

V4F1 Stochastic Analysis – Problem Sheet 10

Tutorial classes: Wed July 6th 8–10 Chunqiu Song | Wed July 6th 12–14 Min Liu. The sheet has to be handled in the lecture of Thursday June 30th. At most in groups of two.

Let $(\Omega \coloneqq C(\mathbb{R}_{\geq 0}; \mathbb{R}), \mathscr{F}, \mathscr{F}_{\bullet}, \mathbb{P})$ the one dimensional Wiener space and *X* the canonical process.

Exercise 1. [Pts 2+2+2+2+2] Find a predictable process *F* such that

$$\Phi = \mathbb{E}\left[\Phi\right] + \int_0^\infty F_s \mathrm{d}X_s$$

when $\Phi \in L^2(\Omega, \mathscr{F}_T, \mathbb{P})$ is each of the following r.v. (with T > 0 fixed)

$$X_T^2$$
, e^{X_T} , $\int_0^T X_t dt$, X_T^3 , $\sin(X_T)$.

(One possible approach: for any Φ try to find a martingale $(M_t)_t$ such that $M_T = \Phi$, and then apply Ito formula).

Exercise 2. [Pts 2+2+2] We want to prove that the linear span of r.v. of the form

$$E(h) = \cos\left(\int h_s dX_s\right) \exp\left(\frac{1}{2}\int h_s^2 ds\right), \quad F(h) = \sin\left(\int h_s dX_s\right) \exp\left(\frac{1}{2}\int h_s^2 ds\right), \qquad h \in L^2(\mathbb{R}_{\geq 0}),$$

is dense in $L^2(\Omega, \mathcal{F}, \mathbb{P})$ (*h* is a deterministic function and the integrals are over $\mathbb{R}_{\geq 0}$).

a) Show that if $G \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ is orthogonal to all $\{E(h), F(h): h \in L^2(\mathbb{R})\}$, then in particular

 $\mathbb{E}\left[G\exp(i\lambda_1B_{t_1}+\cdots+i\lambda_nB_{t_n})\right]=0$

for all $\lambda_1, ..., \lambda_n \in \mathbb{R}$ and $t_1, \cdots, t_n \ge 0$.

- b) Deduce from this that *G* is orthogonal to all functions of the from $\phi(B_{t_1}, ..., B_{t_n})$ with $\phi \in C_0^{\infty}$. [Hint: use Fourier transform]
- c) Conclude.

Exercise 3. [Pts 4+4] Use the class of functions introduced in Exercise 2 to reprove the Brownian martingale representation theorem.

a) Determine the martingale representation for functions Φ of the from

$$\Phi = \sum_{i} (a_{i}E(h_{i}) + b_{i}F(h_{i}))$$

where $a_i, b_i \in \mathbb{R}$, $h_i \in L^2(\mathbb{R}_{\geq 0})$ and the sum is finite.

b) Use the density of such functions to approximate an arbitrary element $\Phi \in L^2$ and conclude.