

V4F1 Stochastic Analysis – Problem Sheet 0

Version 1. Tutorial classes: Wed April 13th 8–10 Chunqiu Song | Wed April 13th 12–14 Min Liu. This sheet will be discussed during the tutorial. Nothing to handle in.

Discuss the proof of these statements.

Lemma 1. Let $\kappa: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ be a continuous non-decreasing function such that $\kappa(0) = 0$ and

$$\int_{0+} \frac{\mathrm{d}\xi}{\kappa(\xi)} = +\infty,$$

Moreover let ϕ : $[0, a] \rightarrow \mathbb{R}_+$ *be a continuous function such that*

$$\phi(x) \leq \int_0^x \kappa(\phi(y)) \mathrm{d} y, \qquad x \in [0,a].$$

Then $\phi(x) = 0$ for all $x \in [0, a]$.

Theorem 2. (Yamada–Watanabe) Pathwise uniqueness holds for the one dimensional SDE

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t, \qquad X_0 = x \in \mathbb{R},$$

provided there exists a positive increasing function $\rho: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ and a positive, increasing and concave function $\kappa: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ such that

$$|b(x) - b(y)| \leq \kappa (|x - y|), \qquad |\sigma(x) - \sigma(y)| \leq \rho (|x - y|),$$

and

$$\int_{0+} \frac{\mathrm{d}\xi}{\kappa(\xi)} = +\infty = \int_{0+} \frac{\mathrm{d}\xi}{\rho^2(\xi)}.$$

(Note that this implies that path-wise uniqueness in one dimensions holds if *b* is Lipshitz and σ Hölder continuous of index 1/2).

Lemma 3. If $(B_t)_{t\geq 0}$ is a m-dimensional Brownian motion adapted to a filtration $(\mathcal{F}_t)_{t\geq 0}$ then $B_t - B_s$ is independent of \mathcal{F}_s .

(Note that $(\mathscr{F}_t)_{t\geq 0}$ is not necessarily the filtration generated by $(B_t)_{t\geq 0}$, but only contains it)

Lemma 4. Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \ge 0}, X, B)$ a weak solution of an SDE in \mathbb{R}^n driven by an m-dimensional Brownian motion B. Let \mathbb{Q}_{ω} be the regular conditional distribution of (X, B) given \mathcal{F}_0 where we consider (X, B)as a random variable in $\mathcal{C}^{n+m} = C(\mathbb{R}_+, \mathbb{R}^n \times \mathbb{R}^m)$. Call (Y, Z) the canonical process on \mathcal{C}^{n+m} with the understanding that Y is \mathbb{R}^n -valued and Z is \mathbb{R}^m -valued. Let $(\mathcal{H}_t)_{t\ge 0}$ be the canonical filtration on \mathcal{C}^{n+m} and $\mathcal{H} = \sigma(\mathcal{H}_t; t \ge 0)$ then for \mathbb{P} -amost all $\omega \in \Omega$ the data $(\mathcal{C}^{n+m}, \mathcal{H}, \mathbb{Q}_{\omega}, (\mathcal{H}_t)_{t\ge 0}, Y, Z)$ is a weak solution to the same SDE.