compact resolvent
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pT ´ λq´1, where λ P ρpT q is in the resolvent set ρpT q :“ CzσpT q.

The unique strong solution in L2pΩq to the initial value problem (1.1)-(1.3) is given by

upx, tq “

8
ÿ

k“1

e´λkt xu0|ukyL2 ukpxq

where xf |gyL2 “
ş

Ω

fgdx.

Remark 1.2.

Since we assumed that Ω is a domain, the 1st eigenvalue λ1 is simple. That is, λ1 has

geometric (and algebraic) multiplicity 1 [GT77, Theorem 8.38]. This fact is included in

(1.4) in the form of the inequality λ1 ă λ2. In a more general case, where a bounded

open set Ω is not a domain because it is not connected, the inequality λ1 ă λ2 does not

necessary holds (as an example one can take as Ω a union of two disjoint unit balls).

Proposition 1.1.

(i) }up¨, tq}L2 ď e´λ1t}u0}L2.

(ii) For generic u0 P L2pΩq, we have xu0|u1yL2 ‰ 0. In this case,

}up¨, tq}L2 „ |xu0|u1yL2| e´λ1t as t Ñ `8.

The proof follows easily from Remark 1.1.

Remark 1.3.

Proposition 1.1 means that λ1 is the (exponential) decay rate of }up¨, tq}L2 in the generic

situation xu0|u1yL2 ‰ 0. In the exceptional case xu0|u1yL2 “ 0, the decay rate of }up¨, tq}L2

is faster (i.e., greater) than λ1.

Conclusion. One can use λ1 “ λ1paq to measure the quality of conductivity (or opposite,

of insulation) of the structure represented by the function apxq, x P Ω.

Let F be a feasible family/set of structures ap¨q, i.e., the family of composite structures

which are feasible for fabrication.

Problem 1.1 (maximization of insulation, see [ATL89, CL96]).

We search for

argmin
aPF

λ1paq.

Here argmin denotes the set of all optimizers a˚p¨q P F (in this case, minimizers) and

simultaneously is a short way to formulate the problem of finding this set. Similarly the

notation argmax is used.

Problem 1.2 (maximization of conductance, see [CL96]).

We search for

argmax
aPF

λ1paq.
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1.2 Reasonable feasible families.

Example 1.1.

Let us consider the following set of L8-functions

Fα1,α2,Ω “ ta “ α1χω ` α2χΩzω : ω Ă Ω is measurableu,

that is, we consider all possible (measurable) mixtures of materials with α1 and α2.

This example is essentially trivial since

argmin
aPFα1,α2,Ω

λ1paq “ taminp¨qu “ tα1χΩp¨qu. (1.5)

Similarly,

argmax
aPFα1,α2,Ω

λ1paq “ tamaxp¨qu “ tα2χΩp¨qu. (1.6)

Remark 1.4.

Formulae (1.5) and (1.6) follow from the formula

λ1paq “ min
vPH1

0 pΩq

v‰0

Rℓarvs “ min
vPdomLa

v‰0

Rℓarvs,

where 0 “ 0L2 and

Rℓarvs :“

ş

Ω a|∇ v|2dx
ş

Ω |v|2dx

is the Rayleigh quotient associated with the differential expression ℓa. Moreover, the min-

imal values of the Rayleigh quotient are achieved on the set tcu1p¨qucPCzt0u. These state-

ments follow from the 1st Friedrichs representation theorem [K13, Th. VI.2.1] combined

with the spectral theorem [K13, Theorem III.6.29 and Sect. V.3.5], which are applied to

the selfadjoint operator La.

Example 1.2 (prescribed ratio of materials).

Let a constant γ P p0,measpΩqq be fixed. Consider the feasible family

Fγ “ Fα1,α2,Ω
γ “ ta “ α1χω ` α2χΩzω : ω Ă Ω and measpωq “ γu,

where measpωq denotes the Lebesgue measure in Rd.

Theorem 1.1.

Let d ě 2. Assume that a simply connected domain Ω Ă Rd has a connected C2-boundary

BΩ. Then:

(a) argmin
aPFγ

λ1paq ‰ ∅ ðððñññ Ω is a ball [C17].

(b) If Ω is a ball in Rd centered at 0 “ 0Rd, then every optimal structure a˚p¨q for

the problem argmin
aPFγ

λ1paq is a radial function and corresponding 1st eigenfunctions

u1,˚p¨q are also radial [ATL89].
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1.3 H-convergence.

Let Rdˆd be the normed space of dˆ d-matrices M “ pM i,jqdi,j“1. The choice of the norm

is not important, i.e., the operator norm for the linear operatorM : Rd Ñ Rd can be used.

Let α, β P R` “ p0,`8q be constants such that 0 ă α ă β´1. We consider the following

subset of Rdˆd:

Mα,β “ tM P Rdˆd : α|y|2 ď xMy|yyRd , xM´1y|yyRd ě β|y|2 @y P Rdu.

The structures of composite materials in a domain Ω Ă Rd will be represented in this

lecture by measurable matrix-valued functions A : Ω Ñ Mα,β. The family of all such

matrix-valued functions functions (which also are called often material parameters) is

denoted by L8pΩ,Mα,βq.

Let α1, β1 be certain constants such that 0 ă α1 ď α ď β´1 ď pβ1q´1.

Definition 1.2 (H-convergence [MT78], see also [A02]).

A sequence tAnp¨qunPN Ă L8pΩ,Mα,βq is said to H-converge to an H-limit

A˚p¨q P L8pΩ,Mα1,β1q

if, for any fp¨q P H´1pΩq, the weak solutions vnp¨q to

´∇ ¨pAn∇ vq “ f, x P Ω

vpxq “ 0, x P BΩ

satisfy

vn á v in H1
0 pΩq, An∇ vn á A˚ ∇ v˚ in L2pΩ,Rdq,

where v˚p¨q is the weak solution to the problem

´∇ ¨pA˚ ∇ vq “ f, x P Ω

vpxq “ 0, x P BΩ

Remark 1.5.

(a) Here an H-limit A˚p¨q is also called homogenized limit (in the sense of Murat-Tartar).

The corresponding notation is An
H

ÝÑA˚.

(b) If An
H

ÝÑA˚, then A˚ P L8pΩ,Mα,βq.

(c) It is known that an H-limit is unique if it exists.

(d) The equation

´∇ ¨pA˚ ∇ vq “ f

is called homogenized equation. For any fp¨q P H´1pΩq and Ap¨q P L8pΩ,Mα1,β1q, the

problem

´∇ ¨pA∇ vq “ f, x P Ω

vpxq “ 0, x P BΩ

has a unique weak solution v P H1
0 pΩq.

8



(e) The Hilbert spaces H1pΩq, H1
0 pΩq, H´1pΩq are Sobolev spaces “with p “ 2”, i.e.

H1pΩq “ W 1,2pΩq, H1
0 pΩq is the closure of of the space of test functions C8

0 pΩq in

H1pΩq, the space H´1pΩq “ W´1,2pΩq can be defined as the dual space of H1
0 pΩq

(see [B68, GT77, B11]). Where necessary, we discuss in the course the basics of the

Sobolev spaces and the theory of weak solutions.

(f) The notation gn á g denotes the weak convergence in the corresponding space.

1.4 H-closure and the existence of optimizers.

Consider a feasible family (of structures) F Ă L8pΩ,Mα,βq.

Definition 1.3 (H-closure).

The H-closure FH
of F is the closure of F with respect to (w.r.t) the H-convergence.

Consider certain constants α1, α2, γ ą 0 such that 0 ă α1 ă α2 and 0 ă γ ă measpΩq,

and again consider the feasible family with a prescribed ratio of the materials

Fγ “ Fα1,α2,Ω
γ :“ tχωp¨qα1IRd ` χΩzωp¨qα2IRd : measpωq “ γu. (1.7)

Here we identify the R-valued structure-function ap¨q “ χωp¨qα1 ` χΩzωp¨qα2 with the

matrix-valued structure-function Ap¨q “ ap¨qIRd “ χωp¨qα1IRd `χΩzωp¨qα2IRd , which takes

only scalar matrices as its values.

In this course we will consider the important question of how to describe the H-closure

FH
γ of Fγ . The answer is given by the G-closure theorem obtained independently by Lurie

& Cherkaev and Murat & Tartar, see [MT85, C00, A02]. Our main application of FH
γ is

the following theorem.

Theorem 1.2 ([CL96]).

For all k P N,

inf
aPFγ

λkpaq “ min
APFH

γ

λkpAq and sup
aPFγ

λkpaq “ max
APFH

γ

λkpAq.

Remark 1.6.

Theorem 1.2 implies in particular

argmin
APFH

γ

λkpAq ‰ ∅, argmax
APFH

γ

λkpAq ‰ ∅,

i.e., there exists at least one minimizer Amin
k P FH

γ and at least one maximizer Amax
k P FH

γ

for λk : L8pΩ,Mα,βq Ñ R. Besides, for the infimum and the supremum over the family

Fγ, one has

inf
aPFγ

λkpaq “ λkpAmin
k q, sup

aPFγ

λkpaq “ λkpAmax
k q.
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1.5 Applications of eigenvalue optimization to wave equations.

A simple model of an optical cavity can be obtained if one takes two of the linear

Maxwell(-Heaviside) equations

BtEpx, tq “
1

εpxq
∇ˆHpx, tq, (1.8)

BtHpx, tq “ ´
1

µpxq
∇ˆEpx, tq, (1.9)

and makes the time-harmonic substitutions Epx, tq “ e´iκtEpxq, Hpx, tq “ e´iκtHpxq.

Together with the simplified perfect metal boundary condition

npxq ˆ Epxq “ 0, x P BΩ,

this leads to the eigenproblem

˜

0 1
εpxq

∇ˆ

´ 1
µpxq

∇ˆ 0

¸ ˜

E

H

¸

“ κ

˜

E

H

¸

, x P BΩ3.

Here Ω3 Ă R3 is a domain with a sufficiently regular boundary BΩ3 (e.g., with a Lipschitz

boundary) such that the outer normal vector-field n : BΩ3 Ñ R3 is well-defined (e.g., as

an L8pBΩ,R3q-vector field).

Under certain physically reasonable simplifying assumptions it is possible to connect this

3-D Maxwell eigenproblem with several 2-D and 1-D dimensionally reduced eigenproblems

[BCNS12, ACL18]. One of such related equations after a 2-D reduction is the 2-nd order

elliptic equation of section 1.1

´∇ ¨papx1, x2q∇upx1, x2qq “ λupx1, x2q, x1 “ px1, x2q P Ω2 Ă R2, (1.10)

where upx1q “ H3px1q, λ “ κ2. The coefficient ap¨q is constructed from R`-valued dielectric

permittivity εp¨q. The perfect metal boundary condition transforms into the Neumann

boundary condition

pa∇uq ¨ n1 “ 0, x1 P BΩ2, (1.11)

where n1 : BΩ2 Ñ R2 is the outer normal vector-field on BΩ2.

The corresponding evolution wave equation is

B2
t upx1, tq “ ∇ ¨papx1q∇upx1, tqq, x1 P Ω2, t ą 0.

The meaning of eigenvalues λk of (1.10)-(1.11) is that κ˘
k “ ˘

?
λk are the frequencies of

eigen-oscillations of the EM-field in the 2-D optical cavity Ω2.

Consider now the case when a homogeneous cavity filled with one material has small

impurities consisting of another material, and the corresponding structure is given by the

coefficient rap¨q.

The relevant feasible families F are

Fγ` “ Fα1,α2,Ω2
γ` :“ tap¨q “ α1χωp¨q ` α2χΩzωp¨q : γ ď measpωq ď measpΩqu

10



with γ close to measpΩq, and

Fγ´ “ Fα1,α2,Ω2
γ´ “ tap¨q “ α1χωp¨q ` α2χΩzωp¨q : 0 ď measpωq ď γu

with small γ ą 0.

The values of inf
aPF

κ`
k paq and sup

aPF
κ`
k paq have now the physical meaning of the bounds

on the k-th eigen-frequency κ`
k prap¨qq. Hence, the optimization problems

argmin
aPFH

λkpaq, argmax
aPFH

λkpaq

for F “ Fγ˘ become meaningful for all k ě 2. (What happens with k “ 1 in the case of

Neumann boundary condition?) These optimization problems are closely related to the

problems

argmin
aPFH

γ

λkpaq and argmax
aPFH

γ

λkpaq.

2 Convergence of eigenvalues and existence of optimizers.

2.1 Dirichlet eigenvalues of 2-nd order elliptic operators.

Let Ω Ă Rd be a domain. Let α, β P R` “ p0,`8q be constants such that 0 ă α ă β´1.

Let

Rdˆd
sym “ tM P Rdˆd :M i,j “ M j,i @i, ju

be the real linear space of symmetric matrices M “ MJ. By

Msym
α,β :“ tM P Rdˆd

sym : α|y|2 ď xMy|yyRd , xM´1y|yyRd ě β|y|2 @y P Rdu

we denote the set of all symmetric real dˆ d-matrices in

Mα,β :“ tM P Rdˆd : α|y|2 ď xMy|yyRd , xM´1y|yyRd ě β|y|2 @y P Rdu.

Then L8pΩ,Msym
α,β q is the family of all measurable matrix-functions A : Ω Ñ Msym

α,β .

Let ρ´, ρ` P R` be certain constants such that 0 ă ρ´ ď ρ`. We take ρp¨q P

L8pΩ, rρ´, ρ`sq, i.e., the function ρ : Ω Ñ rρ´, ρ`s is measurable.

Let C8
0 pΩq be the space of test functions in Ω, i.e., the space of C8-functions f : Ω Ñ R

such that supp f :“ tx P Ω : fpxq ‰ 0u is a compact subset of Ω. The Hilbert space H1
0 pΩq

is defined as the closure of C8
0 pΩq in the Sobolev space H1pΩq “ W 1,2pΩq.

Let A P L8pΩ,Msym
α,β q and ρ P L8pΩ, rρ´, ρ`sq. The eigenproblem

´∇ ¨pA∇uq “ λρu, x P Ω, (2.1)

upxq “ 0, x P BΩ, (2.2)

is understood in the following sense: Find all pairs tλ, up¨qu with λ P R (called eigenvalue)

and u P H1
0 pΩq (called eigenfunction) such that (2.1) is valid in the sense of distributions

and up¨q ı 0 in H1
0 pΩq (or equivalently up¨q ı 0 in L2pΩq), where 0 is the constant function

equal to 0 everywhere.

11



Theorem 2.1 (spectral theorem for symmetric 2nd order Dirichlet problems).

Let A P L8pΩ,Msym
α,β q and ρ P L8pΩ, rρ´, ρ`sq.

(a) The set Σ “ ΣpA, ρq of eigenvalues of (2.1)-(2.2) can be represented as

Σ “ tλkukPN “ tλkpA, ρqukPN

with a nondecreasing sequence

0 ă λ1 ď λ2 ď . . . , such that lim
kÑ8

λk “ `8.

(b) The eigenvalues can be numbered such that every eigenvalue is repeated according to

its geometric multiplicity.

(c) Under convention (b), the corresponding eigenfunctions ukp¨q can be chosen such

that tukukPN is an orthonormal basis in the Hilbert space L2
ρpΩ,Cq.

The space L2
ρpΩ,Cq is the Hilbert space of measurable C-valued functions f such that

xf |fyL2
ρ

ă `8, where xf |gyL2
ρ
:“

ş

Ω

fpxqgpxqρpxqdx is the inner product in L2
ρpΩ,Cq. The

real Hilbert space L2
ρpΩq is the space of real-valued L2

ρpΩ,Cq-functions.

In what follows, we work under the conventions (a)–(b) on the numbering of λk.

Remark 2.1.

We do not give the proof of Theorem 2.1 in the course (for the proof, see [GT77]).

2.2 Spectral convergence under the homogenization.

Definition 2.1.

A vector v in a normed space V is called V -normalized if }v}V “ 1.

Definition 2.2 (reminder, dual space and weak-* convergence, e.g., [RS12, K13]).

Let K “ R oder K “ C. Let V be a normed space over K.

(a) The dual space V 1 is the linear space of continuous linear functionals φ : V Ñ K
equipped with the operator norm.

(b) A sequence of functionals tφnunPN Ă V 1 is weak-* convergent to φ P V 1 (the notation

is φn
˚

Ýá φ) if @v P V xv, φny :“ φnpvq converges to xv, φy :“ φpvq.

Remark 2.2.

(a) The dual space V 1 is always complete, i.e., it is always a Banach space. For example,

pL1pΩqq1 can be naturally identified with L8pΩq. So, a sequence tρnu Ă L8pΩq is

weak-* convergent exactly when there exists ρ P L8pΩq such that
ż

Ω

vρndx Ñ

ż

Ω

vρdx @v P L1pΩq.

(b) In a Hilbert space the weak convergence and weak-* convergence coincide. (Why?)
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Lemma 2.1 ([A02]).

(a) Let tρnunPN Ă L8pΩ, rρ´, ρ`sq be such that ρn
˚

Ýá ρ in L8pΩq. Then

ρ P L8pΩ, rρ´, ρ`sq.

(b) Let tAnunPN Ă L8pΩ,Msym
α,β q be such that An

H
ÝÑA. Then A P L8pΩ,Msym

α,β q.

The proof will be given later.

Theorem 2.2 ([A02]).

Let tAnunPN Ă L8pΩ,Msym
α,β q and tρnunPN Ă L8pΩ, rρ´, ρ`sq be such that An

H
ÝÑA and

ρn
˚

Ýá ρ in L8pΩq. Then:

(a) λkpAn, ρnq Ñ λkpA, ρq as n Ñ 8 @k P N.

(b) Let k P N. For each n, let unk be a certain L2-normalized eigenfunctions that solve

´∇ ¨pAn∇unkq “ λkpAn, ρnqρnu
n
k , x P Ω,

unkpxq “ 0, x P BΩ.

Then there exists a subsequence tu
nj

k ujPN of tunkunPN and a L2-normalized eigenfunc-

tion uk solving

´∇ ¨pA∇ukq “ λkpA, ρqρuk, x P Ω,

ukpxq “ 0, x P BΩ,

such that u
nj

k á uk in H1
0 pΩq as j Ñ 8.

The proof will be given later in Section 3

2.3 H-compactness, weak-*-compactness, and metrizability.

Theorem 2.3 (sequential H-compactness of L8pΩ,Mα,βq, [MT78], see also [A02]).

For every sequence tAnunPN Ă L8pΩ,Mα,βq, there exist a subsequence tAnjujPN and a

matrix-valued function A P L8pΩ,Mα,βq such that Anj

H
ÝÑA as j Ñ 8.

Theorem 2.4 (reminder, sequential Banach-Alaoglu Theorem, e.g., [RS12]).

Let V be a separable normed space. Then the closed unit ball B1p0V 1 ;V 1q in V 1 is sequen-

tially compact w.r.t. the weak-* convergence.

This is a standard theorem in Functional Analisys courses, so we use it without proof.

Corollary 2.1.

(a) Every closed ball in L8pΩq is sequentially compact w.r.t. weak-* convergence.

(b) In particular, for every sequence tρnunPN Ă L8pΩ, rρ´, ρ`sq, there exist a subsequence

tρnjujPN and a function ρ P L8pΩ,Mα,βq such that ρnj

˚
Ýá ρ as j Ñ 8.
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Proof. (a) Since L8pΩq “ pL1pΩqq1, B1p0;L8pΩqq is sequentially weak-* compact. Since

every closed ball Brpρ0p¨q;L8pΩqq in L8 can be obtained from B1p0;L8pΩqq by a ho-

mothety (homogeneous dilation) and shift, Brpρ0p¨q;L8pΩqq is also sequentially weak-*

compact.

(b) follows from (a) and the fact that L8pΩ, rρ´, ρ`s is a closed ball in L8.

Theorem 2.5 (metrizability).

(a) For every closed ball B in L8pΩq there exists a metric (distance-function) µw˚p¨, ¨q on

B such that the weak-* convergence in B coincides with the convergence of the metric

space pB,µw˚q.

(b) There exists a metric µHp¨, ¨q on L8pΩ,Mα,βq such that the H-convergence in

L8pΩ,Mα,βq coincides with the convergence of the metric space pL8pΩ,Mα,βq, µHq

(see [A02]).

Part (a) is sometimes covered by Functional Analysis courses, we give the sketch of the

proof later in Section 3. We also will prove there part (b) of this theorem.

Corollary 2.2.

(a) If An
H

ÝÑA and Anj

H
ÝÑB for a certain subsequence tAhj

ujPN, then A “ B almost

everywhere in Ω.

(b) In particular, an H-limit is unique if it exists.

(c) The metric space pL8pΩ,Mα,βq, µHq is compact.

Proof. Since the H-convergence is actually a convergence in a metric space, usual proper-

ties of general metric spaces imply (a) and (b). Statement (c) is a direct combination of

Theorems 2.3 and 2.5.

Remark 2.3.

Consider on L8pΩ,Msym
α,β q ˆ L8pΩ, rρ´, ρ`s the metric

µH,w˚
ptA1, ρ1u, tA2, ρ2uq :“ µHpA1, A2q ` µw˚pρ1, ρ2q.

Then Theorem 2.2 implies that the nonlinear functionals λk : tA, ρu ÞÑ λkpA, ρq are con-

tinuous on the metric space
´

L8pΩ,Msym
α,β q ˆ L8pΩ, rρ´, ρ`sq, µH,w˚

¯

.

2.4 Existence of optimizers for functionals λkp¨q.

Let F Ď L8pΩ,Msym
α,β q be a feasible family of structures Ap¨q. For A P L8pΩ,Msym

α,β q, let

λkpAq be the k-th eigenvalue of

´∇ ¨pA∇uq “ λu, x P Ω,

upxq “ 0, x P BΩ

(here ρ ” 1). Recall that FH
is the H-closure of F.

14



Theorem 2.6.

For all k P N,

inf
APF

λkpAq “ min
APFH

λkpAq, sup
APF

λkpAq “ max
APFH

λkpAq.

Proof. Step 1. As F Ď L8pΩ,Msym
α,β q, we see from Lemma 2.1 (b), that

FH
Ă L8pΩ,Msym

α,β q.

By Theorem 2.1, λkp¨q is well-defined on FH
.

Step 2. Lemma 2.1 (b) implies that FH
and L8pΩ,Msym

α,β q are closed subsets of the

compact metric space pL8pΩ,Mα,βq, µHq. Consequently, with the metric µH, F and

L8pΩ,Msym
α,β q are compact metric space themselves.

Step 3. Since λk : L8pΩ,Msym
α,β q Ñ R are continuous (nonlinear) functionals (see

Remark 2.3), they are bounded and achieve their maxima and minima on compact sets,

in particular, on F. Since 0 ă min
APFH

λkpAq by Theorem 2.1, we conclude that

0 ă min
APFH

λkpAq ď inf
APF

λkpAq ď sup
APF

λkpaq “ max
APFH

λkpAq ă `8.

Step 4. Let Amin be a minimizer for λk on FH
. Then there exists tAnunPN Ď F such that

An Ñ Amin. From the continuity of λkp¨q, we have λkpAnq “ λkpAminq “ min
APFH λkpAq

and so min
APFH λkpAq “ infAPF λkpAq. The proof of supAPF λkpaq “ max

APFH λkpAq is

similar.

Remark 2.4.

In the case of F “ Fα1,α2,Ω
γ of the first chapter, Theorem 2.6 becomes Theorem 1.2, which

is the starting point of [CL96].

2.5 General theorem on the existence of optimizers for λkpA, ρq.

Now let the structure of a composite material be described by a pair tAp¨q, ρp¨qu with

A P L8pΩ,Msym
α,β q and ρ P L8pΩ, rρ´, ρ`sq, where 0 ă ρ´ ď ρ` as before. Let λkpA, ρq be

the k-th eigenvalue of

´∇ ¨pApxq∇upxqq “ λρpxqupxq, x P Ω,

upxq “ 0, x P BΩ.

Let µw˚ be a certain metric on L8pΩ, rρ´, ρ`sq such that the corresponding convergence

is the weak-* convergence.

By Theorem 2.2 and Remark 2.3, L8pΩ,Msym
α,β q ˆ L8pΩ, rρ´, ρ`sq becomes a metric

space with the metric

µH,w˚
ptA1, ρ1u, tA2, ρ2uq :“ µHpA1, A2q ` µw˚pρ1, ρ2q.

Moreover, the functions λk : L8pΩ,Msym
α,β q ˆ L8pΩ, rρ´, ρ`sq Ñ R are continuous on this

metric space.
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Proposition 2.1.

The metric space
´

L8pΩ,Msym
α,β q ˆ L8pΩ, rρ´, ρ`sq, µH,w˚

¯

is compact.

The proof follows easily from Theorems 2.3, 2.4, and 2.5 (exercise).

Theorem 2.7.

Let F Ď L8pΩ,Msym
α,β q ˆL8pΩ, rρ´, ρ`sq be a feasible family of structures tA, ρu. Let F be

the closure of F w.r.t. the metric µH,w˚
. Then for all k P N,

0 ă min
tA,ρuPF

λkpA, ρq “ inf
tA,ρuPF

λkpA, ρq ď sup
tA,ρuPF

λkpA, ρq “ max
tA,ρuPF

λkpA, ρq.

The proof uses Proposition 2.1. In other points the proof is the same as the proof of

Theorem 2.6.

2.6 Existence of optimal non-homogeneous membranes.

Consider another important particular case. One can fix A ” IRd and take a certain family

F Ď L8pΩ, rρ´, ρ`sq of of weight-functions ρp¨q.

Then the application of Theorem 2.7 to F “ ttIRd , ρu : ρ P Fu gives the existence of

optimizers for the weighted Laplacian eigenproblem

´∆upxq “ λρpxqupxq, x P Ω,

upxq “ 0, x P BΩ.

This eigenvalue problem has a special applied name: vibrations of a non-homogeneous

membrane. In the case d “ 2, the domain Ω represents a membrane with possibly non-

homogeneous (mass) density ρpxq, x P Ω. Non-homogeneous means in this context non-

constant. The membrane is firmly fixed at the boundary BΩ, which corresponds to the

Dirichlet boundary condition upxq “ 0, x P BΩ.

The elastic properties of the membrane are assumed to be isotropic and homogeneous,

i.e., A is a constant scalar matrix cIRd , c P R`. By scaling we can reduce to the case

c “ 1. The eigenvalues λk “ λkpρq are squares ω2 of frequencies ω of eigenoscillations.

In the case d “ 1, this eigenproblem describes the eigenoscillations of a string.

Theorem 2.8.

Let F Ď L8pΩ, rρ´, ρ`sq be a feasible family of densities ρp¨q. Let Fw˚
be the closure of

F w.r.t. weak-* convergence. Then for all k P N,

0 ă min
ρPFw˚

λkpρq “ inf
ρPF

λkpρq ď sup
ρPF

λkpρq “ max
ρPFw˚

λkpρq.

Proof. The theorem is a direct corollary of Theorem 2.7 applied to F “ ttIRd , ρu : ρ P Fu.
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Remark 2.5.

For the problems of type

´∆upxq “ λρpxqupxq, x P Ω,

the appropriate homogenization convergence is the weak-* convergence for ρp¨q. Generally,

different types of equations require different types of homogenization convergiencies.

3 Properties of homogenization-convergencies.

3.1 Metrizability of weak-* convergences.

For more detailed theory of weak-* and weak convergences we refer to [KF67, DS88] (see

also less detailed expositions in [RS12, K13]).

Let V be a normed space. Let V 1 be the space of continuous linear functionals on V .

For φ P V 1 and v P V , we use the notation xv, φy “ φpvq, where the bilinear form x¨, ‹y on

V ˆ V 1 is called the pairing of V and V 1.

Exercise 3.1.

A linear functional φ on V is continuous if and only if it is bounded, i.e., if and only if

}φ}V 1 :“ sup
}v}V ď1

|xv, φy| ă `8.

The nonlinear functional } ¨ }V 1 is the norm in V 1, which makes V 1 a Banach space. The

definition of } ¨ }V 1 implies

|xv, φy| ď }v}V }φ}V 1 , @v P V, φ P V 1.

Exercise 3.2.

}φ}V 1 “ 0 ôôô xv, φy “ 0 @v P V (3.1)

The linear functional with the property (3.1) is called zero-functional and is denoted by

0 “ 0V 1 .

Exercise 3.3.

Let S be dense in V . Then

φ “ 0V 1 ôôô xv, φy “ 0 @v P S.

Exercise 3.4.

(a) µ0pz1, z2q “
|z1´z2|

1`|z1´z2|
is a metric on C.

(b) Let CN with N P N Y t8u be the linear space of all complex sequences z “ tzju
N
n“1.

In the case N “ 8 the standard notation for C8 is CN. Then

µN py, zq “

N
ÿ

n“1

2´n |yn ´ zn|

1 ` |yn ´ zn|

is a metric on CN .
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(c) The convergence in pCN , µN q is the componentwise convergense.

Assume now that the normed space V is separable, i.e., there exists a countable subset

S “ tvnunPN Ă V such that S “ V .

Theorem 3.1.

Let V be a separable normed space with a dense countable subset S “ tvnunPN. Then:

(a) The function

µw˚pφ1, φ2q “

8
ÿ

n“1

2´n |xvn, φ1 ´ φ2y|

1 ` |xvn, φ1 ´ φ2y|

is a metric on every closed ball Brpφ0q “ Brpφ0;V 1q in V 1.

(b) The convergence of functionals φ P Brpφ0q w.r.t. the metric µw˚ is weak-* conver-

gence.

(c) pBrpφ0q, µw˚q is a compact metric space.

Remark 3.1.

For metric spaces sequential compactness and their compactness (as topological spaces) are

equivalent.

Proof of Theorem 3.1. (a) We only need to prove that

µw˚pφ1, φ2q “ 0 ôôô φ1 “ φ2.

The other properties of a metric follow from Exercise 3.4 (b).

The implication “ð” is obvious.

Assume that µw˚pφ1, φ2q “ 0. Then xvn, φ1 ´ φ2y “ 0 @vn P S. Exercise 3.3 implies

that φ1 ´ φ2 “ 0V 1 .

(b) By scaling, it is possible to reduce the statement to the case of the closed unit ball

B1p0V 1q. Let us prove (b) for B1p0V 1q.

Assume φk
˚

Ýá φ as k Ñ 8, where φ,φk P B1p0V 1q. The sequence tzkukPN Ă C8 “ CN

of CN-sequences

zk “ pzknqnPN “ pxvn, φk ´ φyqnPN

converges to the zero-sequence 0CN componentwise. Thus, Exercise 3.4 (c) implies

µw˚pφk, φq Ñ 0.

Assume µw˚pφk, φq Ñ 0, where φ,φk P B1p0V 1q. By Exercise 3.4 (c), for all vn P S we

have lim
kÑ8

xvn, φk ´ φy “ 0.

Let v P V zS. Then, for every ε ą 0, there exists vn P S such that }vn ´ v}V ă ε{4. Let

us take k1 P N such that |xvn, φk ´ φy| ă ϵ{2 for all k ě k1. Then,

|xv, φk ´ φy| ď |xv ´ vn, φk ´ φy| ` |xvn, φk ´ φy| ă
ε

4
}φk ´ φ}V 1 `

ε

2
ă ε
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for all k ě k1. Thus, xv, ϕk ´ φy Ñ 0 for all v P V .

(c) follows from the Banach-Alaouglu Theorem (Theorem 2.4).

3.2 Additional properties of weak-* and weak convergencies.

We always assume that a field K is K “ R, or K “ C.

Definition 3.1.

Let E be a subset of a linear space V over K. The (linear) span of E, which is denoted

by spanpEq, is the set of all finite linear combinations of vectors from E.

Let again V be a normed space.

Proposition 3.1.

Let spanpEq “ V . A sequence tφkukPN Ă V 1 is weakly-* convergent if and only if the two

following conditions hold:

(a) tφkukPN is bounded,

(b) for a certain φ P V 1,

lim
kÑ8

xv, φk ´ φy “ 0 for all v P E. (3.2)

Remark 3.2.

A statement similar to Proposition 3.1 is valid also for the weak convergence in V with

the analogous proof.

Proof of Proposition 3.1. Step 1. Proof of “only if”. Let φk
˚

Ýá φ. Then the uniform

boundedness principle implies (a). Statement (b) holds in a stronger form for all v P V .

Step 2. Proof of “if”. Assume that (a) and (b) holds. Then (3.2) for all v P E implies

(3.2) for all v P spanpEq. Let tφkukPN be a bounded sequence in V 1. Using spanpEq “ V

and the ε-type estimate in the proof of Theorem 3.1 (b), we obtain (3.2) for all v P V , i.e.,

φk
˚

Ýá φ.

Let Ω Ă Rd be a domain.

Remark 3.3.

Let 1 ď q ď `8. Let E be the set of all indicator-functions χω for measurable subsets ω

of Ω. Then E Ă LqpΩq and spanpEq “ LqpΩq (where the closure is taken w.r.t. the strong

convergence of the corresponding space LqpΩq).

We see from Proposition 3.1 and Remark 3.3 that the weak-* convergence of sequence

tφkukPN in LppΩq with 1 ă p ď 8 is the combination of } ¨ }Lp-boundedness with the

convergence “in average”. The convergence “in average” can be understood as
ż

ω
φkpxqdx Ñ

ż

ω
φpxqdx @ measurable ω Ď Ω.
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Example 3.1.

The weak-* convergence of tρkukPN Ď L8pΩ, rρ´, ρ`sq is exactly convergence “in average”

since L8pΩ, rρ´, ρ`sq is bounded in L8pΩq.

Remark 3.4.

Let 1 ď q ă 8. Let E be the set of all indicator-functions χω for open (or closed)

d-dimensional cubes ω Ă Ω with sides parallel to coordinate axes. Then spanpEq “ LqpΩq.

Exercise 3.5 ([A02]).

Let unpxq “ sinpnx1q, where x “ px1, . . . , xdq P Ω.

(a) Find the weak limit w- limnÑ8 un in L2pΩq.

(b) Find limnÑ8 }un}L2pΩq.

Remark 3.5.

In reflexive Banach spaces weak-* topology (convergence) coincides with weak topology

(resp., convergence). This is the case, e.g., for the spaces LppΩq with 1 ă p ă 8.

Example 3.2.

Any Hilbert space X over K, e.g., H´1pΩq, L2pΩq, H1pΩq, or H1
0 pΩq, is a reflexive Banach

space.

Indeed, by the Riesz theorem, the paring xv, φy of v P X with φ P X 1 can be identified

with the inner product xx|wφyX , where the map φ ÞÑ wφ is a bijective isometry from X 1

onto X (moreover, in the case K “ R, this map is a isometric isomorphism).

3.3 The space of distributions H´1pΩq.

The identification of pH1
0 pΩqq1 with H1

0 pΩq by Riesz’s theorem, is not a unique reasonable

way to produce all bounded linear functionals on H1
0 pΩq. We consider another useful

approach to the space pH1
0 pΩqq1.

Since Ω is a bounded open set, the following compact embedding holds

H1
0 pΩq ãÑãÑ L2pΩq.

Presently, we need only a weaker statement that

the continuous embedding H1
0 pΩq ãÑ L2pΩq holds.

We need also the fact that H1
0 pΩq is dense in L2pΩq. The combination of such a density

property and a continuous embedding will be called a dense continuous embedding with

the notation V1
d

ãÑ V2. So,

H1
0 pΩq

d
ãÑ L2pΩq.

The continuous embedding implies that for every u P L2pΩq,

φupvq “ xv, φuy “ xv|uyL2pΩq
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defines a bounded functional φu on H1
0 pΩq, i.e., φu P pH1

0 pΩqq1.

The set tφu : u P L2pΩqu does not contain the whole pH1
0 pΩqq1. Actually the space

L2pΩq with the norm

}u}pH1
0 q1 “ }φu}pH1

0 q1

is not complete.

Definition 3.2 (space H´1pΩq).

The space H´1pΩ,Kq can be defined as a completion of
´

L2pΩ,Kq, } ¨ }pH1
0 pΩ,Kqq1

¯

.

Remark 3.6.

Let us provide a rigorous interpretation to the statement pH1
0 pΩqq1 “ H´1pΩq.

(a) The bounded bilinear form xv|uyL2 on H1
0 pΩq ˆ L2pΩq can be extended by continuity

to the pairing x¨, ¨y “ H1
0
x¨, ¨yH´1 of H1

0 pΩq and H´1pΩq. This pairing is a bounded

bilinear form on H1
0 pΩq ˆ H´1pΩq. Now every φ P pH1

0 pΩqq1 has a unique isometric

representation φpvq “ H1
0
xv, uφyH´1 with a certain distribution uφ P H´1pΩq.

(b) A similar statement is valid for the complex spaces H1
0 pΩ,Cq and H´1pΩ,Cq if one

replaces everywhere “bilinear form” with “sesquilinear form”.

The triple H1
0 pΩq, L2pΩq, H´1pΩq united by the two dense continuous embeddings

H1
0 pΩq

d
ãÑ L2pΩq

d
ãÑ H´1pΩq

is an example of a rigged Hilbert space. The space L2pΩq is called a pivot space of this

triple because its inner product is used to build the pairing H1
0
x¨, ¨yH´1 between the two

other spaces. It is said that H´1pΩq is dual to H1
0 pΩq w.r.t. the pivot space L2pΩq (or, in

short, w.r.t. the L2-paring).

3.4 Exercises for the construction of the space H´1pΩq.

More detailed constructions for rigged Hilbert spaces, for the spaces with the norm of

negative order of regularity, and, in particular, for the space H´1pΩq, can be found in the

monograph of Berezanskĭı [B68].

Let Ω Ă Rd again be a domain. For every u P L2pΩq, we consider φu P pH1
0 pΩqq1 defined

by φu “ xv|uyL2 .

Exercise 3.6.

Consider the map F : L2pΩq Ñ pH1
0 pΩqq1 defined by F : u ÞÑ φu. Prove the following

statements.

(a) F is injective.

(b) F is a bounded linear operator. Note that we are in the case K “ R. (How to modify

this statement for the similar map F : L2pΩ,Cq Ñ pH1
0 pΩ,Cqq1 in the complex spaces?)

(c) The operator F is not surjective.

Hints: The proof is by contradiction. Assume the surjectivity. Then (a), (b), and the
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bounded inverse theorem imply that F is homeomorphism and } ¨ }L2 and } ¨ }pH1
0 pΩqq1

are equivalent norms in L2pΩq. Here, } ¨ }pH1
0 q1 is perceived as the norm induced by F

in L2pΩq , i.e.,

}u}pH1
0 q1 “ sup

v‰0

xv|uyL2

}v}H1
0

. (3.3)

Show that this equivalence of norms leads to a contradiction.

(d) The image F pL2pΩqq is dense in pH1
0 pΩ,Cqq1.

Hints: The proof is by contradiction. Assume that F pL2pΩqq is not dense. Then

Dφ P pH1
0 pΩ,Cqq1zt0u such that φ K F pL2pΩqq (i.e., φ is orthogonal to F pL2pΩqq).

This leads to a contradiction (one can use, e.g., the identification of pH1
0 pΩqq1 and

H1
0 pΩq via the Riesz theorem in H1

0 pΩq).

(e) The completion H´1pΩq of pL2pΩq, } ¨ }pH1
0 q1q can be isometrically identified with

pH1
0 pΩqq1 via the pairing H1

0
x¨|¨yH´1 constructed in the end of section 3.3.

Hint: Use (d).

3.5 Metrizability of the H-convergence.

We have seen that for a dual V 1 of a separable normed space V we can metrize weak-*

convergence in bounded subsets of V 1 with the use of an arbitrary countable dense subset

tvnunPN of V . Namely, the construction of the corresponding metric on bounded subsets

of V 1 was

µw˚pφ1, φ2q “ µw˚,V 1pφ1, φ2q “

8
ÿ

n“1

2´n |xvn, φ1 ´ φ2y|

1 ` |xvn, φ1 ´ φ2y|
. (3.4)

We did this construction on closed balls. However it obviously generates weak-* conver-

gence on every bounded subset. Concerning the metric µw˚ on the whole V 1, see the

following exercises.

Exercise 3.7.

Note that µw˚ is a metric on the the whole V 1. However, generally, the convergence w.r.t.

µw˚ on the whole V 1 is not equivalent to weak-* convergence in V 1. Namely, weak-*

convergence always implies µw˚-convergence. However, there are separable normed spaces

V such that there exists a µw˚-convergent sequence in V 1 that is not weak-* convergent.

The understanding how and where this happens is the aim of this exercise.

(a) Let V “ V 1 “ ℓ2. Find a countable dense subset tvnunPN Ă ℓ2 and a sequence

tφnunPN Ă ℓ2 such that µw,ℓ2pφn, 0ℓ2q Ñ 0 for the metric defined similarly to (3.4) and

}φn}ℓ2 Ñ 8 as n Ñ 8. (3.5)

So, the sequence tvnunPN converges to 0ℓ2 in the metric space pℓ2, µw,ℓ2q. However,

due to (3.5), this sequence cannot be weakly convergent.

(b) For an arbitrary countable dense tvnunPN Ă ℓ2, show that there exists a sequence

tφnunPN with properties as in (a).
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Exercise 3.8.

Characterize all separable normed spaces V such that the convergence in pV 1, µw˚q is

equivalent to weak-* convergence in V 1.

If V is a reflexive Banach space with a separable dual V 1, then V “ V 2, and we denote

by µw “ µw,V a certain metric on bounded subsets of V that is defined by a formula

similar to (3.4) in such a way that µw-convergence is weak-convergence in every bounded

set of V . That is, for µw,V , we take a countable dense subset tvnunPN of V 1, and define by

(3.4) the metric µw,V pφ1, φ2q for φ1, φ2 P V .

Remark 3.7.

The Hilbert spaces H´1pΩq, L2pΩq, H1pΩq, and H1
0 pΩq are separable. Hence, we can

define similarly to (3.4) metrics that generate weak convergence on their bounded subsets.

In particular we can fix two such metrics µw,H1
0
and µw,L2 for the spaces H1

0 pΩq and L2pΩq.

Theorem 3.2 (metrizability of H-convergence).

Let tfnunPN be a countable dense subset of H´1pΩq. For A P L8pΩ,Mα,βq, let us define

uAn p¨q as the weak solution to

´∇ ¨pA∇uq “ fn, x P Ω

upxq “ 0, x P BΩ.

Let us consider the function defined for tA,Bu P L8pΩ,Mα,βq ˆ L8pΩ,Mα,βq by

µHpA,Bq “

8
ÿ

n“1

2´n
µw,H1

0
puAn , u

B
u q ` µw,L2pA∇uAn , B∇uBn q

1 ` µw,H1
0
puAn , u

B
u q ` µw,L2pA∇uAn , B∇uBn q

.

Then:

(a) pL8pΩ,Mα,βq, µHq is a metric space.

(b) The convergence defined on L8pΩ,Mα,βq by the metric µH is the H-convergence.

We need some preparational results in order to prove this theorem. The metric µH
defined here is different from the metric introduced in [A02] in order to metrize the H-

convergence, but the idea is essentially the same.

3.6 Solvability of the Dirichlet problem.

Again we have α, β P R` “ p0,`8q constants such that 0 ă α ă β´1 and

Mα,β :“ tM P Rdˆd : α|y|2 ď xMy|yyRd , xM´1y|yyRd ě β|y|2 @y P Rdu.

Let A P L8pΩ,Mα,βq and f P H´1pΩq.

Recall that a function u P H1
0 pΩq is called a weak solution to the problem

´∇ ¨pA∇uq “ f, x P Ω (3.6)

upxq “ 0, x P BΩ (3.7)
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if ż

Ω
pA∇uq ¨ p∇ vqdx “ H´1xf, vyH1

0
@v P H1

0 pΩq.

We use here H´1xf, vyH1
0

“H1
0

xv, fyH´1 .

Definition 3.3.

(a) A bilinear form bp¨, ¨q on a normed space V is called bounded if

|bpu, vq| À }u}V }v}V @u, v P V,

i.e., if

|bpu, vq| ď C}u}V }v}V @u, v P V (3.8)

with a certain constant C ą 0.

(b) A bilinear form bp¨, ¨q on a normed space V is called coercive if

}v}2V À |bpv, vq| @v P V,

i.e., if

γ}v}2V ď |bpu, vq| @v P V (3.9)

with a certain constant γ ą 0.

Example 3.3.

Let the bilinear form b : H1pΩq ˆH1pΩq Ñ R be defined by bpu, vq “
ş

Ω

p∇uq ¨ p∇ vqdx.

(a) The Poincare inequality on H1
0 pΩq states that b is coercive on H1

0 pΩq.

(b) Obviously, b is not coercive on H1pΩq.

(c) It is easy to see that b is a bounded bilinear form on H1pΩq.

(d) The formula

|v|H1
0

“

¨

˝

ż

Ω

|∇ v|2dx

˛

‚

1{2

defines an equivalent norm in H1
0 pΩq. This follows from (a).

Theorem 3.3 (Lax-Milgram lemma).

Let b : V ˆ V be a bounded coercive bilinear form on a Hilbert space V . Then for every

φ P V 1 the variational problem

bpu, vq “ φpvq @v P V

has a unique solution u P V . Moreover,

}u}V ď
1

γ
}φ}V 1 ,

where γ is the constant from (3.9).
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This theorem we do not prove. The proof can be obtained, e.g., by a very minor

modification from the proof of the Lax-Milgram lemma for K “ R in [GT77].

Theorem 3.4 (solvability of the Dirichlet boundary value problem (BVP)).

Let A P L8pΩ,Mα,βq. Then:

(a) The bilinear form

bApu, vq “

ż

Ω
pA∇uq ¨ p∇ vqdx,

is bounded and coercive on H1
0 pΩq with the estimate

α|v|H1
0

ď bApv, vq @v P H1
0 pΩq.

(b) For every f P H´1pΩq, the Dirichlet problem (3.6)-(3.7) has a unique weak solution

u P H1
0 pΩq. Moreover,

|u|H1
0

ď
1

α
|f |H´1 ,

where

|f |H´1 :“ sup
v‰0

| H´1xf, vyH1
0

|

|v|H1
0

.

In other words, Theorem 3.4 considers H1
0 pΩq as a Hilbert space with the inner product

pu|vqH1
0

“
ş

Ωp∇uq ¨ p∇ vqdx instead of the standard inner product. This inner product

generates the norm of Example 3.3 (d).

Proof of Theorem 3.4. The coercivity in statement (a) follows from A P L8pΩ,Mα,βq,

Example 6.1 (d), and the pointwise inequality

α|y|2 ď xApxqy|yyRd , y P Rd

which is valid for almost all x P Ω (see the definition of the family Mα,β).

The boundedness in statement (a) follows from the 2nd inequality in the definition of

Mα,β

β|y|2 ď xpApxqq´1y|yyRd , y P Rd, (3.10)

which is also valid for almost all x P Ω. Indeed, let us take z “ pApxqq´1y. Then (3.10)

implies

β|Apxqz|2 ď xz|ApxqzyRd ď |z| |Apxqz|,

where the Cauchy–Bunyakovsky–Schwarz inequality is used. So |Apxqz| ď 1
β |z| and using

the Cauchy–Bunyakovsky–Schwarz inequality again we get

xApxqz|zyRd ď |Apxqz| |z| ď
1

β
|z|2 (3.11)

for all z P Rd and for almost all x P Ω. This estimate implies the boundedness of bAp¨, ¨q.

Statement (b) follows from (a) and the Lax-Milgram lemma.
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Exercise 3.9.

Let φ P pH1
0 pΩqq1 be defined by φpvq “ xv|wyL2 with w P L2pΩq or, more generally, by

φpvq “ H1
0
xv, wyH´1 with w P H´1pΩq.

(a) By Riesz’s theorem there exist a unique u P H1
0 pΩq such that φpvq “ pv|uqH1

0
for all

v P H1
0 pΩq. How to find this u?

(b) Show that, for u from (a), we always have p´∆qu “ w in the sense of distributions.

How the norms |u|H1
0
and |w|H´1 are connected?

(c) Prove that f P H´1pΩq if and only if f is a distribution having a representation

f “ ∆v with a certain v P H1
0 pΩq. Prove that, for this representation, |v|H1

0
“ |f |H´1 .

(d) Show that f P H´1pΩq if and only if f is a distribution with the property that there

exists gj P L2pΩq, j “ 1, . . . , d, such that f “
d
ř

j“1

Bgj
Bxj

in the sense of distributions.

Let g P L2pΩ,Rdq be defined by g “ pg1, . . . , gdq. How are the norms }g}L2 and f

connected?

Corollary 3.1.

The linear operator

LA : H1
0 pΩq Ñ H´1pΩq

defined by LApvq “ ´∇ ¨pA∇ vq is a homeomorphism. (Note that the differentiations here

are understood in the sense of distributions).

Proof. Theorem 3.4 implies that the operator MA “ L´1
A is continuous from H´1pΩq to

H1
0 pΩq. For every v P H1

0 pΩq, we have g “ A∇ v P L2pΩ,Rdq. By Exercise 3.9 (d), the

distribution LAv “ ∇ ¨g belongs to H´1pΩq. Hence, MA “ L´1
A is surjective, and so

bijective. The bounded inverse theorem completes the proof.

3.7 Proof of Theorem 3.2 (on the metrizability of H-convergence).

We split the proof into several steps and start from the verification of the properties of a

metric for µH.

Step 1. The symmetry property for µH is obvious. Let us prove the triangle inequality

for µH. For each n and A,B P L8pΩ,Mα,βq, consider the function

µnpA,Bq “ µw,H1
0
puAn , u

B
n q ` µw,L2pA∇uAn , B∇uBn q.

As we discussed before, µw,V is a metric on a normed space V (which induces weak

convergence on bounded subsets of V ). Hence,

0 ď µnpA,Cq ď µnpA,Bq ` µnpB,Cq, A,B,C P L8pΩ,Mα,βq.

Now the triangle inequality for µH follows from the following statement: if a, b, c P r0,`8q

satisfy 0 ď a ď b` c, then
a

1 ` a
ď

b

1 ` b
`

c

1 ` c
.
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Step 2. It is obvious that A “ B almost everywhere in Ω ñññ µHpA,Bq “ 0. Let us

prove that µHpA,Bq “ 0 ñññ A “ B almost everywhere in Ω. Note that

µHpA,Bq “ 0 ñññ 0 “ µw,H1
0
puAn , u

B
n q “ µw,L2pA∇uAn , B∇uBn q

ñññ uAn “ uBn in H1
0 pΩq and A∇uAn “ B∇uBn in L2pΩ,Rdq for all n.

Using the operatorsMA “ L´1
A from Corollary 3.1, we write these equalities asMAfn “

MBfn in H1
0 pΩq and A∇pMAfnq “ B∇pMBfnq in L2pΩ,Rdq for the dense in H´1pΩq set

tfnunPN.

By Theorem 3.4, MA and MB are bounded and continuous as operators from H´1pΩq

to H1
0 pΩq. Hence,

MAf “ MBf @f P H´1pΩq. (3.12)

Similarly, since the operator grad : u Ñ ∇u is bounded and continuous from H1pΩq to

L2pΩ,Rdq, we get

A gradMAf “ B gradMBf @f P H´1pΩq. (3.13)

Let us show that (3.12)-(3.13) implies A “ B almost everywhere in Ω. Let a closed set ω

be such that

ω ĂĂ Ω, i.e., ω is compactly embedded into Ω.

In our settings, this means that ω is compact and ω Ă Ω. There exists φ P C8
0 pΩq such

that φpxq “ 1 for x P ω.

Take an arbitrary y P Rd and

f “ ´∇ ¨pA∇pφpxqy ¨ xqq,

we get from φpxqy ¨ x P H1
0 pΩq and (3.12) that

u “ MBf “ MAf “ φpxqy ¨ x, x P Ω.

From ∇u “ y in ω and (3.13) we get

Ay “ A∇u “ B∇u “ By

in the sense of L2pΩ,Rdq for any y P Rd. This implies that A “ B almost everywhere in

any compact subset of Ω, and in turn, almost everywhere in Ω.

We proved that pL8pΩ,Mα,βq, µHq is a metric space. Now we proof part (b).

Step 3. Let us prove that the convergence in the metric space pL8pΩ,Mα,βq, µHq is the

H-convergence.

First we show that the H-convergence implies the µH-convergence. Indeed, for every

n P N, Ak
H

ÝÑA˚ implies that uAk
n á uA˚

n inH1
0 pΩq and Ak ∇uAk

n á A˚ ∇uA˚
n in L2pΩ,Rdq

as k Ñ 8. So µnpAk, A˚q “ µw,H1
0
puAk

n , uA˚
n q ` µw,L2pAk ∇uAk

n , A˚ ∇uA˚
n q goes to 0 as

k Ñ 8 for all n, and in turn, µHpAk, A˚q Ñ 0.
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Let us prove the inverse implication. Let µHpAk, A˚q Ñ 0. Then for all n

µw,H1
0
puAk

n , uA˚
n q Ñ 0, (3.14)

µw,L2pAk ∇uAk
n , A˚ ∇uA˚

n q Ñ 0, (3.15)

as k Ñ 8.

From Theorem 3.4, it follows that

|uAk
n |H1

0
ď

1

α
|fn|H´1 @k, n P N. (3.16)

So (3.14) and (3.16) imply uAk
n á uA˚

n in H1
0 pΩq as k Ñ 8. Similarly, (3.16) im-

plies }Ak ∇uAk
n }L2 ď 1

αβ |fn|H´1 for all k and n. Together with (3.15), this implies

Ak ∇uAk
n á A˚ ∇uA˚

n in L2pΩ,Rdq as k Ñ 8 for all n.

We proved the desired weak convergencies from the definition of H-convergence for all

f in the dense subset tfnunPN of H´1pΩq. In order to extend these weak converegencies

to all f P H´1pΩq, one uses Proposition 3.2 below. To formulate Proposition 3.2, we need

some preparations.

Let V and U be Banach spaces. Following [A02], let us denote by LCpV,Uq the space

of linear continuous operators T : V Ñ U equipped with the operator norm } ¨ }. Recall

that LCpV,Uq is a Banach space.

Remark 3.8.

We use the standard terminology of [DS88, § II.3.25] and [KF67] for weak convergence.

That is, let V be a normed space. A sequence tvnunPN Ă V is called weak convergent in

V if there exists v P V such that xvn, φy Ñ xv, φy @φ P V 1. Note that, the monograph of

Kato [K13] uses slightly different and not completely equivalent terminology.

Definition 3.4.

A sequence tTnunPN of bounded (linear) operators Tn : V Ñ U from a Banach space V to

a Banach space U is said to converge weakly if Tnv converges weakly in U for every v P V .

Exercise 3.10 (see [K13, Section III.3.1], [RS12, Theorem VI.1]).

Let tTnunPN Ă LCpV,Uq be a sequence of bounded operators from a Banach space V to a

Banach space U .

(a) If tTnunPN converges weakly, then there exists a unique T P LCpV,Uq such that

Tnv á Tv in U for all v P V . In this case, one says that tTnunPN converges weakly to

T and writes Tn
w

ÝÑ T .

(b) If tTnunPN converges weakly, then tTnunPN is bounded, i.e., there exists C ą 0 such

that }Tn} ď C for all n. In this case, for the weak limit T “ w- limTn, one has

}T } ď C.

Proposition 3.2.

Let tTnunPN be a bounded sequence of bounded operators from a Banach space V to a
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Banach space U . Let S1 be dense subset of V and S2 be a dense subset of U 1. Then Tn
is weakly convergent if xTnv, φy Ñ xuv, φy with a certain uv P U (depending on v) for all

v P S1 and φ P S2.

We give the proof of this proposition later.

Remark 3.9.

Note that special weak convergence of operators Tn P LCpV,Uq, n P N, defined above in

Definition 3.4 does not necessarily coincide with the weak convergence in the Banach space

LCpV,Uq. Generally, weak convergence in the Banach space LCpV,Uq is stronger property

than the weak convergence of operators (for the case, where V “ U is a Hilbert space, see

the detailed explanations in [RS12, Sections VI.1 and VI.6]).

Proposition 3.2 applied to operatorsMAk
“ pdivAk gradq´1 P LCpH´1pΩq, H1

0 pΩqq and

to operators Ak gradMAk
P LCpH´1pΩq, L2pΩ,Rdqq completes the proof of Theorem 3.2.

4 Abstract G-convergence and weak operator convergence.

4.1 Weak convergence and compactness for operators.

The next big aim is to give the proof of the H-compactness of L8pΩ,Mα,βq, which requires

more results on weak convergence and weak compactness for operators. That is why our

next small aim is to prove Proposition 3.2 and consider weak convergence of operators in

more detail.

Let V and U be Banach spaces. Recall that LCpV,Uq is the Banach space of linear

continuous operators T : V Ñ U equipped with the operator norm } ¨ }.

Exercise 4.1.

(a) For every v P V , there exists φ P V 1 such that }φ}V 1 “ 1 and xv, φy “ }v}V (see [K13,

Sect. III.1.4]).

(b) The norm } ¨ } is weakly lower semicontinuous, i.e., if vn á v in V , then }v}V ď

lim infnÑ8 }vn}.

Hint: use (a).

(c) If Tn
w

ÝÑ T0 for tTnunPN Ă LCpU, V q, then }T0} ď lim infnÑ8 }Tn}.

Hint: use (b).

Proof of Proposition 3.2. Since }Tn} ď C for all n, the sequence tTnvunPN is bounded

for every v P V . From the assumption of the proposition and the criterion of weak

convergence in U (see Remark 3.2), we see that Tnv á uv for every v P S1. We denote

this limit Tv :“ uv. This weak convergence Tnv can be extended to v P spanpS1q and

defines on the linear (possibly nonclosed) subspace spanpS1q the linear operator Tv in such

a way that

Tnv á Tv in U @v P spanpS1q.
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The subspace spanpS1q is equipped with the norm of V . Then Exercise 4.1 (a) implies

}T } ď C. So T can be extended by continuity to the whole V with }T } ď C for this

extended operator.

Let now v P V be arbitrary. Then @ε ą 0, there exists v1 P spanpS1q such that

}v ´ v1}V ă ε (or there exists v1 P S1 with the same property; the use of dense subset S1
or dense subset spanpS1q plays here no difference). Then for every φ P U 1,

|xTnv, φy ´ xTv, φy| ď |xpTn ´ T qpv ´ v1q, φy| ` |xpTn ´ T qv1, φy|

ď 2Cε}φ}U 1 ` |xpTn ´ T qv1, φy|.

Similarly to the proof of Theorem 3.1 (b), this implies xTnv, φy Ñ xTv, φy. That is,

Tn
w

ÝÑ T .

Theorem 4.1 (see e.g. [DS88, Theorem II.3.28]).

Let U be a reflexive Banach space. Then every bounded sequence in U contains a weakly

convergent subsequence.

Theorem 4.1 we take without a proof. (Note that there is no the assumption that U 1 is

separable, and so its is not immediate corollary of the Banach-Alaoglu theorem).

Proposition 4.1 (on the compactness for weak operator convergence, see e.g. [A02]).

Let V be a separable Banach space, and let U be a reflexive Banach space. Let tTnunPN Ă

LCpV,Uq be a bounded sequence of operators. Then there exists T0 P LCpV,Uq and a

subsequence tTnk
ukPN such that Tnk

w
ÝÑ T0.

Proof. Let C be such that }Tn} ď C for all n. Let S “ tfjujPN be a dense countable

subset of V . For every f P S, the sequence tTnfu is bounded in U . Applying Theorem

4.1, we see that there exists a subsequence tT
nf
k
fukPN such that T

nf
k
f á uf in U for a

certain uf P U . Here the increasing sequence tnfkukPN Ă N depends on the choice of f ,

and uf depends on the choice of f and tnfkukPN.

Consider now the procedure of the extraction of a diagonal subsequence. For f1 P S,

there exists a subsequence tnf1k ukPN such that T
n
f1
k

f1 á uf1 in U . From this subsequence

we choose an increasing subsequence tnf2k ukPN Ď tnf1k ukPN such that T
n
f2
k

f2 á uf2 , and so

on. Then the diagonal subsequence tnfkk u satisfies

T
n
fk
k

f á uf @f P S “ tfjujPN.

This defines a linear operator T , for a time being on spanpSq, by

T p

N
ÿ

j“1

cjfjq “

N
ÿ

j“1

cjufj .

From Exercise 4.1 (b), }T } ď C. So we can extend this operator by continuity to the

whole V saving the inequality }T } ď C for the extended operator.
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Summarizing, there exists T P LCpV,Uq and a subsequence tnkukPN “ tnfkk ukPN such

that

Tnk
f á Tf @f P spanpSq. (4.1)

It remains to extend (4.1) to all f P V using the density S “ V . This can be done via

the estimates with approximation of arbitrary v P V by f P S similar to that of the proofs

of Proposition 3.2 and Theorem 3.1 (b).

Remark 4.1 ([DS88, § II.3.25]).

Let V be a normed space.

(a) A sequence tvnunPN Ă V is called a weak Cauchy sequence (in V ) if txvn, φyunPN is a

Cauchy sequence @φ P V 1.

(b) Equivalently, tvnunPN Ă V is a weak Cauchy sequence if and only if txvn, φyunPN
converges (in R or C) @φ P V 1.

(One has to be careful with the terminology for weak convergence in the book [K13],

because in [K13] weak Cauchy sequences are called weak convergent, and weak conver-

gent sequences in the standard sense are called weak convergent to a certain element

v P V . That is, the definition of weak convergent sequences in [K13] is generally not

equivalent to the standard definition. These definitions are equivalent in the special

situation of weak complete spaces.)

(c) If every weak Cauchy sequence in V is weak convergent in V , the space V is called

weakly complete.

Exercise 4.2.(a) If a normed space V is weakly complete, it is complete.

(b) There exist Banach spaces that are not weakly complete.

Hint: try V “ Cr0, 1s or V “ c0 (see [DS88, Table IV.A]).

(c) Every reflexive Banach space is weakly complete.

Hint: use Theorem 4.1.

Remark 4.2.

There exist Banach spaces V having a separable pre-dual and simultaneously not weakly

complete, e.g., V “ ℓ8 [DS88, IV.13.5].

4.2 Abstract G-convergence of operators.

Let V be a separable reflexive Banach space. Assume that T P LCpV, V 1q satisfies for a

certain α ą 0 the coercivity estimate

α}v}V ď xTv, vy @v P V. (4.2)

Then the Lax-Milgram lemma implies that T is invertible and

}T´1} ď
1

α
.
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Assume now that T´1 satisfy the coercivity estimate for a certain β ą 0

β}f}V 1 ď xT´1f, fy @f P V 1. (4.3)

Then

β}f}V 1 ď }T´1f}V }f}V 1 ď
1

α
}f}2V 1 @f P V 1,

and so α ď 1
β . Recall that we use the notation R˘ “ tα P R : ˘α ą 0u.

Definition 4.1.

We define

(a) EpV q :“ tT P LCpV, V 1q : (4.2) is satisfied for a certain α ą 0u

(b) for α, β P R` satisfying α ď β´1

Eα,βpV q :“ tT P LCpV, V 1q : T satisfies (4.2), T´1 satisfies (4.3)u.

Definition 4.2 (Spagnolo [S76]).

Let tTnunPN Ă EpV q and T P EpV q. The sequence tTnu is said to G-converge to T if

T´1
n

w
ÝÑ T´1. In this case, we write Tn

G
ÝÑT .

Theorem 4.2 (G-compactness, [S76], see also [A02, JKO12]).

Let α, β P R` satisfy α ď β´1. Let V be a separable Banach space. Then for every

sequence tTnunPN Ă Eα,βpV q, there exists a subsequence tTnk
u such that Tnk

G
ÝÑT for a

certain T P EpV q. In this case, T P Eα,βpV q.

Exercise 4.3 ([B11, Corollaries 3.21 and 3.27]).

(a) A Banach space V is reflexive if and only if V 1 is reflexive.

(b) Banach space V is reflexive and separable if an only if V 1 is reflexive and separable.

Proof of Theorem 4.2. Using Exercise 4.3 and Proposition 4.1, we may pass to a weak

limit S “ w- limkÑ8 T´1
nk

on a certain subsequence tT´1
nk

u. Then the appropriate coercivity

estimates for S and T :“ S´1 can be obtained passing to limits for appropriately written

coercive estimates for Tnk
and T´1

nk
.

Corollary 4.1 (application of the abstract G-convergence to divA grad-operators).

Let tAnunPN Ă L8pΩ,Mα,βq. Let LAn P LCpH1
0 pΩq, H´1pΩqq be defined by

LAn “ ´divAn grad,

and let Qn P LCpH´1pΩq, L2pΩ,Rdqq be defined by

Qn “ An gradL
´1
An
.

Then there exists a subsequence tnku Ă N, an operator T0 P Eα,βpH1
0 pΩqq, and an operator

Q0 P LCpH´1pΩq, L2pΩ,Rdqq such that

L´1
Ank

w
ÝÑ T´1

0 and Qnk

w
ÝÑ Q0.
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Here H1
0 pΩq and H´1pΩq are percieved as mutually dual spaces equipped with norms | ¨ |H1

0

and | ¨ |H´1.

Proof. The proof is based on Theorem 4.2 and Proposition 8.2. In the proof, we denote

Ln :“ LAn for brevity.

Step 1. We show that tLnu Ă Eα,βpH1
0 pΩq, H´1pΩqq. The estimate (4.2) for Ln follows

from the coercivity estimates for An. In order to get (4.3), we write using the coercivity

estimates for A´1
n .

xLnv, vy “

ż

ω
xAn∇ v,A´1

n An∇ vydx ě β}An∇ v}L2 .

For any f P H´1pΩq, we put v “ L´1
n f . This gives

β}Qnf}L2 ď xf, L´1
n fy. (4.4)

On the other hand,

|f |H´1 “ sup
w‰0

|xAn∇ v|∇wyL2 |

|w|H´1

ď }An∇ v}L2 “ }Qnf}L2 . (4.5)

Estimates (4.4)-(4.5) imply (4.3) for L´1
n .

Step 2. We apply Theorem 4.2 to tLnu and get, after passing to a subsequence,

L´1
nk

w
ÝÑ T´1

0 for a certain T0 P Eα,βpH1
0 pΩqq.

Step 3. The sequence tQnu is bounded in LCpH´1pΩq, L2pΩ,Rdqq. Indeed, using the

coercivity estimate for A´1
n and then }L´1

n } ď 1{α, we get

}Qnf}L2 “ }An gradL
´1
n f}L2 ď β´1}∇pL´1

n fq}L2 “ β´1|L´1
n f |H1

0
ď

1

βα
|f |H´1 .

Step 4. We apply Proposition 8.2 to the bounded subsequence tQnk
u. After passing to a

suitable subsequence one more time, Proposition 8.2 produces the subsubsequence, which

with some abuse of notation we keep indexing by nk, such that Qnk

w
ÝÑ Q0 for a certain

Q0 P LCpH´1pΩq, L2pΩ,Rdqq. Thus, Qnk

w
ÝÑ Q0 and L´1

nk

w
ÝÑ T´1

0 simultaneously.

5 The space pH1pΩqq1 and oscillatory test functions.

5.1 Oscillating test functions.

The proof of the H-compactness of L8pΩ,Mα,βq is based on two methods of Murat and

Tartar [MT78, A02], namely, oscillating test functions and the compensated compactness.

Lemma 5.1 (oscillating test functions [MT78]).

Let tAnunPN Ă L8pΩ,Mα,βq. Let 1 ď j ď d. Then there exists a subsequence tnkukPN Ă N
and a sequence of test functions twj

kukPN “ twkukPN Ă H1pΩq with the properties:

(a) wk á xj in H1pΩq, where by xj we denote a C8pΩq-function x ÞÑ xj,
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(b) For all k P N,

´∇ ¨pAnk
∇wkq “ g in the sense of distributions for a certain g P H´1pΩq.

(c) Ank
∇wk á aj in L2pΩ,Rdq for a certain vector-field aj P L2pΩ,Rdq.

This lemma is proved in Section 5.1 after some preparations are done in Section 5.2.

Remark 5.1.

The role of the collection of the vector-fields a1p¨q, . . . , adp¨q is that, taken as vector-

columns, they together produce a matrix-function A˚pxq “ pa1pxq, . . . , adpxqq. Later it

will be shown that A˚ is a homogenized matrix-function in the sense that A˚ is the H-limit

of the subsequence tAnk
ukPN. As soon as this fact is proved, this proves Theorem 2.3 about

the compactness of L8pΩ,Mα,βq.

5.2 The space pH1pΩqq1 and weak convergence in H1pΩq.

We identify pairs of w0 P L2pΩq and w1 P L2pΩ,Rdq with vector-fields w “ pw0, w1q P

L2pΩ,Rd`1q. For the description of the spaces pW k,ppΩqq1 see [A75].

Theorem 5.1 (description of pH1pΩqq1).

(a) For every w “ pw0, w1q P L2pΩ,Rd`1q, the formula

xv, ψwy “ xv|w0yL2 ` x∇ v|w1yL2

defines φw P pH1pΩqq1.

(b) The mapping

F : w ÞÑ φw, F : L2pΩ,Rd`1q Ñ pH1pΩqq1

is surjective.

(c) For every φ P pH1pΩqq1, the norm of linear functional φ equals

}φ}pH1q1 “ mint}w}L2 : φ “ φwu.

Proof. (a) It follows from the definition of the norm in H1pΩq and the Cauchy-Bunyakov-

sky-Schwarz inequality that

|xv, ϕwy| ď }v}L2}w0}L2 ` }∇ v}L2}w1}L2 ď }v}H1}w}L2 . (5.1)

This implies (a).

(b) follows from the Riesz representation theorem in Hilbert spaces. That is, for every

φ P pH1pΩqq1 there exists a unique u P H1pΩq such that

xv|φy “ xv, uyH1 “ xv|uyL2 ` x∇ v|∇uyL2 “ xv|φwy

with w “ pu,∇uq. Moreover, in this case,

}φ}pH1q1 “ }u}H1 “ }w}L2 . (5.2)

(c) follows from (5.1) and (5.2).
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Corollary 5.1.

The weak convergence vn á v0 in H1pΩq holds if and only if

xvn|w0yL2 ` x∇ vn|w1yL2 Ñ xv0|w0yL2 ` x∇ v0|w1yL2 @w P L2pΩ,Rd`1q.

Proof. Corollary 5.1 follows from Theorem 5.1.

Corollary 5.2.

Let Ω and pΩ be domains in Rd such that Ω Ă pΩ. Then, for every φ P pH1pΩqq1, there

exists pφ P pH1ppΩqq1 such that

} pφ}
pH1ppΩqq1 ď }φ}pH1pΩqq1

and, for the restriction v|Ω of an arbitrary v P H1ppΩq, the following equality holds

φpv|Ωq “ pφpvq.

Proof. Let φ P pH1pΩqq1. As in the proof of Corollary 5.1, there exists a unique u P H1pΩq

such that

xv|φy “ xv|uyL2 ` x∇ v|∇uyL2 “ xv|φwy

with w “ pw0, w1q “ pu,∇uq. Let us extend w to a function pw P L2ppΩ,Rd`1q by zero,

i.e., pwpxq “ 0 for x P pΩzΩ and pwpxq “ wpxq for x P Ω. Then pφ “ φ
pw satisfies the desired

properties.

Corollary 5.3.

Let Ω and pΩ be domains in Rd such that Ω Ă pΩ. Let vn á v0 in H1ppΩq (or in H1
0 ppΩq).

Then vn|Ω á v0|Ω in H1pΩq.

Proof. For every φ P pH1pΩqq1, we can use the extension of Corollary 5.2. This and

Corollary 5.1 show that vn á v0 in H1ppΩq implies vn|Ω á v0|Ω in H1pΩq. If vn á v0 in

H1
0 ppΩq, we also have vn á v0 in H

1ppΩq. Thus, vn|Ω á v0|Ω in H1pΩq follows as above.

5.3 The proof of Lemma 5.1 (on oscillating test functions).

Exercise 5.1.

Let Ω and pΩ be domains in Rd such that Ω Ă pΩ. Let u P H1ppΩq. Then the restriction u|Ω

belongs to H1pΩq and ∇pu|Ωq “ p∇uq|Ω in the L2-sense.

The proof of Lemma 5.1 is given in several steps.

Step 1. Let us consider a certain domain pΩ such that Ω Ă pΩ. We extend An to pΩ

such that the extended An belongs to L8pΩ,Mα,βq, for example, such an extension can

be done by Anpxq “ αIR3 for x P pΩzΩ.

We apply Corollary 4.1 to the operators pLAn “ ´ divAn grad and pQAn “ An grad pL´1
An

corresponding to the domain pΩ. This produces a subsequence tnku Ă N, an operator
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pT0 P Eα,βpH1
0 ppΩqq, and an operator pQ0 P LCpH´1ppΩq, L2ppΩ,Rdqq such that

pL´1
Ank

w
ÝÑ pT´1

0 and pQnk

w
ÝÑ pQ0.

Step 2. Let us take a smooth cut-off function ψ P C8
0 ppΩq such that ψpxq “ 1 for x P Ω.

Denote by ψxj the C8
0 ppΩq-function x ÞÑ ψpxqxj .

Let pg P H´1ppΩq be defined by pT0pψxjq, and let g P H´1pΩq be the restriction of the

functional pg, i.e.,

g “ pg|H1
0 pΩq.

Let

pwk “ pL´1
Ank

pg.

So pwk P H1
0 ppΩq. The sequence of “oscillating test functions” corresponding to a coordinate

j P t1, . . . , du is defined by

wk “ pwk|Ω (see Exercise 5.1).

Step 3. Let us show now that the sequence of functions wk satisfies properties (a)-(c)

of Lemma 5.1.

Since pL´1
Ank

w
ÝÑ pT´1

0 , we have pwk “ pL´1
Ank

pg
w

ÝÑ pT´1
0 pg “ ψxj in H

1
0 ppΩq. Hence, Corollary

5.3 implies wk á xj in H1pΩq. This proves (a).

Considering the equality pLAnk
pwk “ pg in the space H´1ppΩq and coupling it with the test

functions v P H1
0 pΩq, one gets (b).

Since pQnk

w
ÝÑ pQ0, we have

pQAnk
pg “ Ank

grad pL´1
Ank

pg “ Ank
grad pwk

w
ÝÑ pQ0pg

with the weak convergence in the L2-sense. We test this weak convergence on vector-fields

v P L2pΩ,Rdq extended to pv P L2ppΩ,Rdq by 0 in pΩzΩ. With the use of Exercise 5.1, this

shows that

xAnk
∇ pwk | pvyL2 “ x Ank

p∇ pwkq|Ω | v yL2 “ x Ank
∇p pwk|Ωq | v yL2 “ x Ank

∇wk | v yL2 ,

and that x Ank
∇wk | v yL2 converges to xp pQ0pgq|Ω | vyL2 as k Ñ 8 for all v P L2pΩ,Rdq.

Thus, Ank
∇wk á aj in L2pΩ,Rdq with

aj “ p pQ0pgq|Ω.

This completes the proof of Lemma 5.1.

6 Compensated compactness and G-convergence for 2nd or-

der elliptic equations.

6.1 Compensated compactness.

Let V be a Hilbert space. Recall that the notation vn Ñ v in V means the strong

convergence of the sequence tvnu to v in the space V .
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Exercise 6.1.

(a) Assume that un Ñ u in V and vn á v in V . Then xun|vny Ñ xu, vy.

(b) Assume that un Ñ u in L2pΩq and vn á v in L2pΩq. Then unvn á uv in L1pΩq.

Here unvn denotes the L1pΩq-function wn : x ÞÑ unpxqvnpxq defined for almost all x P Ω

as a pointwise product.

Example 6.1 (convergence counterexample, product of weakly convergent sequences).

In L2pΩq, we consider the sequence unpxq “ sinpnx1q, n P N. Then, we know that un á 0
in L2pΩq. Let us take the 2nd copy of this weakly convergent sequence, vn “ un, n P N.
Then

unvn “ u2n “ sin2pnx1q á
1

2
1 in L2pΩq and in L1pΩq (Exercise).

Here 1 is the constant function equal to 1 for all x. Summarizing, we see that the weak

limits u “ v “ w- limun “ w- lim vn are 0, but unvn á 1
21 ‰ uv.

Exercise 6.2.

(a) Construct two weakly convergent in L2pΩq sequences tununPN and tvnunPN such that

txun|vnyL2unPN is not convergent.

(b) Construct two sequencies tununPN, tvnunPN Ă L2pΩq X L8pΩq such that tununPN and

tvnunPN are weakly convergent in L2pΩq, but tunvnunPN is not weakly convergent in

L2pΩq (in L1pΩq).

While it is generally impossible to pass to the limit for various products of weakly

convergent sequences, it is still quite desirable in many cases (some of them we see below).

The question is if this is possible to do under certain additional assumptions.

Let us define for v “ pv1, . . . , vdq P L2pΩ,Rdq an operator

curl : L2pΩ,Rdq Ñ H´1pΩ,Rdˆdq

as

curl v “
`

Bxjvi ´ Bxivj
˘d

i,j“1
,

where H´1pΩ,Rdˆdq is perceived as the space of d ˆ d-matrices having the entries from

the space H´1pΩq.

The following compensated compactness result, which essentially stems from works of

Murat & Tartar, is given in the very general formulation of the monograph [JKO12].

Lemma 6.1 (div-curl lemma, essentially Murat & Tartar, 1978).

Let tununPN, tvnunPN Ă L2pΩ,Rdq be such that

un á u in L2pΩ,Rdq,

vn á v in L2pΩ,Rdq,

tdiv ununPN is a relatively compact subset of H´1pΩq,

tcurl vnunPN is a relatively compact subset of H´1pΩ,Rdˆdq.

37



Then, for every φ P C8
0 pΩq,

ż

Ω
φpxqxunpxq|vnpxqyRddx Ñ

ż

Ω
φpxqxupxq|vpxqyRddx.

(That is, txunpxq|vnpxqyRdunPN converges in the sense of distributions.)

We take this lemma without a proof (a proof can be found in [JKO12, Section 4.2]).

Exercise 6.3.

(a) For arbitrary u P H1pΩq, the following equality holds

curl∇u “ 0, where 0 “ 0Rdˆd .

(b) The equality curl grad “ 0 holds in the sense of linear operators in the space of

distributions.

6.2 The proof of Theorem 2.3 (on the H-compactness of L8pΩ,Mα,βq).

Let tAnunPN Ă L8pΩ,Mα,βq. We know from Corollary 4.1 and Lemma 5.1 that we may

pass to a subsequence, which we again reindex by n P N, such that

operators LAn “ ´divAn grad are G-convergent to a certain T0 P Eα,βpH1
0 pΩqq

and

Qn “ An gradL
´1
n are weakly convergent to a certain Q0 P LCpH´1pΩq, L2pΩ,Rdqq

as n Ñ 8. Moreover, this subsequence can be choosen such that additionally for each

j “ 1, . . . , d, there exists a sequence of “oscillatory test functions” twj
nunPN Ă H1pΩq with

the properties:

• wj
n á xj in H1pΩq,

• ´∇ ¨pAn∇wj
nq “ gj @n P N for a certain gj P H´1pΩq,

• An∇wj
n á aj in L2pΩ,Rdq for a certain vector-field aj P L2pΩ,Rdq.

We introduce a d ˆ d-matrix-function A˚ “ pa1, . . . , adq P L2pΩ,Rdˆdq. Let us take an

arbitrary f P H´1pΩq. Then

un “ L´1
n f á T´1

0 f “ u0 in H1
0 pΩq,

An∇un á Q0f in L2pΩ,Rdq.

Our aim is to prove that A˚ P L8pΩ,Mα,βq and T0 “ ´divA˚ grad, which can be

summarized as An
H

ÝÑA˚.

The proof of Theorem 2.3 is split in several steps (we follow mainly [A02] with minor

differences).
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Step 1. We want to show that A˚ gradT
´1
0 f P L2pΩ,Rdq and that

f “ ´divA˚ gradT
´1
0 f (this is a precursor of T0 “ ´divA˚ grad).

For every vector ξ P Rd, we construct wξ
n “

řd
j“1 ξjw

j
n, which satisfies

wξ
n á ξ ¨ x in H1pΩq.

Since Anpxq P Mα,β for almost all x P Ω, we have for almost all x P Ω

xAnp∇un ´ ∇wξ
nq|p∇un ´ ∇wξ

nqyRd ě 0

We apply to this inequality the div-curl lemma (Lemma 6.1). Let us show that the

assumptions of the div-curl lemma hold true. By Exercise 6.3, tcurl∇pun ´ wξ
nqunPN “ t0u

is a one point compact set in H´1pΩ,Rdˆdq. Besides,

un á u0 in H1
0 pΩq, and so ∇un á ∇u0 in L2pΩ,Rdq,

wξ
n á ξ ¨ x in H1

0 pΩq, and so ∇wξ
n á 1ξ in L2pΩ,Rdq;

note that we have used here that grad P LCpH1pΩq, L2pΩ,Rdqq.

Hence, ∇pun ´wξ
nq á ∇u0 ´ ξ in L2pΩ,Rdq. On the other hand, denoting g “

řd
j“1 ξjgj ,

we see that tdivAn∇pun ´ wξ
nqunPN “ t´f ` gu is a one point compact set in H´1pΩq.

Additionally, we have the weak L2pΩ,Rdq-convergence

An∇pun ´ wξ
nq á Q0f ´A˚ξ.

So all assumptions of the div-curl lemma are satisfied.

The the div-curl lemma implies that, for every nonnegative φ P C8
0 pΩq,

ż

Ω
φ xQ0f ´A˚ξ|∇u0 ´ ξyRddx ě 0.

Hence, for every ξ P Rd, there exists a subset Ωξ Ă Ω of the full measure measpΩξq “

measpΩq such that

xpQ0fqpxq ´A˚pxqξ|∇u0pxq ´ ξyRd ě 0, x P Ωξ. (6.1)

Here and in what follows we fix concrete functions-representatives of Q0f , A˚, and ∇u0
in the corresponding Lp-spaces of the equivalence classes.

Let Ξ “ tξkukPN be a dense countable subset of Rd. Then rΩ “
Ş

kPNΩξk also has the

properties that (6.1) holds for x P rΩ and measprΩq “ measpΩq. Since Ξ is dense in Rd, for

every x P rΩ, we can approximate for every ξ P Rd the number

xpQ0fqpxq ´A˚pxqξ|∇u0pxq ´ ξyRd

by nonnegative numbers

xpQ0fqpxq ´A˚pxqξk|∇u0pxq ´ ξkyRd .

Thus, (6.1) holds for all x P rΩ and all ξ P Rd.
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Let us fix now an arbitrary x0 P rΩ and take ξ “ ∇upx0q ´ ty with t ą 0 and y P Rd.

We obtain from (6.1)

xpQ0fqpx0q ´A˚px0q∇u0px0q ` tA˚px0qy|tyyRd ě 0

for all t ą 0 and all y P Rd. Considering the limit as t Ñ 0 ` 0, we get

xpQ0fqpx0q ´A˚px0q∇u0px0q|yyRd ě 0 @y P Rd.

Considering this inequality with y “ ˘ry for all ry P Rd, we see that

Q0fpxq “ A˚pxq∇u0pxq @x P rΩ. (6.2)

In particular, (6.2) implies

A˚ ∇u0 P L2pΩ,Rdq.

Since An∇un á Q0f in L2pΩ,Rdq,

f “ ´∇ ¨pAn∇unq á ´ ∇pQ0fq “ ´∇ ¨pA˚ ∇u0q in H´1pΩq.

That is,

´∇ ¨pA˚ ∇u0q “ f “ T0u0.

Summarizing, we proved that A˚ ∇pT´1
0 fq P L2pΩ,Rdq and ´divA˚ gradT

´1
0 f “ f for

all f P H´1pΩq.

Step 2. Let us show that A˚ P L8pΩ,Mα,βq.

For all nonnegative φ P C8
0 pΩq, we have

ż

ω
φpAn∇wξ

nq ¨ p∇wξ
nqdx ě α

ż

Ω
φ|∇wξ

n|2dx.

Applying to this inequality the arguments with the div-curl lemma similar to those of Step

1, we obtain

xA˚pxqξ|ξyRd ě α|ξ|2 for all ξ P Rd and almost all x P Ω. (6.3)

In particular, (6.3) implies that pA˚pxqq´1 exists for almost all x P Ω.

Analogously, for all nonnegative φ P C8
0 pΩq,

ż

ω
φpAn∇wξ

nq ¨ pA´1
n An∇wξ

nqdx ě β

ż

Ω
φ|An∇wξ

n|2dx,

and with the help of the div-curl lemma we get

xpA˚pxqq´1y|yyRd ě β|y|2 for all y P Rd and for almost all x P Ω.

Thus, A˚ P L8pΩ,Mα,βq.

Step 3. The equality f “ ´divA˚ gradT
´1
0 f for all f P H´1pΩq implies that the

homeomorphism p´divqA˚ grad : H1
0 pΩq Ñ H´1pΩq is actually the operator T0. Together

with the weak convergences L´1
n

w
ÝÑ T´1

0 and An gradL
´1
n

w
ÝÑ Q0 “ A˚ gradT

´1
0 , this

implies the H-convergence An
H

ÝÑA˚.

40



In Step 2 of the proof Theorem 2.3, we passed to limits in the following estimates with

nonegative φ P C8
0 pΩq,

ż

ω
φpAn∇wξ

nq ¨ p∇wξ
nqdx ě α

ż

Ω
φ|∇wξ

n|2dx,

ż

ω
φpAn∇wξ

nq ¨ pA´1
n An∇wξ

nqdx ě β

ż

Ω
φ|An∇wξ

n|2dx.

For the limit in the right hand side, we used implicitly the following lemma.

Lemma 6.2.

Let un á u in L2pΩ,Rdq. Let φ P L8pΩq be almost everywhere nonnegative. Then

lim inf
nÑ8

ż

Ω
φ|un|2dx ě

ż

Ω
φ|u|2dx.

Proof. The proof follows easily from the lower semicontinuity of L2-norm applied to the

weakly L2-convergent sequence tφ1{2ununPN.

6.3 G-convergence for 2nd order elliptic equations.

Recall that

Msym
α,β “ tM P Mα,β : M “ MJu,

where MJ is the transpose of the matrix M , and that, for A P L8pΩ,Mα,βq, we have

LA “ ´divA grad P LCpH1
0 pΩq, H´1pΩqq and LA P Eα,βpH1

0 pΩqq.

Definition 6.1.

A sequence tAnu Ă L8pΩ,Msym
α,β q is said to be G-convergent to a G-limit

A˚ P L8pΩ,Msym
α,β q (with the notation An

G
ÝÑA˚)

if LAn

G
ÝÑLA˚

in the abstract sense of Definition 4.2 (i.e., in the sense that L´1
An

w
ÝÑ L´1

A˚
).

Theorem 6.1.

Let tAnu Ă L8pΩ,Msym
α,β q. Then

An
G

ÝÑA˚ ðððñññ An
H

ÝÑA˚.

Proposition 6.1.

If An
H

ÝÑA˚, then A
J
n

H
ÝÑAJ

˚ .

We do not prove this theorem and this proposition in the course (for the proofs, see

[A02, Section 1.3.2]).

Corollary 6.1.

Let tAnu Ă L8pΩ,Msym
α,β q. Then there exist A˚ P L8pΩ,Msym

α,β q and a subsequence tAnk
u

such that Ank

G
ÝÑA˚.
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Proof. The proof follows easily from Theorems 2.3 and 6.1 combined with Proposition

6.1.

Remark 6.1.

Let us summarize the results about the G-convergence of tAnu Ă L8pΩ,Msym
α,β q.

(a) L8pΩ,Msym
α,β q is a compact subset of pL8pΩ,Mα,βq, ρHq.

(b) On L8pΩ,Msym
α,β q, the H-convergence can be defined in a simpler, but equivalent way,

as the G-convergence.

Historically, the homogenization-convergence was first introduced on L8pΩ,Msym
α,β q as

G-convergence by Spagnolo in 1968. Later the H-convergence was introduced by Murat

& Tartar in 1977-78 as an appropriately modified generalization for the generally non-

symmetric case of L8pΩ,Mα,βq (see [MT78, A02, JKO12]).

7 Convergence of eigenvalues.

7.1 Preparational results for the eigenvalue convergence.

We always assume ρ P L8pΩ, rρ´, ρ`sq with 0 ă ρ´ ď ρ` ă `8, and A P L8pΩ,Msym
α,β q.

Recall that the eigenvalues of the operator LA,ρ “ ´1
ρ divA grad associated with the

Dirichlet boundary condition u|BΩ “ 0 can be numbered as tλkukPN “ tλkpA, ρqukPN non-

decreasingly taking multiplicities into account. Due to the Dirichlet boundary condition,

the corresponding eigenfunctions uk belong to the space H1
0 pΩq.

Theorem 7.1 (min-max principle).

Let K “ R or K “ C. Let ρ P L8pΩ, rρ´, ρ`sq and A P L8pΩ,Msym
α,β q. Then

λk “ min
EĂH1

0 pΩq

dimE“k

max
uPEzt0u

ş

ΩxA∇u|∇uyKddx
ş

Ω |u|2ρdx
,

where the minimum is taken over all subspaces with the finite dimension dimE equal to

k.

Remark 7.1.

(a) This is one of the forms of Courant-Fischer-Weyl min-max principle, which is also

related to the Cauchy interlacing theorem (see [K13, Section I.6.10]).

(b) In particular, Theorem 7.1 implies

λ1 ě α min
u‰0

|u|2
H1

0

}u}2
L2
ρ

ą 0.

Remark 7.2.

Let 1 ď p ă q ď `8. Let p1 and q1 are conjugate exponents defined as usual, e.g.,

1{p` 1{p1 “ 1.
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(a) Recall that Ω is a domain in Rd, and so, Ω is bounded. Hence, the Hölder inequality

implies the continuous embedding

LqpΩq ãÑ LppΩq.

(b) un
˚

Ýá u in LqpΩq ñññ un á u in LppΩq.

(c) If un á u in LppΩq and tununPN is bounded in LqpΩq, then un
˚

Ýá u in LqpΩq. This

follows from the density of Lp1

pΩq in Lq1

pΩq and Proposition 3.1.

In Exercise 11.1, we have seen that un Ñ u in L2pΩq and vn á v in L2pΩq implies

unvn á uv in L1pΩq. This statement can be easily extended.

Exercise 7.1.

Let 1 ď p ă 8.

(a) If un Ñ u in LppΩq and vn
˚

Ýá v in Lp1

pΩq, then unvn á uv in L1pΩq.

(b) If un Ñ u in LppΩq and vn
˚

Ýá v in L8pΩq, then unvn á uv in LppΩq.

Hint: use Remark 7.2 (c).

Remark 7.3.

(a) The compact embedding

H1
0 pΩq ãÑãÑ L2pΩq

implies the compact embedding

L2pΩq ãÑãÑ H´1pΩq.

(b) The following implications are consequences of (a):

un á u in H1
0 pΩq ñññ un Ñ u in L2pΩq;

vn á v in L2pΩq ñññ vn Ñ v in H´1pΩq.

Proposition 7.1.

Let tAnunPN Ă L8pΩ,Mα,βq. Let fn Ñ f in H´1pΩq and An
H

ÝÑA˚. Then solutions

un P H1
0 pΩq to LAnu “ fn converge weakly in H1

0 pΩq to the solution u˚ P H1
0 pΩq to the

problem LA˚
u “ f .

Proof. For any v P H´1pΩq, we can write

|xun ´ u˚, vy| “ |xL´1
An
fn ´ L´1

A˚
f, vy| ď |xL´1

An
pfn ´ fq, vy| ` |xpL´1

An
´ L´1

A˚
qf, vy|

ď α´1|fn ´ f |H´1 |v|H´1 ` |xpL´1
An

´ L´1
A˚

qf, vy|.

The assumptions fn Ñ f inH´1pΩq and An
H

ÝÑA˚ imply that the right hand side converges

to 0, and so imply un á u˚.
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7.2 Convergence of eigenvalues.

Let tAnunPN Ă L8pΩ,Msym
α,β q and tρnunPN Ă L8pΩ, rρ´, ρ`sq.

Theorem 7.2.

Assume that An
H

ÝÑA˚ and ρb
˚

Ýá ρ˚. Then there exists an (increasing) subsequence of

indices tnjujPN of N, which we (with an abuse of notation) replace by indices tju, such

that, for every k P N,

(a) λjk “ λkpAj , ρjq converge to a certain number rλk P R` as j Ñ 8,

(b) there exists L2
ρj -normalized solutions ujk P H1

0 pΩq to LAju “ λjkρju such that

ujk á ruk in H1
0 pΩq and ujk Ñ ruk in L2pΩq as j Ñ 8

for a certain L2
ρ˚
-normalized solution ruk P H1

0 pΩq to

LA˚
u “ rλkρ˚u,

(c) and, additionally, the following orthonormal equalities hold for all k, ℓ P N

xujk|ujℓyL2
ρj

“ δkℓ, xruk|ruℓyL2
ρ˚

“ δkℓ,

where δkℓ is the Kronecker-delta.

Proof. The min-max principle (Theorem 7.1) implies that

λ´
k ď λnk ď λ`

k , (7.1)

where λ¯
k are eigenvalues of multiples of the Laplacian ´α

ρ`
∆ and ´1

βρ´
∆.

Let tunkukPN be an L2
ρn-orthonormal basis of eigenfunctions of Ln “ ´ 1

ρn
divAn grad

associated with tλnkukPN. Then

λ`
k ě λnk “ xAn∇unk |∇unkyL2 ě α|unk |2H1

0
.

So (7.1) implies that tunkunPN is bounded in H1
0 pΩq and contains a weakly convergent in

H1
0 pΩq subsequence.

Passing to convergent subsequences, one can see that for every K P N Y t8u there exists

a subsequence tnKj ujPN Ă N such that for all k ď K, as j Ñ 8,

λ
nK
j

k Ñ rλk, (7.2)

u
nK
j

k á ruk in H1
0 pΩq, (7.3)

u
nK
j

k Ñ ruk in L2pΩq, (7.4)

for certain rλk P R` and ruk P H1
0 pΩq. The existence of such subsequencies tnKj ujPN is first

proved iteratively for K P N, and then using a diagonal subsequence we obtain tn8
j ujPN

for K “ 8.
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Let us put nj “ n8
j for all j P N. For this subsequence statements (7.2)-(7.4) are valid

for all k P N.

It follows now from (7.4) and Exercise 7.1 (b) that xruk|ruℓyL2
ρ˚

“ δkℓ for all k, ℓ P N,
and, in particular, }ruk}L2

ρ˚
“ 1 for all k. Exercise 7.1 (b) implies also

λ
nj

k ρnju
nj

k á rλkρ˚ruk in L2pΩq,

and so

λ
nj

k ρnju
nj

k Ñ rλkρ˚ruk in H´1pΩq,

as j Ñ 8. Combining this with proposition 7.1 now implies that u
nj

k á uk in H1
0 pΩq,

where uk is the H1
0 -solution to

´∇ ¨pA˚ ∇ukq “ rλkρ˚ruk.

However, (7.3) implies u
nj

k á ruk in H1
0 pΩq. Thus, uk “ ruk is the L2

ρ˚
-normilized eigen-

function of LA˚,ρ˚
associated with rλk.

Let us summarize. We have converging sequences ρn
˚

Ýá ρ˚ and An
H

ÝÑA˚. Furthermore,

the eigenvalues of Ln “ 1
ρn
LAn “ ´ 1

ρn
divAn grad are numbered non-decreasingly taking

into account multiplicities as tλnkukPN “ tλkpAn, ρnqukPN, and tunkukPN is the corresponding

L2
ρn-orthonormal basis of eigenfunctions. We proved uniform (in n) bounds

0 ă λ´
k ď λnk ď λ`

k

and the existence of an (increasing) subsequence tnjujPN Ă N with the properties that, as

j Ñ 8, there exist certain limits of subsequences

λ
nj

k Ñ rλk, u
nj

k á ruk in H1
0 pΩq, and u

nj

k Ñ ruk in L2pΩq.

Exercise 12.1 (b) implies that

ρnju
nj

k á ρ˚ruk in L2pΩq. (7.5)

Hence, passing to the limits for inner products of eigenfunctions of Ln, we get

xρ˚ruk|ruℓyL2 “ δk,ℓ, where δkℓ is the Kronecker-delta.

Formula (7.5) also implies the convergence of the right-hand sides fj :“ λ
nj

k ρnju
nj

k of the

equations LAnu
nj

k “ λ
nj

k ρnju
nj

k ,

λ
nj

k ρnju
nj

k Ñ rλkρ˚ruk in H´1pΩq.

From this, using proposition 12.2, we obtain that truku is an L2
ρ˚
-orthonormal system of

eigenfunctions of

L˚ “
1

ρ˚

LA˚
.

This summarized Theorem 7.2 and its proof.
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We have not proved yet that truku is a complete system of eigenfunctions. That is,

we still need to prove that, passing to a limit, we have not missed any eigenvalue (or

multiplicity) and any eigenfunction of the orthonormal basis for L˚.

In what follows we simplify the notation for subsequences indexed by tnju indexing

them with n, i.e., we write An, λ
n
k , etc. instead of Anj , λ

nj

k , etc.

Theorem 7.3.(a) rλk “ λkpA˚, ρ˚q for all k P N.

(b) trukukPN is an L2
ρ˚
-orthonormal system of eigenfunctions of L˚.

Proof. Let tλkukPN “ tλkpA˚, ρ˚qukPN be the eigenvalues of L˚ numbered non-decreasingly

taking into account multiplicities.

Step 1. Taking into account Theorem 7.2, statements (a) and (b) of Theorem 7.3 are

equivalent. Besides, in order to prove statement (a) it is enough to prove that

rλk ď λk @k P N. (7.6)

Step 2. Let us prove (7.6) by reductio ad absurdum.

Assume that (7.6) is not valid. Then there exists a smallest k0 P N such that

λk0 ă rλk0

(i.e., this is the first time when we jumped over a certain actual eigenvalue of L˚).

Note that, for eigenvalues with smaller indices k ă k0, we have rλk “ λk, and that truku
k0´1
k“1

is the corresponding L2
ρ˚
-orthonormal system of eigenfunctions of L˚. Moreover, there

exists an L2
ρ˚
-normalized eigenfunction uk0 of L˚ that corresponds to λk0 and is orthogonal

to spantruku
k0´1
k“1 .

Put wn “ L´1
An

pλk0ρ˚uk0q for all n. The H-convergence An
H

ÝÑA˚ yields

wn á L´1
A8

pλk0ρ˚uk0q “ uk0 in H1
0 pΩq. (7.7)

This implies

wn Ñ uk0 in L2pΩq, (7.8)

ρnwn á ρ˚uk0 in L2pΩq. (7.9)

Then, for k ă k0, we have

xAn∇wn|∇unkyL2 “ xLAnwn|unkyL2 “ xλk0ρ˚uk0 |unkyL2 Ñ λk0xρ˚uk0 |rukyL2 “ 0. (7.10)

The convergencies (7.8) and unk Ñ ruk in L2 (and so in L2
ρ˚
) imply that the determinant

of the L2
ρ˚
-Gram-matrix of the system Sn “ tun1 , . . . , u

n
k0´1, wnu converges to 1 as n Ñ 8.

So, for large enough n the system of function Sn is linearly independent. Hence, the

min-max principle implies

λnk0 ď max
vPspanSn

v‰0

xAn∇ v|∇ vyL2

xρnv|vyL2

. (7.11)
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Let vn “
ř

1ďkăk0
cnku

n
k ` cnk0wn be a maximizer corresponding to the maximum in (7.11),

which can be chosen such that
ř

1ďkďk0
pcnkq2 “ 1. Passing to (sub)subsequences if neces-

sary we can ensure that cnk Ñ ck for all 1 ď k ď k0 (here we keep indexing the subsequences

by n).

The limit of xAn∇ v|∇ vyL2 can be calculated using (7.10) and the formulae

xAn∇unk |∇unkyL2 “ xλnkρnu
n
k |unkyL2 “ λnkδkℓ,

xAn∇wn|∇wnyL2 “ λk0xρ˚uk0 |wnyL2 Ñ λk0 .

Namely,

lim
nÑ8

xAn∇unk |∇unkyL2 “
ÿ

1ďkăk0

rλkc
2
k ` λk0c

2
k0 .

Similarly,

lim
nÑ8

xρnvn|vnyL2 “
ÿ

1ďkďk0

c2k “ 1.

Thus, (7.11) implies

rλk0 ď lim
xAn∇ vn|∇ vnyL2

xρnvn|vnyL2

ď λk0 ,

which contradicts the initial assumption of Step 2 that λk0 ă rλk0 . This proves (7.6), and

due to Step 1 concludes the proof of the theorem.

Returning to the original notation with indexing of subsequences by nj , we see from

Theorems 7.2 and (7.3) that there exists a subsequence tnju such that

λnk Ñ λkpA˚, ρ˚q @k.

However, this argument can be applied to any subsequence tλ
nj

k u. This means that every

subsequence tλ
nj

k u contains a subsubsequence converging to λkpA˚, ρ˚q. In other words,

λkpA˚, ρ˚q is the only partial limit of tλnku.

Thus, we proved the following theorem.

Theorem 7.4.

If ρn
˚

Ýá ρ˚ and An
H

ÝÑA˚, then λkpAn, ρnq Ñ λkpA˚, ρ˚q.

Theorems 7.2 and 7.4 together imply the complete theorem on convergence of eigenval-

ues (Theorem 2.2).

Remark 7.4.

The theorems of this type on convergence of eigenvalues are originated from [BM76, K79]

for the case ρn ” 1. The proof above is essentially a combination of arguments of [K79]

and [A02, Section 1.3.3]. A proof of somewhat stronger result via a general abstract theory

of eigenvalue convergence can be found in [JKO12].
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8 Lamination, periodic homogenization, and Gθ-closure.

8.1 H-limits of layered structures.

Assume that matrix-valued functions Anpxq “ Anpx1, x2, . . . , xdq, where x is in a domain

Ω Ă Rd, have the form

Anpxq “ anpx1qIRd , x P Ω,

with certain scalar functions an P L8pR, rα, β´1sq, n P N.

The following theorem follows from the results of Murat & Tartar [MT78, Section 4].

Theorem 8.1.

The H-convergence anpx1qIRd
H

ÝÑA˚ to a certain A˚ “ pAj,k
˚ qdj,k“1 P L8pΩ,Mα,βq is equiv-

alent to the combination of the following conditions

(a) Aj,j
˚ pxq “ aj,j˚ px1q for certain aj,j˚ P L8pR, rα, β´1q, 1 ď j ď d; while, for non-diagonal

entries, Aj,k
˚ ” 0 for all j ‰ k;

(b)
1

an

˚
Ýá

1

a1,1˚

in L8pΩ1q, where Ω1 is the orthogonal projection of Ω on the x1-axis;

(c) an
˚

Ýá aj,j˚ in L8pΩ1q for 2 ď j ď d.

This theorem is without proof in this course (for the proof see [A02, Section 1.3.5]).

Remark 8.1.

(a) We see from Theorem 8.1 that scalar matrix-functions An (which physically corre-

spond to isotropic materials) can have a non-scalar H-limit A˚ (i.e., the homogenized

material can be anisotropic, which means that it has different effective properties in

different directions). In the 3-D case, this effect appears in Theorem 8.1 whenever

pw*- lim a´1
n q´1 “ a1,1˚ ‰ a2,2˚ “ a3,3˚ “ w*- lim an.

It is an easy exercise to construct a sequence tanunPN that leads to this effect.

(b) In the 3-D context of the conductance, Theorem 8.1 has an analogy with the elementary

rules of school physics for the total resistance for several resistors connected in series

or in parallel.

If we interpret anp¨q as a function describing the conductivity of the layers, and in-

terpret rn “ 1
an

as the function describing the spatially varying resistivity, then in the

direction x1, the layers are placed in series. Therefore, the mean resistivity in the di-

rection x1 is calculated via the arithmetic mean and corresponds to weak-*-convergence

of resistivities rn “ 1
an
. As it was discussed after Remark 3.3, weak and weak-* Lp-

convergencies can be interpreted as convergencies ‘in arithmetic average’ if 1 ă p ď 8.

That is why, the rule
1

w*- lim 1{an
“ a1,1˚ for the limiting conductivity a1,1˚ in the direc-

tion x1 can be interpreted as a convergence of an in the sense of ‘harmonic average’.

The function a “ pw*- lim a´1
n q´1 is called in [A02] the harmonic mean (corresponding

to the sequence tanu).
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From the point of view of directions x2 and x3, the layers of Anpxq “ anpx1qIRd are

placed in parallel. This corresponds to the computation of the average resistivity via

the harmonic mean, and so to the computation of the average conductivity via the

arithmetic mean. The conductivities in the directions x2 and x3 are given via the

convergence ‘in arithmetic average’, i.e., as the weak-* L8-limit

a2,2˚ “ a3,3˚ “ a :“ w*- lim an.

The function a :“ w*- lim an is interpreted here as the arithmetic mean corresponding

to the sequence tanu.

8.2 Laminates and locality of H-convergence.

Exercise 8.1.

Let f P L8pRq be a T -periodic function, i.e., fpt ` T q “ fptq for almost all t P R, where
T ą 0. Then, for every measurable subset S of R, the family of functions fϵptq “ fpt{ϵq,

t P R, ϵ ą 0, have the L8pSq-weak-* limit as ϵ Ñ 0 equal to the constant function with

the value 1
T

şT
0 fpsqds, i.e.,

fϵ
˚

Ýá

ˆ

1

T

ż T

0
fpsqds

˙

1 in L8pSq.

Here, in comparison to the notation that we used before, ϵ Ñ 0 corresponds to 1
n Ñ 0 for

n P N going to `8.

Remark 8.2.

(a) Let a P L8pR, rα, β´1sq be a T -periodic function. Theorem 8.1 implies that, in every

domain Ω Ă Rd, the family Aϵpxq “ apx1{ϵqIRd H-converges as ϵ Ñ 0 to the following

constant matrix valued function

1

¨

˚

˚

˚

˝

aϵ 0 . . . 0

0 aϵ . . . 0

. . . . . . . . . . . .

0 0 . . . aϵ

˛

‹

‹

‹

‚

,

where aϵ denote the ‘harmonic mean’ of the homogenization theory associated with the

family taϵptquϵą0 “ taϵpt{ϵquϵą0

aϵ :“
1

w*- limϵÑ0
1
aϵ

and aϵ denotes the ‘arithmetic mean’

aϵ :“ w*- limϵÑ0 aϵ.

The limits can be understood in the sense of L8pRq. Due to Exercise 8.1, we have

now an explicit formulae

aϵ “

ˆ

1

T

ż T

0

1

aptq
dt

˙´1

, aϵ “
1

T

ż T

0
aptqdt.
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(a) Periodic piecewise-constant structures are called laminates. Statement (a) allows one

to find H-limits of laminates of isotropic media. The following theorem works also for

laminates of anisotropic media.

Theorem 8.2 ([MT78], see also [A02]).

Assume that tAnunPN Ă L8pΩ,Mα,βq be such that, for all n, Anp¨q “ pAnp¨qqdi,j“1 depend

only on the variable x1. Then

Anp¨q
H

ÝÑA˚p¨q “ pAi,j
˚ qdi,j“1

if and only if the combination of the following weak-* L8pΩq-convergencies takes place:

(a)
1

A1,1
n

˚
Ýá

1

A1,1
˚

;

(b) for 2 ď j ď d,

A1,j
n

A1,1
n

˚
Ýá

A1,j
˚

A1,1
˚

;

(c) for 2 ď i ď d,

Ai,1
n

A1,1
n

˚
Ýá

Ai,1
˚

A1,1
˚

;

(d) for all 2 ď i ď d and 2 ď i ď d,

Ai,j
n ´

A1,j
n Ai,1

n

A1,1
n

˚
Ýá Ai,j

˚ ´
A1,j

˚ Ai,1
˚

A1,1
˚

.

This theorem remains without proof in this course (for the proof see [A02]).

Remark 8.3.

(a) Note that A˚p¨q depends only on x1.

(b) In the case of an isotropic medium Anpxq “ anpx1qIRd, Theorem 8.2 implies immedi-

ately Theorem 8.1.

Remark 8.4.

Lamination limits can be iterated, typically, in different directions. This is possible due to

the locality of H-convergence, which is rigorously formalized in the next theorem.

Theorem 8.3 (locality of H-convergence, [MT78, T85], see also [A02]).

Assume that tAnunPN Ă L8pΩ,Mα,βq and A˚ P L8pΩ,Mα,βq. Then the following state-

ments are equivalent:

(a) An
H

ÝÑA˚ in Ω.

(b) An
H

ÝÑA˚ in every domain ω such that ω Ă Ω.
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(c) For every two sequences tEnunPN, tDnunPN Ă L2pΩ,R3q the combination of the follow-

ing properties:

Dn “ AnEn almost everywhere in Ω for all n P N, (8.1)

Dn á D˚, En á E˚ in L2pΩ,Rdq, (8.2)

t∇ ˆ EnunPN is a relatively compact subset of H´1pΩ,Rdq, (8.3)

t∇ ¨DnunPN is a relatively compact subsets of H´1pΩq, (8.4)

implies

D˚ “ A˚E˚ almost everywhere in Ω.

We do not prove this theorem in the course. Statement (b) is the original definition

of H-convergence in [MT78]. Statement (a) is a simplified formulation of [A02]. The

equivalence of (b) and (c) takes its origin in [T85].

8.3 Periodic homogenization

An explicit PDE formula for H-limit is available for the general periodic homogenization.

Following [A02], let us take the unit cube Y “ p0, 1qd Ă Rd as a periodic cell. One can

identify Y with the unit d-dimensional torus. By Lp
#pY q, the space of Lp-functions on the

unit torus is denoted. Then also the following identification is possible

Lp
#pY q “ tf P Lp

locpR
dq : f is Y -periodic u

and, as the norm in Lp
#pY q, the norm of LppY q is taken. Using a similar identification, we

define

H1
#pY q “ tf P H1

locpRdq : f is Y -periodic u

with the norm } ¨ }H1pY q.

The quotient space (factor-space) H1
#pY q{R is defined as the space of classes of H1

#pY q-

functions equal up to an additive constant.

Let A P L8
#pY,Mα,βq. In a domain Ω Ă Rd, we consider the family of matrix functions

Aϵpxq “ Apx{ϵq, x P Ω, (8.5)

indexed by ϵ ą 0 (only sufficiently small values of ϵ are important here).

Theorem 8.4 (H-limit for periodic homogenization).

The family tAϵuϵą0 defined by (8.5) H-converges as ϵ Ñ 0 to a constant matrix-valued

function 1A˚. The matrix A˚ “ pAi,j
˚ qdi,j“1 P Mα,β can be calculated by the formula

Ai,j
˚ “

ż

Y
x Apyqpei ` ∇wipyqq | ej ` ∇wjpyq yRddy,

where teiu
d
i“1 is the standard orthonormal basis in Rd and wi, i “ 1, . . . , d, are the unique

solutions to the periodic problem

´div rApyqpei ` ∇wipyqqs “ 0, y P Y,

wi P H1
#pY q{R.

51



We do not prove this theorem in the course.

8.4 G- and Gθ-closure problems for two-phase composites.

Let 0 ă α “ α1 ă α2 “ β´1. LetM1,M2 P Msym
α,β “ Msym

α1,α
´1
2

be two (constant) symmetric

matrices. We assume that M1 and M2 correspond to two homogeneous media I and II.

Example 8.1.

Our main example will be a pair of different isotropic mediaM1 “ α1IRd andM2 “ α2IRd .

Let us consider several problems concerning the description of H-limits for mixtures of

materials M1 and M2.

Problem 8.1 (G-closure problem).

Consider the family L8pΩ, t0, 1uq of all indicator-functions χ “ χω for all possible mea-

surable subsets ω Ă Ω. For each such χ, we define the composite structure

Aχpxq “ χpxqM1 ` p1 ´ χpxqqM2 P L8pΩ,Msym
α,β q.

The family of all such structures is denoted by

FM1,M2,Ω “ tAχ : χ P L8pΩ, t0, 1uqu.

The problem is to find the H-closure of FM1,M2,Ω, which we denote by

F :“ FM1,M2,Ω
H
.

Problem 8.11 (periodic G-closure problem).

For χ P L8
#pY, t0, 1uq, let us consider a Y -periodic structure on Rd

Aχ
#pyq “ χpyqM1 ` p1 ´ χpyqqM2 P L8

#pY,Msym
α,β q.

Then, for an arbitrary domain Ω Ă Rd,

Aχ
#

´x

ϵ

¯

H
ÝÑ 1Mχ (8.6)

with a constant matrix Mχ P Msym
α,β , which can be determined by the fomulae of Theorem

8.4. The problem is to characterize the set of all possible H-limits Mχ for such periodic

homogenization, i.e., to find

P “ tM P Msym
α,β : M “ Mχ for a certain χ P L8

#pY, t0, 1uqu.

It occurs that Problem 8.1 can be reduced in a certain sense to Problem 8.11. However,

it is better to understand this connection via two other useful problems with fixed ratios

of materials, i.e., via Gθ-closure problems (see [A02] and [C00]).

Proposition 8.1.

The weak-* L8-closure of L8pΩ, t0, 1uq is the closed L8-ball L8pΩ, r0, 1sq.
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In the course, we leave this proposition without a proof. Proposition 8.1 follows, e.g.,

from the Krein-Milman theorem: a compact convex subset of a Hausdorff locally convex

linear topological space is equal to the closed convex hull of its extreme points.

Problem 8.2 (Gθ-closure problem).

Let θ P L8pΩ, r0, 1sq. The problem is to find the family Fθ of all possible H-limits A˚ of

families tAχϵuϵą0 satisfying χϵ
˚

Ýá θ in L8pΩq as ϵ Ñ 0, where all χϵ P L8pΩ, t0, 1uq.

The meaning of the function θ is that θpxq is the “local proportion” of materials M1

and M2 at x P Ω.

The G-closure problem is obviously reduced to the Gθ-closure problem.

Proposition 8.2.

F “
ď

θPL8pΩ,r0,1sq

Fθ.

The proof is a simple exercise.

Problem 8.21 (periodic Gθ-closure problem).

Let θ P r0, 1s be a fixed number. Consider χ P L8
#pY, t0, 1uq additionally satisfying the

assumption
ż

Y
χpyqdy “ θ. (8.7)

The problem is to find the set Pθ of all H-limits 1Mχ in the sense of (8.6) produced by

χ P L8
#pY, t0, 1uq such that the ratio-assumption (8.7) holds, i.e., to find

Pθ “ tMχ : χ P L8
#pY, 0, 1q satisfies (8.7)u.

The Gθ-closure problem can be essentially reduced to the periodic Gθ-closure problem

in the following way.

Theorem 8.5 ([T85]).

For a constant θ P r0, 1s, we denote (following [A02])

Gθ :“ Pθ,

where the closure is taken in the usual sense of the space Rdˆd of matrices. Then, for an

arbitrary function θ P L8pΩ, r0, 1sq, the following formula holds

Fθ “ tA˚ P L8pΩ,Msym
α,β q : A˚pxq P Gθpxq almost everywhere in Ωu.

The discussion of this theorem can be found in [A02] together with references to a more

general result going back to Dal Maso & Kohn and to its proof by Raitums.

Recall that 0 ă α1 ă α2. In the case where M1 “ α1IRd and M2 “ α2IRd , an explicit

description of the family Gθ “ Pθ was found independently by Murat & Tartar [M83,
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MT85, T85] and Lurie & Cherkaev [LC82, LC84, LC86] (see also [A02, Theorem 2.2.13]

and the remarks afterwards).

Theorem 8.6 ([MT85, T85, LC86]).

Let θ P r0, 1s be a constant. Let M1 “ α1IRd and M2 “ α2IRd. Then the set Gθ defined

in Theorem 8.5 is the convex set of all symmetric dˆ d-matrices M such that their eigen-

values λ1, . . . , λd (numbered taking their multiplicities into account) satisfy the following

inequalities:

λ´
θ ď λj ď λ`

θ , j “ 1, . . . , d; (8.8)

d
ÿ

j“1

1

λj ´ α1
ď

1

λ´
θ ´ α1

`
d´ 1

λ`
θ ´ α1

; (8.9)

d
ÿ

j“1

1

α2 ´ λj
ď

1

α2 ´ λ´
θ

`
d´ 1

α2 ´ λ`
θ

, (8.10)

where λ´
θ and λ`

θ are weighted harmonic and arithmetic means of α1 and α2:

λ´
θ “

ˆ

θ
1

α1
` p1 ´ θq

1

α2

˙´1

, λ`
θ “ θα1 ` p1 ´ θqα2.

This theorem is without proof in this course. A proof and additional remarks about the

description of the set Gθ can be found in [A02, Section 2.2].
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[CL96] Cox, S., and Lipton, R., 1996. Extremal eigenvalue problems for two-phase con-

ductors. Archive for rational mechanics and analysis 136(2), pp.101–118.

[DS88] Dunford, N. and Schwartz, J.T., 1988. Linear operators. Part 1: General theory.

John Wiley & Sons.

[GT77] Gilbarg, D. and Trudinger, N.S., Elliptic partial differential equations of second

order. Springer, 1977.

[JKO12] Jikov, V.V., Kozlov, S.M. and Oleinik, O.A., Homogenization of differential op-

erators and integral functionals. Springer Science & Business Media, 2012.

[KKV20] Karabash, I.M., Koch, H., and Verbytskyi, I.V., 2020. Pareto optimization of res-

onances and minimum-time control. Journal de Mathématiques Pures et Appliquées
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