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1 Overview: Two main topics in examples.

1.1 Example of optimization of termal conductivity via eigenvalues.

Consider the evolution of temperature u(zx,t) in a mixture of two materials with termal

conductivities a7 and a9, 0 < a1 < ao. The heat equation is
dwu(z,t) = V-(aVu(r,t), xe, (1.1)

where a = a(r) = a1xw(*) + a2Xq\w(z) is the conductivity function, Q < R? is a domain,
w < 2 is a measurable set, and

is the indicator function of E.

Definition 1.1.
A set D < R% is a domain if D is nonempty, bounded, open, and connected.

The equation is equipped with the “ice bath” boundary condition and an initial bound-
ary condition:

u(x,t) =0 for z e 0, t>0, (1.2)
u(z,0) = u’(z) for x e dQ (1.3)

where ug = 0 almost everywhere. For simplicity we assume also
u’ e L*(Q) = L*(Q,R).
Here 012 is the boundary of 2. With the differential expression
l(u) =Ly(u) ==V -(aVu)=—divagradu

and with the boundary condition , one can associate a selfadjoint operator £ = £, in
the complex Hilbert space L2(€, C). The spectrum o(£) of £ is a nondecreasing sequence
of eigenvalues { A\ }ken,

0<>\1<)\2<)\3<.... (1.4)

Corresponding eigenfunctions ug(-) can be chosen such that all u; are real-valued and
{ug}ren is an orthonormal basis in L?(2). The latter means, in particular, that the
eigenvalues are repeated in the sequence { Ay }ren according to their geometric multiplicities
(since L is a selfadjoint operator, the geometric and algebraic multiplicities of eigenvalues
coincide, see [K13| for details).

Remark 1.1.
This description of the spectrum of L follows from the spectral theorem [K13, Theorem
II1.6.29 and Sect. V.3.5] for selfadjoint operators T = T* with a compact resolvent



(T — \)~1, where \ € p(T) is in the resolvent set p(T) := C\o(T).
The unique strong solution in L*(Q) to the initial value problem (1.1))-(1.3)) is given by

u(a,t) = Y e ullugyre wg()
k=1
where {f|g)r2 = gslfyda:.

Remark 1.2.

Since we assumed that ) is a domain, the 1st eigenvalue Ay is simple. That is, A1 has
geometric (and algebraic) multiplicity 1 [GT77, Theorem 8.38]. This fact is included in
(1.4) in the form of the inequality A1 < A2. In a more general case, where a bounded
open set ) is not a domain because it is not connected, the inequality A\ < Ao does not
necessary holds (as an example one can take as Q0 a union of two disjoint unit balls).

Proposition 1.1.
(i) Ju(t) e < e 2.
(ii) For generic ug € L*(2), we have (ulluy)p2 # 0. In this case,

lu(-,t)]| 2 ~ [Cuglu1)re e M ast — +oo.
The proof follows easily from Remark

Remark 1.3.

Proposition means that \y is the (exponential) decay rate of |u(-,t)|r2 in the generic
situation (u®|u1)r2 # 0. In the exceptional case (ullui)r2 = 0, the decay rate of |u(-,t)| 2
is faster (i.e., greater) than \.

Conclusion. One can use \y = A\i(a) to measure the quality of conductivity (or opposite,
of insulation) of the structure represented by the function a(x), x € .

Let F be a feasible family/set of structures a(-), i.e., the family of composite structures

which are feasible for fabrication.

Problem 1.1 (maximization of insulation, see [ATL89, [CL.96]).
We search for

argmin Aj(a).
aclF

Here arg min denotes the set of all optimizers a(-) € F (in this case, minimizers) and
simultaneously is a short way to formulate the problem of finding this set. Similarly the

notation arg max is used.
Problem 1.2 (maximization of conductance, see [CLI6]).
We search for

argmax A1(a).
aeF



1.2 Reasonable feasible families.

Example 1.1.
Let us consider the following set of L*-functions

Foro2? = {a = a1xw + a2xo\w : w < (2 is measurable},
that is, we consider all possible (measurable) mixtures of materials with a7 and aq.

This example is essentially trivial since

argmin Ar(a) = {amn (")} = {e1xa(")}. (1.5)
acFo1,02,

Similarly,
argmax A1(a) = {amax(-)} = {a2xa (")} (1.6)
acFo1,02,0

Remark 1.4.

Formulae (L.5) and (1.6) follow from the formula

Ai(a) = min Ry [v] = min Ry, [v],

veﬁﬁéﬂ) ¢ Ueggfaﬁa
where 0 = 072 and
§oal Vol2dz
R =02
wlv] SQ v2dx

is the Rayleigh quotient associated with the differential expression £,. Moreover, the min-
imal values of the Rayleigh quotient are achieved on the set {cui(:)}cec\(oy- These state-
ments follow from the 1st Friedrichs representation theorem [K13, Th. VI.2.1] combined
with the spectral theorem [K13, Theorem II1.6.29 and Sect. V.3.5], which are applied to
the selfadjoint operator L.

Example 1.2 (prescribed ratio of materials).
Let a constant v € (0, meas(2)) be fixed. Consider the feasible family

F, =F2? = {a = arxw + 02X, : w < Q and meas(w) = 7},

where meas(w) denotes the Lebesgue measure in R?.

Theorem 1.1.
Let d > 2. Assume that a simply connected domain Q@ < R% has a connected C?-boundary
0Q2. Then:

(a) argmin A\j(a) # @ <= Q is a ball [C17].

aclFy

(b) If Q is a ball in R? centered at 0 = Oga, then every optimal structure a(-) for

the problem arg min \1(a) is a radial function and corresponding 1st eigenfunctions
aclF~

u1,%(-) are also radial [ATL89].



1.3 H-convergence.

Let R%*? be the normed space of d x d-matrices M = (M®J )?’j:l. The choice of the norm

is not important, i.e., the operator norm for the linear operator M : R* — R? can be used.

Let a, 3 € R = (0, +0) be constants such that 0 < o < 371. We consider the following
subset of R%*4:

Map = {M e R™: aly* < (Myly)ga, (M yly)pa = Bly|* Vye R}

The structures of composite materials in a domain Q < R? will be represented in this
lecture by measurable matrix-valued functions A : Q@ — M, g. The family of all such

matrix-valued functions functions (which also are called often material parameters) is
denoted by L(2, M, 3).

Let o/, B’ be certain constants such that 0 < o/ < a < 7! < ()7L

Definition 1.2 (H-convergence [MT7T8], see also [A02)).
A sequence {Ay(-)}neny © LF(Q, M, g) is said to H-converge to an H-limit

A*<) e LOO(Q,MOABI)
if, for any f(-) € H=1(2), the weak solutions v,(-) to

—V- (A, Vu)=f, xe)
v(z) =0, xe€d

satisfy
v, — v in H(Q), A, Vv, — Ay Vo, in L*(Q,RY),

where v,(+) is the weak solution to the problem

-V (A Vu)=Ff, ze€Q
v(z) =0, xe€d

Remark 1.5.

(a) Here an H-limit Ay () is also called homogenized limit (in the sense of Murat-Tartar).

The corresponding notation is AnlA*.
(b) If Ay A, then A, € L®(Q, My 5).
(c) It is known that an H-limit is unique if it exists.

(d) The equation

is called homogenized equation. For any f(-) € H 1(Q) and A(-) € L*(Q, My g), the
problem

has a unique weak solution v € HZ(Q).



(e) The Hilbert spaces H*(Q), H} (), H1(Q) are Sobolev spaces “with p = 27, i.e.
HY(Q) = WH2(Q), HE(Q) is the closure of of the space of test functions CF(S2) in
HY(Q), the space HY(Q) = W12(Q) can be defined as the dual space of H}(S)
(see [B6S, |GT77, [B11)]). Where necessary, we discuss in the course the basics of the
Sobolev spaces and the theory of weak solutions.

(f) The notation g, — g denotes the weak convergence in the corresponding space.

1.4 H-closure and the existence of optimizers.

Consider a feasible family (of structures) F < L*(Q2, M, g).

Definition 1.3 (H-closure).
The H-closure F'' of F is the closure of F with respect to (w.r.t) the H-convergence.

Consider certain constants i, ag,y > 0 such that 0 < a3 < as and 0 < v < meas(),
and again consider the feasible family with a prescribed ratio of the materials

F, = IF?Y”’”’Q = {Xw()a1lga + Xo\w ()2 lga 1 meas(w) = 7}. (1.7)

Here we identify the R-valued structure-function a(-) = xu(-)a1 + xa\w(-)az with the
matrix-valued structure-function A(-) = a(-)Ige = Xw(-)@1lga + X0\ (-)a2Ige, which takes
only scalar matrices as its values.

In this course we will consider the important question of how to describe the H-closure
ﬁs of F,. The answer is given by the G-closure theorem obtained independently by Lurie
& Cherkaev and Murat & Tartar, see [MTS85, [C00, [A02]. Our main application of Fs is
the following theorem.

Theorem 1.2 ([CL96]).
For all k e N,

inf \x(a) = min \g(A) and  sup Ag(a) = max \p(A).

a€ly Ae]FS ael Aeﬁs

Remark 1.6.
Theorem implies in particular

argmin \;(A) # &, argmax A\, (A) # @,
Ae?? AGF,}YI

i.e., there exists at least one minimizer Aznin € ﬁs and at least one maximizer A} € F{j
for A\, : L®(Q, M, 3) — R. Besides, for the infimum and the supremum over the family

F., one has

inf Ag(a) = Ap(AP™), sup Ax(a) = A\p(AR™).

a€ly acF



1.5 Applications of eigenvalue optimization to wave equations.

A simple model of an optical cavity can be obtained if one takes two of the linear
Maxwell(-Heaviside) equations

OE(x,t) = 8(190) V < H(z, 1), (1.8)
OH(z, ) — —M(lx) V xE(, 1), (1.9)

and makes the time-harmonic substitutions E(z,t) = e " E(z), H(z,t) = e *H(z).
Together with the simplified perfect metal boundary condition

n(x) x E(z) =0, x € 0%,

this leads to the eigenproblem

0 Y
1 @YV (EY 2 (B) seons

Here 3  R3 is a domain with a sufficiently regular boundary 0Q3 (e.g., with a Lipschitz
boundary) such that the outer normal vector-field n : 0Q3 — R3 is well-defined (e.g., as
an L® (052, R3)-vector field).

Under certain physically reasonable simplifying assumptions it is possible to connect this
3-D Maxwell eigenproblem with several 2-D and 1-D dimensionally reduced eigenproblems
[BCNS12l, [ACL18]. One of such related equations after a 2-D reduction is the 2-nd order
elliptic equation of section[I.1

— V- (a(z1,22) Vu(z1,x2)) = Au(x1, 22), x' = (x1,29) € Uy = R?, (1.10)

where u(z') = Hz(2'), A = 5%, The coefficient a(-) is constructed from R, -valued dielectric
permittivity (-). The perfect metal boundary condition transforms into the Neumann
boundary condition

(aVu)-n' =0, z'edy, (1.11)
where n/ : 0y — R? is the outer normal vector-field on 0€,.
The corresponding evolution wave equation is
Zu(2',t) = V-(a(z) Vu(a' 1)), z'eQyt>0.

The meaning of eigenvalues Ay of (T.10)-(T.11) is that s = ++/\; are the frequencies of
eigen-oscillations of the EM-field in the 2-D optical cavity (s.

Consider now the case when a homogeneous cavity filled with one material has small
impurities consisting of another material, and the corresponding structure is given by the
coefficient a(-).

The relevant feasible families F are

Foe = F2L% i {a() = aryu () + asxow() : 7 < meas(w) < meas(Q)}

10



with v close to meas(f2), and
B, = 0%~ {a() = arx() + asxa(®) : 0 < meas(w) < 7}
with small v > 0.

The values of (lzrellg‘ s (a) and sgmp 5 (a) have now the physical meaning of the bounds
a

on the k-th eigen-frequency s (d(-)). Hence, the optimization problems
arg min A (a), arg max A (a)
acF" acF"
for F = F+ become meaningful for all £ > 2. (What happens with £ = 1 in the case of
Neumann boundary condition?) These optimization problems are closely related to the

problems
argmin Ag(a) and argmax \g(a).
—=H —H
aelF, acl,

2 Convergence of eigenvalues and existence of optimizers.

2.1 Dirichlet eigenvalues of 2-nd order elliptic operators.

Let Q < R? be a domain. Let o, 3 € Ry = (0, +0) be constants such that 0 < o < 871,
Let
RIxd = (M e R4 M = MI* Vi, j}

sym

be the real linear space of symmetric matrices M = M. By

MYT = {M e R alyl” < (Myly)ga, (M~ ylypa = Blyl* ¥y e RY}

sym
we denote the set of all symmetric real d x d-matrices in

Ma,s = (M e R aly® < (Myly)pa, (M~yly)pa > Blyl* vy e RY).
Then L*(Q2, M)5) is the family of all measurable matrix-functions A : @ — M5

Let p_,p+ € R4 be certain constants such that 0 < p_ < p;. We take p(-) €
L*®(Q,[p—, p+]), i-e., the function p : Q@ — [p_, p+] is measurable.

Let Ci°(2) be the space of test functions in €2, i.e., the space of C®-functions f : - R
such that supp f := {z € Q: f(z) # 0} is a compact subset of Q. The Hilbert space H{ ()
is defined as the closure of C{°(2) in the Sobolev space H'(Q) = W12((Q).

Let A e L*(, Miy?) and p e L*(Q, [p—, p+]). The eigenproblem

—V-(AVu) = Apu, x € (),
u(z) =0, x € 0%, (2.2)
is understood in the following sense: Find all pairs {\, u(:)} with A € R (called eigenvalue)
and u € H}(Q) (called eigenfunction) such that (2.1)) is valid in the sense of distributions

and u(-) # 0in HZ () (or equivalently u(-) # 0 in L?(92)), where 0 is the constant function
equal to 0 everywhere.

11



Theorem 2.1 (spectral theorem for symmetric 2nd order Dirichlet problems).
Let A e L*™(4, szrﬂn) and pe L*(Q, [p—, p+]).

(a) The set X = X(A, p) of eigenvalues of ([2.1)-(2.2) can be represented as
Y = {Aktken = {Me(4, ) bren
with a nondecreasing sequence
O< A <XA<..., suchthatkli_)rglo)\szrOO.
(b) The eigenvalues can be numbered such that every eigenvalue is repeated according to
its geometric multiplicity.

(¢c) Under convention (b), the corresponding eigenfunctions ug(-) can be chosen such
that {ug}ken is an orthonormal basis in the Hilbert space L%(Q,(C).

The space L%(Q, C) is the Hilbert space of measurable C-valued functions f such that
<f\f>Lg < 400, where <f]g>Lg := { f(2)g(z)p(x)dz is the inner product in L/%(Q, C). The
Q

real Hilbert space L2(€2) is the space of real-valued L2(Q2, C)-functions.

In what follows, we work under the conventions (a)—(b) on the numbering of A.

Remark 2.1.

We do not give the proof of Theorem[2.1] in the course (for the proof, see [GTTT)).
2.2 Spectral convergence under the homogenization.

Definition 2.1.

A vector v in a normed space V is called V-normalized if |v[y = 1.

Definition 2.2 (reminder, dual space and weak-* convergence, e.g., [RS12, [K13]).
Let K =R oder K = C. Let V be a normed space over K.

(a) The dual space V' is the linear space of continuous linear functionals ¢ : V — K
equipped with the operator norm.

(b) A sequence of functionals {¢, }neny © V' is weak-* convergent to ¢ € V/ (the notation
. * .
is o, — @) if Yo eV (v,0,) = pn(v) converges to (v, p) := p(v).

Remark 2.2.

(a) The dual space V' is always complete, i.e., it is always a Banach space. For example,
(LY())" can be naturally identified with L°(S)). So, a sequence {p,} <= L*®(Q) is
weak-* convergent exactly when there exists p € L*(Q) such that

vandac — fvpdx Yo e L1(Q).
Q Q

(b) In a Hilbert space the weak convergence and weak-* convergence coincide. (Why?)

12



Lemma 2.1 ([A02]).

a) Let {pptnen < LP(Q, [p—, p+]) be such that p, = p in L®(Q). Then
p p—.p pn = p
p €L, [p-, p+]).

(b) Let {Ap}neny © L*(Q, MZZIBH) be such that AnlA. Then A € LOO(Q,MZZEI).
The proof will be given later.

Theorem 2.2 (JA02]).
Let {Ap}nen © L“’(Q,szr;) and {pn}nen < L*P(Q, [p—,p+]) be such that A5 A and
pn — pin L*(Q). Then:

(a) Ae(An, pn) = Ae(A,p) asn — 0 VkeN.
b) Let k € N. For each n, let u}? be a certain L*-normalized eigenfunctions that solve
k

—V (A, Vup) = A\e(An, pr)pnug, x € Q,
up(x) =0, x € 0f.

Then there exists a subsequence {uZJ bien of {uf}nen and a L?-normalized eigenfunc-
tion uy solving

=V (AVug) = Ar(A, p) pug, T €,
ug(z) =0, x € 08,

such that u,’ — uy in H}(Q) as j — 0.
The proof will be given later in Section

2.3 H-compactness, weak-*-compactness, and metrizability.

Theorem 2.3 (sequential H-compactness of L*(Q, M, 3), [MT78], see also [A02]).
For every sequence {Apjnen © L*(2, Map), there exist a subsequence {An;}jen and a

matriz-valued function A € L* (2, My g) such that Ay, LA as j — o0.

Theorem 2.4 (reminder, sequential Banach-Alaoglu Theorem, e.g., [RS12]).
Let V be a separable normed space. Then the closed unit ball By (Oy+; V') in V' is sequen-
tially compact w.r.t. the weak-* convergence.

This is a standard theorem in Functional Analisys courses, so we use it without proof.

Corollary 2.1.

(a) Every closed ball in L™ () is sequentially compact w.r.t. weak-* convergence.

(b) In particular, for every sequence {pn}nen < L (Q, [p—, p+]), there exist a subsequence
{Pn,}jen and a function p € L*(Q2, Mq,g) such that py, 2L pasj— .

13



Proof. (a) Since L®(Q2) = (L'(2))’, B1(0; L*(f2)) is sequentially weak-* compact. Since
every closed ball B, (po(-); L*(€2)) in L* can be obtained from B;(0; L*(2)) by a ho-
mothety (homogeneous dilation) and shift, B, (po(-); L*(£2)) is also sequentially weak-*

compact.
(b) follows from (a) and the fact that L*(Q, [p—, p+] is a closed ball in L™. O

Theorem 2.5 (metrizability).

(a) For every closed ball B in L™ () there exists a metric (distance-function) piws(-,-) on
B such that the weak-* convergence in B coincides with the convergence of the metric

space (B, fyws)-

(b) There exists a metric py(-,-) on L*(Q, M, g) such that the H-convergence in
L*(Q, My ) coincides with the convergence of the metric space (L*(Q, My ), 1)
(see [A02]).

Part (a) is sometimes covered by Functional Analysis courses, we give the sketch of the
proof later in Section 3| We also will prove there part (b) of this theorem.

Corollary 2.2.

a) I An—>H A and An,—>H B for a certain subsequence {Ap.}icn, then A = B almost
J i3J
everywhere in §2.

(b) In particular, an H-limit is unique if it exists.
(¢) The metric space (L*(Q, My, g), p1) is compact.
Proof. Since the H-convergence is actually a convergence in a metric space, usual proper-

ties of general metric spaces imply (a) and (b). Statement (c) is a direct combination of
Theorems 23] and 2.5 O

Remark 2.3.
Consider on L*(Q, M75) x LP(Q, [p—, p+] the metric

NH,w*({Ala Pl}7 {A27P2}) = MH(Ala A2) + Nw*(ﬂl,/)Q)-

Then Theorem [2.9 implies that the nonlinear functionals X : {A, p} — M\i(4A, p) are con-
tinuous on the metric space

(L7 (@ M) < ([0 p:]). ) -

2.4 Existence of optimizers for functionals A.(-).

Let F < L*(Q, M75') be a feasible family of structures A(-). For A € L*(Q, M}), let

Ai(A) be the k-th eigenvalue of

-V (AVu) = Au, x €,
u(z) =0, x e o)

(here p = 1). Recall that F" is the H-closure of F.

14



Theorem 2.6.
For all k e N,

inf A\g(A) = min A\ (A), sup A (A) = max A (A4).
AeF AeT? A€F AeF"

Proof. Step 1. As F < LOO(Q,MZygl), we see from Lemma [2.1| (b), that
F' o L2(0, M),
By Theorem Ak (+) is well-defined on F.

Step 2. Lemma H (b) implies that F' and LOO(Q,MZygl) are closed subsets of the
compact metric space (L*(, My ), un). Consequently, with the metric pup, F and
L*(Q, Miygl) are compact metric space themselves.

Step 3. Since \j : LOO(Q,MZYEI) — R are continuous (nonlinear) functionals (see
Remark [2.3)), they are bounded and achieve their maxima and minima on compact sets,

in particular, on F. Since 0 < mir}lI Ak(A) by Theorem [2.1} we conclude that
AeF

0 < min Ag(A) < inf Ap(A) < sup A\g(a) = max \;(A) < +oo.
AeF" Ack AeF AeF"!

Step 4. Let A™™ be a minimizer for A\, on FH. Then there exists { A, }neny € F such that

A, — A™B. From the continuity of \gx(), we have A\y(A4,) = A\ (A™") = min ,_zn Ap(A)

and so min , zn Ap(A) = infaer Ay(A). The proof of supep Ak(a) = max , zn Ap(A) is

similar. O

Remark 2.4.
In the case of F = Fffl’”’Q of the first chapter, Theorem becomes Theorem which
is the starting point of [CLI0).

2.5 General theorem on the existence of optimizers for A\, (4, p).

Now let the structure of a composite material be described by a pair {A(:), p(-)} with
Ae LOO(Q,M(SX?) and p e L®(Q, [p—, p+]), where 0 < p_ < p4 as before. Let A\;(A, p) be
the k-th eigenvalue of

— V- (A(x) Vu(zx)) = Ap(z)u(z), x €€,
u(z) =0, x € 0N.

Let puyx be a certain metric on L*(2, [p—, p+]) such that the corresponding convergence

is the weak-* convergence.

By Theorem and Remark LOO(Q,MZy’gl) x L®(Q,[p—,p+]) becomes a metric
space with the metric

P s ({A1, p1}, {A2, p2}) i= pu (A1, A2) + s (p1, p2)-

Moreover, the functions Ay : LOO(Q,M(SXygl) x L*(Q, [p—, p+]) — R are continuous on this

metric space.
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Proposition 2.1.
The metric space (LOO(Q,MZEI) x L*(42, [p,,p+]),uH7w*) is compact.

The proof follows easily from Theorems and (exercise).

Theorem 2.7.
Let F LOO(Q,MZ}:?) x LP(Q, [p—, p+]) be a feasible family of structures {A, p}. Let F be
the closure of F w.r.t. the metric piyy ... Then for all k € N,

0< min M\(A,p) = inf M(A,p) < sup Ag(4,p) = max A\g(4,p).
{A,p}eF {A,p}eF {A,p}eF {A,p}eF

The proof uses Proposition In other points the proof is the same as the proof of
Theorem [2.6]

2.6 Existence of optimal non-homogeneous membranes.

Consider another important particular case. One can fix A = Ipa and take a certain family
F < L*(Q, [p—, p+]) of of weight-functions p(-).

Then the application of Theorem to F = {{Ipa,p} : p € F} gives the existence of
optimizers for the weighted Laplacian eigenproblem

—Au(z) = A\p(z)u(z), x e,
u(z) =0, x € oS

This eigenvalue problem has a special applied name: vibrations of a non-homogeneous
membrane. In the case d = 2, the domain {2 represents a membrane with possibly non-
homogeneous (mass) density p(z), € 2. Non-homogeneous means in this context non-
constant. The membrane is firmly fixed at the boundary 02, which corresponds to the
Dirichlet boundary condition u(x) = 0, x € 0.

The elastic properties of the membrane are assumed to be isotropic and homogeneous,
i.e., A is a constant scalar matrix clza, ¢ € Ri. By scaling we can reduce to the case
c = 1. The eigenvalues A\, = A\i(p) are squares w? of frequencies w of eigenoscillations.

In the case d = 1, this eigenproblem describes the eigenoscillations of a string.

Theorem 2.8.
Let F = LP(Q, [p—, p4]) be a feasible family of densities p(-). Let F' be the closure of
F w.r.t. weak-* convergence. Then for all k € N,

0 < min Ag(p) = inf Ag(p) < sup Ag(p) = max Ag(p).
peF ¥ PEF peF peF*

Proof. The theorem is a direct corollary of Theorem applied to F = {{Ipa, p} : p€ F}.
O
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Remark 2.5.
For the problems of type

—Au(z) = Ap(z)u(z), x e,

the appropriate homogenization convergence is the weak-* convergence for p(-). Generally,
different types of equations require different types of homogenization convergiencies.

3 Properties of homogenization-convergencies.

3.1 Metrizability of weak-* convergences.

For more detailed theory of weak-* and weak convergences we refer to [KF67, [DS88] (see
also less detailed expositions in [RS12] [K13]).

Let V be a normed space. Let V' be the space of continuous linear functionals on V.
For ¢ € V' and v € V, we use the notation (v, p) = ¢(v), where the bilinear form (-, ) on
V x V' is called the pairing of V' and V.

Exercise 3.1.
A linear functional ¢ on V is continuous if and only if it is bounded, i.e., if and only if

[llvr := sup v, )| < +0o0.

lvllv<1
The nonlinear functional | - ||y is the norm in V’, which makes V' a Banach space. The
definition of || - |y implies
v, o)l < vllv llellvr,  YoeV, peV”
Exercise 3.2.
lelvr =0 & (v,pp=0 VveV (3.1)

The linear functional with the property (3.1)) is called zero-functional and is denoted by
0 = 0yr.

Exercise 3.3.
Let S be dense in V. Then

Exercise 3.4.

(a) po(z1,22) = % is a metric on C.

N

(b) Let CY with N € N u {00} be the linear space of all complex sequences z = {z;}2_;.

In the case N = o0 the standard notation for C* is CN. Then

N
— |yn_Zn|
Ny, z)= Y 2 I
a (y ) n=1 1+|yn_Z7L‘

is a metric on CV.
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(c) The convergence in (CV, uy) is the componentwise convergense.

Assume now that the normed space V is separable, i.e., there exists a countable subset
S = {Un}neny © V such that S = V.

Theorem 3.1.
Let V be a separable normed space with a dense countable subset S = {vy,}nen. Then:

(a) The function

0
n_ Kvn, 01 = 02)|
_ n
Mw*((Ph(PQ) - Z 2 1+ |<7Jn,§01 - (,02>|

n=1

is a metric on every closed ball B,(po) = B, (o; V') in V'.

(b) The convergence of functionals ¢ € B,(pg) w.r.t. the metric py is weak-* conver-

gence.

(c) (Br(¢o0), fws) is a compact metric space.

Remark 3.1.
For metric spaces sequential compactness and their compactness (as topological spaces) are
equivalent.

Proof of Theorem[3.1. (a) We only need to prove that
Pus(P1,02) =0 & o1 =2,
The other properties of a metric follow from Exercise (b).

The implication “<” is obvious.

Assume that gy« (p1,92) = 0. Then {(v,, 1 — p2) =0 Vv, € S. Exercise implies
that @1 — g = Oy.

(b) By scaling, it is possible to reduce the statement to the case of the closed unit ball

B;1(0y/). Let us prove (b) for B1(0y).

Assume @, — @ as k — o, where ¢, o € B1(0y+). The sequence {z¥}peny € C*° = CN
of CN-sequences
2 = (Zg)neN = ((Uns Pk — ¥))neN

converges to the zero-sequence Ocn componentwise. Thus, Exercise (c) implies

Hoaws (ona ()0) — 0.

Assume iy (@K, p) — 0, where ¢, ¢ € B1(0y). By Exercise (c), for all v, € S we
have klirn (un, ok — @y = 0.
—00

Let v € V\S. Then, for every € > 0, there exists v, € S such that |v, —v|y < e/4. Let
us take k1 € N such that [{vy, pr — ¢)| < €/2 for all k > ki. Then,

3 £
0,01 = 9] < Ko = vy 01 = )] + Ko, 01— 93] < Sliow — ol + 5 <@
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for all k = k1. Thus, (v,¢r — ¢y — 0 for all ve V.

(c) follows from the Banach-Alaouglu Theorem (Theorem [2.4)). O

3.2 Additional properties of weak-* and weak convergencies.

We always assume that a field K is K = R, or K = C.

Definition 3.1.
Let E be a subset of a linear space V over K. The (linear) span of F, which is denoted
by span(FE), is the set of all finite linear combinations of vectors from E.

Let again V' be a normed space.

Proposition 3.1.
Let span(E) = V. A sequence {pi}reny < V' is weakly-* convergent if and only if the two
following conditions hold:

(a) {©K}ken s bounded,
(b) for a certain p € V',

klim (v, — @y =0 forallve E. (3.2)
—00

Remark 3.2.
A statement similar to Proposition |3.1| is valid also for the weak convergence in V with
the analogous proof.

Proof of Proposition[3.1. Step 1. Proof of “only if”. Let @y ~. ». Then the uniform
boundedness principle implies (a). Statement (b) holds in a stronger form for all v e V.

Step 2. Proof of “if”. Assume that (a) and (b) holds. Then (3.2)) for all v € E implies
(3.2) for all v € span(F). Let {¢}ren be a bounded sequence in V’'. Using span(F) =V
and the e-type estimate in the proof of Theorem (b), we obtain (3.2)) for all v e V| i.e.,

*
Pk — - O

Let Q < R? be a domain.

Remark 3.3.

Let 1 < g < 400. Let E be the set of all indicator-functions x. for measurable subsets w
of Q. Then E < L1(Q) and span(E) = L1(Q) (where the closure is taken w.r.t. the strong
convergence of the corresponding space L1(€2)).

We see from Proposition and Remark that the weak-* convergence of sequence
{or}ren in LP(Q) with 1 < p < o is the combination of | - |zr-boundedness with the
convergence “in average”. The convergence “in average” can be understood as

J or(z)dz — J o(x)dz V measurable w < Q.
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Example 3.1.
The weak-* convergence of {pi}ren S L* (2, [p—, p+]) is exactly convergence “in average”
since L*(Q, [p—, p+]) is bounded in L* ().

Remark 3.4.
Let 1 < q < 0. Let E be the set of all indicator-functions x, for open (or closed)
d-dimensional cubes w < Q with sides parallel to coordinate azes. Then span(E) = L1(Q).

Exercise 3.5 ([A02]).
Let uy(z) = sin(nxy), where z = (x1,...,24) € Q.

(a) Find the weak limit w- lim,, o u,, in L?(£2).

(b) Find limy o0 [unr2(0)-

Remark 3.5.
In reflexive Banach spaces weak-* topology (convergence) coincides with weak topology
(resp., convergence). This is the case, e.g., for the spaces LP() with 1 < p < 0.

Example 3.2.
Any Hilbert space X over K, e.g., H1(Q2), L*(Q), H (), or H}(9), is a reflexive Banach
space.

Indeed, by the Riesz theorem, the paring (v, p) of v € X with ¢ € X’ can be identified
with the inner product (x|w,)x, where the map ¢ — w, is a bijective isometry from X’
onto X (moreover, in the case K = R, this map is a isometric isomorphism).

3.3 The space of distributions H*(Q).

The identification of (H}(2))" with H}(Q) by Riesz’s theorem, is not a unique reasonable
way to produce all bounded linear functionals on H{(€2). We consider another useful
approach to the space (H3(2))'.

Since €2 is a bounded open set, the following compact embedding holds
Hy () = L*(Q).
Presently, we need only a weaker statement that
the continuous embedding H}(Q) < L*(2) holds.

We need also the fact that H{(Q) is dense in L?(2). The combination of such a density
property and a continuous embedding will be called a dense continuous embedding with
the notation V; 4, V5. So,

HL(Q) S L2(Q).

The continuous embedding implies that for every u € L(Q),

Pu(v) = (v, pu) = Wlwyr2(g)
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defines a bounded functional ¢, on H}(R), i.e., o, € (HZ(Q))".

The set {¢, : u € L*(Q)} does not contain the whole (H3(2))". Actually the space
L?(Q) with the norm

lul gy = Tl gy

is not complete.

Definition 3.2 (space H (Q)).
The space H~1(Q,K) can be defined as a completion of (LQ(Q, K), || - \|(H5(Q7K)),>.

Remark 3.6.
Let us provide a rigorous interpretation to the statement (H(Q)) = H™1().

(a) The bounded bilinear form {(v|uyr> on H}(Q) x L*(Q) can be extended by continuity
to the pairing -,y = g, -)g-1 of H} () and H7Y(QY). This pairing is a bounded
bilinear form on H}(2) x H1(Q). Now every ¢ € (HL(Q))' has a unique isometric

representation ¢(v) H(%(v, Upypr—1 with a certain distribution u, € H1(S).

(b) A similar statement is valid for the complex spaces HY(2,C) and H=(2,C) if one
replaces everywhere “bilinear form” with “sesquilinear form”.

The triple HZ (), L?(2), H1(Q) united by the two dense continuous embeddings

") S 12(Q) <L B Q)

is an example of a rigged Hilbert space. The space L?(f2) is called a pivot space of this
triple because its inner product is used to build the pairing Hé<~, YH-1 between the two
other spaces. It is said that H—1(Q) is dual to H}(Q) w.r.t. the pivot space L?(f2) (or, in
short, w.r.t. the L?-paring).

3.4 Exercises for the construction of the space H!(Q).

More detailed constructions for rigged Hilbert spaces, for the spaces with the norm of
negative order of regularity, and, in particular, for the space H~1(£2), can be found in the
monograph of Berezanskii [B6S].

Let Q < R? again be a domain. For every u € L%((2), we consider ¢, € (Hg(Q2))’ defined
by ¢u = (vlwrz.

Exercise 3.6.
Consider the map F : L%(Q) — (HZ(Q))" defined by F : u — ¢,. Prove the following
statements.

(a) F is injective.

(b) F'is a bounded linear operator. Note that we are in the case K = R. (How to modify
this statement for the similar map F : L2(Q, C) — (HZ (£, C))’ in the complex spaces?)

(c) The operator F' is not surjective.
Hints: The proof is by contradiction. Assume the surjectivity. Then (a), (b), and the
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bounded inverse theorem imply that F' is homeomorphism and | - |2 and | - ||, HL(Q)
are equivalent norms in L?(Q2). Here, | - I mpy is perceived as the norm induced by F°
in L2(Q) , i.e.,

lu)pe
HUH(H(})/ = sup

. (3.3)
o Tolm

Show that this equivalence of norms leads to a contradiction.

(d) The image F(L*(2)) is dense in (H}(,C))".
Hints: The proof is by contradiction. Assume that F(L?(2)) is not dense. Then
Jp € (HY(Q,C))\{0} such that ¢ L F(L%(2)) (i.e., ¢ is orthogonal to F(L?*(f2))).

/

This leads to a contradiction (one can use, e.g., the identification of (HZ(Q))" and

HZ(Q) via the Riesz theorem in H}()).

(e) The completion H—Y(Q) of (L%(Q),] - l(zzzy) can be isometrically identified with
(H}(2)) via the pairing g1 constructed in the end of section
Hint: Use (d).

3.5 Metrizability of the H-convergence.

We have seen that for a dual V' of a separable normed space V we can metrize weak-*
convergence in bounded subsets of V/ with the use of an arbitrary countable dense subset
{vn}nen of V. Namely, the construction of the corresponding metric on bounded subsets
of V' was

L+ [{on, 01 — p2)|

o0
paos (01, 02) = v (P1,02) = . 27
n=1

We did this construction on closed balls. However it obviously generates weak-* conver-
gence on every bounded subset. Concerning the metric p,x on the whole V', see the
following exercises.

Exercise 3.7.

Note that fi,4 is a metric on the the whole V’. However, generally, the convergence w.r.t.
lws on the whole V' is not equivalent to weak-* convergence in V’. Namely, weak-*
convergence always implies ji,,.-convergence. However, there are separable normed spaces
V such that there exists a p«-convergent sequence in V' that is not weak-* convergent.
The understanding how and where this happens is the aim of this exercise.

(a) Let V = V' = 2. Find a countable dense subset {v,},eny < ¢? and a sequence
{on}nen © €2 such that pi, 2 (n, 0p2) — 0 for the metric defined similarly to (3.4)) and

lpnlle2 — o0 as n — o0. (3.5)

So, the sequence {vy}nen converges to Op2 in the metric space (€2, ju,, 2). However,
due to (3.5)), this sequence cannot be weakly convergent.

(b) For an arbitrary countable dense {v,}neny < £2, show that there exists a sequence
{n}nen with properties as in (a).
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Exercise 3.8.
Characterize all separable normed spaces V such that the convergence in (V' py) is
equivalent to weak-* convergence in V.

If V is a reflexive Banach space with a separable dual V’, then V = V" and we denote
by fw = v a certain metric on bounded subsets of V' that is defined by a formula
similar to in such a way that u,-convergence is weak-convergence in every bounded
set of V. That is, for p,, 1/, we take a countable dense subset {v, }neny of V', and define by

(3.4) the metric fy,v (1, p2) for p1,p2 € V.

Remark 3.7.

The Hilbert spaces H=1(), L*(Q), HY(Q), and H}(Q) are separable. Hence, we can
define similarly to metrics that generate weak convergence on their bounded subsets.
In particular we can fix two such metrics i, g1 and pu, 2 for the spaces H}(Q) and L*(9).

Theorem 3.2 (metrizability of H-convergence).

Let {fn}nen be a countable dense subset of H1(Q)). For A e L®(Q, Myz), let us define
A

2(+) as the weak solution to

u

—V-(AVu)=f,, z€Q
0,

u(x) = x € 0.
Let us consider the function defined for {A, B} € L*(2, Mq) x L*(Q, My ) by

:u'w,H& (u;?v uf) + Hhoy, 12 (AV u;?v B VUE)
1+ :U’w,H(} (uéa UE) + M, L2 (Avuﬁv B VUE) '

p (A, B) = Z 2™

n=1

Then:
(a) (L*(2, Mqg), ) is a metric space.

(b) The convergence defined on L™ (2, My g) by the metric pu is the H-convergence.

We need some preparational results in order to prove this theorem. The metric pp
defined here is different from the metric introduced in [A02] in order to metrize the H-
convergence, but the idea is essentially the same.

3.6 Solvability of the Dirichlet problem.
Again we have a, 3 € R = (0, +00) constants such that 0 < a < 37! and
Mayg = {M e R : aly> < (Mylyga, (M 'yly)ra > Blyl* Yy e R}
Let Ae L®(Q,Myp) and fe H1(Q).
Recall that a function u € H}(€) is called a weak solution to the problem
—V-(AVu)=f, z€Q (3.6)

u(x) =0, x€d

23



JQ(AVU) (Vo)dr = g1 {f, U>Hé Yo e HY(Q).
We use here p-1{f, U>H3 =m oy fop-1.
Definition 3.3.
(a) A bilinear form b(-,-) on a normed space V is called bounded if
b(w, v)| < [ulv]vly  Yu,veV,
ie., if
b(u, v)| < Cllulv]vly  Vu,veV (3.8)
with a certain constant C' > 0.
(b) A bilinear form b(-,-) on a normed space V is called coercive if
[ol < b(v, )] YueV,
ie., if
vl < |b(u,v)| YoeV (3.9)

with a certain constant v > 0.

Example 3.3.
Let the bilinear form b: H*(Q) x H'(Q) — R be defined by b(u,v) = {(Vu) - (Vv)dz.

(a) The Poincare inequality on H}(£2) states that b is coercive on H{ ().
(b) Obviously, b is not coercive on H!(2).
(c) Tt is easy to see that b is a bounded bilinear form on H(().

(d) The formula
1/2

oliy = | [ 170z
Q
defines an equivalent norm in H}(£2). This follows from (a).

Theorem 3.3 (Lax-Milgram lemma).
Let b:V x V be a bounded coercive bilinear form on a Hilbert space V. Then for every
© € V' the variational problem

b(u,v) = p(v) YveV
has a unique solution u € V. Moreover,
1
lullv < =lelv,
8

where v is the constant from (3.9)).
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This theorem we do not prove. The proof can be obtained, e.g., by a very minor
modification from the proof of the Lax-Milgram lemma for K = R in [GT77].

Theorem 3.4 (solvability of the Dirichlet boundary value problem (BVP)).
Let Ae L*(Q2, My ). Then:

(a) The bilinear form

ba(u,v) = JQ(AVU) - (Vu)de,

is bounded and coercive on H}(Q) with the estimate

oz|v|Hé <ba(v,v) Yoe HH(Q).

(b) For every f € H=1(Q), the Dirichlet problem (3.6)-(3.7) has a unique weak solution
ue HL(Q). Moreover,

1
lul gy < E|f’H—1,

where

| H_1<f7 /U>Hé |

[fg-1 = sup
v#0 |U‘Hé

In other words, Theorem considers H}(f2) as a Hilbert space with the inner product
(u]v) H = §o(Vu) - (VT)da instead of the standard inner product. This inner product
generates the norm of Example (d).

Proof of Theorem[3. The coercivity in statement (a) follows from A € L*(Q2, M, ),
Example 6.1 (d), and the pointwise inequality

aly? < (A@)yly)rs,  yeR?
which is valid for almost all x € 2 (see the definition of the family M, 3).

The boundedness in statement (a) follows from the 2nd inequality in the definition of

Mo s
Byl < (A@) 'ylyra,  yeRY (3.10)
which is also valid for almost all = € Q. Indeed, let us take z = (A(z))~'y. Then (3.10)

implies

BlA(x)2]? < (2] A(x)2)pa < |2 |A(2)z],

where the Cauchy-Bunyakovsky—Schwarz inequality is used. So |A(z)z| < %|z| and using
the Cauchy—Bunyakovsky—Schwarz inequality again we get

1
(A(z)z]2)pa < |A(2)z| |2| < EMQ (3.11)
for all z € R? and for almost all 2 € . This estimate implies the boundedness of ba(-, -).

Statement (b) follows from (a) and the Lax-Milgram lemma. O
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Exercise 3.9.
Let ¢ € (H}(2)) be defined by ¢(v) = (vjw)r2 with w € L?(Q) or, more generally, by
o(v) = H§<an>H—1 with w e H=1(Q).

(a) By Riesz’s theorem there exist a unique u € H}(£2) such that p(v) = (v\u)Hé for all
ve H(Q). How to find this u?

(b) Show that, for u from (a), we always have (—A)u = w in the sense of distributions.
How the norms \u|H& and |w|g-1 are connected?

(c) Prove that f € H~'(Q) if and only if f is a distribution having a representation
f = Av with a certain v € H} (). Prove that, for this representation, gy = [flm-1-

(d) Show that f € H-1(f) if and only if f is a distribution with the property that there
d
exists g; € L*(Q), j = 1,...,d, such that f = ] % in the sense of distributions.
j=1
Let g € L?(Q,R%) be defined by g = (g1,...,94). How are the norms |g|;2 and f
connected?

Corollary 3.1.
The linear operator
Ly:H} Q) - H Q)

defined by La(v) = —V -(AV ) is a homeomorphism. (Note that the differentiations here
are understood in the sense of distributions).

Proof. Theorem implies that the operator M4 = LZl is continuous from H () to
HY(Q). For every v € H}(2), we have g = AV v e L?(Q,R%). By Exercise (d), the
distribution L4v = V-g belongs to H~1(2). Hence, M, = LATl is surjective, and so
bijective. The bounded inverse theorem completes the proof. O

3.7 Proof of Theorem (on the metrizability of H-convergence).

We split the proof into several steps and start from the verification of the properties of a
metric for ug.

Step 1. The symmetry property for pyr is obvious. Let us prove the triangle inequality
for pg. For each n and A, B € L*(£), M, ), consider the function

Mn(AvB) = Moy, g} (’U,;?,UE) + oy, 1.2 (Avuﬁvauf)

As we discussed before, g, is a metric on a normed space V (which induces weak
convergence on bounded subsets of V). Hence,

0 < pn(A,C) < pn(A,B) + un(B,C), A,B,Ce L*(Q,Myp).

Now the triangle inequality for g follows from the following statement: if a, b, ¢ € [0, +0)

satisfy 0 < a < b + ¢, then
a b c

< .
1+a 1+b+1+c
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Step 2. It is obvious that A = B almost everywhere in 2 = up(A4, B) = 0. Let us
prove that up(A,B) =0 = A = B almost everywhere in 2. Note that

pa(A,B) =0 = 0= p, g (up,w?) = py2(AV Uy, BVUf)

n»on

= o =ul in H}(Q) and AV 2 = BVuZ in L2(Q,R?) for all n.

n

Using the operators M = LZI from Corollary we write these equalities as M4 f,, =
Mpf, in H}(Q) and AV(Maf,) = BV(Mgf,) in L?(Q,R?) for the dense in H () set
{fn}neN-

By Theorem M4 and Mp are bounded and continuous as operators from H~1(£2)
to H} (). Hence,

Maf =Mpf  VfeH Q). (3.12)

Similarly, since the operator grad : u — Vu is bounded and continuous from H'(f2) to
L?(,RY), we get

Agrad Msf = Bgrad Mpf  Vfe H1(Q). (3.13)

Let us show that (3.12)-(3.13) implies A = B almost everywhere in 2. Let a closed set w
be such that
w cc ), i.e., w is compactly embedded into ).

In our settings, this means that w is compact and w < Q. There exists ¢ € C§°(£2) such
that p(z) =1 for z € w.

Take an arbitrary y € R% and
f==V-(AV(p(z)y - x)),
we get from ¢(z)y -z € Hi(Q) and that
u=Mpf=Maf =)y -, x € Q.
From Vu =y in w and we get
Ay=AVu=BVu= By

in the sense of L?(Q,R%) for any y € R%. This implies that A = B almost everywhere in
any compact subset of €, and in turn, almost everywhere in €.

We proved that (L%(£2, Mg g), un) is a metric space. Now we proof part (b).

Step 3. Let us prove that the convergence in the metric space (L™ (2, Mg g), pn) is the
H-convergence.

First we show that the H-convergence implies the upg-convergence. Indeed, for every
n e N, A,—5 A, implies that ue — ul* in H}(Q) and A Vuis — A, Vud* in L2(Q,RY)
as k — 0. So pn(Ak, Ax) = /,Lwﬂé(uﬁk,uﬁ*) + o 12 (A Vuie A, Vi) goes to 0 as

k — oo for all n, and in turn, pp(Ag, Ax) — 0.
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Let us prove the inverse implication. Let pp(Ag, Ax) — 0. Then for all n

oo, (g, up*) — 0, (3.14)
fp 12 (AR Vuih, Ay Vul*) — 0, (3.15)
as k — oo.
From Theorem [3.4] it follows that
A 1
lun*lms < —fulg- VEkneN (3.16)
«

So ([3.14) and (3.16) imply u’* — u* in H}(Q) as k — oo. Similarly, (3.16]) im-
plies || A Vulk|2 < 0715|fn\H4 for all £ and n. Together with (3.15), this implies
AR Vulds — A, Vul* in L2(Q,R?) as k — oo for all n.

We proved the desired weak convergencies from the definition of H-convergence for all
f in the dense subset {f,}neny of H71(Q). In order to extend these weak converegencies
to all f € H~1(2), one uses Proposition below. To formulate Proposition we need
some preparations.

Let V and U be Banach spaces. Following [A02], let us denote by LC(V,U) the space
of linear continuous operators 7' : V' — U equipped with the operator norm | - |. Recall
that LC(V,U) is a Banach space.

Remark 3.8.

We use the standard terminology of [DS88, § 11.3.25] and [KF67H] for weak convergence.
That is, let V' be a normed space. A sequence {vp}neny € V is called weak convergent in
V' if there exists v € V such that {v,, )y — {v,p) Ve € V'. Note that, the monograph of
Kato [K13] uses slightly different and not completely equivalent terminology.

Definition 3.4.
A sequence {T},},en of bounded (linear) operators T,, : V' — U from a Banach space V to
a Banach space U is said to converge weakly if T),v converges weakly in U for every v € V.

Exercise 3.10 (see [K13| Section III.3.1], [RS12, Theorem VI.1}).
Let {T},}neny © LC(V,U) be a sequence of bounded operators from a Banach space V' to a
Banach space U.

(a) If {T},}nen converges weakly, then there exists a unique T € LC(V,U) such that
T,v — Tv in U for all v € V. In this case, one says that {7}, },en converges weakly to
T and writes T}, — T.

(b) If {T} }nen converges weakly, then {T},},en is bounded, i.e., there exists C' > 0 such
that |T,| < C for all n. In this case, for the weak limit 7 = w-1lim7},,, one has
I <c.

Proposition 3.2.
Let {T),}nen be a bounded sequence of bounded operators from a Banach space V' to a
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Banach space U. Let Sy be dense subset of V and Sy be a dense subset of U'. Then T,
is weakly convergent if {Tyv,p) — {uy, ) with a certain u, € U (depending on v) for all
v e ST and p € Ss.

We give the proof of this proposition later.

Remark 3.9.

Note that special weak convergence of operators T,, € LC(V,U), n € N, defined above in
Definition[3.4) does not necessarily coincide with the weak convergence in the Banach space
LC(V,U). Generally, weak convergence in the Banach space LC(V,U) is stronger property
than the weak convergence of operators (for the case, where V.= U is a Hilbert space, see
the detailed explanations in [RS12, Sections VI.1 and VI.6]).

Proposition applied to operators My, = (div Ax grad)~! e LC(H~1(Q), H}(Q)) and
to operators Ay grad M4, € LO(H~1(Q), L2(Q,R%)) completes the proof of Theorem

4 Abstract G-convergence and weak operator convergence.

4.1 Weak convergence and compactness for operators.

The next big aim is to give the proof of the H-compactness of L* (2, M, g), which requires
more results on weak convergence and weak compactness for operators. That is why our
next small aim is to prove Proposition and consider weak convergence of operators in

more detail.

Let V and U be Banach spaces. Recall that LC(V,U) is the Banach space of linear
continuous operators T': V' — U equipped with the operator norm | - ||.

Exercise 4.1.

(a) For every v e V, there exists ¢ € V' such that ||¢]y = 1 and (v, p) = [Jv|y (see [KI3,
Sect. II1.1.4]).

(b) The norm | - || is weakly lower semicontinuous, i.e., if v, — v in V, then |jv|y <
lim inf, o [|vg |-
Hint: use (a).

(c) If T, 5 Ty for {Tp}new = LC(U, V), then ||Tp|| < liminf, o [T
Hint: use (b).

Proof of Proposition[3.9. Since |T,| < C for all n, the sequence {T,,v}nen is bounded
for every v € V. From the assumption of the proposition and the criterion of weak
convergence in U (see Remark , we see that T,v — u, for every v € S;. We denote
this limit Tv := u,. This weak convergence T,,v can be extended to v € span(S;) and
defines on the linear (possibly nonclosed) subspace span(S;) the linear operator T'v in such
a way that

Tov —Tv inU Vv € span(Sh).
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The subspace span(S;) is equipped with the norm of V. Then Exercise (a) implies
|T| < C. So T can be extended by continuity to the whole V with |T| < C for this
extended operator.

Let now v € V be arbitrary. Then Ve > 0, there exists v; € span(S7) such that
[v —v1]ly < e (or there exists vq € S; with the same property; the use of dense subset S}
or dense subset span(S7) plays here no difference). Then for every ¢ € U’,

(KTww, ) = {Tw, )| < K(Tn = T)(v = 1), )| + K(Tn = T)v1, ¢)l

<
< 2Ce|pllor + K(Tn = T)or, ¢)l.

Similarly to the proof of Theorem (b), this implies (T, v,y — (Tw,p). That is,
T, —T. O

Theorem 4.1 (see e.g. [DS88, Theorem I1.3.28]).
Let U be a reflexive Banach space. Then every bounded sequence in U contains o weakly
convergent subsequence.

Theorem |4.1{ we take without a proof. (Note that there is no the assumption that U’ is
separable, and so its is not immediate corollary of the Banach-Alaoglu theorem).

Proposition 4.1 (on the compactness for weak operator convergence, see e.g. [A02]).
Let V' be a separable Banach space, and let U be a reflexive Banach space. Let {T}}nen <

LC(V,U) be a bounded sequence of operators. Then there exists Ty € LC(V,U) and a
subsequence {Ty, }ren such that T, £ Ty.

Proof. Let C be such that |T5,| < C for all n. Let S = {f;}jen be a dense countable

subset of V. For every f € S, the sequence {T,,f} is bounded in U. Applying Theorem

we see that there exists a subsequence {Tnf f}ken such that T f—wuyin U for a
k k

certain uy € U. Here the increasing sequence {n£ }ken © N depends on the choice of f,
and uy depends on the choice of f and {nﬁ}keN.

Consider now the procedure of the extraction of a diagonal subsequence. For f; € S,
there exists a subsequence {nil} keN such that T ol fi — uy, in U. From this subsequence
we choose an increasing subsequence {nkz}keN c {nkl}keN such that T' e f2 — uy,, and so

on. Then the diagonal subsequence {nk’“} satisfies
Tl =y VfeS={fj}jean

This defines a linear operator T', for a time being on span(S), by

N

2 ¢jfj) = Z Cyjuf,;-

7=1

From Exercise (b), |T| < C. So we can extend this operator by continuity to the
whole V' saving the inequality ||T'| < C for the extended operator.
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Summarizing, there exists 7' € LC(V,U) and a subsequence {ng}ren = {ng’“}keN such
that
T f—=Tf Vf € span(S). (4.1)

It remains to extend (4.1)) to all f € V using the density S = V. This can be done via
the estimates with approximation of arbitrary v € V' by f € S similar to that of the proofs
of Proposition [3.2f and Theorem [3.1{ (b). O

Remark 4.1 ([DS88, § 11.3.25]).
Let V' be a normed space.

(a) A sequence {vn}neny <V is called a weak Cauchy sequence (in V') if {{vp, ©)}tnen is a
Cauchy sequence Yo € V.

(b) Equivalently, {vp}nen < V is a weak Cauchy sequence if and only if {{vn,©)}nen
converges (in R or C) VeoeV'.

(One has to be careful with the terminology for weak convergence in the book [K135],
because in [K13] weak Cauchy sequences are called weak convergent, and weak conver-
gent sequences in the standard sense are called weak convergent to a certain element
v € V. That is, the definition of weak convergent sequences in [K13] is generally not
equivalent to the standard definition. These definitions are equivalent in the special

situation of weak complete spaces.)

(c) If every weak Cauchy sequence in V is weak convergent in V', the space V is called
weakly complete.

Exercise 4.2.(a) If a normed space V' is weakly complete, it is complete.

(b) There exist Banach spaces that are not weakly complete.
Hint: try V = C[0,1] or V = ¢ (see [DS88, Table IV.A]).

(c¢) Every reflexive Banach space is weakly complete.
Hint: use Theorem E.11

Remark 4.2.

There exist Banach spaces V' having a separable pre-dual and simultaneously not weakly
complete, e.g., V =% [DS8S, 1V.13.5].

4.2 Abstract G-convergence of operators.

Let V be a separable reflexive Banach space. Assume that 7' € LC(V, V') satisfies for a
certain o > 0 the coercivity estimate

alvlly < {Tv,v) YveV. (4.2)
Then the Lax-Milgram lemma implies that T is invertible and

177 <

Q|+
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Assume now that 7! satisfy the coercivity estimate for a certain 8 > 0

Blflve <<T7U ) YfeV (4.3)

Then 1
Blflv: < T flviflv < EHfH?/I VeV,

and so a < % Recall that we use the notation Ry = {av e R: +a > 0}.

Definition 4.1.
We define

(a) E(V):={T e LC(V,V'): (4.2)) is satisfied for a certain a > 0}
(b) for a, 8 € R, satisfying a < 87!
Eap(V):={T € LC(V,V'): T satisfies [£.2)), T~ satisfies ([@-3)}.

Definition 4.2 (Spagnolo [S76]).
Let {Thtneny < E(V) and T € (V). The sequence {T,,} is said to G-converge to T if

T71 = 7= In this case, we write TniT.

Theorem 4.2 (G-compactness, [S76], see also [A02] JKO12]).
Let a,3 € Ry satisfy « < B~'. Let V be a separable Banach space. Then for every

sequence {Tninen © Eqg(V), there exists a subsequence {1}, } such that TnkiT for a
certain T € E(V). In this case, T € E, (V).

Exercise 4.3 (|B11), Corollaries 3.21 and 3.27]).
(a) A Banach space V is reflexive if and only if V' is reflexive.

(b) Banach space V is reflexive and separable if an only if V"’ is reflexive and separable.

Proof of Theorem[/.3 Using Exercise [£.3] and Proposition [£.1] we may pass to a weak
limit S = w- limg_, o T,jkl on a certain subsequence {T;kl}. Then the appropriate coercivity
estimates for S and T := S~! can be obtained passing to limits for appropriately written
coercive estimates for 7},, and Tn_kl. ]

Corollary 4.1 (application of the abstract G-convergence to div A grad-operators).
Let {Ap}nen © LP(Q, My ). Let La, € LC(HL(Y), H 1(Q)) be defined by

L,, = —div A, grad,
and let Q, € LC(H™1 (), L>(Q,R%)) be defined by
Qn = A, grad L;}l.

Then there exists a subsequence {nx} = N, an operator Ty € £, s(H(Q)), and an operator
Qo e LO(HY(Q), L?(Q,RY)) such that

ink BN TO_1 and  Qn, BN Qo.
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Here H}(Q) and H=(Q) are percieved as mutually dual spaces equipped with norms | - |H3
and |- |g-1.

Proof. The proof is based on Theorem and Proposition 8.2. In the proof, we denote
L, := L, for brevity.

Step 1. We show that {L,} < E, 5(H}(2), H (). The estimate ([£.2)) for L,, follows
from the coercivity estimates for A,. In order to get (4.3), we write using the coercivity
estimates for AL,

(Lo, v) = f (Ap Vv, A7 A, Vodda > B A, Vol 2.
For any f e H~1(Q), we put v = L,;! f. This gives

BlQnflle < f, Ly ). (4.4)

On the other hand,

‘f|H*1 = sup |<Anvv| vw>L2|
w70 W] -1

Estimates (4.4)-(4.5) imply (.3]) for L.

Step 2. We apply Theorem to {L,} and get, after passing to a subsequence,
L} 5 Tyt for a certain Ty € &, 5(Ha ().

< [An Vol = @nfll2. (4.5)

Step 3. The sequence {Qy} is bounded in LC(H~1(), L?>(Q,R?)). Indeed, using the
coercivity estimate for A-! and then |L;!| < 1/, we get

_ _ _ 1 1
|Quflze = |Angrad Ly e < B7H V(LG e = 7L flag < ﬁfamﬂ—l-

Step 4. We apply Proposition 8.2 to the bounded subsequence {Q,, }. After passing to a
suitable subsequence one more time, Proposition 8.2 produces the subsubsequence, which
with some abuse of notation we keep indexing by ny, such that Qp, =5 Qp for a certain
Qo € LO(H™Y(Q), L2(Q,R%)). Thus, Qn, — Qo and Ly} 5 Tyt simultaneously. O

5 The space (H!(Q2)) and oscillatory test functions.

5.1 Oscillating test functions.

The proof of the H-compactness of L% (€2, M,, g) is based on two methods of Murat and
Tartar [MT78, [A02], namely, oscillating test functions and the compensated compactness.

Lemma 5.1 (oscillating test functions [MT78]).
Let {Ap}nen © L*(Q, My ). Let1 < j < d. Then there exists a subsequence {nj}ren < N
and a sequence of test functions {w}}gen = {Wk }ren < H' () with the properties:

(a) wp — xj in H'(Q), where by x; we denote a C*(Q)-function x — x;,
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(b) For all k e N,

-V (A, Vuwg) =g in the sense of distributions for a certain g € H™(Q).
(c) Ap, Vwy, — @ in L2(Q,R%) for a certain vector-field o/ € L?(Q,RY).
This lemma is proved in Section [5.1] after some preparations are done in Section

Remark 5.1.

The role of the collection of the wector-fields a'(-), ..., a®(:) is that, taken as vector-
columns, they together produce a matriz-function Ay(x) = (a'(z), ..., a®(x)). Later it
will be shown that Ay is a homogenized matriz-function in the sense that Ay is the H-limit
of the subsequence { Ay, }ren. As soon as this fact is proved, this proves Theor@m about
the compactness of L*(Q, Mg ).

5.2 The space (H'(f))" and weak convergence in H'().
We identify pairs of wy € L?*(Q) and w; € L*(Q,R?%) with vector-fields w = (wo,wy) €

L?(Q, RI*1). For the description of the spaces (W*P?(Q)) see [AT75].

Theorem 5.1 (description of (H(Q2))).
(a) For every w = (wg,w;) € L?(Q,R¥*Y), the formula
0, B = Colwodga + (V olwnys
defines p, € (HY(Q))'.

(b) The mapping
F:ww @,  F:L*(QR") - (H(Q))

18 surjective.
(c) For every o € (H* (), the norm of linear functional ¢ equals

[l gy = min{lwlr> @ = puw}.

Proof. (a) It follows from the definition of the norm in H'(€2) and the Cauchy-Bunyakov-
sky-Schwarz inequality that
[Kvs dw)l < [oll2lwoll L2 + [V vl g2 |wi] L2 < ol g w] - (5.1)

This implies (a).

(b) follows from the Riesz representation theorem in Hilbert spaces. That is, for every
o € (H'(2)) there exists a unique v € H'(2) such that

@le) = v, wym = lwypz + <V o| Ve = (vlpw)

with w = (u, Vu). Moreover, in this case,

lellay = lulm = llwl - (5:2)

(c) follows from (j5.1]) and (5.2)). O
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Corollary 5.1.
The weak convergence v, — vg in H'(Q) holds if and only if

<Un|w0>L2 + <V vn|w1>L2 - <U0|w0>L2 + <V U0|w1>L2 Yw € L2(Q,Rd+1).
Proof. Corollary follows from Theorem [5.1 O

Corollary 5.2.
Let Q and Q be domains in R? such that Q < Q. Then, for every ¢ € (H'(Q)), there
exists p € (HY(Q)) such that

H@”(Hl@))/ < H‘P”(Hl(Q))’
and, for the restriction v|q of an arbitrary v € Hl(ﬁ), the following equality holds
e(vla) = ¢(v).

Proof. Let p € (H*(Q))'. As in the proof of Corollary there exists a unique u € H'(Q)
such that

@y = lwyre + (Vo Ve = (vfpw)

with w = (wp,w1) = (u,Vu). Let us extend w to a function w € L2(@,Rd+1) by zero,
ie., w(x) =0 for z € AN\Q and W(z) = w(z) for z € Q. Then @ = p; satisfies the desired
properties. [

Corollary 5.3.
Let Q and Q be domains in RY such that Q = Q. Let v, — vo in HY(Q) (or in HL(Q)).
Then vplo — volo in H().

Proof. For every ¢ € (H'(Q))', we can use the extension of Corollary This and
Corollary show that v, — wvg in H'() implies v,|q — volq in HY(Q). If v, — v in

~

H (), we also have v,, — vg in HY(Q). Thus, v,]q — vo|q in H(Q) follows as above. [

5.3 The proof of Lemma (on oscillating test functions).

Exercise 5.1.
Let © and Q be domains in R? such that Q = Q. Let w € H*(Q). Then the restriction u|q
belongs to HY(Q) and V(u|g) = (Vu)|q in the L%-sense.

The proof of Lemmal5.1| is given in several steps.

Step 1. Let us consider a certain domain Q such that Q = Q. We extend A, to 0
such that the extended A,, belongs to L*(§2, M, g), for example, such an extension can
be done by A, (z) = algs for x € Q\Q.

We apply Corollary to the operators L 4, = —div A, grad and @ A, = Ay, grad izi

corresponding to the domain Q. This produces a subsequence {nx} — N, an operator
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To € Ea(HE(Q)), and an operator Qo € LC(H1(Q), L2(Q, R%)) such that
L;‘}% BN TO_1 and @y, 5 Q.

Step 2. Let us take a smooth cut-off function ¢ € Cgo(ﬁ) such that ¢(z) = 1 for x € Q.

~

Denote by v¢z; the C§°(2)-function x — (x)z;.
Let g € H71(Q) be defined by Ty(¢x;), and let g € H-(2) be the restriction of the
functional g, i.e.,

~

9 =9l
Let

~

~ 1 -~
Wy = LAnkg.

So Wy, € H&(ﬁ) The sequence of “oscillating test functions” corresponding to a coordinate
je{l,...,d} is defined by

wg = Wk|q (see Exercise [5.1]).

Step 3. Let us show now that the sequence of functions wy, satisfies properties (a)-(c)
of Lemma (5.1}

Since izik = IA“O_I, we have Wy, = i;rlbk/g\ = IA”O_1§ = tx; in H&(SA)) Hence, Corollary
implies w, — z; in H'(£2). This proves (a).

Considering the equality L An,, @y = g in the space H ! (ﬁ) and coupling it with the test
functions v € HE(Q2), one gets (b).

Since @nk = @0, we have
QAnk./g\ = Ank grad LZ}%./Q\ = Ank grad 'L’/}k - QO./Q\

with the weak convergence in the L?-sense. We test this weak convergence on vector-fields
v e L?(9,R?) extended to 0 € L2(2,R%) by 0 in Q\Q. With the use of Exercise this
shows that

(Any V Wy, [ 0)2 = (A (V)| | 0 )2 = CAny V(@klQ) | v )r2 = CAn Vg [ v )12,

and that ( A,, Vwyg | v )2 converges to (Qod)la | vDr2 as k — oo for all v e L2(,RY).
Thus, A,, Vwy, — &/ in L?(Q, R?) with

al = (@0§)|Q-

This completes the proof of Lemma
6 Compensated compactness and G-convergence for 2nd or-
der elliptic equations.

6.1 Compensated compactness.

Let V be a Hilbert space. Recall that the notation v, — v in V means the strong
convergence of the sequence {v,} to v in the space V.
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Exercise 6.1.

(a) Assume that u, — v in V and v, — v in V. Then {uy|v,) — {u,v).

(b) Assume that u, — u in L?(Q) and v, — v in L?(Q). Then u,v, — uv in L'(Q).

Here u,v, denotes the L!(Q)-function wy, : & — u,(x)v,(x) defined for almost all z €
as a pointwise product.

Example 6.1 (convergence counterexample, product of weakly convergent sequences).
In L?(f2), we consider the sequence u,(x) = sin(nx1), n € N. Then, we know that u, — 0
in L2(Q). Let us take the 2nd copy of this weakly convergent sequence, v, = uy, n € N.
Then

UV, = u2 = sin®(nzy) — %1 in L?(Q) and in L'(Q) (Exercise).

Here 1 is the constant function equal to 1 for all . Summarizing, we see that the weak
limits v = v = w-limu,, = w-limv,, are 0, but u,v, — %1 # UL.

Exercise 6.2.

(a) Construct two weakly convergent in L2(£2) sequences {uy, }neny and {v,}nen such that
{(un|vn)r2}tnen is not convergent.

(b) Construct two sequencies {ty }nen, {Vn}neny © L2(Q) n LP(Q) such that {u,}ney and
{vn}nen are weakly convergent in L2(Q), but {u,v,}ney is not weakly convergent in
L2(Q) (in LY(Q)).

While it is generally impossible to pass to the limit for various products of weakly
convergent sequences, it is still quite desirable in many cases (some of them we see below).
The question is if this is possible to do under certain additional assumptions.

Let us define for v = (v1,...,vq) € L?(,RY) an operator
curl : L2(Q,RY) — H~1(Q, R¥*9)
as

d

curlv = ((323].112- — 6%%)”:1 ,

where H _I(Q,Rdx‘i) is perceived as the space of d x d-matrices having the entries from

the space H~1(Q).

The following compensated compactness result, which essentially stems from works of
Murat & Tartar, is given in the very general formulation of the monograph [JKO12].

Lemma 6.1 (div-curl lemma, essentially Murat & Tartar, 1978).
Let {tn }nen, {Un}nen © L2(Q,Rd) be such that

U, — u in L?(Q,RY),
v, — v in L?(Q,RY),
{div up }nen is a relatively compact subset of H (1),

{curl v, bnen is a relatively compact subset of H™1(Q,RY*9),
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Then, for every ¢ € C3 (L),

L () un(@)[on (7))padz — L () (u(@)[v(r))gadr.
(That is, {{un(x)|vn(2))pd}nen converges in the sense of distributions.)
We take this lemma without a proof (a proof can be found in [JKOI2, Section 4.2]).
Exercise 6.3.
(a) For arbitrary u € H'(€), the following equality holds
curl Vu = 0, where O = Ogaxa.

(b) The equality curl grad = 0 holds in the sense of linear operators in the space of

distributions.

6.2 The proof of Theorem (on the H-compactness of L*(Q, M, g)).

Let {Ap}neny © L*(2, Mgy 5). We know from Corollary and Lemma [5.1| that we may
pass to a subsequence, which we again reindex by n € N, such that

operators L4, = —div A, grad  are G-convergent to a certain Ty € &, 5(Hg ()

and
Qn = A, grad L1 are weakly convergent to a certain Qo € LO(H 1(Q), L*(Q,R%))

as n — o0. Moreover, this subsequence can be choosen such that additionally for each
j=1,...,d, there exists a sequence of “oscillatory test functions” {w,},eny = H() with
the properties:

o wh — z; in HY(Q),
o —V-(4, Vi) = g; Vne N for a certain g; € H1(Q),
o A, Vwh — al in L2(Q,R?) for a certain vector-field af € L2(Q, RY).

We introduce a d x d-matrix-function A, = (a',...,a?) € L2(Q,R¥>*9). Let us take an
arbitrary f e H=(Q). Then

Up = L' f =Ty f =uo  in HY(Q),
ApVu, — Qof in L*(Q,R%).
Our aim is to prove that A, € L®(Q2, M,g) and Ty = —div A, grad, which can be

. H
summarized as A4,— A..

The proof of Theorem is split in several steps (we follow mainly [A02] with minor
differences).
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Step 1. We want to show that A, grad T[flf e L*(Q,RY) and that
f=—div A, grad Talf (this is a precursor of Ty = — div A, grad ).
For every vector & € R?, we construct wg = Z?Zl fjw%, which satisfies
ws — €.z in HY(Q).
Since Ap(x) € M, g for almost all z € Q, we have for almost all z €
(Ap(V tp — Vi) |(Vup — Vws)ga =0

We apply to this inequality the div-curl lemma (Lemma [6.1)). Let us show that the
assumptions of the div-curl lemma hold true. By Exercise {eurl V(up, — w$) hnen = {0}
is a one point compact set in H~1(Q, R¥*9). Besides,

Uy, — ug in HE(Q), and so Vu,, — Vug in L*(Q,RY),
w% — ¢z in H}(Q), and so wa; — 1¢ in L2(Q,RY);

note that we have used here that grad e LC(HY(Q), L*(Q, R%)).

Hence, V(uy, —wg) — Vuo—¢&in L2(,RY). On the other hand, denoting g = Z?:l £i9j
we see that {div A, V(up — w$)}nen = {—f + g} is a one point compact set in H~1(€).
Additionally, we have the weak L?(£2, R%)-convergence

An v(un - wg) - QOf - A*§
So all assumptions of the div-curl lemma are satisfied.

The the div-curl lemma implies that, for every nonnegative ¢ € C{°(Q),

L 0 {Qof — A& Vug — §Hpada = 0.

Hence, for every ¢ € R? there exists a subset Qf < Q of the full measure meas(Qf) =
meas(2) such that

{Qof)(x) = Ax(2)€| Vug(a) — Epa =0, € Qf (6.1)

Here and in what follows we fix concrete functions-representatives of Qof, A, and V ug
in the corresponding LP-spaces of the equivalence classes.

Let 2 = {¢*},en be a dense countable subset of RY. Then ) = Mken 06" also has the
properties that (6.1 holds for z € Q and meas(Q2) = meas(2). Since Z is dense in R?, for
every z € ), we can approximate for every £ € R? the number

(Qof) (@) — Ax(2)€] Vug(x) — E)pa

by nonnegative numbers

{(Qof) (@) = Aw(2)€"| V uo(x) — £ )pa.
Thus, holds for all z € € and all £ € R%
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Let us fix now an arbitrary 20 e Q) and take ¢ = Vu(z®) — ty with t > 0 and y € R?
We obtain from (6.1

{(Qof)(a°) = Au(a®) Vug(a®) + tA(2")ylty)pa = 0
for all t > 0 and all y € R%. Considering the limit as t — 0 + 0, we get
UQof)(0) = Au(a®) Vug(a”)lyhpa >0 Vye R
Considering this inequality with y = +7 for all § € R?, we see that
Qof(z) = Au(z) Vug(z)  Vze. (6.2)

In particular, (6.2)) implies
Ay Vg e L2(Q,RY).

Since A, Vu, — Qof in L*(Q,RY),
f=-V(4Vu,) — —V(Qof) =—V-(A;Vug) in H ().

That is,
—V (A« Vug) = f = Touo.

Summarizing, we proved that A, V(Tglf) e L*(Q,R%) and — div A, grad T(;lf = f for
all fe H1(Q).

Step 2. Let us show that A, € L*(2, My ).

For all nonnegative ¢ € C§°(£2), we have
J ©(A, Vws) - (Vws)dr > aJ o| Vws|?dz.
w Q

Applying to this inequality the arguments with the div-curl lemma similar to those of Step
1, we obtain

(A (2)€|Epa = al]? for all £ € R? and almost all z € Q. (6.3)

In particular, (6.3)) implies that (A, (z))~! exists for almost all z € Q.
Analogously, for all nonnegative ¢ € C§°(9),

| e V) (4714, T u)ae > 8 | olan v udPa
and with the help of the div-curl lemma we get
(A () Yylydga = Bly|* for all y € R? and for almost all z € Q.
Thus, Ay € L*(Q, My ).

Step 3. The equality f = —divA,grad T, 'f for all f € H'(Q) implies that the
homeomorphism (— div) A, grad : H}(Q) — H~1(Q) is actually the operator Tp. Together
with the weak convergences L,' > T, 0 Land A, grad L' % Qo = A, grad Ty ! this

implies the H-convergence AniA*.
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In Step 2 of the proof Theorem [2.3] we passed to limits in the following estimates with
nonegative ¢ € C3°(9),

J O(A, Vws) - (Vws)dz > aJ ©| V wt 2z,
w Q
J O(A, V) - (A 1A, Vuws)dz > ﬂf o|An Vb |2d.
w Q
For the limit in the right hand side, we used implicitly the following lemma.

Lemma 6.2.
Let up, — w in L2(Q,RY). Let ¢ € L®() be almost everywhere nonnegative. Then

liminff olu,2dz ZJ olu)*dz.

Proof. The proof follows easily from the lower semicontinuity of L?-norm applied to the
weakly L2-convergent sequence {gol/ 2Un Y nen- O

6.3 G-convergence for 2nd order elliptic equations.

Recall that
MYF ={MeMug : M=M"},

where M T is the transpose of the matrix M, and that, for A € L®(Q, M, ), we have

La=—divAgrade LO(H)(Q),H *(Q)) and L4 e E,p(H(Q)).

Definition 6.1.
A sequence {A,} = L%(Q, M})}) is said to be G-convergent to a G-limit

Ay € LP(Q, M%) (with the notation A,-">A,)
. G . e . . -1 w —1
if La,—La, in the abstract sense of Definition 4.2/ (i.e., in the sense that L, — L} ).

Theorem 6.1.
Let {Ap} = L*(Q MG Then

Proposition 6.1.
If A5 Ay, then AT AT

We do not prove this theorem and this proposition in the course (for the proofs, see
[A02] Section 1.3.2]).

Corollary 6.1.
Let {An} < LZ(Q, M), Then there exist Ax € L*(Q, MZ3) and a subsequence {4y, }

such that Ay, &A* .
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Proof. The proof follows easily from Theorems [2.3] and combined with Proposition
0.1} 0

Remark 6.1.
Let us summarize the results about the G-convergence of {A,} < L*(€, Miygl)

(a) LOO(Q,MiZgl) is a compact subset of (L*(Q, Ma. ), pr)-

(b) On L*(Q, Miyg]), the H-convergence can be defined in a simpler, but equivalent way,

as the G-convergence.

Historically, the homogenization-convergence was first introduced on L™ (2, szgl) as
G-convergence by Spagnolo in 1968. Later the H-convergence was introduced by Murat
& Tartar in 1977-78 as an appropriately modified generalization for the generally non-
symmetric case of L*(2, M, g) (see [MT78, [A02, TKO12]).

7 Convergence of eigenvalues.

7.1 Preparational results for the eigenvalue convergence.

We always assume p € L*(Q, [p_, p+]) with 0 < p_ < py < +0, and A € LOO(Q,MZy’gl).
Recall that the eigenvalues of the operator L, , = —%divAgrad associated with the
Dirichlet boundary condition u|sg = 0 can be numbered as {A;}ren = {Ax(4, p)}ken non-
decreasingly taking multiplicities into account. Due to the Dirichlet boundary condition,
the corresponding eigenfunctions uy belong to the space HZ ().

Theorem 7.1 (min-max principle).
Let K=R or K=C. Let pe L%(Q,[p-, p+]) and Ae L%(Q, M, 5). Then

So(AV ul V uygadzs

A = min max
EcHL(Q) ueE\{0} § lul?pda ’
dim E=k

where the minimum is taken over all subspaces with the finite dimension dim E equal to
k.
Remark 7.1.

(a) This is one of the forms of Courant-Fischer-Weyl min-max principle, which is also
related to the Cauchy interlacing theorem (see [K13, Section 1.6.10]).

(b) In particular, Theorem immplies

‘UP 1
A= mlnig
8 Tul2,

Remark 7.2.
Let 1 < p < q < 4. Let p' and ¢ are conjugate exponents defined as usual, e.g.,

1/p+1/p =1.
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(a) Recall that Q is a domain in R?, and so, Q is bounded. Hence, the Holder inequality

implies the continuous embedding

LI(Q) — LP(Q).

(b) up =~ win LI(Q) = u, — uin LP(Q).
(¢) If u, — w in LP(Q) and {u, }nen is bounded in LI(Q), then u, — w in LI(Q). This
follows from the density of LP (Q) in LY () and Proposition .

In Exercise 11.1, we have seen that u, — u in L*(Q) and v, — v in L?() implies
Unvyp — uv in L1(). This statement can be easily extended.

Exercise 7.1.
Let 1 <p<oo.

(a) If up, — w in LP(Q) and v, =~ v in LP (), then u,v, — wv in L'(Q).
(b) If up, — w in LP(R) and v, — v in L®(), then u,v, — uv in LP(1).
Hint: use Remark (c).

Remark 7.3.

(a) The compact embedding
HY(Q) = T2(9)

implies the compact embedding

L*(Q) —>— H Q).

(b) The following implications are consequences of (a):

Uy, —u in HYH(Q) = U, — u in L*(Q);

v, — v in L3(Q) = v, — v in H1(Q).

Proposition 7.1.
Let {Aptneny © LP(Q,Map). Let fr, — f in H1(Q) and AnlA*. Then solutions
un € HY(Q) to La,u = f, converge weakly in HZ(Q) to the solution u, € HL(Q) to the
problem L, u = f.

Proof. For any v € H~ (), we can write

[Cun = s, )] = KL} fo = Loy foo)l < KL (fo = £), o)l + (L), = L3, fo0))
<a M fa = fla-slolg-r + [((La), = L) f,v)l.

The assumptions f,, — fin H~1(2) and AnlA* imply that the right hand side converges
to 0, and so imply u, — Us. ]
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7.2 Convergence of eigenvalues.

Let {Ap}nen © L2(Q M) and {p, bnew © L#(2 [o_, p1]).

Theorem 7.2.

Assume that AnlA* and p, = py. Then there exists an (increasing) subsequence of
indices {n;}jen of N, which we (with an abuse of notation) replace by indices {j}, such
that, for every k € N,

(a) )\Z: = Mi(4;, pj) converge to a certain number M€ Ry as j — oo,
(b) there exists Lf,j -normalized solutions ui/, € Hj(Q) to Laju = )\ipju such that
ui — Uy in HY(Q)  and ui — Uy, in L*(Q)  asj— o
for a certain Lf,* -normalized solution Uy, € H}(2) to

(c) and, additionally, the following orthonormal equalities hold for all k,¢ € N
<ui|ué>L3j =0ke,  CUk|Ue)rz, = Oke,
where Ogp is the Kronecker-delta.
Proof. The min-max principle (Theorem implies that
A SAF <A (7.1)
where )\,f are eigenvalues of multiples of the Laplacian ;—fA and B;%A.

Let {u}}ren be an Lgn—orthonormal basis of eigenfunctions of L, = _p% div A,, grad
associated with {\}'}ren. Then

M == (A V| Ve > alu 3.

So implies that {u}},en is bounded in H}(2) and contains a weakly convergent in
H{} () subsequence.

Passing to convergent subsequences, one can see that for every K € N U {00} there exists
a subsequence {nJK}jeN < N such that for all £k < K, as j — 0,

nK o~

A = A (7.2)
nk
u,’ — Uy, in Hy(9Q), (7.3)
ni
u,’ — Uy, in L*(9), (7.4)

for certain Ay € R, and i, € H} (). The existence of such subsequencies {n]K }jen is first

proved iteratively for K € N, and then using a diagonal subsequence we obtain {n?o }jeN
for K = oo.
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Let us put nj = n?o for all j € N. For this subsequence statements (7.2)-(7.4]) are valid
for all k£ € N.

It follows now from ([7.4) and Exercise [7.1] (b) that <ﬂk|ﬁg>L%* = Oy for all k,¢ € N,
and, in particular, HﬂkHL%* =1 for all k. Exercise (7.1 (b) implies also

/\ijnjuzj — ka*ﬁk in L?(Q),

and so

)‘ij"juzj — Appxliy in H_l(Q)a
as j — oo. Combining this with proposition now implies that qu — g in H}(Q),
where uy, is the H&—solution to

-~V (AxVuy) = ka*ﬂk-

However, (|7.3)) implies uzj — Uy in HE(Q). Thus, ug = Ty is the L%*-normilized eigen-

function of L,, ,, associated with Xk ]

Let us summarize. We have converging sequences p,, — ps and AnlA*. Furthermore,
the eigenvalues of L, = p%L A, = —pin div A,, grad are numbered non-decreasingly taking
into account multiplicities as {\} }ren = {Ae(An, Pn) fren, and {u} }ren is the corresponding
L%n—orthonormal basis of eigenfunctions. We proved uniform (in n) bounds

0< A, S <A

and the existence of an (increasing) subsequence {n;};ey © N with the properties that, as
j — oo, there exist certain limits of subsequences

A — N, u — U in Hy(Q), and u,’ — U in L*(Q).
Exercise 12.1 (b) implies that
pnjqu — padly in L2(Q). (7.5)
Hence, passing to the limits for inner products of eigenfunctions of L,,, we get
(pstig|tg)yp2 = Ok, where dp is the Kronecker-delta.

Formula (7.5)) also implies the convergence of the right-hand sides f; := )\Zj Pn; uzj of the
equations L Anuzj = )\Zj Pn; uzj ,

)\ijnjuzj — Aepliy in H1(Q).

From this, using proposition 12.2, we obtain that {u} is an Lf)*—orthonormal system of

eigenfunctions of
1
L* = 7LA* .
P

This summarized Theorem [7.2] and its proof.
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We have not proved yet that {u} is a complete system of eigenfunctions. That is,
we still need to prove that, passing to a limit, we have not missed any eigenvalue (or
multiplicity) and any eigenfunction of the orthonormal basis for L.

In what follows we simplify the notation for subsequences indexed by {n;} indexing
them with n, i.e., we write Ay, A}, etc. instead of A, )\Zj, etc.

Theorem 7.3.(a) Ay = A\i(Ax, ps) for all ke N.

(b) {U}ken is an Li*—orthonormal system of eigenfunctions of L.

Proof. Let {\g}ken = { Mk (Ax, ps)}ren be the eigenvalues of L, numbered non-decreasingly
taking into account multiplicities.

Step 1. Taking into account Theorem statements (a) and (b) of Theorem are

equivalent. Besides, in order to prove statement (a) it is enough to prove that

X <\ VkeN. (7.6)

Step 2. Let us prove (7.6) by reductio ad absurdum.
Assume that ([7.6)) is not valid. Then there exists a smallest kg € N such that
)‘ko < Xko

(i.e., this is the first time when we jumped over a certain actual eigenvalue of L,).

Note that, for eigenvalues with smaller indices k < kg, we have Xk = A\, and that {ﬂk}ﬁgl

is the corresponding LZ*-orthonormal system of eigenfunctions of L,.. Moreover, there
exists an L%*—normalized eigenfunction uy, of L, that corresponds to A\x, and is orthogonal
to span{ﬁk}zoz_ll.

Put w, = L;x,ll()‘ko pxuy,) for all n. The H-convergence A, LA, yields
wy, — LZ;()\kop*Uko) = uy, in H(Q). (7.7)
This implies
wy, — ug, in L*(9), (7.8)
PnWp — Pyl i L2(Q).
Then, for k < kg, we have
(Ap Vwn|Vupyre = (La, wplup)yrz = kg Prliig |Up )12 — Neg{Pstiry |0k yr2 = 0. (7.10)

The convergencies (7.8) and u} — 1y, in L? (and so in L%*) imply that the determinant
of the Lz*—Gram—matrix of the system S,, = {uf, ... s U 1 wy} converges to 1 as n — .
So, for large enough n the system of function S, is linearly independent. Hence, the
min-max principle implies

(Ap Vu|Vu)re

b < . 7.11
ko S espan S {ppvlv)r2 (7.11)
v#0
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Let v, = D1 pe ko Ck Uk + Cp wn be a maximizer corresponding to the maximum in ,
which can be chosen such that >}, ;. ko(CZ)Q = 1. Passing to (sub)subsequences if neces-
sary we can ensure that ¢} — ¢ for all 1 < k& < kg (here we keep indexing the subsequences
by n).

The limit of (A, Vv|Vv)r2 can be calculated using and the formulae

(An VAV g2 = O prlifge = N,
(A Vwp| Vwnre = Ayl pstiy |Wnpr2 — Ay -

Namely.
’ . n n . Y 2 2
11H010<An Vup|Vuiye = Z AkCh + Ao Chg -
" 1<k<ko

Similarly,

T}iirgo<pnvn|vn>Lz = Z 2 =1.

1<k<ko

Thus, (7.11) implies
<An V 'Un| V Un>L2

{PnVn|vn) 12

which contradicts the initial assumption of Step 2 that Ay, < Xko. This proves ([7.6)), and
due to Step 1 concludes the proof of the theorem. O

)\ko < lim < )\kov

Returning to the original notation with indexing of subsequences by n;, we see from
Theorems and ([7.3) that there exists a subsequence {n;} such that

A = Ai(Ax, ps) VEk.

However, this argument can be applied to any subsequence {/\Zj }. This means that every
subsequence {/\Zj } contains a subsubsequence converging to Ag(Ax, p«). In other words,
Ak (Ax, ps) is the only partial limit of {A}}.

Thus, we proved the following theorem.

Theorem 7.4.
If pn =~ pu and Ay"5 Ay, then \p(An, pr) — Mi(As, pi).

Theorems [7.2] and [7.4] together imply the complete theorem on convergence of eigenval-
ues (Theorem [2.2).

Remark 7.4.

The theorems of this type on convergence of eigenvalues are originated from [BM76, K79/
for the case p, = 1. The proof above is essentially a combination of arguments of [K79]
and [A02, Section 1.3.3]. A proof of somewhat stronger result via a general abstract theory
of eigenvalue convergence can be found in [JKO12)].
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8 Lamination, periodic homogenization, and Gy-closure.

8.1 H-limits of layered structures.

Assume that matrix-valued functions A, (x) = A, (z1,z2,...,xq), where z is in a domain
Q < R?, have the form

Ap(x) = ap(z1)Ipa, x e,

with certain scalar functions a, € L®(R, [a, 371]), n € N.

The following theorem follows from the results of Murat & Tartar [MT78| Section 4].

Theorem 8.1.
The H-convergence an(xl)IRdlA* to a certain Ay = (Ai’k)?’kzl € L*(Q, M, ) is equiv-
alent to the combination of the following conditions

(a) A% (z) = al? (z1) for certain o’ € LP(R, [o, 1), 1 < j < d; while, for non-diagonal
entries, AP =0 for all 5 # k;

1 1
(h) — = —1 in L*(1), where Q1 is the orthogonal projection of {2 on the x1-awis;
Qp ay

(¢) an =~ al? in L) for 2 < j <d.
This theorem is without proof in this course (for the proof see [A02, Section 1.3.5]).

Remark 8.1.

(a) We see from Theorem that scalar matriz-functions Ay, (which physically corre-
spond to isotropic materials) can have a non-scalar H-limit Ay (i.e., the homogenized
material can be anisotropic, which means that it has different effective properties in
different directions). In the 3-D case, this effect appears in Theorem whenever

(w*-lim a,jl)_1 = a}k’l # ai’2 = ai’3 = w* lim a,,.
It is an easy exercise to construct a sequence {an}nen that leads to this effect.

(b) Inthe 3-D context of the conductance, Theorem has an analogy with the elementary
rules of school physics for the total resistance for several resistors connected in series
or in parallel.

If we interpret ay(-) as a function describing the conductivity of the layers, and in-
terpret r, = é as the function describing the spatially varying resistivity, then in the
direction x1, the layers are placed in series. Therefore, the mean resistivity in the di-
rection x1 15 calculated via the arithmetic mean and corresponds to weak-*-convergence
of resistivities ry, = i As it was discussed after Remark weak and weak-* LP-

convergencies can be interpreted as convergencies ‘in arithmetic average’ if 1 < p < 0.
. 1 1,1 Y 1 .
That is why, the rule —————— = ay" for the limiting conductivity a;’~ in the direc-
w*-lim 1/a,
tion x1 can be interpreted as a convergence of a, in the sense of ‘harmonic average’.

The function a = (w*-lima,')~! is called in [A02] the harmonic mean (corresponding

to the sequence {ay}).
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From the point of view of directions xo and x3, the layers of An(x) = ap(x1)Iga are
placed in parallel. This corresponds to the computation of the average resistivity via
the harmonic mean, and so to the computation of the average conductivity via the
arithmetic mean. The conductivities in the directions xo and x3 are given via the
convergence ‘in arithmetic average’, i.e., as the weak-* L -limit

a2? = a3 = @ := w* lima,,.

The function a := w*-lim a,, is interpreted here as the arithmetic mean corresponding

to the sequence {ay}.

8.2 Laminates and locality of H-convergence.

Exercise 8.1.

Let f € L*(R) be a T-periodic function, i.e., f(t +7T) = f(t) for almost all ¢t € R, where
T > 0. Then, for every measurable subset S of R, the family of functions f.(t) = f(t/e),
t € R, e > 0, have the L*(S)-weak-* limit as ¢ — 0 equal to the constant function with
the value %SOT f(s)ds, i.e.,

fo = (; LTf(s)ds> 1 in L%(S).

Here, in comparison to the notation that we used before, ¢ — 0 corresponds to % — 0 for
n € N going to +00.

Remark 8.2.

(a) Let a € L®(R, [, 371]) be a T-periodic function. Theorem implies that, in every
domain Q < RY, the family A.(x) = a(x1/€)Iga H-converges as ¢ — 0 to the following
constant matriz valued function

a 0 0
lOcTe 07
0 0 ac

where ac denote the ‘harmonic mean’ of the homogenization theory associated with the

family {ac(t)}e>0 = {ac(t/€)}e=0

and a. denotes the ‘arithmetic mean’
a. 1= w*-lim, g a..

The limits can be understood in the sense of L*(R). Due to Ezercise we have

now an explicit formulae

e (B[ ) we L[ o
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(a) Periodic piecewise-constant structures are called laminates. Statement (a) allows one
to find H-limits of laminates of isotropic media. The following theorem works also for
laminates of anisotropic media.

Theorem 8.2 ([MT78], see also [A02]).
Assume that {Ap}nen © L™ (2, My g) be such that, for all n, A,(-) = (An(-))f{j:l depend
only on the variable x1. Then

An( )AL () = (AL,

if and only if the combination of the following weak-* L*(Q2)-convergencies takes place:

1 % 1
(a) AL - ALl ;
n *
(b) for2<j<d, ‘ A
At A
ARt Ayl
(c) for2 <i<d,
A A
At Ayt
(d) for all2 <i<dand2<i<d,
Aid A Al i A AL
n AT * AL
n %

This theorem remains without proof in this course (for the proof see [A02]).
Remark 8.3.
(a) Note that Ax(-) depends only on x;.

(b) In the case of an isotropic medium An(z) = an(x1)Iga, Theorem 8.9 implies immedi-
ately Theorem[8.1]

Remark 8.4.
Lamination limits can be iterated, typically, in different directions. This is possible due to
the locality of H-convergence, which is rigorously formalized in the next theorem.

Theorem 8.3 (locality of H-convergence, [MT78, [T85], see also [A02]).
Assume that {Antnen © LP(2, My ) and Ay € L*(Q, My g). Then the following state-
ments are equivalent:

(a) Ap-5A, in Q.

(b) A4, in every domain w such that @ < ).
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(c) For every two sequences {Ep}nen, { Dnlnen < L*(Q, R3) the combination of the follow-
ing properties:

D, = A, E, almost everywhere in Q for all n € N, (
D, — D,, E, — E, in L*(Q,R%), (
{V % Ep}nen is a relatively compact subset of H1(Q,R%), (
{V - Dp}nen is a relatively compact subsets of H (), (

implies
D, = A.FE, almost everywhere in €.

We do not prove this theorem in the course. Statement (b) is the original definition
of H-convergence in [MT7§|. Statement (a) is a simplified formulation of [A02]. The
equivalence of (b) and (c) takes its origin in [T85].

8.3 Periodic homogenization

An explicit PDE formula for H-limit is available for the general periodic homogenization.

Following [A02], let us take the unit cube Y = (0,1)? = R? as a periodic cell. One can
identify Y with the unit d-dimensional torus. By LZE (Y), the space of LP-functions on the

unit torus is denoted. Then also the following identification is possible
loc

LL(Y)={feLy (RY) : fis Y-periodic }

and, as the norm in L;E(Y), the norm of LP(Y') is taken. Using a similar identification, we
define
H;E(Y) = {fe HL.(RY) : fis Y-periodic }

with the norm || - || g1y

The quotient space (factor-space) H;# (Y)/R is defined as the space of classes of H#(Y)—
functions equal up to an additive constant.

Let A€ Lﬁ (Y, My5). In a domain Q2 R?, we consider the family of matrix functions
Ac(x) = A(z/e), x € (), (8.5)

indexed by € > 0 (only sufficiently small values of € are important here).

Theorem 8.4 (H-limit for periodic homogenization).
The family {Ac}e=o defined by (8.5) H-converges as € — 0 to a constant matriz-valued
function LA,. The matrix Ay = (Af,jj)f’j:1 € Mqy,g can be calculated by the formula

A = L< A@y)(ei + Vwi(y) | ej + Vw;(y) dpady,

where {ei}le is the standard orthonormal basis in R® and w;, i = 1,...,d, are the unique
solutions to the periodic problem

—div[A(y)(ei + Vwi(y))] =0,  yeY,
w; € Hy(Y)/R.
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We do not prove this theorem in the course.

8.4 G- and Gy-closure problems for two-phase composites.

Let 0 < v = a1 < ag = 871, Let My, My € Miygl = Miyn;_l be two (constant) symmetric
: 1,05

matrices. We assume that M; and My correspond to two homogeneous media I and II.

Example 8.1.
Our main example will be a pair of different isotropic media M; = «a1Ips and My = aglpa.

Let us consider several problems concerning the description of H-limits for mixtures of
materials My and Ms.

Problem 8.1 (G-closure problem).
Consider the family L*(£2,{0,1}) of all indicator-functions x = x,, for all possible mea-
surable subsets w < 2. For each such x, we define the composite structure

AX(2) = x(2) My + (1 = x(2)) M € L7 (Q,MYE).
The family of all such structures is denoted by
FMUM2Q — (A v e L(Q,{0,1})}.
The problem is to find the H-closure of FM1:M2:2 which we denote by

F .= P60

Problem 8.1’ (periodic G-closure problem).
For x € LE(Y,{0,1}), let us consider a Y-periodic structure on R?

A% (y) = x()Mi + (1= x(y)) My € LE(Y, MD).

Then, for an arbitrary domain Q < R¢,
x

A (Z) LNENS (8.6)

with a constant matrix M, € ./\/lzyg, which can be determined by the fomulae of Theorem
. The problem is to characterize the set of all possible H-limits M, for such periodic
homogenization, i.e., to find

P={MeM}: M= M, foracertain x € LZ(Y,{0,1})}.

It occurs that Problem 8.1 can be reduced in a certain sense to Problem 8.1’. However,
it is better to understand this connection via two other useful problems with fixed ratios
of materials, i.e., via Gg-closure problems (see [A02] and [CO0]).

Proposition 8.1.
The weak-* L*-closure of L*(2,{0,1}) is the closed L*-ball L*(£2,[0,1]).
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In the course, we leave this proposition without a proof. Proposition follows, e.g.,
from the Krein-Milman theorem: a compact convex subset of a Hausdorff locally convex

linear topological space is equal to the closed convex hull of its extreme points.

Problem 8.2 (Gy-closure problem).
Let 6 € L*(,[0,1]). The problem is to find the family Fy of all possible H-limits A, of
families {AX<} .~ satisfying ye — 6 in L®(2) as € — 0, where all y. € L®(, {0,1}).

The meaning of the function € is that 6(x) is the “local proportion” of materials M;
and My at x € Q.

The G-closure problem is obviously reduced to the Gy-closure problem.

Proposition 8.2.

The proof is a simple exercise.

Problem 8.2’ (periodic Gy-closure problem).
Let 6 € [0,1] be a fixed number. Consider x € LZ(Y,{0,1}) additionally satisfying the
assumption

| xtway=e. (8.7)
Y

The problem is to find the set Py of all H-limits 1M/, in the sense of produced by
X € Lﬁ(Y, {0,1}) such that the ratio-assumption (8.7)) holds, i.e., to find

Py = {M, : x € LE(Y,0,1) satisfies (8.7)}.

The Gy-closure problem can be essentially reduced to the periodic Gy-closure problem
in the following way.

Theorem 8.5 ([T83]).
For a constant 0 € [0, 1], we denote (following [A02])

Gg := Py,

where the closure is taken in the usual sense of the space R¥?% of matrices. Then, for an
arbitrary function § € L*(Q,[0,1]), the following formula holds

Fop ={As € LOO(Q,MSOZEI) : Ax(z) € Gyp) almost everywhere in Q}.
The discussion of this theorem can be found in [A02] together with references to a more
general result going back to Dal Maso & Kohn and to its proof by Raitums.

Recall that 0 < a1 < ag. In the case where M} = ajlga and My = aglpa, an explicit
description of the family Gy = Py was found independently by Murat & Tartar [M83,
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MTS85, [T85] and Lurie & Cherkaev [LC82) [LC84, [LC8E] (see also [A02, Theorem 2.2.13]
and the remarks afterwards).

Theorem 8.6 ([MT85, [T85, [LC86]).
Let 6 € [0,1] be a constant. Let My = ajlga and My = aslga. Then the set Gy defined
in Theorem [8.5] is the convex set of all symmetric d x d-matrices M such that their eigen-

values A1, ..., N\g (numbered taking their multiplicities into account) satisfy the following
inequalities:
Mg <A<, j=1,...,d; (8.8)
d
1 1 d—1
< — + ; (8.9)
j;)\j—al )\9—041 )\g—al
d
1 1 d—1
< — + ) (8.10)
;Oéz—/\j 042—)\9 042—)\;

where Ay and )\; are weighted harmonic and arithmetic means of oy and as:

1 -1
Ng = <9+(1—0)> , Ay =0a1+ (1—0)as.

This theorem is without proof in this course. A proof and additional remarks about the
description of the set G can be found in [AQ2, Section 2.2].
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