IAM

V4F1 Stochastic Analysis - Problem Sheet 6

Tutorial classes: Wed May 25th 8-10 Chunqiu Song | Wed May 25th 12-14 Min Liu. The sheet has to be handled in the lecture of Thursday May 19th. At most in groups of two.

Exercise 1. [Pts $2+2+2+2]$ (Brownian motion writes your name) Prove that a Brownian motion in \mathbb{R}^{2} will write your name (in cursive script, without dotted 'i's or crossed 't's). Let B be a two dimensional Brownian motion on $[0,1]$ and observe that $X_{t}^{(a, b)}=(b-a)^{1 / 2}\left(B_{a+(b-a) t}-B_{a}\right)$ for $t \in[0,1]$ has the same law as B. Let g : $[0,1] \rightarrow \mathbb{R}^{2}$ a smooth parametrization of your name. Let us agree that the Brownian motion $X^{(a, b)}$ spells your name (to precision $\varepsilon>0$) if

$$
\begin{equation*}
\sup _{t \in(0,1)}\left|X_{t}^{(a, b)}-g(t)\right| \leqslant \varepsilon \tag{1}
\end{equation*}
$$

a) For $k \in \mathbb{N}$ let A_{k} be the event that (1) holds for $a=2^{-k-1}$ and $b=2^{-k}$. Check that the events $\left(A_{k}\right)_{k \in \mathbb{N}}$ are independent and $\mathbb{P}\left(A_{k}\right)=\mathbb{P}\left(A_{0}\right)$ for all $k \geqslant 0$. Conclude that if $\mathbb{P}\left(A_{0}\right)>0$ then infinitely many of the $A_{k} \mathrm{~S}$ will occur almost surely.
b) Show that

$$
\begin{equation*}
\mathbb{P}\left[\sup _{t \in(0,1)}\left|B_{t}\right| \leqslant \varepsilon\right]>0 \tag{2}
\end{equation*}
$$

c) Using (2) and Girsanov's transform to show that $\mathbb{P}\left(A_{0}\right)>0$ (Hint: construct a measure \mathbb{Q} so that $B_{t}-g(t)$ is a Brownian motion)
d) Prove that a similar result holds for g only continuous.

Exercise 2. [Pts 3] Let (X, \mathbb{P}) be a solution of the martingale problem with drift b and diffusion σ. Generalise appropriately the Girsanov transform to construct a measure \mathbb{Q} under which the process X solves a martingale problem with a different drift. For simplicity, assume that all the necessary integrability conditions are satisfied. (What takes the place of the Brownian motion?)

Exercise 3. [Pts 3+3+3] Given smooth, bounded functions $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, V: \mathbb{R}^{d} \rightarrow \mathbb{R}$. Consider the operator $H(A)$ on $L^{2}\left(\mathbb{R}^{d}\right)$ given by

$$
H(A)=-\frac{1}{2}|\nabla-i A(x)|^{2}+V(x)
$$

We will assume that this operator is self-adjoint (with suitable domain), bounded from below and with discrete spectrum. We will denote $E_{0}(A)$ its smaller eigenvalue which we will assume simple (i.e. of multiplicity one). Let ψ the complex valued solution to

$$
\partial_{t} \psi(t, x)=-H(A) \psi(t, x), \quad \psi(0, x)=\psi_{0}(x)
$$

which we will assume to exist, to be once differentiable in t and twice in x and be bounded with bounded derivatives.
a) Find a suitable functions $B, C: \mathbb{R}^{d} \rightarrow \mathbb{C}$ with which we can give the following Feynman-Kac representation for ψ :

$$
\psi(t, x)=\mathbb{E}_{x}\left\{\psi_{0}\left(X_{t}\right) \exp \left[\int_{0}^{t} B\left(X_{s}\right) \mathrm{d} X_{s}+\int_{0}^{t} C\left(X_{s}\right) \mathrm{d} s\right]\right\}
$$

where under \mathbb{E}_{x} the process X is a d-dimensional Brownian motion starting at $x \in \mathbb{R}^{d}$.
b) Prove that the lowest eigenvector of H_{A} is strictly positive everywhere.
c) Use the above representation to prove the diamagnetic inequality

$$
E_{0}(A) \geqslant E_{0}(0)
$$

[Hint: take $\psi_{0}(x)=1$ and argue that $\psi(t, x) \simeq c e^{-E_{0} t} \varphi(x)+o_{t}(1)$ where $H \varphi=E_{0}(A) \varphi$ and conclude]

