

V4F1 Stochastic Analysis – Problem Sheet 2

Tutorial classes: Wed April 27th 8–10 Chunqiu Song | Wed April 27th 12–14 Min Liu. The sheet has to be handled in the lecture of Thursday April 21st. At most in groups of two.

Exercise 1. [Pts 2+3+2] Let $(B_t)_{t \ge 0}$ be a one dimensional Brownian motion.

a) Define the process

$$X_t = a(t) \left(x_0 + \int_0^t b(s) \mathrm{d}B_s \right)$$

where $a, b: \mathbb{R}_+ \to \mathbb{R}$ are differentiable functions with a(0) = 1 and a(t) > 0. Compute the SDE satisfied by this process.

b) Use (a) to find an explicit solution for the SDEs in eqns.(1),(2),(3):

$$\begin{cases} dX_t = -\alpha X_t dt + \sigma dB_t & t \in [0, T] \\ X_0 = x_0 \end{cases}$$
(1)

where α , σ , T are positive constants.

$$\begin{cases} dX_t = -\frac{X_t}{1-t}dt + dB_t & t \in [0,1) \\ X_0 = 0 \end{cases}$$
(2)

$$\begin{cases} dX_t = tX_t dt + e^{t^2/2} dB_t & t \in [0, T] \\ X_0 = 1 \end{cases}$$
(3)

c) Are the solutions of the SDEs in (b) strong and pathwise unique?

Exercise 2. [Pts 2+2+2] Let $(B_t)_{t \ge 0}$ be a one dimensional Brownian motion.

- a) Given $f \in C(\mathbb{R}_+)$, prove that $X_t = \int_0^t f(s) dB_s$ is a Gaussian random variable with mean 0 and variance $\int_0^t f(u)^2 du$ for all $t \ge 0$.
- b) The Ornstein–Uhlenbeck process $(X_t)_{t \ge 0}$ is defined as the solution to the SDE

$$\begin{cases} dX_t = (-\alpha X_t + \beta)dt + \sigma dB_t & t \ge 0\\ X_0 = x_0 \end{cases}$$
(4)

where α, σ are positive constant and $\beta, x_0 \in \mathbb{R}$. Find the explicit solution to the SDE (4).

c) Prove that X_t converges in distribution as $t \to \infty$ to a Gaussian random variable with mean β / α and variance $\sigma^2/2\alpha$.

Exercise 3. [Pts 3+2+2] Let $(B_t)_{t\geq 0}$ be a 2-dimensional Brownian motion and *X* a two-dimensional stochastic process solution to the SDE

$$\begin{cases} dX_t = AX_t dt + dB_t & t \ge 0\\ X_0 = \xi \end{cases}$$
(5)

where ξ is a random variable in \mathbb{R}^2 independent of *B* and

$$A = \left(\begin{array}{cc} \alpha & 1\\ 0 & \alpha \end{array}\right)$$

with $\alpha \in \mathbb{R}$.

a) Let $\phi(t)$ be a 2 × 2 matrix that satisfies the ODE

$$\dot{\phi}(t) = A\phi(t), \qquad \phi(0) = \mathbb{I}_2$$

where \mathbb{I}_2 is the 2 × 2 identity matrix. Show that $\phi(t) = e^{At} = \sum_{n \ge 0} A^n \frac{t^n}{n!}$ and calculate $\phi(t)$ explicitly. Find $\phi(t)^{-1}$ (inverse matrix).

b) Verify that

$$X_t = \phi(t) \left(\xi + \int_0^t \phi(s)^{-1} \mathrm{d}B_s \right)$$

solves the SDE (5).

c) Calculate the explicit solution of (5).