V4F1 Stochastic Analysis - Problem Sheet 0

Version 1. Tutorial classes: Wed April 13th 8-10 Chunqiu Song | Wed April 13th 12-14 Min Liu. This sheet will be discussed during the tutorial. Nothing to handle in.

Discuss the proof of these statements.

Lemma 1. Let $\kappa: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ be a continuous non-decreasing function such that $\kappa(0)=0$ and

$$
\int_{0+} \frac{\mathrm{d} \xi}{\kappa(\xi)}=+\infty
$$

Moreover let $\phi:[0, a] \rightarrow \mathbb{R}_{+}$be a continuous function such that

$$
\phi(x) \leqslant \int_{0}^{x} \kappa(\phi(y)) \mathrm{d} y, \quad x \in[0, a] .
$$

Then $\phi(x)=0$ for all $x \in[0, a]$.

Theorem 2. (Yamada-Watanabe) Pathwise uniqueness holds for the one dimensional SDE

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} B_{t}, \quad X_{0}=x \in \mathbb{R}
$$

provided there exists a positive increasing function $\rho: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ and a positive, increasing and concave function $\kappa: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ such that

$$
|b(x)-b(y)| \leqslant \kappa(|x-y|), \quad|\sigma(x)-\sigma(y)| \leqslant \rho(|x-y|)
$$

and

$$
\int_{0+} \frac{\mathrm{d} \xi}{\kappa(\xi)}=+\infty=\int_{0+} \frac{\mathrm{d} \xi}{\rho^{2}(\xi)}
$$

(Note that this implies that path-wise uniqueness in one dimensions holds if b is Lipshitz and σ Hölder continuous of index $1 / 2$).

Lemma 3. If $\left(B_{t}\right)_{t \geqslant 0}$ is a m-dimensional Brownian motion adapted to a filtration $\left(\mathscr{F}_{t}\right)_{t \geqslant 0}$ then $B_{t}-B_{s}$ is independent of \mathscr{F}_{s}.
(Note that $\left(\mathscr{F}_{t}\right)_{t \geqslant 0}$ is not necessarily the filtration generated by $\left(B_{t}\right)_{t \geqslant 0}$, but only contains it)

Lemma 4. Let $\left(\Omega, \mathscr{F}, \mathbb{P},\left(\mathscr{F}_{t}\right)_{t \geqslant 0}, X, B\right)$ a weak solution of an $S D E$ in \mathbb{R}^{n} driven by an m-dimensional Brownian motion B. Let \mathbb{Q}_{ω} be the regular conditional distribution of (X, B) given \mathscr{F}_{0} where we consider (X, B) as a random variable in $\mathscr{C}^{n+m}=C\left(\mathbb{R}_{+}, \mathbb{R}^{n} \times \mathbb{R}^{m}\right)$. Call (Y, Z) the canonical process on \mathscr{C}^{n+m} with the understanding that Y is \mathbb{R}^{n}-valued and Z is \mathbb{R}^{m}-valued. Let $\left(\mathscr{H}_{t}\right)_{t \geqslant 0}$ be the canonical filtration on \mathscr{C}^{n+m} and $\mathscr{H}=\sigma\left(\mathscr{B}_{t}: t \geqslant 0\right)$ then for \mathbb{P}-amost all $\omega \in \Omega$ the data $\left(\mathscr{C}^{n+m}, \mathscr{H}, \mathbb{Q}_{\omega},\left(\mathscr{H}_{t}\right)_{t \geqslant 0}, Y, Z\right)$ is a weak solution to the same $S D E$.

