V4F1 Stochastic Analysis - Problem Sheet 10

Tutorial classes: Wed July 6th 8-10 Chunqiu Song | Wed July 6th 12-14 Min Liu. The sheet has to be handled in the lecture of Thursday June 30th. At most in groups of two.

Let $\left(\Omega:=C\left(\mathbb{R}_{\geqslant 0} ; \mathbb{R}\right), \mathscr{F}, \mathscr{F} ., \mathbb{P}\right)$ the one dimensional Wiener space and X the canonical process.

Exercise 1. [Pts $2+2+2+2+2]$ Find a predictable process F such that

$$
\Phi=\mathbb{E}[\Phi]+\int_{0}^{\infty} F_{s} \mathrm{~d} X_{s}
$$

when $\Phi \in L^{2}\left(\Omega, \mathscr{F}_{T}, \mathbb{P}\right)$ is each of the following r.v. (with $T>0$ fixed)

$$
X_{T}^{2}, \quad e^{X_{T}}, \quad \int_{0}^{T} X_{t} \mathrm{~d} t, \quad X_{T}^{3}, \quad \sin \left(X_{T}\right)
$$

(One possible approach: for any Φ try to find a martingale $\left(M_{t}\right)_{t}$ such that $M_{T}=\Phi$, and then apply Ito formula).

Exercise 2. [Pts $2+2+2]$ We want to prove that the linear span of r.v. of the form

$$
E(h)=\cos \left(\int h_{s} \mathrm{~d} X_{s}\right) \exp \left(\frac{1}{2} \int h_{s}^{2} \mathrm{~d} s\right), \quad F(h)=\sin \left(\int h_{s} \mathrm{~d} X_{s}\right) \exp \left(\frac{1}{2} \int h_{s}^{2} \mathrm{~d} s\right), \quad h \in L^{2}\left(\mathbb{R}_{\geqslant 0}\right)
$$

is dense in $L^{2}(\Omega, \mathscr{F}, \mathbb{P})$ (h is a deterministic function and the integrals are over $\mathbb{R}_{\geqslant 0}$).
a) Show that if $G \in L^{2}(\Omega, \mathscr{F}, \mathbb{P})$ is orthogonal to all $\left\{E(h), F(h): h \in L^{2}(\mathbb{R})\right\}$, then in particular

$$
\mathbb{E}\left[G \exp \left(i \lambda_{1} B_{t_{1}}+\cdots+i \lambda_{n} B_{t_{n}}\right)\right]=0
$$

for all $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ and $t_{1}, \cdots, t_{n} \geqslant 0$.
b) Deduce from this that G is orthogonal to all functions of the from $\phi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ with $\phi \in C_{0}^{\infty}$. [Hint: use Fourier transform]
c) Conclude.

Exercise 3. [Pts 4+4] Use the class of functions introduced in Exercise 2 to reprove the Brownian martingale representation theorem.
a) Determine the martingale representation for functions Φ of the from

$$
\Phi=\sum_{i}\left(a_{i} E\left(h_{i}\right)+b_{i} F\left(h_{i}\right)\right)
$$

where $a_{i}, b_{i} \in \mathbb{R}, h_{i} \in L^{2}\left(\mathbb{R}_{\geqslant 0}\right)$ and the sum is finite.
b) Use the density of such functions to approximate an arbitrary element $\Phi \in L^{2}$ and conclude.

