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1 Overview. Main notions and an example.

1.1 Example (minimum-time control of a harmonic oscillator).

Let y(t) ∈ R be the vertical coordinate of a unit mass hanging from a spring and subjected
to external force u(t) ∈ R depending on time t ∈ R. Then

y′′(t) = −y(t) + u(t) (here and below y′ = ∂ty =
dy

dt
), (*)

the initial position y(t0) = y[0] and speed y′(t0) = y[1] are given. (**)

The force satisfies the constraints |u(t)| ≤ 1. When u(t) ≡ 0, the only equilibrium
position is y = 0.

Problem. Our goal is to design the external force function u(·) that brings the motion in
to a stop at y = 0 in the minimum possible time.

1.2 Terminology and the rigorous statement of the minimum time
problem.

Let us rewrite the problem via a system of 1st order differential equations (eq-s) and pose it
rigorously.

Let

x(t) = x = (x1;x2)
⊤ =

(
x1
x2

)
∈ R2,

where x1(t) = y(t), x2(t) = y′(t). Then (∗)-(∗∗) becomes

x′(t) =

(
0 1
−1 0

)
x(t) +

(
0
1

)
u(t) (CS)

x(t0) = x[0], x0 =

(
x01(t0)
x02(t0)

)
=

(
y[0]

y[1]

)
.

In the sequel, we will write x0 instead of x[0] for the sake of brevity.

Terminology.

(i) The vector-valued differential eq. (CS) is called a control system.

(ii) x(t) is the state of the control system at time t,

(iii) x0 is called an initial state.

(iv) The function u(t), t ∈ (t0,+∞) is called a control strategy. It is always assumed to be
measurable. A simplified (but non-rigorous for some purposes) version of the measurability
assumption is that

u(·) is a piecewise continuous function on any finite interval [t0, t].

A control strategy is also assumed to satisfy the control constraint u(t) ∈ U , where U =
[−1, 1] is the control set.
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Remark. The assumptions of (iv) means that the family of control strategies is

L∞
U (t0,+∞) := {u ∈ L∞(t0,+∞) : u(t) ∈ U for almost all (a.a.)t ∈ (t0,+∞)}.

This family is called the class of admissible controls. Sometimes U is unbounded, and then,
wider classes of admissible controls are considered, e.g.,

L1
loc,U(t0,+∞) := {measurable u(·) on (t0,+∞) : u ∈ L1

U(t0, t) for all t ∈ (t0,+∞)}.

The solution x(·) to the initial value problem for (CS) is called the trajectory of the
system and is denoted by xt0,x0,u(·).

Let
τ(x0, u) := min{t ≥ t0 : x

t0,x0,u(t) = 0}

be the exit time of xt0,x0,u(·), i.e., the first time when the trajectory reaches the target set,
which in our example consist of one point {0}.

Convention. If a set S is empty, S = ∅, then minS = inf S := +∞.

So τ(x0, u) = +∞ if xt0,x
0,u(t) ̸= 0 for all t ≥ t0.

Terminology. We denote by C[t0,+∞)(0) the set of x0 ∈ R2 such that (s.t.) τ(x0, u) < +∞
for a certain control strategy u(·). That is, C[t0,+∞)(0) is the set of points controllable to
{0} by a certain control strategy u(·) in the sense that x(t) = 0 at a certain finite moment
t ∈ [t0,+∞).

Minimum time problem for the harmonic oscillator. Given x0 ∈ C[t0,+∞)(0),

minimize τ(x0, u) over all u(·) ∈ L∞
U (t0,+∞). (MTP)

(MTP) means that

• we have to find the value T (x0) at x = x0 of the minimum time function

T (x) := inf{τ(x, u) : u ∈ L∞
U (t0,+∞)}

• and find all u(·) achieving the minimum in (MTP), i.e., all u ∈ L∞
U (t0,+∞) s.t.

τ(x0, u) = T (x0) (or, equivalently, s.t. xt0,x
0,u(T (x0)) = 0).

Terminology. The corresponding u(·) and the trajectory xt0,x
0,u(·) are called time-optimal.

Quite general existence theorems are available.
In particular, for the harmonic oscillator (MTP), C[t0,+∞)(0) = R2 and there exist a time-

optimal control for every x0 ∈ R2. This can be shown with the use using Maximum Principle
or Pontryagin Maximum Principle (PMP).
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1.3 General problem in the Bolza form.

Consider a control system

x′(t) = f(x(t), u(t)), t ∈ [t0, T ], (CS)

where the dynamics evolves in the state space Rn, i.e., x(t) = (x1(t); . . . ;xn(t))
⊤ ∈ Rn.

For each t, we assume u(t) ∈ U with the control set U ⊂ Rm. The class of admissible
controls is

L∞
loc,U(t0,+∞) := {u(·) : u ∈ L∞

U (t0, t) ∀ finite t > t0}.

If you are not familiar with Lp-spaces and the Lebesgue measure, you can replace in all the
statements of this section L∞

loc,U(t0,+∞) by the class of admissible controls consisting of

piecewise continuous functions bounded on each bounded interval. (SA)

Remark. If u(·) ≡ ũ is constant, then (CS) is a dynamical system. Assume U is a finite
set U = {ũ1, ũ2, . . . , ũN}. Then the control system is a collection of dynamical systems
x′(t) = f(x, ũj) defined by vector-fields f(x, ũj) (in the sense that we can switch between
them to achieve a desired result). The case when U is an infinite set is a generalization of
this situation. In most of practical situations, U is compact and convex.

Presently, we impose no assumptions on U .
Assume that:

(A1) f ∈ Cloc(Rn ×Rm) (this means that f is continuous in all balls in Rn ×Rm, but we do
not assume it uniformly bounded in Rn × Rm),

(A2) ∂xf(x, u) :=
∂f
∂x

exists for all pairs (x;u) ∈ Rn × Rm,

(A3) ∂xf(x, u) ∈ Cloc(Rn × Rm).

Theorem (see e.g. [CS, SL]). Let u be admissible, i.e., u ∈ L∞
loc,U(−∞,+∞). Let f satisfies

(A1)-(A3). Let x0 ∈ Rn be the initial value of the state,

x(t0) = x0 (IS)

Then there exists δ > 0 such that the initial value problem (CS), (IS) has a unique solution
x(t) = xt0,x

0,u(t) in the interval t ∈ [t0, t0 + δ) in the Carathéodory sense, i.e., in the sense
that

x(t) = x0 +

∫ t

t0

f(x(s), u(s))ds, t ∈ [t0, t0 + δ).

This solution can be extended to a maximal interval of existence (τ−, τ+) ⊂ R.

Remark.

(i) It is possible that τ+ < +∞. This can happen when limt→τ+ x(t) = ∞.

(ii) x(·) is locally absolutely continuous in (τ+, τ−), x ∈ ACloc(τ+, τ−), and the equality (CS)
holds a.e. on (τ−, τ+).
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(iii) For a simplified version of the theorem and the above remarks (i)-(ii), one can take
u piecewise-continuous and locally bounded. Then equality (CS) is satisfied everywhere
on (τ−, τ+) except a finite number of points, the solution is continuous and piecewise-
differentiable.

Definition (Admissible trajectory). Let u(·) be admissible, i.e., u ∈ L∞
loc,U(t0,+∞). Let x(·)

be the unique solution to (CS), (IS) defined on a maximal interval of its existence. Then we
say that a pair (u;x) is an admissible control-trajectory pair.

The optimal control problem consists of minimization of a certain cost function over the
family of all admissible control-trajectory pairs.

Definition. Consider the cost function (or objective) in the Bolza form

J(u) =

∫ T

t0

ℓ(x(s), u(s))ds+ φ(x(T )).

Here ℓ : Rn × Rm → R, which maps (x;u) ∈ Rn × Rm to ℓ(x, u) ∈ R, is called running cost.
The function φ : R × Rn → R is called the terminal cost (or penalty term); T is called the
terminal time.

We assume that

(A4) ℓ satisfies (A1)-(A3),

(A5) φ ∈ C1
loc(R× Rn).

The terminal time T and the corresponding terminal state x(T ) are assumed to satisfy
terminal constraints

(T ;x(T )) ∈ N, where N = {(t;x) ∈ R× Rn : Ψ(t, x) = 0}

with a certain Ψ, which maps (t;x) ∈ R × Rn to (Ψ0(t, x); . . . ; Ψn−k(t, x))
⊤ ∈ Rn+1−k,

0 ≤ k ≤ n.
The terminal set N and so the function Ψ usually are of quite simple forms.
However, to be flexible, let us assume that:

(A6) N is a k-dimensional embedded C1-manifold in R× Rn.

This means that Ψ ∈ C1
loc(R× Rn) and its Jacobian matrix

DΨ :=

 ∂tΨ0 ∂x1Ψ0 . . . ∂xnΨ0

. . . . . . . . . . . .
∂tΨn−k ∂x1Ψn−k . . . ∂xnΨn−k


is of full rank on N , i.e.,

rankDΨ(t, x) = n− k + 1 for all (t;x) such that Ψ(t;x) = 0.

Optimal control problem (OCP). Given the initial state x0 ∈ Rn, minimize the cost
function J(u) over all admissible control-trajectory pairs (u;x) and intervals [t0, T ] connected
by the terminal constraint (T, x(T )) ∈ N .
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Examples of various types of problems and terminal constraints.

(i) Let k = 1 and Ψ(t, x) = x−xtarget with a certain target point xtarget ∈ Rn. Let ℓ(x;u) ≡ 1
and φ ≡ 0. Then we obtain the problem of minimum time control to the target point
{xtarget}.
(ii) If Ψ(t, x) = Ψ(x), i.e., Ψ is independent of time t, (OCP) is said to be with free terminal
time. This is the case for (i).

(iii) Let T > t0 be fixed and Ψ0(t, x) = t− T . This is the problem with fixed terminal time.
Note that it is possible that other coordinates of Ψ (that is, Ψ1(t, x), . . . , ) define additional
constraints on the terminal state x(T ).

Remark.

(i) (CS) and the cost functional J(t) are time-invariant because the functions f , ℓ, and φ
do not depend on t explicitly. If additionally the problem has free terminal time, i.e.,
Ψ(t, x) = Ψ(x), then (OCP) is time-invariant and its solutions do not change essentially
under the shifts of time.

(ii) More general control systems have the form

x′ = f(t, x, u)

or may have ℓ or φ time-dependent.

References for Section 1.

[BC] M. Bardi, I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-
Bellman equations. Springer, 2008.

[CS] Cannarsa, P., Sinestrari, C., Semiconcave functions, Hamilton-Jacobi equations, and optimal
control. Springer, 2004.

[SL] H. Schättler, U. Ledzewicz, Geometric optimal control: theory, methods and examples.
Springer, 2012.
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2 Overview (continuation). Hamilton-Jacobi-Bellman

(HJB) equations and Maximum Principle.

2.1 HJB equations and the value function.

The HJB equation is something like a sufficient condition for optimality of control strategies
(in the sequel, for brevity, we will sometimes call control strategies simply controls).

If we change the initial state x0 or the initial time t0 the value of J changes even if the
control strategy u is the same. So, to consider problems (CS), (IS) for various x0, we have
to write the cost functional as J(u; t0, x

0) = Jt0,x0(u).

Definition. The function V : Rn → (−∞,+∞] defined by

V (t0, x
0) = inf

u∈L∞
loc,U (R)

Jt0,x0(u)

is called the value function of (OCP).

Under certain (very restrictive) assumptions, V satisfies the HJB differential equation:

∂tV (t, x) + min
ũ∈U

(∂xV (t, x) · f(x, ũ) + ℓ(x, ũ)) = 0,

where ∂xV = (∂x1V, . . . , ∂xnV ) can be perceived as a row-vector and the scalar product of two
vectors ∂xV (t, x) ·f(x, ũ) can be perceived as a product of a row-vector and a column-vector.

In very general setting, V is a unique solution to this equation in a special generalized
sense (e.g., a unique viscosity or proximal solution, see [CS, CV03]).

If we have solved the HJB equation, the value of V (t0, x
0) gives the sufficient condition

of optimality in the following sense: if for a certain u(·), we have Jt0,x0(u) = V (t0, x
0), then

u(·) is optimal.
For the minimum time control problem to a target set, the HJB eq. takes the form (see

[BC, CS])
min
ũ∈U

(∂xV (x) · f(x, ũ)) = −1 ( or min
ũ∈U

∇f(x,ũ)V (x) = −1 ),

where ∇wV (x) := ⟨∂xV (x), w⟩Rn is the directional derivative in the direction w ∈ Rn.

2.2 Maximum Principle for time-invariant f and ℓ.

It seems that this was Vladimir Boltyansky who gave the name of Lev Pontryagin to Maxi-
mum Principle around 1960. Pontryagin Maximum Principle (PMP) is a first-order necessary
condition of optimality. About the history of PMP, it is possible to read in [PP12].

We assume that (CS) and J are as above, i.e., time-invariant.

Definition. The control Hamiltonian function H : [0,+∞) × (Rn)⊤ × Rn × Rm → R for
(OCP) is is defined by

H(λ0, λ, x, u) = λ0ℓ(x, u) + λf(x, u).

Here λ = (λ1, . . . , λn) ∈ (Rn)⊤ is a row-vector (or covector) following the notation of
[SL].
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Terminology. The pair (λ0;λ) is called a multiplier, λ is called sometimes a cotangent
vector. The covector-valued function λ(t) satisfying the conditions of PMP given below is
called an adjoint variable.

Theorem (PMP, see [SL]). Let the control-trajectory pair (u∗(t);x∗(t)), t ∈ [t0, T ], be opti-
mal. Then there exists λ0 ∈ [0,+∞) and a covector-valued function λ : [t0, T ] → (Rn)⊤ such
that:

(i) (λ0;λ(t)) ̸= 0 for all t as an element of the vector space R × (Rn)⊤ (nontriviality of the
multiplier)

(ii) the adjoint variable λ is a solution to the linear (system of) ODE

λ′(t) = −λ0∂xℓ(x∗(t), u∗(t))− λ(t)∂xf(x∗(t), u∗(t)) (AdjEq)

(the adjoint equation).

(iii) There exists a constant C such that, for all t,

C = H(λ0, λ(t), x∗(t), u∗(t)) = min
ũ∈U

H(λ0, λ(t), x∗(t), ũ)

(the minimum condition)

(iv) At the endpoint, the covector (C ; −λ(T ) + λ0∂xφ(x∗(T ))) is orthogonal to the terminal
manifold N , i.e., there exists v ∈ (Rn+1−k)∗ s. t.

C + v∂tΨ(T, x∗(T )) = 0, λ = λ0∂xϕ(x∗(T )) + v∂xΨ(T, x∗(T )).

Definition. A contol-trajectory pair (u(·);x(·)) satisfying (i)-(iv) of PMP with a certain
multiplier (λ0;λ(·)) is called an extremal. The corresponding 4-tuple (u(·);x(·);λ0;λ(·)) is
called an extremal lift. This extremal lift is called normal if λ0 > 0 and abnormal if λ0 = 0.

Remark. It is possible that an extremal (u;x) is a part of a normal extremal lift (u;x;λ0;λ)

and an abnormal extremal lift (u;x; 0; λ̃) simultaneously. An extremal (u, x) such that
every associated extremal lift is (u;x;λ0;λ) is abnormal, i.e., has λ0 = 0, are called strictly
abnormal.

2.3 Bang-bang controls.

Definition. Assume that the control set is the interval U = [u−, u+], u± ∈ R. A control
strategy u(·) is called bang-bang if, on any finite interval [t0, T ],

(i) u(·) is piecewise-constant with a finite number of points of discontinuity (after a possible
correction on a set of measure 0),

(ii) on each intervals of constancy u(t) takes one of the two extreme values u±.

Time-points t where u(t− 0) ̸= u(t+ 0) (the limit from the left is not equal to the limit
from the right) are called switching time-point (we assume that the correction of (i) already
have been done).
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2.4 Chattering arcs and singular arcs.

Sometimes the structure of controls is not so good as it is described above for the bang-bang
controls. Among the effects that can make control “not so good” are:

• chattering arcs, when control switches infinite number of times on a bounded time-
interval

• singular arcs, when trajectory of (λ;x) in Rn × Rn goes along the zero surface of
switching function.

A famous example (see [SL]) of an optimal control with chattering arcs is given by the
Fuller problem of the control of(

x′1
x′2

)
=

(
x2
u

)
to the target point xtarget =

(
0
0

)
with the cost function

J(u) =

∫ T

t0

(x1(t))
2dt.

To clarify the notion of singular arc, let us consider the following important type of
control systems.

2.5 Minimum-time control of control-affine system.

Consider the control system

x′(t) = F (x(t)) + u(t)G(x(t)), F,G : Rn → Rn, u(t) ∈ U = [−1,+1]. (CAS)

The systems of such type are called time-invariant, single-input, control-affine systems.
Consider a minimum-time problem with a certain xtarget ∈ R2.
PMP implies that every optimal pair (u∗;x∗) satisfies

u∗(t) = − sgn⟨λ(t), G(x∗(t))⟩Rn for all t such that ⟨λ(t), G(x∗(t))⟩Rn ̸= 0

Definition (see Section 2.8 in [SL]).

(i) The function Φ(u;x)(t) := ⟨λ(t), G(x(t))⟩Rn is called switching function for the extremal
pair (u;x).

(ii) The extremal control strategy u(·) is called singular on an interval [t1, t2] if Φ(u;x)(t) ≡ 0
on [t1, t2].

References for Section 2.

[BC] M. Bardi, I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-
Bellman equations. Springer, 2008.

[CS] Cannarsa, P., Sinestrari, C., Semiconcave functions, Hamilton-Jacobi equations, and optimal
control. Springer, 2004.
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[PP12] Pesch, H.J., and Plail, M. ”The cold war and the maximum principle of optimal control.”
Optimization Stories. Documenta Mathematica (2012).

[SL] H. Schättler, U. Ledzewicz, Geometric optimal control: theory, methods and examples.
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3 Overview (continuation). Optimal synthesis, feed-

back, and control problems on manifolds.

3.1 Maximum Principle for minimum-time problems (MTP).

Corollary. If the terminal constraint N = {(t, x) : Ψ(x) = 0} do not depend on t, then
C = 0 in the minimum condition (iii). That is, the minimum condition takes the form:

0 ≡ H(λ0, λ(t), x∗(t), u∗(t)) = min
ũ∈U

H(λ0, λ(t), x∗(t), ũ)

Proof. This follows directly from the terminal condition (iv) of PMP.

Minimum time problem (MTP). Given the initial state x(t0) = x0 and the target state
xtarget, bring (CS) from x0 to xtarget in minimal possible time T − t0 (where T is such that
x(T ) = xtarget).

Theorem (PMP for MTP). Let the control-trajectory pair (u∗(t);x∗(t)), t ∈ [t0, T ], be a
minimizer of MTP. Then there exists λ0 ∈ [0,+∞) and a covector-valued function λ :
[t0, T ] → (Rn)⊤ such that:

(i) (λ0;λ(t)) ̸= 0 for all t as an element of R× (Rn)⊤ (nontriviality of the multiplier)

(ii) the adjoint variable λ is a solution to the linear (system of) ODE

λ′(t) = −λ0∂xℓ(x∗(t), u∗(t))− λ(t)∂xf(x∗(t), u∗(t)) (AdjEq)

(the adjoint equation).

(iii) For all t ∈ [t0, T ],

0 = H(λ0, λ(t), x∗(t), u∗(t)) = min
ũ∈U

H(λ0, λ(t), x∗(t), ũ)

(the minimum condition).

Proof. For this problem the terminal condition (iv) of PMP gives only 0 ≡ H in (iii).

Theorem (existence of optimizers of MTP). Assume that

the control set U is compact; (H0)

there exists K1 > 0 such that |f(x;u)− f(x̃, u)| ≤ K1|x− x̃| ∀ x, x̃ ∈ Rn, u ∈ U . (H1)

Assume also that the set f(x, U) := {f(x, u) : u ∈ U} is convex for each x ∈ Rn. Let
x0 ∈ C[t0,+∞) (i.e., the state x0 is controllable to xtarget in a certain finite time). Then
there exists an optimizer for MTP (i.e., a control-trajectory pair (u∗(·);x(·)) that minimize
J(u) = T − t0).

The proof will be given later following [CS].
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3.2 Optimal synthesis for the controlled harmonic oscillator.

3.2.1 Maximum principle for the controlled harmonic oscillator

For the controlled harmonic oscillator, PMP leads to the following steps (see also [SL, Section
2.6.4]):

• We introduce a multiplier (λ0;λ(t)), where λ0 = const ≥ 0 and the adjoint variable
λ = (λ1;λ2) : [t0, T ] → (R2)⊤ satisfies the adjoint equation

λ′(t) = −λ(t)
(

0 1
−1 0

)
.

This gives λ′1 = λ2 and λ′′2 = −λ2.

• We construct the control Hamiltonian

H(λ0, λ, x, u) = λ0ℓ+ λf = λ0 + (λ1 λ2)

(
x2

−x1 + u

)
.

• Maximum principle for minimum-time control problems: Every optimal
control-trajectory pair (u∗(t);x(t)) should satisfy

0 = H(λ0, λ(t), x(t), u∗(t)) = min
ũ∈U

H(λ0, λ(t), x(t), ũ)

• The second equality (the minimal condition) gives λ2(t)u∗(t) = minũ∈U(λ2(t)ũ). So

u∗(t) = − sgnλ2(t) if λ2(t) ̸= 0.

Here λ2(t) is a switching function.

• The first equality gives
0 = λ0 + λ′2x2 + λ2(−x1 + u∗).

• The multiplier should be nondegenerate in the sense that (λ0;λ) ̸= 0 for all t. This
implies that λ2(·) is a nontrivial solution in the sense λ2(·) ̸≡ 0.

Lemma. Let u be an optimal control for the harmonic oscillator. Then

(i) u is bang-bang,

(ii) u switches between ±1 exactly in time π.

Proof. Indeed, u∗(t) = sgnλ2(t), λ2(·) ̸≡ 0 and its general form is λ2 = C1 sin(t + θ1) with
C1 ̸= 0.

Remark. Note that we have no additional information about C1 and θ1. However, λ2(t) is
coupled with x(t) by the equality 0 = λ0 + λ′2x2 + λ2(−x1 + u∗) and the inequality λ0 ≥ 0.
In the present case, we do not need this coupling to give a complete solution, but for other
problems this coupling is useful.

For problems of optimal control to a target point xtarget, it is easier to start from xtarget

running time backwards. It also makes sense to start from a special case of abnormal
extremals.
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3.2.2 Extremal synthesis for harmonic oscillator.

Consider trajectories of the extreme dynamical systems with u = u± = ±1. They have the
form

x1(t)∓ 1 = −C2 cos(t− θ2), x2(t) = C2 sin(t− θ2).

Let us construct abnormal extremals going backward in time from the terminal time
T = 0. An extremal is abnormal if λ0 = 0. The equality 0 ≡ H gives

0 = λ0 + λ′2x2 + λ2(−x1 + u∗(t)) = λ′2x2 + λ2(−x1 + u∗(t))

in the Carathéodory sense (in the present case, for every t except finite number of points in
any finite interval). Taking it at T = 0, we get λ2(0) = 0 since |u(0 − 0)| = 1. Here and
below

u(t1 ± 0) are limits lim
t→0±0

u(t1 + t).

So the preceding zero of λ2 is at t = −π, and switching for abnormal controls happens at
times t = −nπ, n ∈ N.

One can see that the last part of an abnormal extremal trajectory without switches is
either

Γ+ : [−π, 0] → R2 given by x1 = 1− cos t, x2 = sin t,

(corresponding to u = 1) or

Γ− : [−π, 0] → R2 given by x1 = −1 + cos t, x2 = − sin t,

(corresponding to u = −1).
Then we switch control at t = −π to another extreme value and continue the procedure

switching u at times t = −nπ.
There are exactly two abnormal extremal trajectories. Each consists of alternating semi-

circles with centers at x = (±1; 0). After each switch the radius growth by 2. These two
extremal trajectories are strictly abnormal.

Now it is possible to construct the family F of all extremal trajectories x choosing arbi-
trary t ∈ (−π, 0) as the last switching time. Such a description of all extremal trajectories
is called extremal synthesis.

Switching between ±1 occurs at the points of switching locus Υ,

Υ := {x : dist(x, (2Z+ 1; 0)) = 1, x1x2 ≤ 0}, where (2Z+ 1; 0) := {(2n+ 1; 0) : n ∈ Z}.

Let G+ (G−) be the set of points below (resp., above) Υ.
We have proved the following statement.

Lemma. Let (u∗(·);x(·)) be an extremal control-trajectory pair. Then:

(i) (after a possible correction of u∗(·) on a set of zero measure)

u∗(t) = ±1 if x(t) ∈ Γ± ∪G±. (FC)

(ii) Two different trajectories from the set F (of all extremal trajectories) do not intersect
each other. Besides,

R2 \ {0} =
⋃
x∈F

{x(t) : t ∈ (−∞, 0)}
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Terminology. Controls that are functions of states (as above) are called feedback controls.

Corollary. Let x0 ̸= 0. Let x ∈ F be such that x0 ∈ {x(t) : t ∈ (−∞, 0)}. Let u∗ be connected
with x by (FC). Then (u∗, x) is the unique optimal control-trajectory pair for MTP with the
initial state x0.

So, in this case, the extremal synthesis is also optimal synthesis, i.e., optimal (u∗, x)
for all initial states x0 ∈ C[t0,+∞) were constructed from simpler pieces of dynamics with
u = const = u±.

3.3 Control systems with restricted state space and on smooth
manifolds.

Let M ⊂ Rn be connected. Let us take M as a state space.

Definition (Admissible trajectory). Let u(·) be admissible, i.e., u ∈ L∞
loc,U(−∞,+∞). Let

x(·) be the unique solution to (CS) with the initial condition x(t0) = x0 ∈ M . Let (τ−, τ+)
be a maximal open interval containing t0 such that x(·) exists on (τ−, τ+) and x(t) ∈M for
all t ∈ (τ−, τ+). Then the pair (u;x) on(τ−, τ+) is admissible control-trajectory pair in the
state space M .

If the state space M is an open connected subset of Rn, then PMP remains valid in the
same form as it was given above.

Another important case is when M ⊂ Rn is a smooth manifold. One have to ensure that
the dynamics of x stays on M . Let us consider a collection Vu(x), u ∈ Ũ , of vector fields on
M , that is, for each u,

Vu maps each x ∈M to Vu(x) ∈ TxM

(for simplicity we can assume that Vu is smooth for each value of control u).
Then the control system on the manifold can be defined as

x′(t) = Vu(x), x(t0) = x0 ∈M.

3.3.1 Example 1. Dubins’ car.

The car position is described by its coordinates (x1;x2) ∈ R2 (of the center of mass) and the
angle θ of the car axis with positive x1 axis. The car moves forward at velocity 1. We control
only the steering θ′ = u with the constraint |u| ≤ 1. Then one gets the control system

x′1 = cos θ (1)

x′2 = sin θ (2)

θ′ = u (3)

on the manifold R2 × S1, where S1 is a unit circle. The solution is described partially in
[BP03, Introduction] and completely in [SL96].
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3.3.2 Example 2. Optimization of an optical resonator.

Optimization of resonators will be considered in more detail Section 11 following the papers
[K13, KLV17] and the recent preprint [KKV18].

The problem of a minimization of the length of a 1-dimensional (1-dim.) optical cavity
producing a given resonance k ∈ C− can be reduced to minimum-time control of the system

x′ = k(−x2 + ε),

where 0 < ϵ1 ≤ ε(t) ≤ ϵ2 and x(t) ∈ Ĉ = C ∪ {∞}, i.e., x evolves on the Riemann sphere

Ĉ. The function ε(·) can be interpreted as a control. Physically it represents the layered
structure of a nonhomogeneous optical cavity. Initial state x0 = −1 and the target state
xtarget = +1 come from the radiation conditions.

References for Section 3.

[BP03] Boscain, U., Piccoli, B. (2003). Optimal syntheses for control systems on 2-D manifolds
(Vol. 43). Springer Science Business Media.
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lems and Optimization of Resonances in Layered Cavities. Integral Equations and Operator
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[KKV18] I.M. Karabash, H. Koch, I.V. Verbytskyi, Pareto optimization of resonances and
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Springer, 2012.
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4 Existence for Mayer’s problem, compactness, and

basic ODE results.

4.1 Optimal control problem in the Mayer form.

For the theory of the Mayer problem we mainly follow the monograph [CS].
Recall that we consider the control system

x′(t) = f(x(t), u(t)), t ∈ [t0, T ]. (CS)

We assume that f : Rn × Rm → Rn is continuous, and that the control strategy (or simply
control) u(·) is measurable and for almost all (a.a.) t satisfies u(t) ∈ U ⊂ Rm.

We will employ the following assumptions:

the control set U is compact; (H0)

there exists K1 > 0 such that |f(x;u)− f(x̃, u)| ≤ K1|x− x̃| ∀ x, x̃ ∈ Rn, u ∈ U . (H1)

So the family of admissible controls is L∞
U (R).

Definition. Let u(·) ∈ L∞
U (R), let I ⊂ R be an interval. A function x : I → Rn is called a

solution to (CS) in the Carathéodory sense if, for any compact interval [t1, t2] ⊂ I, we have
x ∈ AC[t1, t2] and x

′(t) = f(x(t), u(t)) for a.a. t ∈ [t1, t2].

(H0) and (H1) imply the following uniform boundedness property for f :

|f(x, u)| ≤ C +K1|x| for all x ∈ Rn, u ∈ U, (UBf)

where C = maxu∈U |f(0, u)|.
The arguments of standard ODE theory imply the global existence and uniqueness of

solutions to (CS) equipped with the initial condition

x(t0) = x0, (IS)

where t0 ∈ R and x0 ∈ Rn.

Theorem (global existence and uniqueness). Assume (H0), (H1), and u(·) ∈ L∞
U (R). Then

(CS), (IS) has a unique solution x(t) (in the Carathéodory sense) defined for all t ∈ R.

We take this ODE result without proof.

Definition. By xt0,x
0,u(·) we denote the unique solution to (CS), (IS). Such solutions with

admissible u(·) are called (admissible) trajectories of (CS).

Let T > t0 be fixed. Let φ : Rn → R be continuous.

Mayer’s optimal control problem (MOCP).
Minimize J(u) = φ(xt0,x

0,u(T )) over all admissible control strategies u ∈ L∞
U [t0, T ].
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This is an example of a problem with a fixed finite time horizon.
It is a particular case of the Bolza optimal control problem (BOCP) with a fixed terminal

time T . Recall that BOCP is to minimize the functional

J(u) =

∫ T

t0

ℓ(x(s), u(s))ds+ φ(x(T )).

If we take ℓ ≡ 0, we get MOCP. Note that the terminal manifold {Ψ(t, x) = 0} is defined by
Ψ = t− T .

Remark. In the present case, T is a known fixed time. Therefore it is easy to reduce the
(more general) Bolza problem to the (more special) Mayer problem. This will be done later.

Theorem. Assume (H0), (H1), and φ ∈ Cloc(Rn). Assume that

the set f(x, U) := {f(x, u) : u ∈ U} is convex for each x ∈ Rn.

Then, for arbitrary x0 ∈ Rn, there exists an optimal control for MOCP.

The proof is in several steps.
The first step of the proof is to consider the minimizing sequence of control strategies

uk(·), i.e., {uk}∞k=1 ⊂ L∞
U [t0, T ] such that lim J(uk) = infu∈L∞

U [t0,T ] J(u). This means that for

the corresponding trajectories yk(·) := xt0,x
0,uk(·) we have

lim
k→∞

φ(yk(T )) = inf
u∈L∞

U [t0,T ]
φ(xt0,x

0,u(T )).

We want to show that certain subsequence of {yk} converges uniformly to a function y that
is also a trajectory, i.e., y(·) = xt0,x

0,u∗ for certain u∗ ∈ L∞
U [t0, T ]. Then, from continuity of

φ(·), we obtain that y is an optimal trajectory and u∗ is an optimal control.
The proof of the existence of a converging subsequence consists of several components:

• properties of trajectories under assumptions (H0), (H1),

• compactness property for the family of all trajectories x(·).

4.2 Properties of trajectories.

Let t0, t1 be fixed and such that t0 < t1.

Lemma (Uniform boundedness of trajectories x (UBx)). Assume (H0), (H1). Then for any
r > 0 there exists R > 0 such that

|xt0,x0,u(t)| ≤ R

for all x0 ∈ Br := {x ∈ Rn : |x| < r}, t ∈ [t0, t1], and u ∈ L∞
U [t0, t1].

Gronwall’s inequality. Let z ∈ AC[t0, t1], z(t) ≥ 0 for all t, and

z(t) ≤ k(t) +

∫ t

t0

z(s)v(s)ds, t ∈ [t0, t1],
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where k ∈ C1[t0, t1], v ∈ C[t0, t1] are nonnegative functions. Then

z(t) ≤ k(t0)e
∫ t
t0

v(s)ds
+

∫ t

t0

k′(s)e
∫ t
s v(r)dr, t ∈ [t0, t1]. (GrIn)

In particular, if k = const ≥ 0 and v = const ≥ 0, we have

z(t) ≤ kev(t−t0), t ∈ [t0, t1].

Proof of Lemma UBx. Let x = xt0,x
0,u. Then (H0), (H1), and (UBf) imply

|x(t)| ≤ |x0|+
∫ t

t0

(C +K1|x(s)|)ds ≤ |x0|+ C(t1 − t0) +K1

∫ t

t0

|x(s)|ds.

(GrIn) applied to |x| concludes the proof.

Lemma (Uniform continuity w.r.t. initial state). Assume (H1). Then there exists c =
const > 0 such that

|xt0,x0,u(t)− xt0,x
1,u(t)| ≤ c|x0 − x1|

for all t ∈ [t0, t1], x
0, x1 ∈ Rn, and u ∈ L∞

U [t0, t1].

Proof. It is enough to apply (GrIn) to the function z = |xt0,x0,u − xt0,x
1,u|.

4.3 Compactness property.

Theorem (compactness of trajectories). Assume (H0), (H1). Assume that

the set f(x, U) := {f(x, u) : u ∈ U} is convex for each x ∈ Rn.

Let yk(t) := xt0,x
k,uk(t), t ∈ [t0, t1], be a sequence of trajectories with certain initial states

xk ∈ Rn. Assume that {yk(·)} is uniformly bounded on [t0, t1], i.e.,

|yk(t)| ≤ R for all t ∈ [t0, t1] and k.

Then there exists a subsequence {ykν} and a trajectory y = xt0,x
k,uk such that ykν → y

uniformly on [t0, t1].

The proof will be given in the next lecture.

Remark. Without the assumption that f(x, U) are convex, the compactness of trajectories
may fail. Consider, the system x′ = u, where x ∈ R, u ∈ U = {−1, 1}. Consider controls
uk(·) alternating between ±1 on intervals of length 1/k and put xk = 0 for all k. Then
yk → 0 uniformly. However, y ≡ 0 is not a trajectory since y′ ̸∈ U for all t.
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4.4 Proof of the existence of optimizer for Mayer’s problem.

We take the minimizing sequences {uk} and {yk} = {xt0,x0,uk}. They have the property

lim
k→∞

φ(yk(T )) = inf
u∈L∞

U [t0,T ]
φ(xt0,x

0,u(T )).

By UBx, {yk} is uniformly bounded on [t0, T ]. Using the compactness of trajectories, one sees
that there exists a subsequence {ykν} converging uniformly to a certain admissible trajectory
y. In particular,

y(t0) = x0 and φ(y(T )) = inf
u∈L∞

U [t0,T ]
φ(xt0,x

0,u(T )).

Thus, for a certain u∗ ∈ L∞
U [t0, T ], we have y = xt0,x

0,u∗ . We see that it is an optimal
trajectory, and that u∗ is an optimal control. This completes the proof of the existence
theorem.

The only thing that we have to prove now is the compactness property. This requires a
special tool from the theory of differential inclusions, which is called Filippov’s lemma.

4.5 Fillipov’s lemma and differential inclusions.

Definition. A multi-function Γ from Rm to Rn associates to every y ∈ Rm a set Γ(y) ⊂ Rn

(possibly empty).

Definition. Let Γ be a multi-function from Rn to Rn. We say that a function y ∈ ACRn [t0, t1]
is a solution to the differential inclusion

y′ ∈ Γ(y)

if for a.e. t ∈ [t0, t1], y
′(t) ∈ Γ(y(t)).

Example. With (CS) we associate the multifunction from Rn to Rn

that maps x ∈ Rn to F(x) = f(x, U) ⊂ Rn.

Clearly, if x(·) is a solution to (CS), then x(·) is a solution of the differential inclusion

x′ ∈ F(x).

The converse to the last statement is also true, but is not obvious. It is given by the next
result.

Filippov’s lemma. Let x : [t0, t1] → Rn be a solution to the differential inclusion x′ ∈ F(x).
Then there exists a measurable u : [t0, t1] → U such that x′(t) = f(x(t), u(t)) for a.e.
t ∈ [t0, t1].

The theory of set-valued analysis is a subject of the monographs [AC, AF].
Note that (H0) was not assumed. If we assume additionally (H0) then u ∈ L∞

U [t0, t1] and
x(·) is a solution to the differential equation x′(t) = f(x(t), u(t)).
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4.6 A little bit of convex analysis.

Lemma. Let A,B ⊂ Rn and

A+B := {a+ b : a ∈ A, b ∈ B}.

(i) If A and B are convex, then A+B is convex,

(ii) If A is closed and B is compact, then A+B is closed.

Remark. It is easy to give an example where A and B are closed, but A+B is not closed.

Theorem (strong separation theorem). Let S1, S2 ⊂ Rn be convex and disjoint. Let S1 be
closed and let S2 be compact. Then there exists p ∈ Rn and ε > 0 such that

p · x+ ε ≤ p · y for all x ∈ S1, y ∈ S2.

Here p · x is the scalar product.

Lemma. Let S ⊂ Rn be closed and convex. Let y ∈ L1
Rn [0, T ] be such that y(t) ∈ S a.e. and

v = 1
T

∫ T

0
y(t)dt. Then v ∈ S.

Proof. Suppose that v ̸∈ S. Applying the strong separation theorem to S1 = S and S2 = {v},
we see that there exists p and ε such that p·x+ε ≤ p·v for x ∈ S. Then p·v = 1

T

∫ T

0
p·v(t)dt ≤

p · v − ε, a contradiction.

4.7 Proof of the compactness property.

Let I = [t0, t1]. Since {yk} is uniformly bounded, (UBf) implies that {yk} is uniformly
Lipschitz continuous. Hence {yk} is uniformly equicontinuous. Thus, the Ascoli-Arzela
theorem is applicable and gives ykν → y uniformly for a certain y ∈ CRn [t0, t1].

Let us recall the Ascoli-Arzela theorem and equicontinuity (see e.g. [RS1]).

Definition. A family {yα} of functions on I is said to be uniformly equicontinuous if

∀ϵ > 0 ∃δ > 0 s.t. |t− t̃| < δ ⇒ |yα(t)− yα(t̃)| < ϵ ∀yα.

A family {yα} of functions is said to be equicontinuous if

∀ϵ > 0 ∀t ∈ I ∃δ > 0 s.t. |t− t̃| < δ ⇒ |yα(t)− yα(t̃)| < ϵ ∀yα.

Remark. An equicontinuous family of functions on I is uniformly equicontinuous (converse
is obvious).

Theorem (Ascoli-Arzela). Let {yα} be a family of uniformly bounded equicontinuous func-
tions on I. Then some subsequence{yαk

} converges uniformly on I.

Without loss of generality we can redenote {ykν} as {yk}. So from now on yk(·) → y(·) ∈
CRn(I) uniformly. We only need to show that y(·) is a trajectory.

By Filippov’s lemma, to show that y(·) is a trajectory of (CS) it is enough to prove that
y′(t) ∈ f(y(t), U) for a.a. t.
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The uniform convergence implies that y(·) ∈ Lip(I) (i.e., that y is uniformly Lipschitz
continuous in I). So y′(t) exists a.e..

Let y[I] := {y(t) : t ∈ I}. There exists R > 0 s.t.

y[I] ⊂
⋃
k

yk[I] ⊂ BR(0).

Let M = const be such that |f(x, u)| ≤M for all x ∈ BR(0), u ∈ U .
Let ε > 0 and Fε(x) = f(x, U) +Bϵ(0). Note that Fε(x) is closed and convex due to the

lemma above.
Let t be s.t. (such that) y′(t) exists. From (H1), we have

|f(yk(s), uk(s))− f(y(t), uk(s))| ≤ K1|yk(s)− y(t)| ≤ K1(|yk(s)− yk(t)|+ |yk(t)− y(t)|)
≤ K1(M |s− t|+ ∥yk − y∥L∞).

Hence for large enough k and small enough |s− t|, f(yk(s), uk(s)) ∈ Fε(y(t)). Then

yk(t+ h)− yk(t)

h
= h−1

∫ t+h

t

f(yk(s), uk(s))ds ∈ Fε(y(t))

for small h and large k. We have used the convexity and closedness of Fε(x) and the lemma
about an average.

Let now k → ∞. We get y(t+h)−yk(t)
h

∈ Fε(y(t)). Let h→ 0. Then we get y′(t) ∈ Fε(y(t)).
Letting ε → 0, we finally obtain y′(t) ∈ f(y(t), U) and this is valid at every point t where
y′(t) exists. This completes the proof.
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5 Value function and dynamic programming principle.

We assume f ∈ Cloc(Rn×Rm), (H0), (H1), and φ ∈ Cloc(Rn). We DO NOT assume convexity
of f(x, U) and so do not know if optimal control exists.

Definition (value function for Mayer OCP). The value function V maps (t, y) ∈ [0, T ]×Rn

to
V (t, y) := inf{φ(xt,y,u(T )) : u ∈ L∞

U [t, T ]}.

Note that here t plays the role of t0 and y ∈ Rn the role of x0 in (IS). The idea is that
we play with the pair (t0, x

0) of the initial time and the initial state (the (IS)-pair) and map
the optimal cost for each such a pair.

So V : [0, T ]× Rn → R and
V (T, y) = φ(y).

Theorem (Dynamical Programming Principle (DPP)).

(1) For any s ∈ [t, T ],
V (t, y) = inf

u∈L∞
U [t,s]

V
(
s, xt,y,u(s)

)
. (DPP1)

(2) A control u(·) ∈ L∞
U [t, T ] is optimal for the (IS)-pair (t, y) (i.e., for the initial condition

x(t) = y) if and only if
V (t, y) = V (s, xt,y,u(s)) ∀s ∈ [t, T ]. (DPP2)

Proof. Step 1, “≤” in (DPP1). Let ε > 0 and y1(·) = xs,y,u(·) for a certain u ∈ L∞
U [t, s].

Then there exists v ∈ L∞
U [s, T ] s.t.

φ(xs,y1,v(T )) ≤ V (s, y1) + ε.

Let w(·) be the concatenation of u(·) and v(·), i.e., w := u before s, and w := v after s.
Then xt,y,w(T ) = xs,y1,v(T ) and so

V (t, y) ≤ φ(xt,y,w(T )) = φ(xs,y1,v(T )) ≤ V (s, y1) + ε.

Letting ε→ 0, we get
V (t, y) ≤ V (s, y1).

Since the control u is arbitrary, we get “≤” in (DPP1).
Step 2, “≥” in (DPP1). Let a control w(·) be s.t.

V (t, y) ≥ φ(xt,y,w(T ))− ε.

Let u and v be restrictions of w to [t, s) and (s, T ], resp.. Then

inf
ũ∈L∞

U [t,s]
V
(
s, xt,y,ũ(s)

)
≤ V (s, y1) ≤ φ(xs,y1,v(T )) = φ(xt,y,w(T )) ≤ V (t, y) + ε.

This gives “≥” in (DPP1).
Step 3. To prove “if” in (2), we put y1 = xt,y,u(s) for an optimal u(·) ∈ L∞

U [t, T ]. Then

V (t, y) = φ(xt,y,u(T )) = φ(xs,y1,u(T )) = V (s, y1).

To prove “only if”, we plug s = T in (DPP2) and get V (t, y) = φ(xt,y,u(T )). So x and u are
minimizers.
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Corollary. Let x(·) be the trajectory corresponding to a control u(·). Then:
(1)

V (t, y) ≤ V (s, x(s)), s ∈ [t, T ]

(2) The equality
V (t, y) = V (s, x(s)) holds for all s ∈ [t, T ] (**)

if and only if u and x are optimal.
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6 Hamilton-Jacobi-Bellman (HJB) equation and vis-

cosity solutions.

6.1 HJB equation for Mayer’s Problem.

We assume (H0), (H1), f ∈ Cloc(Rn×Rm), φ ∈ Cloc(Rn), and J(u) = J(u, x0, t0) = φ(x(T )).
We DO NOT assume convexity of f(x, U) and so do not know if optimal control exists.

Definition. The Hamiltonian function for MOCP is H : Rn × Rn → R defined by

H(x, p) := max
u∈U

(−p · f(x, u)).

The Hamilton-Jacobi-Bellman equation associated with MOCP is

−∂tv(t, y) +H(y, ∂yv(t, y)) = 0, (HJB)

where ∂tv = ∂v/∂t, and ∂yv = (∂v/∂y1; ∂v/∂y2; . . . ; ∂v/∂yn). (HJB) is equipped with the
terminal value condition

v(T, y) = φ(y). (TVC)

Recall that the value function V satisfies (TVC) by definition.

Theorem. Assume that φ ∈ Liploc(Rn). Then V ∈ Liploc([0, T ]×Rn) and the value function
V is a unique viscosity solution to the problem (HJB), (TVC).

The proof is postponed for several lectures. Under additional assumptions it is easy to
prove the classical pointwise version.

Theorem. Assume that V is differentiable at a point (t, y) ∈ [0, T ]×Rn and there exists an
optimal control strategy u∗(·) for the (IS)-pair (t, y) with the property that u∗(·) has a right
limit u∗(t+ 0). Then V satisfies (HJB) at (t, y) and

−∂tV (t, y)− ∂yV (t, y) · f(y, u∗(t+ 0)) = 0. (*)

Proof. Let w(·) ∈ L∞
U [t, T ] and let x(s) = xt,y,w(s). Then V (t, y) ≤ V (t+ h, x(t+ h)) due to

(DPP1). So, as h→ 0,

0 ≤ V (t+ h, x(t+ h))− V (t, y) = ∂tV (t, y)h+ ∂xV (y) · (x(t+ h)− x(t)) + o(h).

Let w be s.t. x′(t) exists, e.g., we can take for s ∈ [t, t + δ], w(s) = const = u ∈ U . Then
x′(t) = f(y, u) and we have

0 ≤ V (t+ h, x(t+ h))− V (t, y) = h∂tV (t, y) + h∂xV (y) · x′(t) + o(h).

and so
0 ≤ ∂tV (t, y) + min

u∈U
(∂yV · f(y, u)).

Taking w = u∗ we get x′(t) = f(y, u∗(t+ 0)).
On the other hand, from (DPP2) we have

0 = V (t+ h, x(t+ h))− V (t, y) = ∂tV (t, y)h+ h∂xV (y) · f(y, u∗(t+ 0)) + o(h).

This gives (*) and (HJB) at (t, y).
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6.2 Viscosity solutions.

Let A ⊂ Rn be open.

6.2.1 Generalized differentials.

Let v : A→ R.

Definition. For x ∈ A,

D−v(x) =

{
p ∈ Rn : lim inf

y→x

v(y)− v(x)− ⟨p, y − x⟩
|y − x|

≥ 0

}
D+v(x) =

{
p ∈ Rn : lim sup

y→x

v(y)− v(x)− ⟨p, y − x⟩
|y − x|

≤ 0

}
are, resp., superdifferential and subdifferential of v at x (⟨·, ·⟩ is the scalar product in Rn).

Lemma.

(1) D−(−v)(x) = −D+v(x),

(2) D±v(x) are closed convex sets (possibly empty)

(3) D±v(x) are both nonempty if and only if v is differentiable at x; in this case

D+v(x) = D−v(x) = {Dv(x)}

Here Dv(x) = ∂xv(x) is the gradient.

Proof. (1) and (2) are obvious from the definition. (3) If v is differentiable at x, then
D+v(x) = D−v(x) = {Du(x)} easily follows from definition of differentiability. For the
proof of the part “if” of (3), see [CS].

Example.

(1) Let A = R and v(x) = |x|. Then D+v(0) = ∅, D−v(0) = [−1, 1].

(2) Let A = R and v(x) = |x|1/2. Then D+v(0) = ∅, D−v(0) = R.
(3) Let A = R2 and v(x) = |x1| − |x2|. Then D±v(0) = ∅.

Definition. We say that ψ(·) touches v from above (from below) at x0 ∈ A if v(x0) = ψ(x0)
and for all x in some small open ball Br(x0)

v(x) ≤ ψ(x) (resp., v(x) ≥ ψ(x)).

Lemma 6.1. Let v ∈ Cloc(A), p ∈ Rn, and x ∈ A. Then the following statements are
equivalent:

(1) p ∈ D+v(x) (resp., p ∈ D−v(x));

(2) p = Dψ(x) for some ψ ∈ C1(A) touching v from above (resp., below) at x.

(3) p = Dψ(x) for some ψ ∈ C1(A) s.t. v− ψ attains a local maximum (resp., minimum) at
x.

For the complete proofs of the lemma, see [CS, Section 3].
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6.3 Definition of viscosity solution

Let A ⊂ Rn be open. Let F (·) ∈ Cloc(A× R× Rn). Consider the equation

F (x, v,Dv) = 0, x ∈ A ⊂ Rn. (GenEq)

The HJB equation can be written in this form if we recast t as a component, say x0 of the
space variable x = (x0, x1, . . . , xn−1).

Definition. A function v ∈ Cloc(A) is called a viscosity subsolution to (GenEq) if

F (x, v(x), p) ≤ 0 for all p ∈ D+v(x) and for all x ∈ A. (SubS)

A function v ∈ Cloc(A) is called a viscosity supersolution to (GenEq) if

F (x, v(x), p) ≥ 0 for all p ∈ D−v(x) and for all x ∈ A. (SupS)

If v satisfies both (SubS) and (SupS), it is called a viscosity solution in A.

Remark. If v is differentiable at x, then the combination of (SubS) and (SupS) at x is
equivalent to

F (x, v(x), Dv(x)) = 0.

So if (GenEq) possesses a classical solution v in the sense that v differentiable at every x ∈ A
and (GenEq) holds, then v is a viscosity solution in A.

6.4 The HJB equation for Bolza problem with a fixed terminal
time

For (t, y) ∈ [0, T ]× Rn, let us consider the cost functional

Jt,y(u) =

∫ T

t

ℓ(x(s), u(s))ds+ φ(x(T )),

where x(·) = xt,y,u(·).

Bolza optimal control problem with fixed T (BOCP). Minimize Jt,y over u ∈ L∞
U [t, T ].

The case ℓ = 0 leads to Mayer OCP.
It is possible to transform BOCP to MOCP. Let X = (x0, x)

⊤ = (x0, x1, . . . , xn)
⊤. Let

us define a new control system X ′ = f̃(X, u), where f̃ : R×Rn ×U → R×Rn is defined by

f̃(X, u) = (ℓ(x, u); f(x, u)) =


ℓ(x, u)
f1(x, u)
. . .

fn(x, u)

 .

Let us define a new terminal cost function φ̃ : R× Rn → R,

φ̃(x0, x) = φ̃(X(T )) := x0 + φ(x).
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Since x0(s) =
∫ s

t
ℓ(x(s), u(s)), we see that

Jt,y(u) = φ̃(x0(T ), x(T )) = φ̃(X(T )).

Thus, we have formally rewritten the Bolza problem as the Mayer problem.
To make this reduction rigorous, one have to impose some regularity assumptions on ℓ.

The first assumption is standard ℓ ∈ Cloc(Rn × Rm) (so that f̃ ∈ Cloc).
The assumption of Lipschitz continuity in x uniform with respect to U can be relaxed

for ℓ and replaced by the assumption

(L1) for any R > 0 there exists γR s.t. |ℓ(x, u)| − ℓ(x̃, u)| ≤ γR|x − x̃| for all x, x̃ ∈ BR(0)
and u ∈ U .

Indeed, under assumption (H0) we had a lemma that states that for any r > 0 there
exists R such that |xt,y,u(s)| < R whenever y ∈ Br(0) and u ∈ L∞

U . So for t, s ∈ [0, T ] we in
any case use (L1) only on bounded sets of x.

The value function for BOCP is defined by

V (t, y) = inf
u∈L∞

U [t,T ]
Jt,y(u).

The Hamiltonian function associated with BOCP is

H(x, p) := max
u∈U

(−p · f(x, u)− ℓ(x, u)) ,

that is, the associated HJB equation ∂tv(t, y) = H(y, ∂yv(t, y)) becomes

−∂tv(t, y) + max
u∈U

(
−⟨∂yv(t, y), f(x, u)⟩Rn − ℓ(x, u)

)
= 0. (HJB)

Theorem. Assume (H0), (H1), ℓ(·, ·) ∈ Cloc(Rn ×Rm), and (L1). Assume that V is differ-
entiable at a point (t, y) and there exists an optimal control strategy u∗(·) for (IS) x(t) = y
with the property that u∗(·) has a right limit u∗(t+ 0). Then V satisfies (HJB) at (t, y) and

−∂tV (t, y)− ∂yV (t, y) · f(y, u∗(t+ 0))− ℓ(y, u∗(t+ 0)) = 0.

The proof is essentially the same as for the Mayer problem.
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7 Stochastic differential equations.

This part is intended to give some impression of stochastic optimal control considering the
simplest stochastic differential equation (SDE){

X ′(s, ω) = f(X(s, ω), u(t, ω)) + γξ(s, ω), s ∈ [t, T ]
X(t, ω) = y

with a white noise ξ(t), and to write the corresponding HJB equation following mainly [E].

7.1 Stochastic processes.

A solution x : [t, T ] × Ω → Rn to SDE is a random process, that is, roughly speaking,
a function depending on the time t and on the sample point ω ∈ Ω, where (Ω,Σ,P) is a
probability space.

Let B be σ-algebra of Borel subsets of Rn. A mapping X : Ω → Rn is an n-dim. random
variable (r.v.) if X−1(S) ∈ Σ for any S ∈ B. If this is the case Σ(X) := {X−1(S) : S ∈ B}
is the σ-algebra generated by X.

Example. Let X be a 1-D r.v.. If the probablity P(X < x) has the form
∫ x

−∞ f(y)dy with
the density function

f(y) =
1√
2πσ2

e−
|x−µ|
2σ2 , y ∈ R,

then it is said thatX has a Gaussian (or normal) distribution with mean (math. expectation)
µ and variance σ2. We will write X ∈ N(µ, σ2).

A collection {X(t) = X(t, ω) : t ≥ 0} of random variables is called a stochastic process
(s.p.). For any fixed sample point ω ∈ Ω, the mapping t 7→ X(t, ω) is called a sample path
of the s.p. X(t), t > 0, corresponding to ω.

Definition. An R-valued stochastic process W (t), t ≥ 0, is called a 1-dim. Wiener process
(or 1-dim. Brownian motion) if

(i) W (0) = 0 a.s.,

(ii) W (t)−W (s) ∈ N(t− s) for all 0 ≤ s < t,

(iii) for any finite partition 0 < t1 < t2 < · · · < tn of [0,+∞), the r.v. W (t1), W (t2)−W (t1),
. . . , W (tn)−W (tn−1) are independent.

An accessible explanations of the theorem of existence of a Wiener process can be found
in [E-SDE].

Something like a “definition” of a 1-dim. white noise ξ(t). A Wiener process is “a
unique solution” to the following SDE{

X ′(t) = ξ(t), t ∈ [0,+∞)
X(0) = 0 a.s.

Definition. A s.p X̃(·) is called a version of a s.p. X(·) if P(X(t) = X̃(t)) = 1 for all t ≥ 0.
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By C0,α[0, T ] we denote the space of uniformly Hölder continuous on [0, T ] functions with
exponent α ∈ (0, 1).

Theorem. Let T > 0. Let W (·) be a Wiener process. Then:

(i) There exists a version W̃ (·) such that X(·, ω) ∈ C0,α[0, T ] for each α ∈ (0, 1/2) with
probability 1 (i.e., for a.a. ω w.r.t. the probability measure P).
(ii) For each α ∈ (1/2, 1), with probability 1, W (·, ω) is nowhere Hölder continuous with
exponent α (pointwise in t).

(iii) Almost surely, W (·, ω) is of infinite variation on each interval [t1, t2] ⊂ [0, T ] (t1 < t2)
and the sample path t→ W (t, ω) is nowhere differentiable.

Definition. Let {Σj}j∈J be a family of σ-algebras Σj ⊂ Σ.

(i) The σ-algebras Σj are said to be independent if for any j1, . . . jk, and Aji ∈ Σji , the
collection of events {Aji}ki=1 is independent.

(ii) By Σ(Σj, j ∈ J) we denote the smallest σ-algebra Σ̃ ⊂ Σ that contain all Σj.

(iii) W+(t) := Σ(W (s)−W (t) : s ≥ t) is the future of the Wiener process beyond the time t.

Definition. An Rn-valued stochastic process W (·) is called a n-dim. Wiener process (or
n-dim. Brownian motion) if

(i) each of coordinates Wk(·), k = 1, . . . , n, is a 1-dim. Wiener process,

(ii) Wk := Σ (Σ(Wk(t), t ≥ 0)), k = 1, . . . , n, are independent.

7.2 A particular case of Itô’s chain rule.

Let W (·) be n-D Brownian motion. Let X0 be a r.v..
Consider {

X ′(t) = f(t,X(t)) + γξ(t), t ∈ [t0, T ]
X(t0) = X0

In the theory of SDE this is usually written as{
dX(t) = f(t,X(t))dt+ γdW (t), s ∈ [t0, T ]

X(t0) = X0 (SDE)

We want to specify conditions on f , X0, and a s.p. X(s) so that it makes sense to say
that

X(t) = X0 +

∫ t

t0

f(τ,X(τ))dτ + γ(W (t)−W (t0)).

is a solution to (SDE). These conditions also should be imposed in such a way that they will
work for the case with stochastic control u(t, ω).

First, note that we need a definition of the integral not only w.r.t. time
∫
· dt, but also

w.r.t. dW . Indeed, to derive HJB equation we need to plug the s.p. X(s) into the value
function V (t, x) and in some sense to differentiate the result V (t,X(t)). This can be done
with the use of Itô’s formula. Let us consider a particular case of it, first, on a non-rigorous
level.
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Suppose that a 1-dim. s.p. X(·) satisfies dX = Fdt + γdW for t ∈ [t0, T ] in the sense
that

X(t) = X(t0) +

∫ t

t0

F (s)ds+ γ(W (t)−W (t0)), t ≥ t0,

where F (·) is a s.p. with a good enough properties, which we have not specified yet.
Assume that v(t, x), v : [0, T ] × R → R, is continuous together with ∂v/∂t, ∂v/∂x,

∂2v/∂x2. Consider the s.p. Y (t) := v(t,X(t)). Then

dY =
∂v

∂t
dt+

∂v

∂x
dX +

γ2

2

∂2v

∂x2
dt =

(
∂v

∂t
dt+

∂v

∂x
F +

γ2

2

∂2v

∂x2

)
dt+ γ

∂v

∂x
dW,

where ∂v
∂t

means ∂v
∂t
(t,X(t)), etc.. The equality have to be understood in the intergal sense.

Note that the last term is

γ
∂v

∂x
(t,X(t))dW.

So one needs a definition of ∫ t

t0

Z(t)dW (t),

where Z(t) is a s.p.

Rough explanation of Itô’s chain rule. Let us write for small h,

δt = h, δX = X(t+ h)−X(t), δW = W (t+ h)−W (t) etc.

Recall thatW (·) is continuous a.s., so “δW = o(1)”. Writing the Taylor formula for Y (t+h)
and using the “rule”

(δW )2 ≈ δt,

we get

δY =
∂v

∂t
δt+

∂v

∂x
δX +

1

2

∂2v

∂x2
(δX)2 + o(δt+ (δX)2)

=
∂v

∂t
δt+

∂v

∂x
(Fδt+ γδW + o(δt)) +

1

2

∂2v

∂x2
(Fδt+ γδW + o(δt))2 + o(δt+ (δX)2) ≈

≈ ∂v

∂t
δt+

∂v

∂x
(Fδt+ γδW ) +

γ2

2

∂2v

∂x2
δt+ o(δt).

To give a less rough explanation, let us consider a rigorous version of the rule (δW )2 ≈ δt.

Lemma. Let W (·) be a 1-dim. Brownian motion and let [a, b] ⊂ [0,+∞). Let P be a
partition a = t0 < t1 < · · · < tm = b of [a, b] with the size |P | := maxk |tk+1 − tk|. Let

Q =
m−1∑
k=0

[W (tk+1)−W (tk)]
2.

Then Q→ b− a as |P | → 0 in the sense of L2(Ω), i.e.,

E
(
|Q− (b− a)|2

)
→ 0.
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Proof.

Q− (b− a) =
m−1∑
k=0

(
[W (tk+1)−W (tk)]

2 − (tk+1 − tk)
)
,

E(|Q− (b− a)|2) =

=
m−1∑
k=0

m−1∑
j=0

E
[(
[W (tk+1)−W (tk)]

2 − (tk+1 − tk)
) (

[W (tj+1)−W (tj)]
2 − (tj+1 − tj)

)]
=

m−1∑
k=0

E
(
[W (tk+1)−W (tk)]

2 − (tk+1 − tk)
)2

=
m−1∑
k=0

E
[
(Z2

k − 1)2(tk+1 − tk)
2
]
,

where Zk =
W (tk+1)−W (tk)

(tk+1−tk)1/2
∈ N(0, 1). Thus,

E(|Q− (a− b)|2) ≤ C
m−1∑
k=0

(tk+1 − tk)
2 ≤ C|P |(b− a)

and the right and the left sides of this formula go to 0 as |P | → 0.

We see that the main cancellation happened because for j ≥ k + 1, W (tj+1) − W (tj)
(future) are independent of W (tk+1)−W (tk) (past).

Let us now try to define the simplest integral of the form
∫ T

0
Z(t)dX(t). Namely, let us

take a partition P of [0, T ] and consider
∫ T

0
W (t)dW (t) taking a specific form of Riemann

sum formally associated with
∫ T

0
W (t)dW (t):

RP =
m−1∑
k=0

W (tk)[W (tk+1)−W (tk)].

Sums of this type correspond to the Itô integral.

Lemma. RP → W (T )2/2− T/2 as |P | → 0 in the L2(Ω)-sense.

Proof. Using summation by parts, we see that

RP =
W (T )2

2
− 1

2

m−1∑
k=0

[W (tk+1)−W (tk)]
2 → W (T )2

2
− T

2
. (4)

as |P | → 0 due to the previous lemma.

So it is naturally to assume that∫ T

0

WdW = W (T )2/2− T/2.
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7.3 Filtration and progressive measurability*.

We have seen that the main cancellation happens because for j ≥ k+1, W (tj+1)−W (tj) are
independent of W (tk+1)−W (tk) (the future is independent of the past). It is important for
building the Itô integral and for the definition of solutions X(s) of SDE that the property
of independence of the future W+(t) := Σ(W (s) −W (t), t ≤ s) of the Brownian motion is
preserved.

The notion of filtration is devised to ensure this. Assume that the r.v. X0 is independent
of W+(0). We will use the filtration

F = {Ft}t≥0, where Ft := Σ(X0,W (s), s ∈ [0, t]).

(Note that Ft and W+(t) are independent by the definition of the Brownian motion.)
We will assume that a solution X(·) of SDE is adapted to F, i.e., Σ(X(t)) ⊂ Ft.
The formula

X(s) = X0 +

∫ s

t

f(τ,X(τ))dτ + γ(W (s)−W (t)) (*)

assumes that the integral
∫ s

t
f(X(τ), τ)dτ of the s.p. f(X(τ), τ) is a r.v. X(s) − X0 −

γ(W (t)−W (s)).
A technical peculiarity of stochastic integration is that an integral of a s.p. is not neces-

sarily a r.v. if some additional conditions are not imposed.

Example. Let A be a non-measurable w.r.t. Lebesgue measure subset of [0, 1]. Let us consider
a deterministic function

f(s) = 1 for s ∈ A, f(s) = −1 for s ∈ [0,+∞) \ A.

Let us define now a s.p. X(s, ω) := f(s) for all ω and s ≥ 0. Then:

(1) X(·) is adapted to F,
(2) there exist expectations

E
∫ t

0

|X(s)|ds = E
∫ t

0

|X(s)|2ds = t.

(3) However,
∫ t

0
X(s, ω)ds does not exist for any ω ∈ Ω, and so we cannot associate a certain

r.v. with the integral
∫ t

0
X(s)ds.

To handle this difficulty, one have to impose some assumption of measurability w.r.t.
time t and to agree this with the filtration F. This leads to a definition of progressive
measurability.

Definition. A s.p. X(·) is called progressively measurable if for each T ≥ 0 the function
X(t, ω) on [0, T ] × Ω is measurable w.r.t. the minimal σ-algebra B[0,T ] ⊗ FT generated by
the sets S × A, S ∈ B[0,T ], A ∈ FT , where B[0,T ] is the σ-algebra of Borel subsets of [0, T ].

There is another way to avoid the technical difficulty connected with the last example.
We follow [GS].

Definition. Denote by Dn the space of n-dimensional functions f(t), t ∈ [0, T ], such that:
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(1) for each t ∈ [0, T ) there exists f(t+ 0) and f(t+ 0) = f(t),

(2) there exists f(t− 0) for each t ∈ (0, T ].
Such functions sometimes are called ’cadlag’ functions.

When Dn is equipped with a special good metric, which makes it a separable metric
space, Dn is called the Skorokhod space.

Definition. Denote by Φ, the class of s.p. X(·) such that X(·, ω) ∈ Dn for all ω and X(·)
is adapted to F.

If X(·) ∈ Φ, then X(·) is progressively measurable. That is why we will not impose
assumptions of progressive measurability.

7.4 Solutions to SDE*.

Definition. A s.p. X(t), t ∈ [0, T ], is called a solution to (SDE) on [0, T ] if the following
conditions are satisfied:

(1) X is adapted to F,
(2) X(·, ω) ∈ Dn with probability 1,

(3) for all t the formula (*) holds with probability 1.

To give existence and uniqueness theorem we impose several conditions on the function
f following [GS] and [O].

Theorem (existence and uniqueness for SDE). Assume that the r.v. X0 is independent of
W+(0) and s.t. E[|X0|2] < ∞. Assume that f : [0, T ]× Rn → Rn is measurable, satisfy the
following local Lipschitz condition in x

∀R > 0 ∃KR = const s.t. |f(t, x)− f(t, x̃)| ≤ KR|x− x̃| ∀x, x̃ ∈ BR(0) (H1loc)

and is linearly bounded, i.e.,

|f(t, x)| ≤ C(1 + |x|) ∀x, t.

Then (SDE) has a unique solution X(·) in the space Φ.

Remark. The class Φ is actually not the appropriate choice for the above existence and
uniqueness theorem. It was devised for a much wider class of SDE (see [GS, GS-C]).

References to Section 7.1.

[GS] Gihman, I.I. , Skorohod, A.V. (1979). Stochastic differential equations. Springer, New York,
NY.

[GS-C] Gihman, I. I., Skorohod, A. V. (2012). Controlled stochastic processes. Springer Science &
Business Media.

[E] L.C. Evans, Lecture notes of the course ”An Introduction to Mathematical Optimal Control
Theory”, https://math.berkeley.edu/ evans/control.course.pdf

[E-SDE] L.C. Evans, Lecture notes of the course “An introduction to stochastic differential equa-
tions”

[O] Øksendal, B. Stochastic differential equations. Springer, 2003.
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8 Stochastic optimal control problem.*

8.1 Various classes of admissible stochastic controls.

Consider now a controlled SDE{
dX(t) = f(X(t), u(t))dt+ γdW (t)

X(0) = y
,

where y ∈ Rn.
There are several classes of admissible controls u(·). The class L∞

U [0, T ] of deterministic
admissible controls is rarely used in applications.

Let us consider several classes of s.p. u(t, ω) that can serve as classes of admissible
controls.

Definition. The class Ã of generalized controls consists of s.p. u(t, ω) taking values in U
and such that u is progressively measurable.

Another class Afeedback of controls are feedback controls that are defined via functionals
u(t, x(·)) that are “good enough” and non-anticipative w.r.t. the second variable x(·) ∈ Dn.
A functional u(t, ·) is called non-anticipative if it maps a deterministic function x(·) ∈ Dn

to U such that for all t it follows from x(s) = x̃(s), s ∈ [0, t], that u(t, x(·)) = u(t, x̃(·)).
The control then take the form u(t,X(·)), and the controlled SDE is{

dX(t) = f(X(t), u(t,X(·)))dt+ γdW (t)
X(0) = y

.

There is an important subclass of feedback controls formed by Markov controls. These
controls are defined by ‘’good enough” feedback functions u : [0, T ]× Rn → U . The control
have the form u(t,X(t)) and the controlled SDE is{

dX(t) = f (X(t), u(t,X(t))) dt+ γdW (t)
X(0) = y

.

That is, the control u(t,X(t)) at a time t observe only the value X(t) at this moment, and
does not take into account the prehistory X(s), s ∈ [0, t).

In each case SDE requires some generalization. For example, for a fixed generalized
control the expression f(X(t), u(t)) is not a function of type F (X(t), t), but has the type
F (X(t), t, ω). That is f itself depends on ω and so is random.

In the case of generalized controls the notion of solution to SDE and the existence and
uniqueness theorem given above can be adapted to the case of f = f(X(t), t, ω) almost
without changes [GS]. In other cases more care is needed.

8.2 Value functions and HJB equations for stochastic control.

Let A be a certain reasonable class of admissible controls u(t, ω).
Consider the controlled SDE{

dX(s) = f(X(s), u(s,X(·)))dt+ γdW (s), s ∈ [t, T ]
X(t) = y

. (cSDE)
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Definition. Let X(s) = X t,y,u be the solution to (cSDE) corresponding to a control u. Then
the functional Jt,y : A → R defined by

Jt,y := E
(∫ T

t

ℓ(X(s), u(s))ds+ φ(X(T ))

)
,where E(·) is the mathematical expectation,

is called the expected cost functional in Bolza form.

The value function V : [0, T ]× Rn is defined in the way similar to that we had before,

V (t, y) = inf
u∈A[t,T ]

Jt,y(u)

The n-dim. Itô’s chain rule. Let X(·) and F (·) be progressively measurable n-dim.
stochastic processes such that

F ∈ L2([0, T ]× Ω), and dX = Fdt+ γdW .

Assume that v(t, x), v : [0, T ]×Rn → Rn, has “good enough differetiability properties” and
consider the n-dim. s.p.

Y (t) := v(t,X(t)).

Then

dY =
∂v

∂t
dt+ ⟨∂v

∂x
, Fdt+ γdW ⟩Rn +

γ2

2

n∑
j=1

∂2v

∂x2j
dt. (*)

The HJB equation corresponding the controlled stochastic equation (cSDE) is

−∂tV (t, y)− γ2

2
∆yV (t, y) + max

u∈U
(−∂xV (t, y) · f(y, u)− ℓ(y, u)) = 0, (sHJB)

V (t, y) = φ(y), (TV)

where ∆yV =
∑n

j=1
∂2V
∂y2j

.

The additional term γ2

2
∆yV comes from the n-dim Itô’s chain rule. The rigorous deriva-

tion require more tools, for the case of Markov controls see [O, Section 11.2].
If coefficients of the equation and U are good enough then such equation have solutions

with better properties. The uniqueness results can be established without notion of viscosity
solution.

For a particular value of the parameter γ ∈ (0,+∞), let us denote the corresponding
solution by Vγ. If, passing to the limit as γ → 0, we obtain a limit limγ→0 Vγ = V [CL83, FR]
then, under certain assumptions, V is the viscosity solution of (HJB) with γ = 0. This
approach to viscosity solutions is called the method of vanishing viscosity [CL83, CS].

References for Section 8.

[CS] P. Cannarsa, C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal
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9 Existence and uniqueness of viscosity solutions (con-

tinuation of Section 6.1).

Let us recall the statement of the existence and uniqueness theorem for viscosity solutions.
We assume (H0), (H1), f ∈ Cloc(Rn ×Rm), φ ∈ Cloc(Rn), and Jt,y(u) = J(u) = φ(x(T )).

So we consider the Mayer problem.
Recall that Hamiltonian function for H : Rn × Rn → R for Mayer OCP is defined by

H(x, p) := max
u∈U

(−p · f(x, u)) = max
u∈U

⟨−p, f(x, u)⟩Rn .

The Hamilton-Jacobi-Bellman equation associated with MOCP is

−∂tv(t, y) +H(y, ∂yv(t, y)) = 0, t ∈ (0, T ), (HJB)

where ∂tv = ∂v/∂t, and ∂yv = (∂v/∂y1; ∂v/∂y2; . . . , ∂v/∂yn). To get a boundary value
problem for (HJB), we equip it with the terminal value condition

v(T, y) = φ(y). (TVC)

Recall that the value function V (t, y) = infu∈L∞
U
Jt,y(u) satisfies (TVC) by definition.

Theorem. Assume that φ ∈ Liploc(Rn). Then the value function V is a unique viscosity
solution to the problem (HJB), (TVC).

The first condition for a function v to be a viscosity solution is that it should be contin-
uous.

Lemma (regularity). Let φ ∈ Liploc(Rn). Then V ∈ Liploc([0, T ]× Rn).

Proof. We have to prove that for any r > 0, there exists Cr s.t.

|V (t, y)− V (t̃, ỹ)| ≤ Cr(|t− t̃|+ |y − ỹ|) ∀t ∈ [0, T ], y, ỹ ∈ Br. (LipV)

Let us fix r > 0. By Lemma UBx from Section 4.2, there exists R0 > r s.t.

|xt,y,u(s)| < R0 ∀y ∈ Br, 0 ≤ t ≤ s ≤ T, u(·) ∈ L∞
U [0, T ].

There exists R > R0 s.t.

|xt,y,u(s)| < R ∀y ∈ BR0 , 0 ≤ t ≤ s ≤ T, u(·) ∈ L∞
U [0, T ].

Since φ ∈ Liploc(Rn), there exists Kφ s.t.

|φ(x)− φ(x̃)| ≤ Kφ|x− x̃| ∀x, x̃ ∈ BR. (Lipφ)

LetMf := sup{|f(x, u)| : x ∈ BR, u ∈ U}. ThenMf <∞. By Lemma on uniform continuity
from Section 4.2,

|xt,y,u(T )− xt,ỹ,u(T )| ≤ c|y − ỹ| ∀t ∈ [0, T ], y, ỹ ∈ Rn, u ∈ L∞
U (UCx)

with a certain constant c ≥ 1.
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Step 1. Let us consider the case t = t̃ ∈ [0, T ), take y, ỹ ∈ BR0 , and prove (LipV). For
t = T , (LipV) is obvious from (Lipφ) and V (y, T ) = φ(T ).

Assume V (t, y) ≤ V (t, ỹ). For any ε > 0, there exists a control u(·) s.t.

φ(xt,y,u(T )) ≤ V (t, y) + ε.

By the definition of V , (Lipφ), and (UCx),

V (t, ỹ) ≤ φ(xt,ỹ,u(T )) ≤ φ(xt,ỹ,u(T )) +Kφ|xt,y,u(T )− xt,ỹ,u(T )| ≤ V (t, y) + ε+ cKφ|y − ỹ|.

Since ε is arbitrary, we get

|V (t, ỹ)− V (t, y)| ≤ cKφ|y − ỹ| ∀y, ỹ ∈ BR0 , t ∈ [0, T ]. (Ly)

Step 2. Let us consider arbitrary t, t̃ ∈ [0, T ] and y, ỹ ∈ Br. One can assume t < t̃. By
(DPP1), for any ε > 0, there exists u ∈ L∞

U s.t. for y∗ = xt,y,u(t̃), we have

0 ≤ V (t̃, y∗)− V (t, y) ≤ ε.

Since r < R0, we can apply (Ly) and get

|V (t̃, y∗)− V (t̃, y)| ≤ cKφ|y∗ − ỹ| ≤ cKφ(|y∗ − y|+ |y − ỹ|) ≤ cKφ(Mf |t̃− t|+ |y − ỹ|)

So
|V (t̃, ỹ)− V (t, y)| ≤ cKφ(Mf |t̃− t|+ |y − ỹ|) + ε.

Letting ε→ 0, we get

|V (t̃, ỹ)− V (t, y)| ≤ cKφMf (|t̃− t|+ |y − ỹ|).

The uniqueness of solution for (HJB), (TVC) follows from the comparison principle (see
[CS]). We leave it without a proof.

Lemma. Assume that φ ∈ Liploc(Rn). Then the value function V is a viscosity solution to
the problem (HJB), (TVC).

9.1 Proof that V is a viscousity solution.

Let us recall the definition of viscosity solution. Let A ⊂ Rn be open. Let F (·) ∈ Cloc(A×
R× Rn). Consider the equation

F (x, v,Dv) = 0, x ∈ A ⊂ Rn. (GenEq)

Definition. A function v ∈ Cloc(A) is called a viscosity subsolution to (GenEq) if

F (x, v(x), p) ≤ 0 for all p ∈ D+v(x) and for all x ∈ A. (SubS)

A function v ∈ Cloc(A) is called a viscosity supersolution to (GenEq) if

F (x, v(x), p) ≥ 0 for all p ∈ D−v(x) and for all x ∈ A. (SupS)

If v satisfies both (SubS) and (SupS), it is called a viscosity solution in A.
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We have continuity of V by the first lemma. Let us check (SubS) and (SupS).
Let (t0, y0) ∈ (0, T )× Rn and take R0 > |y0|.
Step 1. Let us prove that V is a viscosity subsolution.
Let w ∈ U be a constant control and x(·) = xt,y

0,w(·). Then, using (H1), we get

x(s) = y0 +

∫ t

t0
f(x(τ), w)dτ = y0 + f(y, w)(t− t0) +

∫ t

t0
[f(x(τ), w)− f(y, w)]dτ =

= y0 + f(y, w)(t− t0) + o(t− t0)

as t↘ t0. Let p = (pt, py) = (pt, py1, . . . , p
y
n) ∈ D+V (t, y).

Recall that D+g(z0) is the subdifferential of g at z0. For g ∈ Cloc, p ∈ D+g(z0) if and
only if p = Dψ(z0) for some ψ ∈ C1

loc touching g from above at z0.
Put z = (t, y) and z0 = (t0, y0). Then near z0 we have

V (z) ≤ ψ(z) = V (z0) + ⟨p, z − z0⟩R1+n + o(z − z0).

Taking z = (t, x(t)) as t↘ t0, we get

V (t, x(t)) ≤ V (t0, y0) + (pt + f(y0, w) · py)(t− t0) + o(t− t0).

By the corollary from DPP, V is nondecreasing along the trajectory (t, x(t)), t > t0. Hence,
V (t, x(t)) ≥ V (t0, y0) and

−pt − f(y0, w) · py ≤ 0.

Since w ∈ U is arbitrary,

−pt +max
w∈U

(−f(y0, w) · py) = −pt +H(y0, py) ≤ 0.

Thus, V is viscosity subsolution to (HJB).
Step 2. Let us prove that V is a viscosity supersolution.
Let BR and Mf be as before. Then for any control u(·) and x(t) = xt,y

0,u(t),

|x(t)− y0| ≤Mf (t− t0), ∀t > t0. (*)

Let p = (pt, py) ∈ D−V (t, y) and ε > 0. From the definition of superdifferential,

D−g(z0) =

{
p ∈ R1+n : lim inf

z→z0

g(z)− g(z0)− ⟨p, z − z0⟩
|z − z0|

≥ 0

}
,

we get
V (t, x(t))− V (t0, y0)− pt(t− t0)− py · (x(t)− y0)

|(t, x(t))− z0|
≥ −ε

for small enough |t− t0|. Since |(t, x(t))− z0| ≥ t− t0 > 0, we get

V (t, x(t))− V (t0, y0)− pt(t− t0)− py · (x(t)− y0)

t− t0
≥ −ε. (**)
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By (*) and (H1),

py · (x(t)− y0) =

∫ t

t0
py · f(x(τ), u(τ))dτ ≥

≥
∫ t

t0
py · f(y0, u(τ))dτ − (t− t0)2|py|MfK1,

where K1 is the Lipschitz constant for f . Hence,

py · (x(t)− y0) ≥ −(t− t0)H(y0, py)− (t− t0)2|py|MfK1.

Combining with (**),

V (t, x(t))− V (t, x)

t− t0
≥ pt −H(y0, py)− (t− t0)|py|MfK1 − ε.

For any small enough δ = t − t0, (DPP1) implies that we can choose u(·) and the corre-
sponding controlled trajectory x(·) s.t. V (t, x(t))− V (t0, y0) ≤ δ2. Therefore,

pt −H(y0, py) ≤ δ(1 + |py|MfK1) + ε.

Letting ε, δ → 0, we get −pt +H(y0, py) ≥ 0. Thus, V is a viscosity supersolution.
From the definition, we see that V is a viscosity solution.

References for Section 9.

[CS] Cannarsa, P., Sinestrari, C., Semiconcave functions, Hamilton-Jacobi equations, and optimal
control. Springer, 2004 (Section 7.2).
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10 Application to Spectral Optimization. Resonances

and their distribution.

Resonances (in the narrow sense) are the frequencies k that describe eigenoscillations of open
systems governed by a certain wave equation. These frequencies are, generally, complex
numbers k ∈ C. In many cases, k ∈ C− := {z ∈ C : Im z < 0} and either (− Im k), or
(− Im k2) characterizes in a certain way the rate of decay of eigenoscillations. The decay is
naturally explained by the leakage of the energy of the system to the outer environment.

10.1 Resonances for Schrödinger operator and for the wave equa-
tion with a potential.

We will assume in this subsection that V (·) ∈ L∞
R (R3). Consider the Schrödinger operator

HV := −∆+ V (·),

with the potential V (·). The operator is defined on domHV = W 2,2
C (R3) = dom∆ and maps

u ∈ domHV ⊂ L2
C(R3) to HV u ∈ L2

C(R3), where

(HV u)(x) = −∆u(x) + V (x)u(x), x ∈ R3,

in the distributional sense. So HV is an unbounded operator in the Hilbert space L2
C(R3)

defined on the domain domHV ⊂ L2
C(R3), which is narrower than L2

C(R3), however is dense
in L2

C(R3).
This operator is self-adjoint HV = H∗

V (for basic facts of Operator Theory, see e.g.
[RSII, RSIV]). For λ ̸∈ R there exists the inverse operator (HV − λ)−1 and this operator is
defined on whole L2

C(R3) and bounded. In particular,

(HV − λ)(HV − λ)−1f = f ∀f ∈ L2
C(R3).

The operator valued function (HV − λ)−1 depending on the complex number λ is called the
resolvent of HV .

Since in the sequel we associate HV with the wave equation (having a potential term)

∂2tw(t, x) +HVw(t, x) = 0, (WEq)

we write λ = z2 and consider the analytic operator-valued function

RV (z) := (HV − z2)−1, k ∈ C+ \ iR+,

which is the resolvent of HV taken for the spectral parameter λ = k2. Here

C+ = {Im z > 0}, iR+ = {ic : c ∈ (0,+∞)}.

Assume that
V (x) = 0 for x ̸∈ Br0 with a certain r0 > 0. (*)

Let χ(·) = χBr1
(·) be the characteristic function of a certain ball Br1 with r1 > r0, i.e.,

χ(x) =

{
1 if |x| < r1
0, if |x| ≥ r1
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Theorem (see e.g. [Z17]). The cut-off resolvent χRV (z)χ, which, for each z ∈ C+ \ iR, is
a bounded operator on L2

C(R3) defined by

(χRV (z)χu)(x) := χ(x)RV (z)χ(x)u(x),

can be continued from C+ \ iR+ to a meromorphic in C operator-valued function Rcont(z),
which has at most countable number of poles in iR ∪ C−.

Definition. The set Σ(HV ) of the poles k of this continuation is called the set of resonances.

Remark.

1) The set Σ(HV ) of resonances of HV does not depend on the choice of r1 > r0 [SZ91].

2) Σ(HV ) ⊂ C− ∪ iR, and every point of Σ(HV ) is isolated (∞ is the only possible accumu-
lation point of Σ(HV )).

3) Similarly to eigenvalues, resonances of HV have finite geometric and algebraic multiplic-
ities. The general definitions of those are somewhat complicated, see remarks in [Z17] and
the remarks and references in [K14].

The ‘physical meaning’ of resonances can be seen from the resonance expansions of scat-
tered waves, for which we follow the recent review paper [Z17]. Let us introduce simplifying
technical assumptions

Σ(HV ) ∩ i[0,+∞) = ∅; (A1)

all resonances are simple, i.e., have algebraic multiplicity 1; (A2)

f and g are certain L2
C(R3)-functions such that f(x) = g(x) = 0 for a.a. x ̸∈ Br0 . (A3)

Theorem (resonance expansion). Assume (A1)-(A3) and additionally that f ∈ W 1,2
C (R3).

Let w(t, x), (t, x) ∈ R+ × R3, be the solution (in any reasonable sense, classical, weak, or
strong) to the wave equation (WEq) satisfying the initial conditions

w(0, ·) = f(·), ∂tw(0, ·) = g(·).

Then for any a > 0, the set {k ∈ Σ(HV ) : Im k > −a} is finite and the following expansion
holds

w(t, x) =
∑

k∈Σ(HV )
Im k>−a

e−iktwj(x) + ba(t, x),

with certain functions wj(·) ∈ L2
C,loc(R3) and the remainder term ba satisfying

∥ba(t, ·)∥W 1,2(Br) ≤ Cr,ae
−at(∥f∥W 1,2(R3) + ∥g∥L2(R3)), t > 0,

for any r > 0 with a certain constant Cr,a depending on r and a.

Lemma (elementary properties of Σ(HV )).

1) Σ(HV ) is symmetric w.r.t. iR.
2) If V ≡ 0, Σ(HV ) = ∅.

3) If k ∈ iR+ is a resonance, then k2 ∈ R− is a negative eigenvalue of HV .
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4) If V ≥ 0, then Σ(HV ) ⊂ C−.

Proof of (1) and (2). (1) follows from the properties of the resolvent. Indeed, the adjoint of
(HV − λ)−1 is

((HV − λ)−1)∗ = ((HV − λ)∗)−1 = (H∗
V − λ)−1 = (HV − λ)−1,

where λ is the complex conjugate of λ ∈ C \ R. Hence, for z ∈ C+ \ iR, RV (z) = RV (z̃),
where z̃ = −z. This property can be obviously carried over to the cut-off resolvent χRV (z)χ
first for all z ∈ C+ \ iR, and then to its meromorphic continuation Rcont(·) to C. So if k is a

pole of Rcont(·), then k̃ = −k is also a pole of Rcont(·). This gives (1).
(2) The explicit form of R0(z) = (−∆ − z2)−1 for z ∈ C+ is known from the theory of

PDE. Namely,

(R0(z)f)(x) =

∫
Gz(x− x′)f(x′)dx′, x ∈ R3,

where

Gz(x) :=
eiz|x|

4π|x|
, x ̸= 0.

Note that Gz(x) is analytic in C function in the variable z for every x ̸= 0. Applying the
cut-off procedure and continuing Rcont(·) to C, one obtains (2).

The proof of (3) requires some basic knowledge of operator theory [RSII, RSIV]. The
resolvent (H−λ)−1 of an operatorH in a Hilbert space is the operator-valued function defined
on the set ρ(H) that consists of λ ∈ C such that that H − λ is invertible and (H − λ)−1

is a bounded operator defined on the whole Hilbert space. So the function (H − ·)−1 acts
from ρ(H) to the Banach space of bounded linear operators. This operator-valued function
is analytic on ρ(H). The spectrum σ(H) is by the definition σ(H) = C \ ρ(H). If λ is
an eigenvalue of H, then λ ∈ σ(H) (generally, a point of spectrum is not necessarily an
eigenvalue of H). If H = H∗, then σ(H) ⊂ R. If V (x) ≥ c ∈ R a.e., then σ(HV ) ⊂ [c,+∞).

Assume now that (*) is valid. Then σ(HV ) ⊃ [0,+∞) and σ(HV ) ∩ R− consists of a
finite number n ∈ N ∪ {0} of isolated eigenvalues {λj}nj=1 (if V ≥ 0, then n = 0). Moreover,
each eigenvalue has finite algebraic multiplicity.

Remark. For selfadjoint operators, geometric and algebraic multiplicities of eigenvalues
coincide. For resonances, generally, this is not true. Roughly speaking, resonances are
eigenvalues of certain nonselfadjoint operators associated with HV in a special way. For a
resonance k ∈ C−, nontrivial root subspaces can appear, and then algebraic multiplicity is
greater than geometric multiplicity.

If z0 ∈ C+ is such that z20 ̸∈ {λj}nj=1, then RV (z) and Rcont(z) are analytic at z0 and
so z0 ̸∈ Σ(HV ). The spectral decomposition of (HV − λ)−1 near an isolated eigenvalue λj
implies that λj is a pole of (HV −λ)−1 and that the corresponding k ∈ iR+ is also a pole for
the cut-off resolvent. This implies the statement (3) of the lemma.

The statement (4) of the lemma follows from (3) and (2).

Definition. The set σdisc(H) of isolated eigenvalues of an operator H is called the discrete
spectrum. The essential spectrum is defined by σess(H) := σ(H) \ σdisc(H).
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Under the assumptions V ∈ L∞
R and (*),

σdisc(HV ) = {λj}nj=1, σess(HV ) = [0,+∞).

The operator H0 = (−∆) has no eigenvalues and σ(−∆) = σess(−∆) = [0,+∞).
Roughly speaking, the resonances are the poles of the resolvent continued through the

essential spectrum in the generalized way described above.

10.1.1 More delicate properties of Σ(HV ).

Theorem (Rellich’s uniqueness theorem). If k ∈ R is a resonance, then k = 0.

Remark. This result is not valid for some wider classes of potentials.

Theorem ([SZ16]). If V ̸≡ 0, then Σ(HV ) ̸= ∅.

Open Problem (see Section 2.7 in [Z17]). Prove that V ̸≡ 0 implies #Σ(HV ) = ∞.

Here #(Σ(HV ) ∩ E) is a number of resonances in the set E ⊂ C (taking their algebraic
multiplicities into account).

The set Σ(HV ) is studied mainly in terms of the counting function

NHV
(r) := #{k ∈ Σ(HV ) : |k| ≤ r}.

It is known that NHV
(r) ≤ Cr3 for certain constant C depending on V (·) (Zworski,

1991).

Conjecture (see Section 2.7 in [Z17] and the open problem above). Assume that
V ̸≡ 0 (in L∞-sense). Then NHV

(r) ≥ cr3 for a certain constant c > 0.

Except radially symmetric cases, the presently available information about the structure
of Σ(HV ) is very limited.

10.2 Resonances of point interactions and examples of asymptotic
sequences.

Let us consider, following [AGHH], Schrödinger operators Ha,Y with point interaction, which
are associated with the formal differential expression

−∆u(x) + “
N∑
j=1

µ(aj)δ(x− yj)u(x)“, x ∈ R3, N ∈ N, (PI)

where δ(·) is the Dirac δ-function. The distinct interaction centers yj ∈ R3 form the finite
family Y = {yj}Nj=1, and a = (aj)

N
j=1 ∈ CN is the tuple of ‘strength’ parameters.

The simplest way to define rigorously the operator Ha,Y is via its resolvent. Consider the
operator-valued function Ra,Y (z),

(Ra,Y (z)f)(·) =
∫
Ka,Y (·, x′)f(x′)dx′, f ∈ L2

C(R3),
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defined for z ∈ C+ \ iR+ by its integral kernel

Ka,Y (x, x
′) = Gz(x− x′) +

N∑
j,j′=1

Gz(x− yj) [Γa,Y ]
−1
j,j′ Gz(x

′ − yj′), (**)

where

• x, x′ ∈ R3 \ Y , x ̸= x′,

• Gz(x− x′) := eiz|x−x′|

4π|x−x′| is the integral kernel associated with (−∆− z2)−1,

• [Γa,Y ]
−1
j,j′ denotes the j, j

′-element of the inverse to the matrix

Γa,Y (z) =
[(
aj − iz

4π

)
δjj′ − G̃z(yj − yj′)

]N
j,j′=1

, where G̃z(x) :=

{
Gz(x), x ̸= 0

0, x = 0
.

(The notation δjj′ as usually stands for the Kronecker delta.)

Example. Let Y consist of N = 2 point interactions at y1, y2 ∈ R3. Then

Γa,Y (z) =

(
a1 − iz

4π
−Gz(y1 − y2)

−Gz(y1 − y2) a2 − iz
4π

)
.

One can write the elements [Γa,Y ]
−1
j,j′ of the inverse matrix Γ−1

a,Y explicitly as exponential
polynomials.

Theorem. Let a = (aj)
N
j=1 ∈ Rn. Then there exists a selfajoint in L2

C(R3) operator Ha,Y

such that (Ha,Y − z2)−1 = Ra,Y (z) for all z ∈ C+ \ iR+.

So the Krein-type formula (**) for the difference of the perturbed and unperturbed
resolvents of operators Ha,Y and −∆ can be used to define the operator Ha,Y with point
interactions.

Definition 2 [AH84]. The set of resonances Σ(Ha,Y ) associated with the operator Ha,Y

(in short, resonances of Ha,Y ) is by definition the set of k ∈ C such that det Γa,Y (k) = 0.

One can consider also Definition 1 for this class of the operators. It is easy to see that
these two definitions are equivalent.

Remark. The multiplicity of k is by the definition [AH84] its multiplicity as the zero of
det Γa,Y (·). This multiplicity should coincide with algebraic multiplicity of k in the sense of
[Z17], but I am not sure if this have been carefully checked by someone. Some care is usually
needed with the multiplicity of 0.

Example ([AH84], see also [AGHH]). Consider the previous example with N = 2, ℓ =
|y1 − y2| > 0, and a1 = a2 = α ∈ R. Then det Γa,Y (k) = 0 takes the form

(4πℓα− iℓk)2 − ei2ℓk = 0.

The solutions to this equation can be written with the use of zeroes of elementary (but
transcendental) functions. In particular, it can be shown that

ΣHa,Y
= {k+n }n∈N ∪ {k−n }n∈N,

where

k+n = (n− 1/2)
π

ℓ
− i

ℓ
ln((n− 1/2)π) + o(1) as n→ +∞.

To obtain asymptotics of k−n , it is enough to replace n to (−n) in the above formula.
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10.3 Asymptotic structure of the set of resonances.*

Example ([AK18]). Consider the caseN = 2, |yj−y′j| = 1 for all j ̸= j′, and a1 = a2 = a3 = 0.
Then it can be shown that

ΣHa,Y
=

3⋃
j=1

{k+j,n}+∞
n=n+

j

∪
3⋃

j=1

{k−j }+∞
n=n−

j

with certain n±
j ∈ Z, where

k+j,n = 2πn− i lnn+ π/2− i ln(2π) + o(1) as n→ +∞ for j = 1, 2

and
k+3,n = 2πn− i lnn− π/2− i ln(π) + o(1) as n→ +∞,

The asymptotics of k−j,n can be obtained by the reflection w.r.t. iR.

Remark. It is shown in [AK18] that for arbitrary Ha,Y with N ≥ 2, Σ(Ha,Y ) can be
decomposed into N1 ≤ N of sequences with asymptotics

2πµmn− iµm ln |n|+O(1) as |n| → +∞, m = 1, . . . , N1,

with certain µm > 0. These leading parameters µm are connected with the mutual placement
of the centers yj, but in quite a nontrivial way.
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11 Application to Spectral Optimization. Pareto opti-

mization of resonances.*

11.1 Resonances in layered optical cavity

For the idealized model involving a layered optical cavity and normally passing electromag-
netic waves, the Maxwell system can be reduced to the wave equation of a nonhomogeneous
string

ε(s)∂2t v(s, t) = ∂2sv(s, t), s ∈ R, (WEq)

where v is one of the normal components of the electric field and ε(·) is the spatially varying
dielectric permittivity of layers.

So, for a multilayer cavity, ε(·) is a step function that can take several values ϵ̂1, . . . , ϵ̂m >
0, corresponding to the materials available for fabrication. In a finite interval s ∈ [s−, s+], the
function ε(·) represents the nonhomogeneous structure of the resonator (‘nonhomogeneous’
means that, generally, ε(·) is not necessarily a constant on the whole interval). Outside
of this interval ε(·) equals to the constant permittivity ϵ∞ = n2∞ (where n∞ > 0 is the
corresponding refractive index) of the homogeneous outer medium

ε(s) ≡ ϵ∞ > 0 for all s ∈ R \ [s−, s+].

Mathematically, it is convenient to consider a wider class of resonators ε(·) assuming that

ε ∈ L∞(s−, s+) and ε(s) > 0 almost everywhere (a.e.).

Resonances of the cavity can be defined in several equivalent ways. One way is via poles

of the meromorphic extension of the cut-off version of the resolvent
(
− 1

ε(s)
∂2s − z2

)−1

, where

the extension is done from the upper complex half-plane C+ := {z ∈ C : Im z > 0} to the
whole plane C. In 1-dim. case, there is a simpler definition via a generalized eigenvalue
problem with the eigen-parameter entering into the boundary conditions.

Let s± be fixed, −∞ < s− < s+ < +∞.

Definition. A resonance associated with the function ε(s), s ∈ (s−, s+), is a number k ∈
C \ {0} such that the (generalized) eigenproblem

y′′(s) = −k2ε(s)y(s) for a.a. s ∈ R, (Eq)

y′(s±) = ±ikn∞ y(s±) (BC±)

has a nontrivial solution y ∈ W 2,∞
C [s−, s+] (nontrivial means that y is not identically 0 in

the L∞(R)-sense). Such a solution y is called a (resonant) mode associated with k and ε(·).
The set of all nonzero resonances of ε(·) is denoted by Σ(ε).

Remark. This definition is not completely equivalent to earlier definitions because we ex-
plicitly exclude 0 from the set of resonances Σ(ε). The reason for this is that for the particular
case of the problem (Eq)-(BC±), for any ε(·), the value of k = 0 corresponds to the nontrivial
solution y ≡ 1. This solution in the present case is not interesting for applications.
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The real part Re k and the negative (− Im k) of the imaginary part of k in the context
of the wave equation (WEq) corresponds to the (real angular) frequency of eigenoscilla-
tions e−ikty(s), the negative (− Im k) of the imaginary part to the (exponential) decay rate.
Therefore, for the pairs (k; ε(·)) s.t. k ∈ Σ(ε), we introduce the decay rate functional

Dr(k; ε) := − Im k.

The value (−2 Im k) is called the bandwidth of a resonance k.
Every (nonzero) resonance k has Im k < 0. That is, Σ(ε) ⊂ C− := {Im z < 0} and

Dr(k, ε) > 0.

11.2 Simplified statements of the problem of optimization of res-
onances

Let
Fs−,s+ := {ε(·) ∈ L∞

R (s−, s+) : n21 ≤ ε(s) ≤ n22 for a.a. s ∈ (s−, s+)},

where 0 < n1 < n2.
Recall that under the condition k ∈ Σ(ε), the decay rate functional is Dr(k; ε) = − Im k.

Simplified statement of the problem of minimization of decay rate.
Find

inf
k∈Σ(Hε)
ε∈Fs−,s+

Dr(k; ε) and argmin
k∈Σ(Hε)
ε∈Fs−,s+

Dr(k; ε) (P0)

.

Problems of such type were introduced for Schrödinger operators −∆+ V (·) by [HS86].
For layered optical cavities, the problem

argmin
k∈Σ(Hε)
ε∈Fs−,s+

Q(k; ε)

with Q(k, ε) = |Re k|
−2 Im k

was considered numerically by [KS08] with the use of steepest ascent

method. The quantity Q = |Re k|
−2 Im k

is called the quality-factor (Q-factor) associated with a
resonance k of the cavity ε(·). A problem very close to (P0) was considered numerically by
steepest ascent method in [HBKW08].

In comparison with more classical optimization problems for eigenvalues λ ∈ R of self-
adjoint opeartors, two new theoretical and numerical difficulties appear for the two resonance
optimization problems mentioned above:

(a) it is difficult to prove existence of optimizers;

(b) resonances may have algebraic multiplicity > 1, and then, they are nondifferentiable
w.r.t. ε(·) [K14] (this creates difficulties for the gradient methods and for the necessary
conditions of optimality).
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11.3 Pareto optimization of resonances

For general theory of Pareto optimization, see [BV]. Our definitions are slightly different,
but the main idea, which goes back to Vilfredo Pareto, is the same. (Vilfredo Pareto (1848–
1923) was one of the founders of Mathematical Economics).

This and the next subsections give definitions and results of [K13, K14, KLV17-1].

Problem of minimization of decay rate for particular frequencies. Let α ∈ R. Find

βmin(α) := inf
k∈Σ(ε)
Re k=α

ε∈Fs−,s+

(− Im k) and argmin
k∈Σ(ε)
Re k=α

ε∈Fs−,s+

Dr(k; ε).

The value βmin(α) is called the minimal decay rate for the frequency α. Let us denote by
dom βmin := {α ∈ R : βmin(α) < +∞} (recall that inf ∅ = +∞). The set dom βmin is called
the set of achievable frequencies.

Definition. The set
P := {α− iβmin(α) : α ∈ dom βmin},

is Pareto optimal frontier of minimal decay.

Let us define set of achievable resonances by

Σ[Fs−,s+ ] :=
⋃

ε∈Fs−,s+

Σ(ε)

Then Σ[Fs−,s+ ] ⊂ C−.
Obviously, P is a subset of the boundary ∂Σ[Fs−,s+ ] of Σ[Fs−,s+ ].

Reformulation of the problem. We want to find ε that generate resonances k lying on
the Pareto optimal frontier.

Other types of definitions of optimizers were introduced in [HS86, K14, KLV17].

Definition. An achievable resonance k0 is called the resonance of minimal decay for (the
frequency) α0 = Re k0 if k0 belongs to the Pareto frontier of minimal decay P . If k0 ∈ P ,
then ε ∈ Fs−,s+ such that k0 ∈ Σ(ε) is called the resonator of minimal decay for α0.

This approach easily removes the problem with the existence of optimizers.

Lemma (existence).

1) Σ[Fs−,s+ ] is closed.

2) For every achievable frequency α, there exists a resonance of minimal decay k = α −
iβmin(α) and an associated optimal resonator ε(·) ∈ Fs−,s+ generating k.

Proof. (1) can be obtained from weak* compactness of Fs−,s+ in the way similar to the
proof of the existence of an optimizer for Mayer’s problem (see Section 4.1 and [HS86, K13,
KLV17-1]).

(2) follows from (1) and P ⊂ ∂Σ[Fs−,s+ ] ⊂ Σ[Fs−,s+ ].
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Note that P ⊂ Σ[Fs−,s+ ] ⊂ C−, so βmin(α) > 0 for all α ∈ R.

Remark. A resonator of minimal decay for a particular frequency α is not necessarily
unique. A simple non-uniqueness example for α = 0 was constructed in [KLV17-2]. There
exists numerical evidence that non-uniqueness may happen also for α ̸= 0 [KKV18].

Consider the nonlinear equation of the bang-bang type

−y′′(s) = k2yE(y2(s)), where E(z) :=

{
ϵ2, z ∈ C+

ϵ1, z ∈ C−
. (NEq)

Theorem (an analogue of Euler-Lagrange equation, [K13, KLV17]). Let α ∈ dom βmin and
k = α− iβmin(α) be the resonance of minimal decay for α. Then:

(1) There exists a nontrivial solution y to the bang-bang boundary value problem (NEq)-
(BC±).

(2) k ∈ Σ(ε) for a certain ε ∈ Fs−,s+ if and only if there exists a nontrivial solution y to the
bang-bang boundary value problem (NEq)-(BC±) satisfying ε(·) = E(y2(s)) a.e..

The proof is based on the multi-parameter perturbation theory for resonances [K13, K14].

Remark. 1) It follows from the theorem that each resonator ε(·) of minimal decay is of
bang-bang type in the sense of Control Theory.

2) The requirement that k is a resonance of minimal decay, can be replaced by the
condition that k ∈ ∂Σ[Fs−,s+ ] \ iR.

11.4 Symmetric resonators

Most of research for 1-dim. photonic crystals have been done under the assumption that

ε(·) is symmetric w.r.t. the resonator center scentr = s−+s+
2

in the sense that ε(·−scentr) is an even function. For such symmetric ε(·), the resonant mode
y(·) is either an even, or odd function w.r.t. scentr (i.e., y(· − scentr) is even, or odd), and
therefore satisfies

either the condition y′(scentr) = 0, or the condition y(scentr) = 0.

These conditions can be treated as boundary conditions and can be used to simplify the
problem.

Shifting scentr to zero and getting s+ = −s− = d with a certain d > 0, we introduce the
family

Fsym
d = {ε ∈ F−d,d : ε(s) = ε(−s) a.e.}

and, for ε ∈ Fsym
d , introduce the set Σeven(ε) (the set Σodd(ε)) of resonances k such that the

corresponding mode y is an even (resp., odd) function. We will say that the corresponding
k is an even-mode resonance (resp., odd-mode resonance) of ε(·).

To introduce the optimization problems for odd-mode and even-mode resonances, one
can define the sets of achievable even- and odd-mode resonances

Σeven(odd)[Fsym
d ] :=

⋃
ε∈Fsym

d

Σeven(odd)(ε),
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the corresponding functions β
even(odd)
min (α), α ∈ R, and Pareto optimal frontiers

P even(odd) := {α− iβ
even(odd)
min (α) : α ∈ dom β

even(odd)
min }

of even- and odd-mode resonances of minimal decay.
The theorem about ‘Euler-Lagrange eigenproblem’ is valid for these symmetric optimiza-

tion problems if an additional condition y′(0) = 0 or y(0) = 0 is imposed.
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12 Application to Spectral Optimization. Minimum-

time control and resonators of minimal length.*

12.1 Dual problem of minimization of length of a resonator

We will formulate a dual optimization problem, where the length of resonator becomes a cost
function, and the resonance k is fixed. In some sense, the constraints and the cost functions
exchange their roles in comparison with the problem (P0) of the previous section. At the
end, we will show that under certain constraints the Pareto optimization problem can be
reduced to the dual problem of the minimization of the length.

This section follows [KKV18].
To play with the length s+ − s− of the resonator, we introduce another feasible family

that makes the length a free parameter. Some additional care is needed in the case when
ϵ∞ ∈ [ϵ1, ϵ2] because in this case the definition of the length of resonator is ambiguous.

Recall that nj = ϵ
1/2
j > 0, j = 1, 2,∞, are refractive indices corresponding to the

permittivities ϵj.
The family F of feasible (permittivity) coefficients consists, by definition, of positive

functions ε(·) ∈ L∞
R (R) such that there exists s± ∈ R satisfying s− ≤ s+ and the following

conditions:

ε(s) = n2∞ for a.a. s ∈ R \ [s−, s+],
n21 ≤ ε(s) ≤ n22 for s ∈ (s−, s+),

where n∞, n1, n2 are fixed constants satisfying 0 < n∞ and 0 < n1 < n2.

Definition. For any given ε(·) that is not equal to the constant function n2∞, we denote by
[sε−, s

ε
+] the shortest interval [s−, s+] satisfying (12.1), and by ℓ(ε) := sε+ − sε− the effective

length of the resonator defined by the coefficient ε(·). If ε(·) = n2∞ (in L∞(R)-sense), we put
sε− = sε+ = 0 and ℓ(ε) = 0.

Recall that a resonance of associated with ε(·) is a number k ∈ C such that the (gener-
alized) eigenproblem

y′′(s) = −k2ε(s)y(s) for s ∈ R, (Eq)

y′(s)

k
= ±in∞ y(s) for s = sε± (BCpm)

has a nontrivial solution y ∈ W 2,∞
loc,C(R) (nontrivial means that y is not identically 0 in the

L∞(R)-sense).

Lemma. For a nontrivial solution y(·) to (Eq), equality (BC±) is satisfied for s = sε± if and
only if it is satisfied for certain s such that ±s > ±sε±.

Proof. Consider (BC+). Then the both cases are equivalent to the statement that y(s) =
a+ exp(in∞ ks) for all s ≥ sε+ with a certain constant a+ ∈ C \ {0}.

Consider the following minimization problem

argmin
ε∈F
k∈Σ(ε)

ℓ(ε), (MinL)
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where the resonance k ∈ C− and the material parameters n∞, n1, n2 are fixed.
Without a priori knowledge if any minimizers ε(·) for the problem (MinL) exist, one can

define the corresponding minimum length

ℓmin(k) := inf
ε∈F

k∈Σ(ε)

ℓ(ε).

12.2 The minimum-time reformulation of the minimization of length.

Let k ̸= 0 be fixed. Let us interpret s as time and functions ε(·) ∈ L∞
R,loc[s−,+∞) as control

strategies (or, slightly abusing the terminology, we will say that ε(·) are controls).
The family Fs− of feasible controls is defined by

Fs− := {ε(·) ∈ L∞
R (s−,+∞) : n21 ≤ ε(s) ≤ n22 for s > s−}.

To modify the differential equation (Eq) into a control system in a state-space C2, we denote

Y0(s) = y(s), Y1(s) =
y′(s)
ik

, form a column vector Y (s) = (Y0;Y1)
⊤ ∈ C2, and write (Eq) as

Y ′(s) = ik

(
0 1
ε(s) 0

)
Y (s). (YEq)

Since this system is linear one can consider the associated dynamics on the complex
projective line, which we identify with the Riemann sphere Ĉ = C∪{∞}. From the point of
view of elementary ODEs, this is the standard reduction to the associated Riccati differential
equation.

Namely, for a nontrivial solution y(·) to (Eq), the dynamics of the function x(·) defined
by

x(s) =
y′(s)

iky(s)
if y(s) ̸= 0, x(s) = ∞ if y(s) = 0,

is described by the control system

x′(s) = f(x(s), ε(s)), with f(x, ϵ) := ik(−x2 + ϵ) (*)

and the control function ε(·).
The solution x(·) blows-up in the time-points s such that y(s) = 0. The simplest way

to describe the evolution of x near ∞ is to see that, when x evolves in the neighborhood
Ĉ \ {0} of ∞, the dynamics of

x̃(s) = −1/x(s)

satisfies

x̃′ = f̃(x̃, ε), where f̃(x̃, ϵ) := ik(−1 + ϵx̃2).

Recall that a state x(s−) of the system (*) is said to be in the time-t-controllable set
C{t}(η+, k) to a state η+ with t ≥ 0 if there exists a feasible control ε ∈ Fs− such that
x(s− + t) = η+.

For t ∈ [0,+∞], we put

C[0,t)(η+, k) :=
⋃

0≤t0<t

C{t0}(η+, k).
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A state η− is said to be controllable to η+ if it belongs to the set C[0,+∞)(η+).
A feasible control ε ∈ Fs− is said to be a minimum-time control from x(s−) to η+ if

x(s− + t) = η+ in the minimum possible time t = Tmin
k (x(s−), η+), which can be defined by

Tmin
k (x(s−), η+) := inf{t ≥ 0 : x(s−) ∈ C{t}(η+, k)}.

If η− is not controllable to η+, we put by definition Tmin
k (η−, η+) := +∞.

Definition. For (η−; η+) ∈ Ĉ2, we say that k ∈ C \ {0} is an (η−; η+)-eigenvalue of ε(·) on
an interval (s−, s+) if equation (Eq) has a nontrivial solution y satisfying the two boundary
conditions

y′(s±)

iky(s±)
= η± (which are understood as y(s±) = 0 when η± = ∞).

We denote the set of (η−; η+)-eigenvalues by Σs−,s+
η−,η+

(ε).

Now the following proposition is obvious.

Proposition. The following statements are equivalent for t > 0:

(C1) k ∈ Σs−,s+
η−,η+

(ε), where s+ = s− + t;

(C2) k ̸= 0 and the control ε(·) steers the system (*) from the initial state η− to the target
state η+ in time t.

(CY ) k ̸= 0 and ε(·) steers the system (YEq) from Y (s−) = Y [η−] to the state Y (s− + t) that
belong to the target plane T[η+], where

Y [η−] :=

{
(1; η−)

⊤, if η− ̸= ∞;
(0; 1)⊤, if η− = ∞;

and T[η+] := Y [η+]C = {aY [η+] : a ∈ C}.

In particular, the problem (MinL) is equivalent to the problem of minimum-time control of
the system (*) from (−n∞) to n∞.

Remark. Assume that s+ = −s− = d > 0. Then

Σodd(ε) = Σ−d,0
−n∞,∞(ε) = Σ0,d

∞,n∞(ε)

and
Σeven(ε) = Σ−d,0

−n∞,0(ε) = Σ0,d
0,n∞(ε)

for ε ∈ Fsym
d . One can formulate an analogue of problem (MinL) for odd-mode (even-mode)

resonances, and then reformulate them as minimum-time control problems, for example,
from (−n∞) to ∞ (resp., from (−n∞) to 0).
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12.3 The connection of dual problem with the original problem of
Pareto optimization

Let the interval [s−, s+] be again fixed.
We assume in this section that

n1 ≤ n∞ ≤ n2.

(i.e., the permittivity ϵ∞ = n2∞ of the outer medium is in the range of permittivities available
for the fabrication process).

Theorem. Assume stronger inequalities n1 < n∞ < n2. Assume that k is the resonance of
minimal decay for a frequency α = Re k. Then the family of minimum time controls for (*)
steering x(s−) = (−n∞) to n∞ coincides with the family of resonators of minimal decay for
the frequency α. In particular,

Tmin
k (−n∞, n∞) = s+ − s−.

Remark. In the cases n∞ = n1 or n∞ = n2, the reduction is “partial” in the sense that at
least some of resonators of minimal decay can be constructed from each of minimum-time
controls.

The rest of this section gives one of the main steps of the proof. of the above theorem.
Let Arg0 z is a continuous in z ∈ C \ R− branch of the multi-valued complex argument

Arg z fixed by Arg0 1 = 0.
Let us consider the problem of minimization of modulus |k| of an (η−; η+)-eigenvalue k

for a given complex argument γ = Arg0 k over the family Fs−,s+ , where the finite interval
(s−, s+) with s− < s+ and the tuple (η−; η+) are fixed.

The main tool for this reformulation is the natural scaling of the eigenproblem:

if k ∈ Σs−,s+
η−,η+

(ε) and ε̃(s) = ε(τs) for τ ∈ R+, then τk ∈ Στ−1s−,τ−1s+
η−,η+

(ε̃).

Let us introduce the set

Σs−,s+
η−,η+

[Fs− ] :=
⋃

ε∈Fs−,s+

Σs−,s+
η−,η+

(ε)

of achievable (η−; η+)-eigenvalues (over Fs−,s+).
We define the minimal modulus ρmin(γ) = ρmin(γ, η−, η+) by

ρmin(γ) := inf{|k| : k ∈ Σs−,s+
η−,η+

[Fs− ] and Arg0 k = γ}. (**)

and the set of achievable (η−; η+)-arguments by

dom ρmin := {Arg0 k : k ∈ Σs−,s+
η−,η+

(ε) for certain ε ∈ Fs−,s+}.

The function ρmin takes values in [0,+∞] and depends on γ, η±, and s+ − s−. We omit
s± and sometimes η± from the list of variables of ρmin when they are fixed.
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If kmin
γ := eiγρmin(γ) belongs to Σ

η−,η+
s−,s+

(εmin
γ ) for a certain εmin

γ (·) ∈ Fs−,s+ , i.e., if minimum
is achieved in (**), then we say that

εmin
γ (·) is a resonator of minimal modulus |k| for (the complex argument) γ.

The set P
η−,η+
mod := {eiγρmin(γ) : γ ∈ Arg0Σ

s−,s+
η−,η+

[Fs−,s+ ]} forms the Pareto optimal
frontier for the problem of minimization of the modulus |k| of an (η−; η+)-eigenvalue k over
Fs−,s+ .

The minimum-time control problem for the system (*) and the problem of finding of
resonators of minimal modulus for given γ over Fs−,s+ are equivalent in the sense of the
following theorem, which includes also a result on the existence of optimizers.

Theorem. Let η− ̸= η+, k ̸= 0, and γ = Arg0 k. Then the following statements are
equivalent:

(i) η− ∈ C[0,+∞)(η+, k), i.e., (*) is controllable from η− to η+;

(ii) there exists a minimum-time control ε(·) ∈ Fs− for (*) that steers η− to η+ in the minimal
time Tmin

k (η−, η+);

(iii) γ ∈ dom ρmin(·, η−, η+);
(iv) there exist at least one resonator εmin

γ (·) of minimal modulus for γ over Fs−,s+.
If statements (i)-(iv) hold true, then

Tmin
k (η−, η+) =

(s+ − s−)ρmin(γ, η−, η+)

|k|
. (5)

If, additionally, s± are chosen so that s+ − s− = Tmin
k (−η−, η+), then the families of

minimum-time controls ε(·) and of resonators of minimal modulus εmin
γ (·) coincide.

Proposition. Let n1 ≤ n∞ ≤ n2 and η± = ±n∞. Then

Σ[Fs−,s+ ] = {ceiγρmin(γ,−n∞, n∞) : c ∈ [1,+∞) and γ is achievable }.

(ii) The Pareto frontier P of minimal decay can be found from the Pareto frontier P−n∞,n∞
mod

of minimal modulus.

The last proposition follows from Lemma in subsection 12.1.
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