V4F1 Stochastic Analysis - Problem Sheet 2

Tutorial classes: Wed April 27th 8-10 Chunqiu Song | Wed April 27th 12-14 Min Liu. The sheet has to be handled in the lecture of Thursday April 21st. At most in groups of two.

Exercise 1. [Pts $2+3+2]$ Let $\left(B_{t}\right)_{t \geqslant 0}$ be a one dimensional Brownian motion.
a) Define the process

$$
X_{t}=a(t)\left(x_{0}+\int_{0}^{t} b(s) \mathrm{d} B_{s}\right)
$$

where $a, b: \mathbb{R}_{+} \rightarrow \mathbb{R}$ are differentiable functions with $a(0)=1$ and $a(t)>0$. Compute the SDE satisfied by this process.
b) Use (a) to find an explicit solution for the SDEs in eqns.(1),(2),(3):

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=-\alpha X_{t} \mathrm{~d} t+\sigma \mathrm{d} B_{t} \quad t \in[0, T] \tag{1}\\
X_{0}=x_{0}
\end{array}\right.
$$

where α, σ, T are positive constants.

$$
\begin{gather*}
\begin{cases}\mathrm{d} X_{t}=-\frac{X_{t}}{1-t} \mathrm{~d} t+\mathrm{d} B_{t} \quad t \in[0,1) \\
X_{0}=0\end{cases} \tag{2}\\
\left\{\begin{array}{l}
\mathrm{d} X_{t}=t X_{t} \mathrm{~d} t+e^{t^{2} / 2} \mathrm{~d} B_{t} \quad t \in[0, T] \\
X_{0}=1
\end{array}\right. \tag{3}
\end{gather*}
$$

c) Are the solutions of the SDEs in (b) strong and pathwise unique?

Exercise 2. [Pts $2+2+2]$ Let $\left(B_{t}\right)_{t \geqslant 0}$ be a one dimensional Brownian motion.
a) Given $f \in C\left(\mathbb{R}_{+}\right)$, prove that $X_{t}=\int_{0}^{t} f(s) \mathrm{d} B_{s}$ is a Gaussian random variable with mean 0 and variance $\int_{0}^{t} f(u)^{2} \mathrm{~d} u$ for all $t \geqslant 0$.
b) The Ornstein-Uhlenbeck process $\left(X_{t}\right)_{t \geqslant 0}$ is defined as the solution to the SDE

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=\left(-\alpha X_{t}+\beta\right) \mathrm{d} t+\sigma \mathrm{d} B_{t} \quad t \geqslant 0 \tag{4}\\
X_{0}=x_{0}
\end{array}\right.
$$

where α, σ are positive constant and $\beta, x_{0} \in \mathbb{R}$. Find the explicit solution to the SDE (4).
c) Prove that X_{t} converges in distribution as $t \rightarrow \infty$ to a Gaussian random variable with mean β / α and variance $\sigma^{2} / 2 \alpha$.

Exercise 3. [Pts 3+2+2] Let $\left(B_{t}\right)_{t \geqslant 0}$ be a 2 -dimensional Brownian motion and X a two-dimensional stochastic process solution to the SDE

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=A X_{t} \mathrm{~d} t+\mathrm{d} B_{t} \quad t \geqslant 0 \tag{5}\\
X_{0}=\xi
\end{array}\right.
$$

where ξ is a random variable in \mathbb{R}^{2} independent of B and
with $\alpha \in \mathbb{R}$.

$$
A=\left(\begin{array}{ll}
\alpha & 1 \\
0 & \alpha
\end{array}\right)
$$

a) Let $\phi(t)$ be a 2×2 matrix that satisfies the ODE

$$
\dot{\phi}(t)=A \phi(t), \quad \phi(0)=\mathbb{I}_{2}
$$

where \mathbb{I}_{2} is the 2×2 identity matrix. Show that $\phi(t)=e^{A t}=\sum_{n \geqslant 0} A^{n} \frac{t^{n}}{n!}$ and calculate $\phi(t)$ explicitly. Find $\phi(t)^{-1}$ (inverse matrix).
b) Verify that

$$
X_{t}=\phi(t)\left(\xi+\int_{0}^{t} \phi(s)^{-1} \mathrm{~d} B_{s}\right)
$$

solves the SDE (5).
c) Calculate the explicit solution of (5).

