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1 Spectrum, resolvent set, and eigenvalues.

Let X be a (complex) Hilbert space with the inner product {-,-) = (-, -)x. Let A: dom A <
X — X be a (linear) operator in X with a domain (of definition) dom A, which is assumed
to be a linear subspace of X.

By
ker A:={fedomA: Af =0},

we denote the kernel of A. By £(X), we denote the Banach space of all bounded operators
A: X — X (withdom A = X) assuming that £(X) is equipped with the standard operator
norm.

Definition 1.1 (resolvent set).
The resolvent set p(A) of A is the set of points k € C such that (s.t.) the following three
conditions hold true:

(a) A— k is invertible, i.e., ker(A — kI) = {0};

(b) (A—k)dom A = X, i.e., the operator A — k maps dom(A — k) := dom A onto the
whole X;

(¢) (A—k)~' e L£(X).

The £(X)-valued function k — (A —k)~! is analytic on p(A) and is called the resolvent
of A.

Definition 1.2 (spectrum).
The set o(A) := C\p(A) is called the spectrum of A.

Proposition 1.1.
The set p(A) is open. Consequently, o(A) is closed.
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Definition 1.3.

(a) A number k € C is called an eigenvalue of A if ker(A — k) # {0}. The elements of
ker(A — k)\{0} are called eigenvectors of A associated with the eigenvalue k.

(b) Following [K],

we denote the set of all eigenvalues of A by £(A).

(¢) The geometric multiplicity of an eigenvalue k € o(A) is the dimensionality dim ker(A —
k) of the (linear) subspace ker(A — k) of the associated eigenvectors. The algebraic
multiplicity of an eigenvalue k is sup,,cy dim ker(A — k)™.

(d) An eigenvalue kg of A is called an isolated eigenvalue if kg is an isolated point of o(A).
Obviously,
e(A) < a(A).

It is an easy exercise to construct an operator 7 in £2(N) such that

e(T) #¢e(T) =0o(T),

where S is a closure of a set S.

Remark 1.1.

Often, €(A) is called the point spectrum and other notations, like op(A) or opp(A) are
used for it. The reason why [K] introduces a bit nonstandard notation £(A) for the set of
eigenvalues is that the notation opp(A) is especially ambiguous. For example, opp(A) =
e(A) in [RST, [KMS8Z], but opp(A) equals to the closure e(A) and is called a pure point
spectrum in [K|] (and in many other sources).

2 Selfadjoint operators and their spectra

Let X1 and X, be Hilbert spaces.

Definition 2.1 (adjoint operator).
Assume that T': domT < X7 — X5 is densely defined, i.e., domT = X;. Then the adjoint
operator T* : domT* € Xy — X is defined in the following way:

(a) domT* consists of all v € Xy with the property that there exists f, € X s.t.

| Tuyx, = {foluyx, Vu € dom A; (2.1)

(b) T*v = f,.
The assumption dom 7 = X7 in Definition ensures that f, in (2.1)) is unique.

Definition 2.2 (selfadjoint and nonnegative operators).(a) An operator A is called self-
adjoint if A = A* (in particular, this equality includes the equality of domains
dom A = dom A*).

(b) An operator A : domA € X — X is called nonnegative if (u, Auy > 0 for all u €
dom A. In this case, we write A > 0.



(c) An operator A is called semibounded (from below) if A—cl > 0 for a certain constant
c € R. One writes A > c in this case.

Under the assumption 4 € £(X), A=A* <
(v, Auyx = (Av,uyx Vu,v e domA = X.

For densely defined unbounded operators, this equivalence is not true.

Proposition 2.1.
Let A = A*. Then:

(a) e(A) < o(A) <R
(b) If A= c for a constant c € R, then o(A) € [¢, +0).

(c) Geometric and algebraic multiplicities of an eigenvalue k € £(A) are equal (for selfad-
joint operators, one can speak simply about multiplicities).

(d) Let ki,ky € €(A) and ki # ko. Let uj € ker(A —kj), j = 1,2. Then uy L ug (i.e.,
<U1,UQ>X = 0).

(e) Assume additionally that X is separable. Then €(A) is at most countable.

Definition 2.3 (closed operator, e.g., [Katd]).
An operator T : dom A € X; — X5 is called closed if its graph

GrT = {{u,Tu} : uwedomT} is a closed subspace of the orthogonal sum X; @ Xs.

Theorem 2.1 (von Neumann, e.g., [Kata]).
Let T : domT < X1 — X5 be densely defined and closed. Then T*T is a nonnegative
selfadjoint operator in X;.

3 Classifications of spectra with Schrodinger operators as
examples.

Let d € N and let G < R? be a domain, i.e., G is a nonempty connected open set in R%.
We denote by L?(G) = L*(G,C) the Hilbert space of C-valued L?-functions.

Example 3.1.(a) The operator
grad : HY(G) c L*(G) — L*(G,C%)  defined by u — Vu
is a closed densely defined unbounded operator, and so is its restriction

grad, : H}(G) c L}(G) — L*(G,CY).

(b) By Theorem the two nonnegative Laplace operators
(-1)AP = grad} grad, and (—1)AN = grad* grad are selfadjoint in L*(Q).

These operators are associated with Dirichlet and Neumann boundary conditions on
0G, respectively.



(c) Let V e L®(G,R) be a real valued L®-potential. Let us consider in L?(G) the
Schrédinger operator

(HPu)(z) = —APu(z) + V(z)u(r) with dom H = dom(—AP).

Then HP = (HP)*. Analogously, one defines HN = (HN)*. These operators are
semibounded,
HP®) > essinfueq V().

These statements follow from the fact that the multiplication operator v — Vu is
bounded and selfadjoint in L?(G) for V e L®(G, R).

(d) If G = R%, then (—1)AP = (—1)AN is the standard nonnegative Laplace operator
—A = —A* in L?(R?). Besides,
o(—A) =R, = [0, +00).
What is the set of eigenvalues e(—A) of this operator?

(e) Let G = R% and V e L®(R%R). Then HP = HY and we denote this selfadjoint
Schrédinger operator by

H=-A+V, domH =domA = H?R%).

Definition 3.1 (discrete and essential spectra, [Katol, [RS4]).

(a) The discrete spectrum ogisc(A) of A is the set of all isolated eigenvalues of finite
algebraic multiplicity [Kato, RS4].

(b) The essential spectrum cess(A) is defined by oess(A) 1= 0(A)\oaisc(A4) [RS4].

Theorem 3.1 (e.g., [Leis|).
Let G be a bounded domain with Lipschitz boundary 0G. Let V € LE(G,R). Then the
semibounded selfadjoint operators HP and HN have purely discrete spectra, i.e.,

o(HP) = 04isc(HP) and o(HY) = oaisc(HY).
Consequently, their spectra can be written as nondecresing sequencies of eigenvalues

(kPN v R with  limkP® = 400,

Such Schrédinger operators in G, = [—L, L]? can be used to study the case of the whole
space R? by means of density of states. A discrete version of this approach will be the
subject of talks no.5-6.

These  sequences {krl? (N)}nEN can be technically approached via the
Courant-Fischer-Weyl min-max principle: if A = A* > ¢ and 0(A) = 0qisc(A4), then
0(A) = {kn}neny with

ky = inf{{u, Au) : uwedomA, |ul|lx =1},
kni1 = sup inf{{u,Au) : uedomA, |u|x =1,u Lvg,k=1,...,n}, neN,

V1., Un€X

see, e.g., [RS4| K].



Theorem 3.2 (e.g., [RS4]).
Assume that V € L*(R%,R) is periodic in the following sense: there exists a basis {a; }?21
of R? s.t. V(x) = V(x + a;) a.e. in RY. Then the spectrum of the operator H = —A +V

Theorem 3.3 (e.g., [RS4]).
Let Vo e LL,_ (R4, R), where the subscript “comp” means that Vi has compact support in

comp
R?. For a constant c € R, let us consider the selfadjoint Schrédinger operator

H=-A+V=-A+VW+ec
Then:
(0) ouise(H) = o(H) n (—o0,¢) = {k;}7_; with n € Ng = N U {0}.
(b) Gess(H) = [, +0) and e(H) A oess(H) = @.

One sees that oess(H) describes something that happens with the potential V(z) as
|x| — o0. However, the definition of the essential spectrum oegs(A) does not provide much
details about the spectral effects corresponding to the set gess(A).

Definition 3.2.
A selfadjoint operator A in X is said to have a purely point spectrum if there exists an
orthonormal basis in X consisting of eigenvectors of A.

Example 3.2.
Let {rn}nen = Q be a certain enumeration of all rational numbers. Let {e,},en be an
orthonormal basis in a separable Hilbert space X. Let us define a selfadjoint operator A
by
Af = Z rnlen, fren
neN

for all fe X s.t. Y _|mnlen, f)|? < 00. Then A = A* and

neN

R =¢(A) =0(A) = gess(A4).
This operator has a purely point spectrum, but ogis.(A) = @.

This pure point construction seems to be pathological, but occurs to be typical for 1-d
Schrédinger operators with reasonable random potentials.

Theorem 3.4 (spectral Anderson localization for 1-d random alloy model [DSS02]).

Let Vo € Lo (R, R) be the single-site potential such that supp Vo < [—1/2,1/2] and Vo # 0
in the L®-sense. Let &, : Q — R, n € Z, be independent identically distributed (i.i.d.)
random variables such that the support of their common distribution measure is bounded
and contains at least two points. Let H = —% + V., be the Schrodinger operator with the

random potential

Vo(z) = 2 En(W)Vo(x —n), zeR, w in the probability space ).

nezZ



Then, almost surely (a.s.), H has a purely point spectrum and all eigenfunctions of A

decay exponentially at +o0.

On the mathematical level, this effect was discovered and rigorously proved first by
Goldsheid, Molchanov, & Pastur [GMP77]. On the Physics level, this effect is related to
Anderson localization [A58] [AW].

The set o(H) for such models with ergodic potentials is actually deterministic in the
sense that there exists a deterministic closed set S € R s.t. o(H) = S a.s. (but this does
not imply that e(H) is deterministic). This property and ergodic operators in general will
be the subject of Talks no.2-4.

For every A = A*, there exist an orthogonal decompositions of X and of A
X = pr @ Xac C—BXSC) A= A’pr @ A’4|Xac S A|XSC7

such that A|x, has purely point spectrum op,,(A) = 0(Alx,,), 4lx,. is an operator with
purely absolutely continuous spectum oac(A) = 0(4|x,.), and A|x,, is an operator with
purely singular continuous spectum og.(A) = 0(A|x,.). The rigorous definitions of these
types of spectra will be a part of Talk no. 4.

Remark 3.1.

The sets opp(A), 0ac(A), and os(A) are not necessarily disjoint. Using multiplication
operators similar to Example it is easy to construct a (rather pathological) example
s.t. opp(A) = 0ac(A). It is a bit more difficult to construct an operator A s.t. opp(A) =

Tac(A) = 0sc(A).
Theorem E about periodic potentials can be strengthened [RS4] to
o(H) =04 (H).
In Theorem [3.3] with a compact perturbation of a constant potential equal to ¢,

Oac(H) = 0ess(H) = [c, +00).

Theorem with a random 1-d potential implies that
@ =04c(H) = 0sc(H) with probability 1.
It is expected presently that for d > 2 spectral Anderson localization generally does not

hold for the whole o(H). This is a long-standing open problem.

The most of the seminar is devoted for the tools and notions related to Anderson
localization, but these tools are considered mainly for the simplified 1-d discrete Anderson
model

(HZ™u)(n) = (Adgiscu)(n) + Vo (n)u(n) = u(n + 1) + u(n — 1) + Vy(n)u(n), neZ,

in X = (2(Z). We follow the lines of the lecture notes of Kirsch [K] and Chapter 9 of
extended lecture notes [CFKS].

However, our ultimate goal is to reach in one or two last talks the theory of random
continuation resonances for spatial cut-off versions of H3¢ following the paper of Klopp



[K16]. This theory is essentially built on the same tools as the theory of the 1-d Andeson
localization.

Let us introduce briefly continuation resonances for the continuous Schrodinger operator

H=-A+V, VelLZ (RUR),
in odd-dimensional spaces R, d = 1,3,5,.... We replace the spectral parameter k with

k = A? and consider for A € C, := {Im z > 0} one more version of the resolvent-function
Ru(N) = (H—=2)"Y R (CMVE;YZy) — LILARY)).

By Theorem R (\) does not exists as an £(L?(R?))-valued function for A € R.

However, it is possible to continue Ry (M) from C,; through R to C_ = {Imz < 0}
as a meromorphic E(Lgomp(Rd), L} (R%))-valued function R$™(A). The (continuation)

resonances are the poles of this generalized meromorphic continuation.

The Physics meaning of resonances is connected with the description of the long-time
behaviors of solutions and with the rate of decay of energy contained inside of supp V.

When the operator H, = —% + V., becomes random, the set of resonances becomes
random and can be sometimes described by a locally finite stochastic point processes SPP
on C. The paper of Klopp [K16] describes asymptotic properties of these stochastic point
processes for 1-d discrete Schrodinger operators.
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