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1 Spectrum, resolvent set, and eigenvalues.

LetX be a (complex) Hilbert space with the inner product x¨, ¨y “ x¨, ¨yX . Let A : domA Ď

X Ñ X be a (linear) operator in X with a domain (of definition) domA, which is assumed

to be a linear subspace of X.

By

kerA :“ tf P domA : Af “ 0u,

we denote the kernel of A. By LpXq, we denote the Banach space of all bounded operators

A : X Ñ X (with domA “ X) assuming that LpXq is equipped with the standard operator

norm.

Definition 1.1 (resolvent set).

The resolvent set ρpAq of A is the set of points k P C such that (s.t.) the following three

conditions hold true:

(a) A ´ k is invertible, i.e., kerpA ´ kIq “ t0u;

(b) pA ´ kqdomA “ X, i.e., the operator A ´ k maps dompA ´ kq :“ domA onto the

whole X;

(c) pA ´ kq´1 P LpXq.

The LpXq-valued function k ÞÑ pA´kq´1 is analytic on ρpAq and is called the resolvent

of A.

Definition 1.2 (spectrum).

The set σpAq :“ CzρpAq is called the spectrum of A.

Proposition 1.1.

The set ρpAq is open. Consequently, σpAq is closed.
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Definition 1.3.

(a) A number k P C is called an eigenvalue of A if kerpA ´ kq ‰ t0u. The elements of

kerpA ´ kqzt0u are called eigenvectors of A associated with the eigenvalue k.

(b) Following [K],

we denote the set of all eigenvalues of A by εpAq.

(c) The geometric multiplicity of an eigenvalue k P σpAq is the dimensionality dimkerpA´

kq of the (linear) subspace kerpA ´ kq of the associated eigenvectors. The algebraic

multiplicity of an eigenvalue k is supnPN dimkerpA ´ kqn.

(d) An eigenvalue k0 of A is called an isolated eigenvalue if k0 is an isolated point of σpAq.

Obviously,

εpAq Ď σpAq.

It is an easy exercise to construct an operator T in ℓ2pNq such that

εpT q ‰ εpT q “ σpT q,

where S is a closure of a set S.

Remark 1.1.

Often, εpAq is called the point spectrum and other notations, like σppAq or σpppAq are

used for it. The reason why [K] introduces a bit nonstandard notation εpAq for the set of

eigenvalues is that the notation σpppAq is especially ambiguous. For example, σpppAq “

εpAq in [RS1, KM82], but σpppAq equals to the closure εpAq and is called a pure point

spectrum in [K] (and in many other sources).

2 Selfadjoint operators and their spectra

Let X1 and X2 be Hilbert spaces.

Definition 2.1 (adjoint operator).

Assume that T : domT Ď X1 Ñ X2 is densely defined, i.e., domT “ X1. Then the adjoint

operator T ˚ : domT ˚ Ď X2 Ñ X1 is defined in the following way:

(a) domT ˚ consists of all v P X2 with the property that there exists fv P X1 s.t.

xv|TuyX2 “ xfv|uyX1 @u P domA; (2.1)

(b) T ˚v “ fv.

The assumption domT “ X1 in Definition 2.1 ensures that fv in (2.1) is unique.

Definition 2.2 (selfadjoint and nonnegative operators).(a) An operator A is called self-

adjoint if A “ A˚ (in particular, this equality includes the equality of domains

domA “ domA˚).

(b) An operator A : domA Ď X Ñ X is called nonnegative if xu,Auy ě 0 for all u P

domA. In this case, we write A ě 0.

2



(c) An operator A is called semibounded (from below) if A´cI ě 0 for a certain constant

c P R. One writes A ě c in this case.

Under the assumption A P LpXq, A “ A˚ ôôô

xv,AuyX “ xAv, uyX @u, v P domA “ X.

For densely defined unbounded operators, this equivalence is not true.

Proposition 2.1.

Let A “ A˚. Then:

(a) εpAq Ď σpAq Ď R

(b) If A ě c for a constant c P R, then σpAq Ď rc,`8q.

(c) Geometric and algebraic multiplicities of an eigenvalue k P εpAq are equal (for selfad-

joint operators, one can speak simply about multiplicities).

(d) Let k1, k2 P εpAq and k1 ‰ k2. Let uj P kerpA ´ kjq, j “ 1, 2. Then u1 K u2 (i.e.,

xu1, u2yX “ 0).

(e) Assume additionally that X is separable. Then εpAq is at most countable.

Definition 2.3 (closed operator, e.g., [Kato]).

An operator T : domA Ď X1 Ñ X2 is called closed if its graph

GrT “ t tu, Tuu : u P domT u is a closed subspace of the orthogonal sum X1 ‘ X2.

Theorem 2.1 (von Neumann, e.g., [Kato]).

Let T : domT Ď X1 Ñ X2 be densely defined and closed. Then T ˚T is a nonnegative

selfadjoint operator in X1.

3 Classifications of spectra with Schrödinger operators as

examples.

Let d P N and let G Ď Rd be a domain, i.e., G is a nonempty connected open set in Rd.

We denote by L2pGq “ L2pG,Cq the Hilbert space of C-valued L2-functions.

Example 3.1.(a) The operator

grad : H1pGq Ă L2pGq Ñ L2pG,Cdq defined by u ÞÑ ∇u

is a closed densely defined unbounded operator, and so is its restriction

grad0 : H
1
0 pGq Ă L2pGq Ñ L2pG,Cdq.

(b) By Theorem 2.1, the two nonnegative Laplace operators

p´1q∆D “ grad˚
0 grad0 and p´1q∆N “ grad˚ grad are selfadjoint in L2pGq.

These operators are associated with Dirichlet and Neumann boundary conditions on

BG, respectively.
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(c) Let V P L8pG,Rq be a real valued L8-potential. Let us consider in L2pGq the

Schrödinger operator

pHDuqpxq “ ´∆Dupxq ` V pxqupxq with domH “ domp´∆Dq.

Then HD “ pHDq˚. Analogously, one defines HN “ pHNq˚. These operators are

semibounded,

HDpNq ě ess infxPG V pxq.

These statements follow from the fact that the multiplication operator u ÞÑ V u is

bounded and selfadjoint in L2pGq for V P L8pG,Rq.

(d) If G “ Rd, then p´1q∆D “ p´1q∆N is the standard nonnegative Laplace operator

´∆ “ ´∆˚ in L2pRdq. Besides,

σp´∆q “ R` “ r0,`8q.

What is the set of eigenvalues εp´∆q of this operator?

(e) Let G “ Rd and V P L8pRd,Rq. Then HD “ HN and we denote this selfadjoint

Schrödinger operator by

H “ ´∆ ` V, domH “ dom∆ “ H2pRdq.

Definition 3.1 (discrete and essential spectra, [Kato, RS4]).

(a) The discrete spectrum σdiscpAq of A is the set of all isolated eigenvalues of finite

algebraic multiplicity [Kato, RS4].

(b) The essential spectrum σesspAq is defined by σesspAq :“ σpAqzσdiscpAq [RS4].

Theorem 3.1 (e.g., [Leis]).

Let G be a bounded domain with Lipschitz boundary BG. Let V P L8
R pG,Rq. Then the

semibounded selfadjoint operators HD and HN have purely discrete spectra, i.e.,

σpHDq “ σdiscpH
Dq and σpHNq “ σdiscpH

Nq.

Consequently, their spectra can be written as nondecresing sequencies of eigenvalues

tkDpNq
n unPN Ă R with lim kDpNq

n “ `8.

Such Schrödinger operators in GL “ r´L,Lsd can be used to study the case of the whole

space Rd by means of density of states. A discrete version of this approach will be the

subject of talks no.5-6.

These sequences tk
DpNq
n unPN can be technically approached via the

Courant–Fischer–Weyl min-max principle: if A “ A˚ ě c and σpAq “ σdiscpAq, then

σpAq “ tknunPN with

k1 “ inftxu,Auy : u P domA, }u}X “ 1u,

kn`1 “ sup
v1,...,vnPX

inftxu,Auy : u P domA, }u}X “ 1, u K vk, k “ 1, . . . , nu, n P N,

see, e.g., [RS4, K].
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Theorem 3.2 (e.g., [RS4]).

Assume that V P L8pRd,Rq is periodic in the following sense: there exists a basis taju
d
j“1

of Rd s.t. V pxq “ V px ` ajq a.e. in Rd. Then the spectrum of the operator H “ ´∆ ` V

in L2pRdq has the following properties:

(a) σpHq “ σesspHq;

(b) σpHq “
Ť

jPNrlj ,mjs with lim lj “ limmj “ `8;

(c) εpHq “ ∅.

Theorem 3.3 (e.g., [RS4]).

Let V0 P L8
comppRd,Rq, where the subscript “comp” means that V0 has compact support in

Rd. For a constant c P R, let us consider the selfadjoint Schrödinger operator

H “ ´∆ ` V “ ´∆ ` V0 ` c.

Then:

(a) σdiscpHq “ σpHq X p´8, cq “ tkju
n
j“1 with n P N0 “ N Y t0u.

(b) σesspHq “ rc,`8q and εpHq X σesspHq “ ∅.

One sees that σesspHq describes something that happens with the potential V pxq as

|x| Ñ 8. However, the definition of the essential spectrum σesspAq does not provide much

details about the spectral effects corresponding to the set σesspAq.

Definition 3.2.

A selfadjoint operator A in X is said to have a purely point spectrum if there exists an

orthonormal basis in X consisting of eigenvectors of A.

Example 3.2.

Let trnunPN “ Q be a certain enumeration of all rational numbers. Let tenunPN be an

orthonormal basis in a separable Hilbert space X. Let us define a selfadjoint operator A

by

Af “
ÿ

nPN
rnxen, fyen

for all f P X s.t.
ř

nPN |rnxen, fy|2 ă 8. Then A “ A˚ and

R “ εpAq “ σpAq “ σesspAq.

This operator has a purely point spectrum, but σdiscpAq “ ∅.

This pure point construction seems to be pathological, but occurs to be typical for 1-d

Schrödinger operators with reasonable random potentials.

Theorem 3.4 (spectral Anderson localization for 1-d random alloy model [DSS02]).

Let V0 P L8
comppR,Rq be the single-site potential such that suppV0 Ď r´1{2, 1{2s and V0 ‰ 0

in the L8-sense. Let ξn : Ω Ñ R, n P Z, be independent identically distributed (i.i.d.)

random variables such that the support of their common distribution measure is bounded

and contains at least two points. Let H “ ´ d2

dx2 `Vω be the Schrödinger operator with the

random potential

Vωpxq “
ÿ

nPZ
ξnpωqV0px ´ nq, x P R, ω in the probability space Ω.
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Then, almost surely (a.s.), H has a purely point spectrum and all eigenfunctions of A

decay exponentially at ˘8.

On the mathematical level, this effect was discovered and rigorously proved first by

Goldsheid, Molchanov, & Pastur [GMP77]. On the Physics level, this effect is related to

Anderson localization [A58, AW].

The set σpHq for such models with ergodic potentials is actually deterministic in the

sense that there exists a deterministic closed set S Ď R s.t. σpHq “ S a.s. (but this does

not imply that εpHq is deterministic). This property and ergodic operators in general will

be the subject of Talks no.2-4.

For every A “ A˚, there exist an orthogonal decompositions of X and of A

X “ Xpp ‘ Xac ‘ Xsc, A “ A|Xpp ‘ A|Xac ‘ A|Xsc ,

such that A|Xpp has purely point spectrum σpppAq “ σpA|Xppq, A|Xac is an operator with

purely absolutely continuous spectum σacpAq “ σpA|Xacq, and A|Xsc is an operator with

purely singular continuous spectum σscpAq “ σpA|Xacq. The rigorous definitions of these

types of spectra will be a part of Talk no. 4.

Remark 3.1.

The sets σpppAq, σacpAq, and σscpAq are not necessarily disjoint. Using multiplication

operators similar to Example 3.2, it is easy to construct a (rather pathological) example

s.t. σpppAq “ σacpAq. It is a bit more difficult to construct an operator A s.t. σpppAq “

σacpAq “ σscpAq.

Theorem 3.2 about periodic potentials can be strengthened [RS4] to

σpHq “ σacpHq.

In Theorem 3.3 with a compact perturbation of a constant potential equal to c,

σacpHq “ σesspHq “ rc,`8q.

Theorem 3.4 with a random 1-d potential implies that

∅ “ σacpHq “ σscpHq with probability 1.

It is expected presently that for d ě 2 spectral Anderson localization generally does not

hold for the whole σpHq. This is a long-standing open problem.

The most of the seminar is devoted for the tools and notions related to Anderson

localization, but these tools are considered mainly for the simplified 1-d discrete Anderson

model

pHdisc
ω uqpnq “ p∆discuqpnq ` Vωpnqupnq “ upn ` 1q ` upn ´ 1q ` Vωpnqupnq, n P Z,

in X “ ℓ2pZq. We follow the lines of the lecture notes of Kirsch [K] and Chapter 9 of

extended lecture notes [CFKS].

However, our ultimate goal is to reach in one or two last talks the theory of random

continuation resonances for spatial cut-off versions of Hdisc
ω following the paper of Klopp
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[K16]. This theory is essentially built on the same tools as the theory of the 1-d Andeson

localization.

Let us introduce briefly continuation resonances for the continuous Schrödinger operator

H “ ´∆ ` V, V P L8
comppRd,Rq,

in odd-dimensional spaces Rd, d “ 1, 3, 5, . . . . We replace the spectral parameter k with

k “ λ2 and consider for λ P C` :“ tIm z ą 0u one more version of the resolvent-function

RHpλq “ pH ´ λ2q´1, RH : pC`zt
a

kju
n
j“1q Ñ LpL2pRdqq.

By Theorem 3.3, RHpλq does not exists as an LpL2pRdqq-valued function for λ P R.
However, it is possible to continue RHpλq from C` through R to C´ “ tIm z ă 0u

as a meromorphic LpL2
comppRdq, L2

locpRdqq-valued function Rcont
H pλq. The (continuation)

resonances are the poles of this generalized meromorphic continuation.

The Physics meaning of resonances is connected with the description of the long-time

behaviors of solutions and with the rate of decay of energy contained inside of suppV .

When the operator Hω “ ´ d2

dx2 ` Vω becomes random, the set of resonances becomes

random and can be sometimes described by a locally finite stochastic point processes SPP

on C. The paper of Klopp [K16] describes asymptotic properties of these stochastic point

processes for 1-d discrete Schrödinger operators.
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