

## V4F1 Stochastic Analysis – Problem Sheet 5

Tutorial classes: Wed May 18th 8–10 Chunqiu Song | Wed May 18th 12–14 Min Liu. The sheet has to be handled in the lecture of Thursday May 12th. At most in groups of two.

**Exercise 1.** [Pts 2+2+2] (**Passage time to a sloping line**) Let *X* be a one–dimensional Brownian motion with  $X_0 = 0$  and let  $a > 0, b \in \mathbb{R}$ .

a) Let  $T_L = \inf \{t \ge 0 : X_t = a + bt\}$  denote the first passage time to the line y = a + bt. Show that

$$\mathbb{P}(T_L \leqslant t) = \mathbb{E}\left[e^{-bX_t - b^2 t/2} \mathbb{I}_{T_a \leqslant t}\right],\tag{1}$$

where  $T_a = \inf \{t \ge 0: X_t = a\}$  is the first passage time to level *a*.

b) Recall that, by the reflection principle, the law of  $T_a$  is absolutely continuous with density

$$f_{T_a}(t) = a t^{-3/2} \varphi(a/\sqrt{t}) \mathbb{I}_{(0,\infty)}(t),$$

where  $\varphi$  is the standard normal density. Deduce that the law of  $T_L$  is absolutely continuous with density

$$f_{T_L}(t) = a t^{-3/2} \varphi((a+bt)/\sqrt{t}) \mathbb{I}_{(0,\infty)}(t).$$

[*Hint:* in (1) take the conditional expectation w.r.t.  $\mathscr{F}_{T_a}$ ].

c) Show that, for b > 0,

$$\mathbb{E}\left[e^{-bX_t}\max_{s\leqslant t}(X_s)\right]\simeq \frac{e^{b^2t/2}}{2b}, \text{ and } \mathbb{E}\left[e^{bX_t}\max_{s\leqslant t}(X_s)\right]\simeq b\,\mathrm{te}^{b^2t/2}, \text{ as } t\to\infty.$$

**Exercise 2.** [Pts 2+2+3] (**Brownian Bridge**) Let *X* be a *d*-dimensional Brownian motion with  $X_0 = 0$ .

a) Show that, for any  $y \in \mathbb{R}^d$ , the process

$$X_t^y = X_t - t (X_1 - y) \qquad t \in [0, 1]$$

is independent of  $X_1$ .

- b) Let  $\mu_y$  denote the law of  $X^y$  on  $C([0,1]; \mathbb{R}^d)$ . Show that  $y \mapsto \mu_y$  is a regular version of the conditional distribution of X given  $X_1 = y$ .
- c) Compute the SDE satisfied by the canonical process *Y* under the probability measure  $\mu_y$  on the space  $C([0,1]; \mathbb{R}^d)$ . (Hint: use Doob's *h*-transform argument from the lectures)

**Exercise 3.** [Pts 3] Let *M* be a positive continuous supermartingale such that  $\mathbb{E}[M_0] < \infty$ . Let  $M_{\infty} = \lim_{t \to \infty} M_t$ . Show that if  $\mathbb{E}[M_{\infty}] = \mathbb{E}[M_0]$  then *M* is a martingale and  $\mathbb{E}[M_{\infty}|\mathscr{F}_t] = M_t$ . [*Hint: prove that*  $\mathbb{E}[M_{\infty}|\mathscr{F}_t] \leq M_t$ *and that*  $\mathbb{E}[M_t] = \mathbb{E}[M_0]$  *and conclude.*]

**Exercise 4.** [Pts 4] Prove directly that the *h*-transform gives a transformation of martingale problems from the one with drift *b* and diffusion  $\sigma$  to another with same diffusion coefficient  $\sigma$  but different drift  $\tilde{b}$ .