V4F1 Stochastic Analysis - Problem Sheet 8

Tutorial classes: Wed June 8th 8-10 Chunqiu Song | Wed June 8th 12-14 Min Liu. The sheet has to be handled in the lecture of Thursday June 2nd. At most in groups of two.

Exercise 1. [Pts $2+2+2+2]$ Assume that $\Omega=C\left(R_{\geqslant 0} ; \mathbb{R}^{d}\right), \mathbb{P}$ is the d-dimensional Wiener measure and that X is the canonical process on Ω and that the filtration \mathscr{F}. is generated by X. Consider a predictable \mathbb{R}^{d}-valued drift b given by a function $b: \mathbb{R} \geqslant 0 \times \Omega \rightarrow \mathbb{R}^{d}$. By tilting \mathbb{P} via $Z=\mathscr{E}\left(\int_{0} b(X) \mathrm{d} X\right)$ we obtain that, under the tilted measure \mathbb{P}^{b} the process X is a solution of the SDE

$$
\mathrm{d} X_{t}=b_{t}(X)+\mathrm{d} W_{t}, \quad t \geqslant 0
$$

where W is a \mathbb{P}^{b}-Brownian motion.
a) Prove that if

$$
\left|b_{t}(x)\right| \leqslant C\left(1+\left|x_{t}\right|\right), \quad t \geqslant 0, x \in \Omega,
$$

then Novikov's condition holds conditionally on \mathscr{F}_{s} for intervals $[s, t]$ such that $|t-s|$ is small enough, i.e.

$$
\mathbb{E}\left[\left.\exp \left(\frac{1}{2} \int_{s}^{t}\left|b_{u}(X)\right|^{2} \mathrm{~d} u\right) \right\rvert\, \mathscr{F}_{s}\right]<+\infty .
$$

b) Deduce that Z is a martingale. [Hint: prove that $\mathbb{E}\left[Z_{t} \mid \mathscr{F}_{s}\right]=Z_{s}$ for small time intervals $[s, t]$ and the conclude].
c) Prove that

$$
\mathbb{P}\left(\|X\|_{[0, t]}>r\right) \leqslant 2 d e^{-r^{2} / 2 d t} \quad t \geqslant 0, r \geqslant 0
$$

where $\|X\|_{[0, t]}$ denotes the supremum wrt. the Euclidean norm of $\left(X_{s}\right)_{s \in[0, t]}$.
[Hint: use Doob's inequality for the submartingale $e^{\lambda X_{t}^{i}}$ and optimize over $\lambda>0$]
d) Prove the same result as in (a) under the more general assumption that b is a previsible drift such that

$$
\left|b_{t}(x)\right| \leqslant C\left(1+\|x\|_{\infty,[0, t]}\right), \quad t \geqslant 0, x \in \Omega
$$

where $C<+\infty$.

Exercise 2. [Pts 2+2+2] Consider the one dimensional SDE

$$
\mathrm{d} X_{t}=-X_{t}^{3} \mathrm{~d} t+\mathrm{d} B_{t}, \quad X_{0}=x
$$

where B is a standard Brownian motion.
a) Let $f(t, x)=\left(1+|x|^{2}\right)$ and $T_{L}=\inf \left\{t \geqslant 0:\left|X_{t}\right|>L\right\}$. Use Ito formula to show that there exists a constant λ such that the process $Z_{t}:=e^{-\lambda\left(t \wedge T_{L}\right)} f\left(X_{t \wedge T_{L}}\right)$ is a supermartingale.
b) Deduce that $\mathbb{P}\left(T_{L} \leqslant t\right) \rightarrow 0$ as $L \rightarrow \infty$.
c) Conclude that solutions of the SDE cannot explode (that is $\zeta:=\sup _{L} T_{L}=\infty$ a.s.).

Exercise 3. [Pts 2+2+2] If $c(t)=(x(t), y(t))$ is a smooth curve in \mathbb{R}^{2} with $c(0)=0$,

$$
A_{t}=\int_{0}^{t}\left(x(s) y^{\prime}(s)-y(s) x^{\prime}(s)\right) \mathrm{d} s
$$

describes the area that is covered by the secant from the origin to $c(s)$ in the interval [$0, t]$. Analogously, for a two-dimensional Brownian motion $B_{t}=\left(X_{t}, Y_{t}\right)$ with $B_{0}=0$, one defines the Lévy Area

$$
A_{t}=\int_{0}^{t}\left(X_{s} \mathrm{~d} Y_{s}-Y_{s} \mathrm{~d} X_{s}\right)
$$

a) Let $\alpha(t), \beta(t)$ be C^{1}-functions, $p \in \mathbb{R}$, and

$$
V_{t}=i p A_{t}-\frac{\alpha(t)}{2}\left(X_{t}^{2}+Y_{t}^{2}\right)+\beta(t)
$$

Use Itô formula to show that $e^{V_{t}}$ is a local martingale provided $\alpha^{\prime}(t)=\alpha(t)^{2}-p^{2}$ and $\beta^{\prime}(t)=\alpha(t)$
b) Let $t_{0} \geqslant 0$. Solutions to the equations for α, β with $\alpha\left(t_{0}\right)=\beta\left(t_{0}\right)=0$ are

$$
\alpha(t)=p \tanh \left(p\left(t_{0}-t\right)\right), \quad \beta(t)=-\log \cosh \left(p\left(t_{0}-t\right)\right)
$$

Conclude that

$$
\mathbb{E}\left[e^{i p t_{t_{0}}}\right]=\left(\cosh \left(p t_{0}\right)\right)^{-1}
$$

c) Show that the distribution of A_{t} is absolutely continuous with respect to the Lebesgue measure with density

$$
f_{A_{t}}(x)=(2 t \cosh (\pi x / 2 t))^{-1}, \quad x \in \mathbb{R}
$$

