V4F1 Stochastic Analysis - Problem Sheet 3

Tutorial classes: Wed May 4th 8-10 Chunqiu Song | Wed May 4th 12-14 Min Liu. The sheet has to be handled in the lecture of Thursday April 28th. At most in groups of two.

Exercise 1. [Pts 3] (Constant quadratic variation) Let M be a continuous local martingale and $S \leqslant T$ two stopping times. Prove that $[M]_{T}=[M]_{S}<\infty$ a.s implies $M_{t}=M_{S}$ for all $t \in[S, T]$ a.s. . [Hint: consider the continuous local martingale $\left.N_{t}=\int_{0}^{t} \mathbb{I}_{] S, T]}(s) \mathrm{d} M_{S}\right]$.

Exercise 2. [Pts 3+3](Feynman-Kac formula for Ito diffusions)

a) Consider the solution X of the SDE in \mathbb{R}^{n}

$$
\mathrm{d} X_{t}=b\left(t, X_{t}\right) \mathrm{d} t+\sigma\left(t, X_{t}\right) \mathrm{d} B_{t}, \quad X_{0}=x,
$$

where B is a d-dimensional Brownian motion and $b: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times d}$ locally bounded continuous coefficients. Let \mathscr{L} be the associated infinitesimal generator. Fix $t>0$ and assume that φ : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ and $V:[0, t] \times \mathbb{R}^{n} \rightarrow \mathbb{R} \geqslant 0$ are continuous functions. Show that any bounded $C^{1,2}$ solution u : $[0, t] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ of the equation

$$
\begin{aligned}
\frac{\partial}{\partial s} u(s, x) & =\mathscr{L} u(s, x)-V(s, x) u(s, x), \quad(s, x) \in(0, t] \times \mathbb{R}^{n} \\
u(0, x) & =\varphi(x)
\end{aligned}
$$

has the stochastic representation

$$
u(t, x)=\mathbb{E}\left[\varphi\left(X_{t}\right) \exp \left(-\int_{0}^{t} V\left(t-s, X_{s}\right) \mathrm{d} s\right)\right]
$$

In particular, there is at most only one solution of the PDE.
[Hint: show that $M_{r}=\exp \left(-\int_{0}^{r} V\left(t-s, X_{s}\right) \mathrm{d} s\right) u\left(t-r, X_{r}\right)$ is a local martingale].
b) The price of a security is modeled by a geometric Brownian motion X with parameters $\alpha, \sigma>0$:

$$
\mathrm{d} X_{t}=\alpha X_{t} \mathrm{~d} t+\sigma X_{t} \mathrm{~d} B_{t}, \quad X_{0}=x>0 .
$$

At price y we have a running cost of $V(y)$ per unit time. The total cost up to time t is then

$$
A_{t}=\int_{0}^{t} V\left(X_{s}\right) \mathrm{d} s
$$

Suppose that u is a bounded solution to the PDE

$$
\begin{aligned}
\frac{\partial}{\partial s} u(s, x) & =\mathscr{L} u(s, x)-\beta V(x) u(s, x), \quad(s, x) \in(0, t] \times \mathbb{R}_{\geqslant 0}, \\
u(0, x) & =1,
\end{aligned}
$$

where \mathscr{L} is the generator of X. Show that the Laplace transform of A_{t} is given by

$$
\mathbb{E}\left[e^{-\beta A_{t}}\right]=u(t, x) .
$$

Exercise 3. [Pts $3+3+3+2]$ (Continuous Branching Process) Consider a family of diffusions $\left(X_{t}(x)\right)_{t>0, x>0}$ satisfying the SDE

$$
\mathrm{d} X_{t}(x)=\alpha X_{t}(x) \mathrm{d} t+\sqrt{\beta X_{t}(x)} \mathrm{d} B_{t}, \quad X_{0}(x)=x
$$

where $\alpha \in \mathbb{R}, \beta \in \mathbb{R}_{>0}$. Existence of strong solutions to this equation follows from the Yamada-Watanabe theorem. Let (\tilde{X}, \tilde{B}) be an independent copy of (X, B) and let $Y_{t}(x, y)=X_{t}(x)+\tilde{X}_{t}(y)$ for $t>0, x>0, y>0$.
a) (Branching) Compute the SDE satisfied by Y and prove that $(Y(x, y))_{t \geqslant 0}$ has the same law of $\left(X_{t}(x+\right.$ $y))_{t \geqslant 0}$. [Hint: use martingale caracterization of weak solutions and pathwise uniqueness]
b) (Duality) Show that this implies that there exists a function $u: \mathbb{R}_{\geqslant 0} \times \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geqslant 0}$ such that

$$
\begin{equation*}
\mathbb{E}\left[e^{-\lambda X_{t}(x)}\right]=e^{-x u(t, \lambda)}, \quad x \in \mathbb{R}_{>0} \tag{1}
\end{equation*}
$$

if we assume that the map $x \mapsto \mathbb{E}\left[e^{-\lambda X_{t}(x)}\right]$ is continuous.
c) Assume that u : $\mathbb{R}_{\geqslant 0} \times \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geqslant 0}$ is differentiable with respect to its first parameter. Apply Ito formula to $s \mapsto G_{s}=e^{-u(t-s, \lambda) X_{s}(x)}$ and determine which differential equation u should satisfy in order for G to be a local martingale. Prove that in this case eq. (1) is satisfied (in particular, if a solution of the equation exists then it is unique).
d) (Extinction probability) Find the explicit solution u for the differential equation and using eq. (1) prove that if $\alpha=0$ then

$$
\mathbb{P}\left(X_{t}(x)=0\right)=e^{-2 x /(\beta t)}, \quad x, t>0
$$

