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The martingale representation theorem
and applications

In a Brownian filtrered probability space all martingales are stochastic integrals. In this part we
will prove this theorem which is at the basis of the analysis on Wiener space and consider some
applications: the Boué–Dupuis formula and backward SDEs.
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1 Brownian martingale representation theorem

We concentrate now in the study of the probability space generated by a Brownian motion (maybe
multidimensional, taking values in ℝd). We assume in this part that (Ω,ℱ,(ℱt)t,ℙ) is the canonical
d-dimensional Wiener space, i.e. Ω=𝒞d =C(ℝ+,ℝd), Xt(𝜔)=𝜔(t), ℙ is the law of the Brownian
motion and (ℱt)t⩾0 is the right continuous ℙ-completed filtration generated by the canonical process
(Xt)t⩾0 in particular we have ℱ∞=ℱ=ℬ(Ω)ℙ. This is called a Brownian probability space.

Theorem 1. Let Φ∈L2(Ω,ℱ,ℙ), then there exists a unique predictable process F∈L𝒫
2 (ℝ+×Ω;ℝd)

such that

Φ=𝔼[Φ]+�
k=1

d

�
0

∞
Fs

(k)dXs
(k), ℙ-a.s.
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This theorem says that any mean zero L2 random variable on (Ω,ℱ,ℙ) can be written as a stochastic
integral wrt. the Brownian motion. It will have as a consequence that any martingale on (Ω,ℱ,
ℙ) is a stochastic integral wrt. to (the given) Brownian motion and therefore it has a continuous
modification. This rules out the possibility that martingales on a Brownian probability space has
jumps, “informations comes in in a continuous way”.

We will give a “Markovian” proof. In the next exercise sheet you will be asked to give a “Gaussian”
proof.

We need this technical lemma.

Lemma 2. Let p⩾1 and 𝒞⊆L∞(Ω,ℱ,ℙ) be the algebra generated by the random variables

Φ𝛼( f )≔�
0

∞
e−𝛼tf (Xt)dt

where 𝛼>0 and f ∈Cc
∞(ℝd) (smooth and compact support). Then 𝒞 is dense in Lp(Ω,ℱ,ℙ).

The interest of this algebra of functions is that it behaves nicely wrt. Markov processes. (The proof
really uses only the continuity of the trajectories of X and the fact that ℱ is the filtration generated by
X .

Proof. (of Theorem 1) If F∈𝒞 we can give an explicit martingale representation because conditional
expectations of elements in 𝒞 can be computed explicitly. Take for example Φa( f ), then we have by
the Markov property

𝔼[Φ𝛼( f )|ℱt]=𝔼��
0

∞
e−𝛼sf (Xs)ds�ℱt�=�

0

t
e−𝛼sf (Xs)ds+�

t

∞
e−𝛼s𝔼[ f (Xs)|ℱt]|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

(Ps−tf )(Xt)

ds

=�
0

t
e−𝛼sf (Xs)ds+�

t

∞
e−𝛼s(Ps−tf )(Xt)ds

=�
0

t
e−𝛼sf (Xs)ds+e−𝛼t�

0

∞
e−𝛼sPs f (Xt)ds|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

≔U𝛼( f )(Xt)

where we let U𝛼f (x)≔∫0
∞ e−𝛼tPtf (x)dx for any 𝛼>0 (the resolvent operator) and f ∈C(ℝd) and with

Pt the transition operator for the Brownian motion:

Ptf (x)=
1

(2𝜋t)d/2�ℝd
f (y)e−|x−y|2/t2dy.

Recall that a generic element of 𝒞 is a finite linear combination of monomials of the form

�
i=1

n

Φ𝛼i( fi)
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for some 𝛼1, . . . ,𝛼n>0 and f1, . . . , fn∈C0
∞(ℝd). This can be written as (where Sn is the set of permu-

tations of n elements, and t⩾0 is arbitrary)

�
i=1

n

Φ𝛼i( fi)= �
𝜎∈Sn

�
0<s1<⋅ ⋅ ⋅<sn [[[[[[[[[[[[[[�i=1

n

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]ds1⋅ ⋅ ⋅dsn

=�
𝜎∈Sn

�
0<s1<⋅ ⋅ ⋅<sn [[[[[[[[[[[[[[�i=1

n

(1si⩽t+1si>t)e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]ds1⋅ ⋅ ⋅dsn

=�
k=0

n

�
𝜎∈Sn

�
0<s1<⋅ ⋅ ⋅<sn

1sk⩽t1sk+1>t[[[[[[[[[[[[[[�i=1

n

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]ds1⋅ ⋅ ⋅dsn

=�
k=0

n

�
𝜎∈Sn

�
0<s1<⋅ ⋅ ⋅<sk<t [[[[[[[[[[[[[[[[[�i=1

k

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]]]]ds1⋅ ⋅ ⋅dsk�
t⩽sk+1<sn [[[[[[[[[[[[[[ �

i=k+1

n

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]dsk+1⋅ ⋅ ⋅dsn

=�
k=0

n

�
𝜎∈Sn

Vt
𝜎,k(X)�

t⩽sk+1<sn [[[[[[[[[[[[[[ �
i=k+1

n

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]dsk+1⋅ ⋅ ⋅dsn

where we use the convention that s0=0 and sn+1=+∞ and where we let

Vt
𝜎,k(X)=�

0<s1<⋅ ⋅ ⋅<sk<t [[[[[[[[[[[[[[[[[�i=1

k

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]]]]ds1⋅ ⋅ ⋅dsk.

A computation using the Markov property inductively gives

𝔼[[[[[[[[[[[[[[�t⩽sk+1<sn [[[[[[[[[[[[[[ �
i=k+1

n

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]dsk+1⋅ ⋅ ⋅dsn|||||||||||||||ℱt]]]]]]]]]]]]]]

=𝔼[[[[[[[[[[[[[[[[[�t⩽sk+1<sn−1 [[[[[[[[[[[[[[[[[ �
i=k+1

n−1

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]]]]e−𝛼𝜎(n)sn−1U𝛼𝜎(n)f𝜎(n)(Xsn−1)dsk+1⋅ ⋅ ⋅dsn−1|||||||||||||||||ℱt]]]]]]]]]]]]]]]]]

=e−𝛼(𝜎,k)tU𝛼(𝜎,k)( f𝜎(k+1)U𝛼(𝜎,k+1)( f𝜎(k+2)⋅ ⋅ ⋅( f𝜎(n−1)U𝛼(𝜎,n−1)( f𝜎(n)))))(Xt)

=e−𝛼(𝜎,k)tU𝛼(𝜎,k)(H𝜎,k)(Xt)

where 𝛼(𝜎,k)=𝛼𝜎(k+1)+𝛼𝜎(k+2)+ ⋅ ⋅ ⋅ +𝛼𝜎(n) and

H𝜎,k(x)≔ f𝜎(k+1)(x)U𝛼(𝜎,k+1)( f𝜎(k+2)⋅ ⋅ ⋅( f𝜎(n−1)U𝛼(𝜎,n)( f𝜎(n))))(x)= f𝜎(k+1)(x)U𝛼(𝜎,k+1)(H𝜎,k+1)(x)

H𝜎,n(x)≔ f𝜎(n)(x).

We conclude that

Mt=𝔼[[[[[[[[[[[[[[�i=1

n

Φ𝛼i( fi)|||||||||||||||ℱt]]]]]]]]]]]]]]=�
k=0

n

�
𝜎∈Sn

Vt
𝜎,k(X)e−𝛼(𝜎,k)tU𝛼(𝜎,k)(H𝜎,k)(Xt). (1)
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This formula shows that the martingale (Mt)t⩾0 is continuous in t∈ℝ since this is so for the the r.h.s.
since Vt

𝜎,k(X) is an integral and therefore continuous in t and U𝛼(𝜎,k)(H𝜎,k)(x) a smooth function
of x. Note that t↦Vt

𝜎,k(X)e−𝛼(𝜎,k)t is a bounded variation process. So the only contributions to the
martingale Mt must come from the processes t↦U𝛼(𝜎,k)(H𝜎,k)(Xt). By Ito formula we have

dU𝛼(𝜎,k)(H𝜎,k)(Xt)=∇(U𝛼(𝜎,k)(H𝜎,k))(Xt)dXt+bounded variation part

we do not care about the bounded variation part since it has to cancel with the bounded variation
part coming from t↦Vt

𝜎,k(X)e−𝛼(𝜎,k)t (maybe, as an exercise, you can check it). By equating the two
continuous local martingales on the l.h.s. and r.h.s. of eq. (1) we deduce that

Mt −M0=�
0

t
Fs ⋅ dXs

where

Fs≔�
k=0

n

�
𝜎∈Sn

Vs
𝜎,k(X)e−𝛼(𝜎,k)s∇(U𝛼(𝜎,k)(H𝜎,k))(Xs).

By taking t→∞ this shows that (by martingale convegence theorem in L2)

�
i=1

n

Φ𝛼i( fi)=𝔼[[[[[[[[[[[[[[�i=1

n

Φ𝛼i( fi)]]]]]]]]]]]]]]+�
0

∞
Fs ⋅ dXs

indeed note that by Ito isometry

(((((((((((((((𝔼[[[[[[[[[[[[[[�i=1

n

Φ𝛼i( fi)]]]]]]]]]]]]]])))))))))))))))
2

+𝔼���
0

∞
Fs ⋅ dXs�

2�=𝔼[[[[[[[[[[[[[[(((((((((((((((�i=1

n

Φ𝛼i( fi))))))))))))))))
2

]]]]]]]]]]]]]]<∞.

Any Φ∈𝒞 can be written as a stochastic integral wrt. Brownian motion plus a constant.

For general Φ∈L2(Ω,ℱ,ℙ) we can choose a sequence (Φn)n⩾1⊂𝒞 such that Φn→Φ in L2. Now let
Mt

n≔𝔼[Φn|ℱt] and Mt=𝔼[Φ|ℱt].

By the previous step we know there exists adapted functions Fn∈L𝒫
2 (ℝ+×Ω) such that

Mt
n=𝔼[Φn]+�

0

t
Fs

ndXs,

therefore by Ito isometry and n,m⩾1

𝔼[(Mt
n −Mt

m)2]=𝔼[[M n −Mm]t]=𝔼�
0

t
|Fs

n −Fs
m|ℝd

2 ds, t⩾0.

therefore

𝔼�
0

∞
|Fs

n −Fs
m|ℝd

2 ds⩽sup
t

𝔼[(Mt
n −Mt

m)2]⩽𝔼�sup
t⩾0

(Mt
n −Mt

m)2�=on,m(1)

4



By martingale convergence theorem we have that Mt
n →Mt a.s. and in L2 and by Doob's maximal

inequality this convegence is uniform in t (here we need that the filtration is right-continuous). This
implies also that (Fn)n⩾1 is a Cauchy sequence in L𝒫

2 (ℝ+×Ω) which is complete therefore there exists
a unique limit F=limnFn∈L𝒫

2 (ℝ+×Ω) and from this we get that

Mt=𝔼[Φ]+�
0

t
FsdXs.

By taking t→∞ and using L2 convergence and Mt→𝔼[Φ|ℱ∞]=Φ in L2 (because ℱ∞=ℱ) we obtain
that there exists F∈L𝒫

2 (ℝ+×Ω) such that

Φ=𝔼[Φ]+�
0

∞
FsdXs.

In general there is no easy formula for F. □

Corollary 3. All local martingales in a Brownian probability space are continuous.

Proof. Exercise. □

Applications of the martingale representation theorem

a) Mathematical finance: if you model the evolution of stock prices with the probability space
generated by a multidimensional Brownian motion X then any “contract” Φ can be expressed
as

Φ=𝔼[Φ]+�
0

∞
FsdXs

which means that we can replicate the contract by trading the underlying assets X using the
strategy given by F (if we are able to compute or approximate F). The strategy F (which is a
vector (F1, . . . ,Fd)) has to be interpreted as follows: Fk is the number of stocks of the asset k
which one has to acquire at the beginning of every “infinitesimal” trading round.

b) Study of the entropy H(ℚ|ℙ) of two measures ℙ,ℚ on the Brownian probability space with
application to the estimation of averages of functionals and to small noise large deviations of
diffusion, i.e. investigate the behaviour of the law 𝜇𝜀 of the solution of the SDE

dXt
𝜀=b(Xt

𝜀)dt+𝜀𝜎(Xt
𝜀)dWt

as 𝜀→0.

c) Backward SDEs (BSDE): this is a class of stochastic differential equations with final condition
(instead of initial condition). Let Φ be a given random variable which is ℱT measurable for
given T >0 (deterministic) the solution to a BSDE with driver f (t, y, z) is a pair (Y , Z) of
adapted processes such that

−dYt= f (t,Yt,Zt)dt+ZtdWt, t∈[0,T]

5



and YT =Φ, where (Wt)t⩾0 it is an adapted Brownian motion and t ↦ f (t, y, z) an adapted
process. This kind of equations has application in finance but also applications in the rep-
resentations of solutions to non-linear PDEs (very much like SDE can represent solutions
to certain classes of linear PDEs, e.g. via Feynman-Kac formula).

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

2 Boué–Dupuis formula
We assume that (Ω,ℱ,(ℱt)t,ℙ) is the canonical d-dimensional Wiener space, i.e. Ω=𝒞d=C(ℝ+,
ℝd), Xt(𝜔)=𝜔(t), ℙ is the law of the Brownian motion and (ℱt)t⩾0 is the right continuous ℙ-com-
pleted filtration generated by the canonical process (Xt)t⩾0 in particular we have ℱ∞=ℱ=ℬ(Ω)ℙ.
We will also use the notation 𝜇 for the Wiener measure ℙ.

In this section we are going to prove the following result.

Theorem 4. (Boué–Dupuis formula) For any function f :Ω→ℝ measurable and bounded from below
we have

log𝔼𝜇[e f]= sup
u∈ℍ

𝔼𝜇� f (X + I(u(X)))− 1
2‖u(X)‖ℍ2 �

where the supremum on the r.h.s. is taken wrt. all the predictable functions u:ℝ+×Ω→ℝ such that

‖u‖ℍ2 =�
0

∞
|us|2ds<∞, 𝜇−a.s. (2)

and we write u(𝜔)=u(X(𝜔)) to stress the measurability wrt. the filtratrion ℱ generated by X and
where

I(u)(t)=�
0

t
us(X)ds, t⩾0.

We call a function u as above, a drift (wrt. 𝜇).

Remark 5. This formula is useful because transform the problem of computing the average 𝔼𝜇[e f]
into a control problem: one has find a control u which does not cost much (the cost is measured by the
norm ‖u‖ℍ) and which allows the Brownian motion X to reach regions where f is large.

Entropy of a probability measure

We consider the measure space (Ω,ℬ(Ω)) but the following definition makes sense for any Polish
space. Denote Π(Ω) the (Polish) space of probability measures on (Ω,ℬ(Ω)) endowed with the
weak topology.

Definition 6. The relative entropy of a probability measure 𝜈 wrt. 𝜇 where 𝜇,𝜈∈Π(Ω) is defined as

H(𝜈|𝜇)= sup
𝜑∈L∞(Ω)

(𝜈(𝜑)− log𝜇(e𝜑))

6



where 𝜈( f )=∫Ω f (𝜔)𝜈(d𝜔) denotes the average of f wrt. the measure 𝜈.

Remark 7. The supremum is taken over the set L∞(Ω) of bounded measurable functions. The fol-
lowing properties are true (but we will not prove them).

a) The supremum can also be taken wrt. all the continuous bounded functions on Ω

b) The function 𝜈↦ H(𝜈|𝜇) is non-negative, convex, lower semi-continuous (wrt. the weak
topology) and moreover

H(𝜈|𝜇)=�
Ω
log d𝜈

d𝜇d𝜈

if 𝜈≪𝜇 and H(𝜈|𝜇)=+∞ otherwise. Note that H(𝜈|𝜇)=0 iff 𝜈=𝜇.

c) We have also the convex dual formula

log𝜇(e𝜑)= sup
𝜈∈Π(Ω)

[𝜈(𝜑)−H(𝜈|𝜇)]

This last formula will be important to prove the BD formula. And in general one has

𝜈(𝜑)⩽log𝜇(e𝜑)+H(𝜈|𝜇)

for any 𝜑∈L∞(Ω) and 𝜈,𝜇∈Π(Ω).

We need to prove several lemmas before being ready to prove the BD formula. In the following 𝜇
will stand always for the Wiener measure and all drifts will be taken wrt. the Wiener measure (i.e.
‖u‖ℍ<∞ 𝜇-a.s.).

Lemma 8. Let u be a drift and let 𝜈 be the law of the process Y =X + I(u(X)) under 𝜇. Then

H(𝜈|𝜇)⩽ 1
2𝔼𝜇[‖u(X)‖ℍ2 ].

Proof. Assume for the moment that ‖u‖ℍ is almost surely bounded by a finite deterministic number
K <∞. By Novikov's criterion we can define the probability measure 𝜌∈Π(Ω) with density

d𝜌
d𝜇 =ℰ�−�

0

⋅
us(X)dXs�

∞
=exp�−�

0

∞
us(X)dXs −

1
2�0

∞
|us|2ds�

with respect to 𝜇. By Girsanov's theorem the process Y =X + I(u(X)) is a Brownian motion under 𝜌,
that is it has law 𝜇. This means that for any measurable bounded function f ∈L∞(Ω) we have

𝔼𝜈[ f (X)]=𝔼𝜇[ f (Y)]=𝔼𝜇[ f (X + I(u(X)))]

𝔼𝜇[ f (X)]=𝔼𝜌[ f (X + I(u(X)))]

7



Now, using the definition of the relative entropy H(𝜈|𝜇) we have (by the above equalities)

H(𝜈|𝜇)= sup
𝜑∈L∞(Ω)

(𝜈(𝜑)− log𝜇(e𝜑))= sup
𝜑∈L∞(Ω)

(𝔼𝜈[𝜑(X)]− log𝔼𝜇[e𝜑(X)])

= sup
𝜑∈L∞(Ω)(((((((((((((((𝔼𝜇[[[[[[[[[[[[𝜑(X + I(u(X)))||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

𝜓(X) ]]]]]]]]]]]]− log𝔼𝜌[[[[[[[[[[[[e𝜑(X+I(u(X)))||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
e𝜓(X) ]]]]]]]]]]]])))))))))))))))

⩽ sup
𝜓∈L∞(Ω)

(𝔼𝜇[𝜓(X)]− log𝔼𝜌[e𝜓(X)])=H(𝜇|𝜌)=�
Ω
logd𝜇d𝜌d𝜇=−𝔼𝜇�log

d𝜌
d𝜇�

=𝔼𝜇��
0

∞
us(X)dXs+

1
2�0

∞
|us|2ds�=𝔼𝜇�

1
2�0

∞
|us|2ds�

since under 𝜇 X is a Brownian motion and Mt =∫0
t us(X)dXs a square integrable martingale up to

t=+∞. This proves the formula for ‖u‖ℍ bounded. In general case one has to use stopping times 𝜏n

and approximate drifts us
n=1𝜏n⩽sus stopped as soon as ∫0

𝜏n |us|2ds=n and then taking limits as n→∞.
Moreover one has to consider also the possibility that 𝔼𝜇[‖u(X)‖ℍ2 ]=+∞. In order to pass to the limit
one uses the lower semicontinuity of the entropy, i.e. if 𝜈n→𝜈 weakly then H(𝜈|𝜇)⩽liminfnH(𝜈n|𝜇).
Details are left to reader. (They are not necessary for the exam). □

Lemma 9. Let 𝜈 be a probability measure which is absolutely continuous wrt. 𝜇 with density Z such
that Z ∈𝒞 (defined last week) and Z ⩾𝛿 for some 𝛿>0. Let us call 𝒮𝜇⊆Π(Ω) the set of all such
measures. Then under 𝜈∈𝒮𝜇 the canonical process X is a strong solution of the SDE

dXt=ut(X)dt+dWt, t⩾0

where W is a 𝜈-Brownian motion and u a drift such that

‖ut(x)−ut(y)‖⩽L‖x−y‖C([0,t];ℝd) x,y∈Ω (3)

for some finite constant L. Moreover

H(𝜈|𝜇)= 1
2𝔼𝜈‖u(X)‖ℍ2 .

Proof. Define the adapted process Zt(X)≔𝔼[Z |ℱt] by the martingale representation theorem we have
that

Zt(X)=1+�
0

t
Fs(X)dXs, t⩾0

where since Z ∈𝒞 we can compute explicitly both Zt(x) and Ft(x) as functions of x∈Ω, respectively
as linear combinations of random variables of the form

�
k=0

n

�
𝜎∈Sn

Vt
𝜎,k(x)e−𝛼(𝜎,k)tU𝛼(𝜎,k)(H𝜎,k)(xt), �

k=0

n

�
𝜎∈Sn

Vt
𝜎,k(x)e−𝛼(𝜎,k)t∇U𝛼(𝜎,k)(H𝜎,k)(xt) (4)

where the important point is that the functions Vt
𝜎,k(x) are smooth functionals of x∈Ω (a sequence of

iterated integrals in time of nice smooth functions of values of the path x at various times) and where
U𝛼(𝜎,k)(H𝜎,k) are smooth functions on ℝd.
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Moreover we also have Zt(X)⩾𝜀 since Z ⩾𝜀 and conditional expectation preserves this inequality.
We will assume that is also true that Zt(x)⩾𝜀 for all x∈Ω. So it is not difficult to prove that if we let

ut(x)≔
Ft(x)
Zt(x)

, x∈Ω

then it satisfies the Lipshitz bound (3) and moreover

Zt(X)=1+�
0

t
Zs(X)us(X)dXs,

which implies that

Z =ℰ��
0

⋅
us(X)dXs�∞

.

So by Girsanov's theorem, under the measure d𝜈 = Zd𝜇 the process W = X − I(u) is a Brownian
motion, namely X satisfies the SDE

dXt=ut(X)dt+dWt, t⩾0.

Given the Lipschitz bound on u, this SDE has a pathwise unique solution which is strong by the
Yamada-Watanabe theorem. We denote by X =Φ(W) the strong solution, where Φ:Ω→Ω is the
solution map which is adapted. Finally,

H(𝜈|𝜇)=𝔼𝜈�log
d𝜈
d𝜇�=𝔼𝜈��

0

∞
us(X)dXs −

1
2�0

∞
|us(X)|2ds�

=𝔼𝜈��0

∞
us(X)dWs+

1
2�0

∞
|us(X)|2ds�=𝔼𝜈�

1
2�0

∞
|us(X)|2ds�.

The fact that the drift satisfies 1
2∫0

∞ |us(X)|2ds⩽K for some K is left as exercise (this needs to use the
exponential decay in time of the contributions of the form (4). □

Recall that

log𝜇[e f]=sup
𝜈

[𝜈( f )−H(𝜈|𝜇)]

Lemma 10. Let f :Ω→ℝ which is measurable and bounded from below. Assume 𝜇(e f)<∞. For
every 𝜀>0 there exists 𝜈∈𝒮𝜇 such that

log𝜇[e f]⩽𝜈( f )−H(𝜈|𝜇)+𝜀.

If 𝜇(e f)=+∞ then there exist a sequence (𝜈n)⊆𝒮𝜇 such that

+∞=log𝜇[e f]=sup
n

(𝜈n( f )−H(𝜈n|𝜇)).

Proof. We start by assuming that log𝜇[e f]<∞. By monotone convergence it is enough to consider
only bounded functions f and moreover such that 𝜇[e f]=1. Indeed if f is bounded below I can intro-
duce fn =( f ∧n) which is now a bounded function for any n and if we prove the claim for bounded
functions then we have that for any n and 𝜀>0 we have

log𝜇[e fn]⩽𝜈n( fn)−H(𝜈n|𝜇)+𝜀/2

9



for some 𝜈n. But then we observe that fn⩽ f so

log𝜇[e fn]⩽𝜈n( f )−H(𝜈n|𝜇)+𝜀/2.

Moreover by monotone convergence we have log𝜇[e fn]→ log𝜇[e f]. Then there exist n finite such
that log𝜇[e f]⩽ log𝜇[e fn]+𝜀/2 and in this case we are done since

log𝜇[e f]⩽ log𝜇[e fn]+𝜀/2⩽𝜈n( f )−H(𝜈n|𝜇)+𝜀.

Note also that

log𝜇[e f −c]−𝜈( f −c)=log𝜇[e f]−𝜈( f )

so this shows that we can take c such that log𝜇[e f −c]=0, namely we can assume that f is such that
𝜇[e f]=1. Let F=e f and let 𝜈 be a probability measures on Ω. Note that

|x−1|+ 1
2 |x−1|2

x log(x)

x log(x)⩽ |x−1|+ 1
2|x−1|2, x⩾0,

and using this we get

Η(𝜈|𝜇)−𝜈( f )=�
Ω
�log� d𝜈d𝜇(𝜔)�− f (𝜔)�𝜈(d𝜔)

=�
Ω
�log�d𝜈d𝜇(𝜔)�− logF(𝜔)�𝜈(d𝜔)=�

Ω
�log� 1

F(𝜔)
d𝜈
d𝜇(𝜔)��𝜈(d𝜔)

=�
Ω
�log� 1

F(𝜔)
d𝜈
d𝜇(𝜔)��� 1

F(𝜔)
d𝜈
d𝜇(𝜔)�F(𝜔)𝜇(d𝜔)

=�
Ω
�log�G(𝜔)

F(𝜔) ���
G(𝜔)
F(𝜔)�F(𝜔)𝜇(d𝜔)

where G= d𝜈
d𝜇 ∈𝒞 since 𝜈∈𝒮𝜇. Using the inequality above we get

Η(𝜈|𝜇)−𝜈( f )⩽�
Ω
��GF −1�+ 1

2�
G
F −1�

2
�F(𝜔)𝜇(d𝜔)⩽‖F −G‖L1(𝜇)+Cf ‖F −G‖L2(𝜇)

2
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where the constant Cf depends only on the lower bound on f . Moreover ‖F −G‖L1(𝜇)⩽ ‖F −G‖L2(𝜇).
This proves that Η(𝜈|𝜇)−𝜈( f ) can be made as small as we want since 𝒞 is dense in L2(𝜇) and we
can always find G∈𝒞 such that G⩾𝛿 and ‖e f −G‖L2(𝜇)⩽𝜀.

If log𝜇[e f]=+∞ the above argument allows to conclude the existence of the claimed sequence by
using fn as lower bound of f . □

Now we are going to complete the proof of the Theorem 4

Proof of Theorem 4. We are going to prove that we have ⩽ with an arbitrarily small loss 𝜀 and then
that we have also the reverse inequality. Recall that we proved that if u is a drift and 𝜈 is the law of
X + I(u) then we have

H(𝜈|𝜇)⩽ 1
2𝔼𝜇[‖u(X)‖ℍ2 ]

then using this measure 𝜈 in the variational characterisation of log𝔼𝜇[e f] we have

log𝔼𝜇[e f]=sup
𝜌

(𝜌( f )−H(𝜌|𝜇))⩾𝜈( f )−H(𝜈|𝜇)

⩾𝜈( f )− 1
2𝔼𝜇[‖u(X)‖ℍ2 ]=𝔼𝜇� f (X + I(u(X)))− 1

2‖u‖ℍ
2 �

so we have one of the bounds because we can now optimize over all drifts u. In order to prove the
reverse inequality we use the Lemma 10. Assume that log𝔼𝜇[e f] <∞. For any 𝜀>0 there exists
𝜈∈𝒮𝜇 satisfying

log𝔼𝜇[e f]−𝜀⩽𝜈( f )−H(𝜈|𝜇)

Now recall by Lemma 9 under 𝜈 the canonical process satisfies the SDE dX = z(X)dt + dW for a
“nice” drift z (which is Lipshitz) and a process W which is a Brownian motion under 𝜈. This SDE has
a unique strong solution, so we can write X =Φ(W) with some adapted functional Φ. Therefore we
concolude that

X =W + I(z(X))=W + I(u(W))

where we let u(x)= z(Φ(x)) for all x∈Ω. With this new expression we have that

𝜈( f )=𝔼𝜈( f (X))=𝔼𝜈( f (W + I(z(X))))=𝔼𝜈( f (W + I(u(W))))=𝔼𝜇( f (X + I(u(X))))

since Law𝜈(W)=Law𝜇(X). Moreover we have also (for similar reasons)

H(𝜈|𝜇)= 1
2𝔼𝜈‖z(X)‖ℍ2 = 1

2𝔼𝜈‖z(Φ(W))‖ℍ2 = 1
2𝔼𝜈‖u(W)‖ℍ2 = 1

2𝔼𝜇‖u(X)‖ℍ2 .
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Therefore putting pieces together we have

log𝔼𝜇[e f]−𝜀⩽𝜈( f )−H(𝜈|𝜇)=𝔼𝜇( f (X + I(u(X))))− 1
2𝔼𝜇‖u(X)‖ℍ2 .

So, for any 𝜀>0 we have found a particular drift u such that

log𝔼𝜇[e f]⩽𝔼𝜇( f (X + I(u(X))))− 1
2𝔼𝜇‖u(X)‖ℍ2 +𝜀.

While if log𝔼𝜇[e f]=+∞ then by the same lemma one has that there exists a sequence of drifts (un)n⩾1

such that

+∞=log𝔼𝜇[e f]=sup
n

�𝔼𝜇( f (X + I(un(X))))− 1
2𝔼𝜇‖un(X)‖ℍ2 �.

In both casesn putting together the two inequalities we conclude that

log𝔼𝜇[e f]=sup
u

�𝔼𝜇( f (X + I(u(X))))− 1
2𝔼𝜇‖u(X)‖ℍ2 �

which is our claim. □

Applications to functional analysis

This formula and similar formulas can be used (amazingly) to prove functional inequalities for finite
dimensional measures, see for example

• Lehec, Joseph. “Representation Formula for the Entropy and Functional Inequalities.” Annales
de l'Institut Henri Poincaré Probabilités et Statistiques 49, no. 3 (2013): 885–899.

• Lehec, Joseph. . “Short Probabilistic Proof of the Brascamp-Lieb and Barthe
Theorems.” Canadian Mathematical Bulletin 57, no. 3 (September 1, 2014): 585–97.
https://doi.org/10.4153/CMB-2013-040-x.

• Borell, Christer. “Diffusion Equations and Geometric Inequalities.” Potential Analysis.
An International Journal Devoted to the Interactions between Potential Theory,
Probability Theory, Geometry and Functional Analysis 12, no. 1 (2000): 49–71.
https://doi.org/10.1023/A:1008641618547.

• Handel, Ramon van. “The Borell–Ehrhard Game.” Probability Theory and Related Fields
170, no. 3–4 (April 2018): 555–85. https://doi.org/10.1007/s00440-017-0762-4.

• Hariya, Yuu, and Sou Watanabe. “The Bouè–Dupuis Formula and the Exponential Hyper-
contractivity in the Gaussian Space.” ArXiv:2110.14852 [Math], November 3, 2021.
http://arxiv.org/abs/2110.14852.
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We will not look into these, but they are very interesting.

3 Applications to probabilitistic problems

Gaussian bounds on functional of Brownian motion.

Theorem 11. Let (E,d) a metric space and f :Ω→E such that there an e∈E for which

d( f (x+ I(h)),e)⩽ c(x)(g(x)+‖h‖ℍ), h∈ℍ,

for 𝜇-almost every x∈Ω where 𝜇(cg)<∞ and 𝜇(c2)<∞. Then for all 𝜆>0 we have

𝔼𝜇[e𝜆d( f (X),e)]⩽ e𝜆2𝜇(c2)+𝜆𝜇(cg).

In particular the r.v. d( f (X),e) has Gaussian tails, i.e.

ℙ𝜇(d( f (X),e)>k)≲C1e−C2k2

for some C1,C2>0.

Remark 12. Note that if we let y=x+ I(h) then y(t)=x(t)+∫0
t h(s)ds. Note that the natural norm on

y is given by the sup norm, i.e.

‖y‖C([0,1],ℝd)= sup
t∈[0,1]

�x(t)+�
0

t
h(s)ds�

but on the r.h.s. of the inequality you have to control the L2 norm of h which corresponds to the H1

norm of I(h), i.e.

‖h‖ℍ=‖I(h)‖Ḣ 1(ℝ+,ℝd)=� ddt I(h)�L2(ℝ+,ℝd)
.

This is coherent with the fact that increments of Brownian motion are independent so formally the
Wiener measure can be understood as given by

𝜇(d𝜔)∝exp�−1
2�0

∞
|�̇�(s)|2ds�D𝜔.

Proof. By Boué–Dupuis formula and the hypothesis on f

log𝔼𝜇[e𝜆d( f (X),e)]=sup
u

𝔼𝜇�𝜆d( f (X + I(u)),e)− 1
2‖u‖ℍ

2 �

⩽sup
u

𝔼𝜇�𝜆c(X)(g(X)+‖u‖ℍ)− 1
2‖u‖ℍ

2 �
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We observe now that the polynomial 𝜆c(X)(g(X)+ t)− 1
2 t2 is upperbounded by

𝜆c(X)g(X)+𝜆c(X)t − 1
2 t2⩽𝜆c(X)g(X)+ 1

2𝜆
2c(X)2− 1

2(t −𝜆c(X))2|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
⩾0

⩽𝜆c(X)g(X)+ 1
2𝜆

2c(X)2

therefore

log𝔼𝜇[e𝜆d( f (X),e)]⩽sup
u

𝔼𝜇�𝜆c(X)g(X)+ 1
2𝜆

2c(X)2�=𝔼𝜇�𝜆c(X)g(X)+ 1
2𝜆

2c(X)2�

=𝜆𝜇(cg)+ 1
2𝜆

2𝜇(c2).

□

Exercise 1. Take

f (x)= sup
t,s∈[0,1]

|x(t)−x(s)|
|t − s|𝛼

and prove that is satisfies the hypothesis of the previous theorem. Conclude that

𝔼𝜇[[[[[[[[[[[[exp((((((((((((𝜆 sup
t,s∈[0,1]

|X(t)−X(s)|
|t − s|𝛼 ))))))))))))]]]]]]]]]]]]⩽ eC1𝜆2+C2𝜆

for any 𝛼∈(0,1/2) any 𝜆>0. From this you can also conclude that

𝔼𝜇[[[[[[[[[[[[exp((((((((((((𝜌(((((((((((( sup
t,s∈[0,1]

|X(t)−X(s)|
|t − s|𝛼 ))))))))))))

2

))))))))))))]]]]]]]]]]]]<∞

for some 𝜌>0 small.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

4 Large deviations of diffusion
The goal will be now to understand what happens when we have a family of SDEs in ℝd of the form

dXt
𝜀=b(Xt

𝜀)dt+𝜀1/2𝜎(Xt
𝜀)dBt, X 𝜀=x0∈ℝd

with 𝜀 a small parameter and B a d-dimensional BM. Let's assume the coefficient b:ℝd →ℝd, 𝜎:
ℝd →ℒ(ℝd,ℝd) are nice (bounded and Lipshitz) so that we have a strong solution. We would like
to understand how the law 𝜇𝜀 of X 𝜀 looks like as 𝜀→0.

Is not difficult to prove that (𝜇𝜀)𝜀 converges in law (as probability measures on 𝒞d=C(ℝ+;ℝd) with
its Borel 𝜎-field) to the Dirac mass 𝜇0 concentrated on the solution x0 of the ODE

Ẋt
0=b(Xt

0), X0
0=x0.
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(for example proving that 𝔼[supt∈[0,T ] |Xt
𝜀−Xt

0|2 ]→0 and conclude from this).

In large deviations theory one is concerned with the speed with which 𝜇𝜀→𝜇0, namely one would
like to quantify this convergence and usually it will happen that this convergence is exponential, in
the sense that

ℙ(X 𝜀∈A)≈e−r(𝜀)C(A)

where r(𝜀)→∞ as 𝜀→0 nd it is usually something like 𝜀−𝛼 and C(A) is a constant which depends
only on the particular set A.

For example we could ask A𝛾,T ,𝛿={𝜔∈𝒞d: supt∈[0,T ] |𝜔(t)−𝛾(t)| <𝛿} for given 𝛾∈𝒞d, 𝛿>0 and
T >0. In this case if supt∈[0,T ] |𝜔(t)−X 0(t)|>𝛿 then X 0∈A𝛾,T ,𝛿 and 𝜇𝜀(A𝛾,T ,𝛿)→0. We are going to
prove that what will happen is that

𝜀log𝜇𝜀(A𝛾,T ,𝛿)=𝜀logℙ(X 𝜀∈ A𝛾,T ,𝛿)≈− inf
x∈A𝛾,T ,𝛿

I(x)

where I is a function which is only depending on b,𝜎 and on the original problem and is called a rate
function. They are called large deviations because they happen on an exponential scale. Otherwise
stated we have an explitic asymptotic formula for the probability which looks like

𝜇𝜀(B)≈e− 1
𝜀 infx∈BI(x)

Large Deviation Theory is concerned in general in the study of such large fluctuations in a variety of
contextes (deviations from the law of large numbers, deviations from the ergodic behaviour, devi-
ations from small noise behaviour like in this case, deviations from the large sample behaviour in
statistics).

In order to properly speak about large deviations for the SDEs above we need some standard defini-
tions from large deviation theory.

Definition 13. A function I:ℰ→[0,+∞] is called a (good) rate function on a Polish space ℰ if the
sets I−1[0,M]={x∈ℰ: I(x)⩽M}⊂ℰ are compact for all M <+∞.

In particular, a rate function is always lower semicontinuous.

Definition 14. Let I be a rate function on a Polish space ℰ and (Y 𝜀)𝜀>0 a family of random variables
with values in ℰ. The this family satisfies the Laplace principle on ℰ with rate function I (and rate
1/𝜀) if for any function h∈Cb(ℰ) (bounded and continuous) we have

lim
𝜀→0

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]= inf
x∈ℰ

[I(x)+h(x)]. (5)
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A Laplace principle is telling us that the law 𝜇𝜀 of Y 𝜀 is behaving like e−I(x)/𝜀, in the sense that

𝔼[e−h(Y 𝜀)/𝜀]=� e−h(x)/𝜀𝜇𝜀(dx)≈� e−h(x)/𝜀e−I(x)/𝜀dx=� e−(h(x)+I(x))/𝜀dx=e− 1
𝜀 infx∈ℰ[I(x)+h(x)](1+o(1)).

Definition 15. A family (Y 𝜀)𝜀>0 satisfies the Large Deviation principle on ℰ with rate function I (and
rate 1/𝜀) if for any open set A∈ℰ and closed set B∈ℰ we have

liminf
𝜀→0

𝜀logℙ(Y 𝜀∈ A)⩾− inf
x∈A

I(x),

limsup
𝜀→0

𝜀logℙ(Y 𝜀∈B)⩽− inf
x∈B

I(x).

Remark 16. Recall that if 𝜇𝜀→𝜇 weakly, then the Portmanteau theorem asserts that for any open set
A and closed set B you have

liminf
𝜀→0

𝜇𝜀(A)⩾𝜇(A), limsup
𝜀→0

𝜇𝜀(B)⩽𝜇(B)

while if f ∈Cb(ℰ) the of course

lim
𝜀→0

� f (x)𝜇𝜀(dx)=� f (x)𝜇(dx).

There are very strong similarities between weak convergence and large deviations.

Theorem 17. The Laplace principle is equivalent to the Large Deviation principle.

Proof. Exercise. □

Now we are going to use the Boué–Dupuis formula to prove large deviations for a large class of
problems which in particular include the small noise diffusion problem introduced above.

Let (Y 𝜀)𝜀>0 a family of random variables defined on a Wiener space (Ω,ℱ,𝕎,X) with 𝕎 the Wiener
measure and taking values in ℰ which are obtained from X using a family of mappings 𝒢𝜀:Ω→ℰ
i.e. Y 𝜀=𝒢𝜀(X).

Let 𝕌M ⊆ L2(ℝ⩾0; ℝd) the subset of elements u ∈ L2(ℝ⩾0; ℝd) such that ‖u‖ℍ ⩽ M and let 𝒰M ⊆
L𝒫

2 (ℝ⩾0×Ω;ℝd) the subset of drifts u∈L𝒫
2 (ℝ⩾0×Ω;ℝd) such that ‖u‖ℍ⩽M holds 𝜇-almost surely,

i.e. u(⋅,𝜔)∈𝕌M for 𝜇 almost every 𝜔∈Ω.

Note that 𝕌M is a compact Polish space with respect to the weak topology of L2(ℝ⩾0;ℝd) (by Banach-
Alaoglu theorem).

We define J(u)(t)≔∫0
t u(s)ds for any u∈ℍ=L2(ℝ⩾0;ℝd) and then J:L2(ℝ⩾0;ℝd)→C(ℝ⩾0;ℝd)=

Ω.
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We will make the following assumptions on the family (𝒢𝜀)𝜀>0.

Hypothesis 18. There exists a measurable mapping 𝒢0:Ω→ℰ such that the following holds

a) for every M <∞ and any family (u𝜀)𝜀⊆𝒰M such that (u𝜀)𝜀 converges in law (as a random
element of 𝕌M, and with the weak topology of L2(ℝ⩾0;ℝd)) to u we have that

𝒢𝜀(X +𝜀−1/2J(u𝜀))→𝒢0(J(u))

in law as random variables (on (Ω,ℱ,𝕎)) with values in ℰ (of course as 𝜀→0).

b) for every M <∞ the set ΓM ≔{𝒢0(J(u)):u∈𝕌M} is a compact subset of ℰ.

For each x∈ℰ we define

I(x)≔ 1
2 inf

u∈Γ(x)
‖u‖ℍ2 (6)

where the infimum is take over the set Γ(x)⊆ℍ=L2(ℝ⩾0;ℝd) such that x=𝒢0(J(u)) and is taken to
be +∞ if this set is empty.

Lemma 19. Under the Hypothesis 18 the function I is a rate function.

Proof. (exercise) □

Theorem 20. Under the Hypothesis 18 the family (Y 𝜀=𝒢𝜀(X))𝜀>0 satisfies the Laplace principle
with rate function I as defined in (6) and speed 1/𝜀.

Proof. We need to show that

lim
𝜀→0

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]= inf
x∈ℰ

[I(x)+h(x)]

holds for any h∈Cb(ℰ).

Lower bound. By Boué–Dupuis formula we have

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]=−𝜀log𝔼[e−h(𝒢𝜀(X))/𝜀]=inf
u

𝔼�h(𝒢𝜀(X +J(u)))+ 1
2‖𝜀

1/2u‖ℍ2 �

By renaming u→𝜀−1/2u we have

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]= inf
u

𝔼�h(𝒢𝜀(X +𝜀−1/2J(u)))+ 1
2‖u‖ℍ

2 �.
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Fix 𝛿>0. Then for any 𝜀>0 there exists an approximate minimiser u𝜀 such that

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]⩾𝔼�h(𝒢𝜀(X +𝜀−1/2J(u𝜀)))+ 1
2‖u

𝜀‖ℍ2 �−𝛿.

This implies in particular that

𝔼�12‖u
𝜀‖ℍ2 �⩽𝛿−𝜀log𝔼[e−h(Y 𝜀)/𝜀]+‖h‖Cb(ℰ)⩽𝛿+2‖h‖Cb(ℰ)<∞,

and this bound is independent of 𝜀.

Moreover taking N large enough we can replace u𝜀 by the stopped process ut
𝜀,N =ut

𝜀1t⩽𝜏𝜀,N with

𝜏𝜀,N ≔inf{t⩾0: ‖u𝜀1[0,t]‖ℍ⩾N}.

In this case ut
𝜀,N ∈𝒰N and morever we have that

ℙ(u𝜀≠u𝜀,N)⩽ℙ(‖u𝜀‖ℍ>N)⩽ 𝔼[‖u𝜀‖ℍ2 ]
N 2 ⩽ 2𝛿+4‖h‖Cb(ℰ)

N 2

uniformly in 𝜀. This implies that we can choose N uniformly in 𝜀 so that

|𝔼[h(𝒢𝜀(X +𝜀−1/2J(u𝜀)))]−𝔼[h(𝒢𝜀(X +𝜀−1/2J(u𝜀,N)))]|

⩽𝔼|h(𝒢𝜀(X +𝜀−1/2J(u𝜀)))−h(𝒢𝜀(X +𝜀−1/2J(u𝜀,N)))|

⩽2‖h‖Cb(ℰ)ℙ(u𝜀≠u𝜀,N)=2‖h‖Cb(ℰ)
2𝛿+4‖h‖Cb(ℰ)

N 2 ⩽𝛿.

Of course we have also 𝔼� 1
2‖u

𝜀‖ℍ2 �⩾𝔼� 1
2‖u

𝜀,N‖ℍ2 � therefore we conclude that

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]⩾𝔼�h(𝒢𝜀(X +𝜀−1/2J(u𝜀,N)))+ 1
2‖u

𝜀,N‖ℍ2 �−2𝛿.

Now, we have ‖u𝜀,N‖ℍ⩽N by construction almost surely and for any 𝜀>0. Therefore from any subse-
quence of (u𝜀,N)𝜀 we can extract a weakly converging subsequence (u𝜀n,N)n and let u∈𝒰N be its limit.
Using Hypothesis 18 we have that 𝒢𝜀(X +𝜀n

−1/2J(u𝜀n,N)) converges in law to 𝒢0(J(u)) and moreover
by Fatou liminfn→∞𝔼[‖u𝜀n,N‖ℍ2 ]⩾𝔼[‖u‖ℍ2 ] therefore (we use that h is a continuous function)

liminf
n→∞

𝔼�h(𝒢𝜀n(X +𝜀n
−1/2J(u𝜀n,N)))+ 1

2‖u
𝜀n,N‖ℍ2 �⩾𝔼�h(𝒢0(J(u)))+ 1

2‖u‖ℍ
2 �

⩾ inf
v∈ℍ

𝔼�h(𝒢0(J(v)))+ 1
2‖v‖ℍ

2 �

=inf
x∈ℰ

inf
v∈Γ(x)

𝔼�h(x)+ 1
2‖v‖ℍ

2 �= inf
x∈ℰ

�h(x)+ inf
v∈Γ(x)

𝔼�12‖v‖ℍ
2 �||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

I(x)

�= inf
x∈ℰ

[I(x)+h(x)].
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From this we conclude that

liminf
𝜀→0

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]⩾ liminf
𝜀→0

𝔼�h(𝒢𝜀(X +𝜀−1/2J(u𝜀,N)))+ 1
2‖u

𝜀,N‖ℍ2 �−2𝛿

⩾inf
x∈ℰ

[I(x)+h(x)]−2𝛿

because from any sequence we can extract a subsequence for which the bound works. This establish
the lower bound since now 𝛿 is arbitrary and can be taken to zero.

Upper bound. By Boué–Dupuis formula for any v∈ℍ (deterministic) we have

limsup
𝜀→0

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]= limsup
𝜀→0

inf
u

𝔼�h(𝒢𝜀(X +𝜀−1/2J(u)))+ 1
2‖u‖ℍ

2 �

⩽limsup
𝜀→0

𝔼�h(𝒢𝜀(X +𝜀−1/2J(v)))+ 1
2‖v‖ℍ

2 �

=�limsup
𝜀→0

𝔼[h(𝒢𝜀(X +𝜀−1/2J(v)))]�+1
2‖v‖ℍ

2

By Hypothesis 𝒢𝜀(X +𝜀−1/2J(v))→𝒢0(J(v)) ≔x0 in law, and v∈Γ(x0), therefore by optimizing over
𝜈 we have

limsup
𝜀→0

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]⩽ inf
v∈ℍ

�h(𝒢0(J(v)))+ 1
2‖v‖ℍ

2 �

=inf
x∈ℰ

inf
v∈Γ(x)

�h(𝒢0(J(v)))+ 1
2‖v‖ℍ

2 �= inf
x∈ℰ

[I(x)+h(x)]

so we proved the claim. □

Example 21. We can take ℰ=Ω and Y 𝜀=𝒢𝜀(X)=𝜀1/2X . In this case note that we have the following
convergence in law

𝒢𝜀(X +𝜀−1/2J(u𝜀))=𝜀1/2X +J(u𝜀)→J(u)

therefore we can take 𝒢0(x) = x and check that we fullfill Hypothesis 18. The theorem gives as a
consequence that the family (𝜀1/2X)𝜀 satisfies the Laplace principle with rate function

I(x)= inf
v∈Γ(x)

1
2‖v‖ℍ

2 = inf
v∈ℍ:x=J(v)

1
2‖v‖ℍ

2 = 1
2�0

∞
|ẋ(s)|2ds

if x∈H1(ℝ⩾0;ℝd) (Sobolev space of functions with L2 derivative) and I(x)=+∞ otherwise. This
follows from the fact that x= J(v) means really that x(t)=∫0

t v(s)ds for some v∈L2. In the formula
ẋ(s)=v(s) denotes the derivative of x.

And as consequence it satisfies also the Large Deviation principle with the same rate function. This
is called Schilder's theorem.
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Theorem 22. (Schilder's theorem) Let X be a Brownian motion, then (𝜀1/2X)𝜀 satisfies the large
deviation principle on Ω with rate 1/𝜀 and rate function given by

I(x)={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
1
2∫0

∞ |ẋ(s)|2ds if x∈H1,
+∞ otherwise.

Example 23. This means in particular that if L→∞, by Schilder's theorem (using 𝜀1/2=1/L)

logℙ� sup
t∈[0,T ]

Xt⩾L�=logℙ� sup
t∈[0,T ]

L−1Xt⩾1�=logℙ(L−1X ∈A)≈−L2 inf
x∈A

I(x)

where A = {𝜔∈Ω: supt∈[0,T ]𝜔(t) ⩾ 1} is a closed set. (here ≈ means appropriate upper and lower
bounds for the closed set A and its interior).

1

T

Now the minimizer of the variational problem

inf
x∈A

I(x)

is easily seen to be (see image left) x∗(t) = (1∧ (t/
T)) which gives

I(x∗)= 1
2�

1
T�

2
T = 1

2T .

So we conclude that LD gives us the estimate

logℙ� sup
t∈[0,T ]

Xt⩾L�≈− L2

2T

Exercise: let f (t) be an arbitrary increasing function, try to estimate with Schilder's theorem for L→
∞ the probability

ℙ�sup
t⩾0

Xt −Lf (t)⩾0�

for example when f (t)=1+ t2.

Let's now apply our large deviation statement to small noise diffusions. Let ℰ=Ω. Assume Y 𝜀=
𝒢𝜀(X) is the strong solution to the SDE

dYt
𝜀=b(Yt

𝜀)dt+𝜀1/2dXt, t⩾0
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for a Lipshitz drift b:ℝd →ℝd and a given initial condition Y0
𝜀= y0∈ℝd. We have to identify 𝒢0.

Recall that 𝒢0 is defined by having the property that we have the weak convergence

𝒢𝜀(X +𝜀−1/2J(u𝜀))→𝒢0(J(u))

as soon as u𝜀→u (in law, see above for precise conditions). Call Zt
𝜀=𝒢𝜀(X +𝜀−1/2J(u𝜀)). Note that

𝒢𝜀(X)(t)=Yt
𝜀=y0+�

0

t
b(Ys

𝜀)ds+𝜀1/2Xt, t⩾0

so we can take 𝒢𝜀:Ω→ℰ to be the unique mapping solving the integral equation

𝒢𝜀(x)=y0+�
0

t
b(𝒢𝜀(x)(s))ds+𝜀1/2x(t).

Therefore

Zt
𝜀=𝒢𝜀(X +𝜀−1/2J(u𝜀))=y0+�

0

t
b�𝒢𝜀(X +𝜀−1/2J(u𝜀))(s)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

Zs
𝜀

�ds+𝜀1/2(X(t)+𝜀−1/2J(u𝜀)(t))

=y0+�
0

t
b(Zs

𝜀)ds+𝜀1/2X(t)+J(u𝜀)(t)

so (Zt
𝜀)t⩾0 is the solution to the SDE wih an additional drift term given by J(u𝜀)(t). One can then

easily prove that (Z 𝜀)𝜀 converges in ℰ to the solution Z 0 of

Zt
0=y0+�

0

t
b(Zs

0)ds+J(u)(t)

Therefore we define 𝒢0:Ω→ℰ to be the unique solution to

𝒢0(x)(t)=y0+�
0

t
b(𝒢0(x)(s))ds+x(t)

in such a way that Zt
0=𝒢0(J(u))(t) and the Hypothesis 18 can be then easily check. We conclude

that the family of solutions (Y 𝜀)𝜀 satisfies the Large Deviation principle with rate function

I(x)= inf
v∈Γ(x)

1
2‖v‖ℍ

2

with v∈Γ(x) iff x=𝒢0(J(u)), that is x has to be the solution to the ODE

x(t)=y0+�
0

t
b(x(s))ds+J(v)(t)

meaning that

ẋ(t)=b(x(t))+v(t)
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and as a consequence there is at most one v such that v∈Γ(x) and in this case

I(x)= 1
2‖v‖ℍ

2 = 1
2�0

∞
|v(s)|2ds= 1

2�0

∞
|ẋ(s)−b(x(s))|2ds

otherwise I(x)=+∞. This is the rate function for small noise diffusion.

In the general case of a nondegenerate diffusion coefficients

dYt
𝜀=b(Yt

𝜀)dt+𝜀1/2𝜎(Yt
𝜀)dXt, t⩾0

one can prove that the LD rate function is in the form

I(x)= 1
2�0

∞
|𝜎(x(s))−1(ẋ(s)−b(x(s)))|2ds.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

5 Backward SDEs and non-linear PDEs

This section is based on the works:

• N. Perkowski “Backward Stochastic Differential Equations: an Introduction” (lecture notes)
(URL)

• N. El Karoui, S. Hamadène, and A. Matoussi. Backward stochastic differential equations and
ap- plications, volume 27, pages 267–320. Springer, 2008. (URL)

• N. El Karoui, S. Peng, and M. C. Quenez. “Backward Stochastic Differential Equations in
Finance.” Mathematical Finance 7, no. 1 (January 1997): 1–71. https://doi.org/10.1111/1467-
9965.00022.

Backward SDEs are a different kind of SDEs which have numerous applications:

− Feynman–Kac like representation formulas for non-linear PDEs

− Stochastic optimal control (BSDEs give representation formula for the optimal control)

− Pricing of a large class of options in mathematical finance
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Let's start by reminding the classical Feynman–Kac formula. Consider the first order differential oper-
ator

ℒf (t,x)=�
i=1

d

b i(t,x)∇if (t,x)+ �
i, j=1

d

ai, j(t,x) ⋅∇i∇ jf (t,x)

where f ∈C1,2(ℝ+×ℝd;ℝ) and b:ℝ+×ℝd→ℝd, a:ℝ+×ℝd→ℝd×d and b,a are sufficiently regular
and a= 1

2𝜎𝜎T for some 𝜎:ℝ+×ℝd→ℝd×d. We know that the solution of the linear initial value PDE
problem

∂tu(t,x)=ℒu(t,x)+ f (x)u(t,x)
u(0,x)=𝜑(x) x∈ℝd, t⩾0

is given (under appropriate condition) by the Feynman–Kac representation formula (we give the for-
mula for b,𝜎 not depending on time)

u(t,x)=𝔼�𝜑(Xt
x)exp��

0

t
f (Xs

x)ds��, t⩾0,x∈ℝd,

where (Xt
x)t⩾0 is the solution of the SDE

dXt
x=b(Xt

x)dt+𝜎(Xt
x)dWt

with initial condition X0
x=x∈ℝd and W is a d-dimensional Brownian motion. For this is enough that

u∈C1,2.

What about non-linear PDEs? There are various ways to represent them using stochastic processes.
Mainly it depends on the kind of PDE we are dealing with, in particular on the form of the non-
linearity. We consider here a special kind, of the form

∂tu(t,x)+ℒu(t,x)+ f (t,x,u(t,x),∇u(t,x))=0 (7)

where ∇=Dx is the derivative with respect to the space variable (i.e. the gradient). We would like to
have a representation formula like the one above. Assume we write Ys=u(s,Xs

t,x) for s⩾ t where u is
a solution of the equation and X t,x is the diffusion process associated to ℒ which is at x∈ℝd at time
t. What is the dynamics of Y? By Ito formula we have (assume again that b,𝜎 do not depends on time)

dYs=(∂s+ℒ)u(s,Xs
t,x)ds+𝜎(X t,x)∇u(s,Xs

t,x)dWs

by using the PDE (7) we have

dYs=− f (t,Xs
t,x,u(t,Xs

t,x),∇u(t,Xs
t,x))ds+𝜎(X t,x)∇u(s,Xs

t,x)dWs

Therefore if we consider a slightly less general PDE of the form

∂tu(t,x)+ℒu(t,x)+ f (t,x,u(t,x),𝜎(x)∇u(t,x))=0 (8)
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It is clear that if 𝜎 is invertible then this PDE if equivalent to a PDE of the form (7), indeed we have

f (t,x,u(t,x),∇u(t,x))= f̃ (t,x,u(t,x),𝜎(x)∇u(t,x))

with f̃ (t,x,y, z)= f (t,x,y,𝜎(x)−1z). But in this case we have a nicer dynamics for Y :

dYs=− f (t,Xs
t,x,Ys,Zs)ds+ZsdWs, (9)

with Zs=𝜎(X t,x)∇u(t,Xs
t,x). We are actually going to consider the pair of adapted processes Y ,Z as

a pair of unknown in this equation. This is the first novelty (not so much, because we arleady seen
something similar for reflected equations). The interest of this formulation of the dynamics of (Y ,Z)
is that it does not depends anymore on the knowledge of u but recall that Ys=u(s,Xs

t,x).

Exercise 2. Think about the theory we are going to develop below for the equations of the kind

dYs=− f (t,Xs
t,x,Ys,Zs)ds+𝜎(X t,x)ZsdWs,

in this case one would have Zs=∇u(t,Xs
t,x) with the original formulation (7) of the PDE.

This equation cannot be solved forward in time, indeed even when f =0, in this case we have

dYs=ZsdWs,

and is clear that this equation has many solutions (just choose Z and then compute Y by giving its
initial value). However if we consider it backwards in time, things start to be interesting: i.e. assume
we give a final condition YT =𝜉 where 𝜉 is some ℱT-measurable random variable, then the adapted
process (Yt)t⩾0 has to satisfy

𝜉=YT =Yt+�
t

T
ZsdWs

that is

𝜉=Y0+�
0

T
ZsdWs (10)

and therefore for all t∈[0,T]

Yt=𝜉−�
t

T
ZsdWs=Y0+�

0

t
ZsdWs

with Y0 ∈̂ℱ0, let's assume that this is the trivial 𝜎-field. Then Y0=𝔼[𝜉] and moreover if we are on
Brownian filtration (i.e. the probability space is generated by the Brownian motion W ) and 𝜉∈L2,
we deduce that there must exists a predictable process Z ∈L𝒫

2 (ℝ+×Ω;ℝ) such that (10) is statisfied.
This by the martingale representation theorem. That the solution is unique is clear since if (Y ′,Z ′) is
another solution with the same final condition then we have

0=�
0

T
ZsdWs −�

0

T
Zs′dWs
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but this is only possible if Z =Z ′ which one shows by computing the expectation of the square of this
quantity.

5.1 Solution theory for BSDEs

In the following we consider BSDEs of the general form

−dYs= f (t,𝜔,Ys,Zs)ds −ZsdWs, YT =𝜉 (11)

where (Ω,ℱ,ℙ) is the canonical d-dimensional Wiener space, 𝜉∈L2(Ω,ℱT ,ℙ;ℝn)=L2(ℱT;ℝn)
(i.e. 𝜉 takes values in ℝn and is ℱT measurable) and Y ,Z are adapted processes taking values respec-
tively in ℝn and ℝn×d ≈L(ℝd,ℝn). Morever f :ℝ+×Ω×ℝn ×ℝn×d →ℝn (called the generator or
driver) is an adapted process, i.e. (y, z)↦ f (t,𝜔,y, z) is measurable wrt. ℱt. Standard conditions are
that

f (⋅, ⋅, 0, 0)∈L𝒫
2 ([0,T]×Ω;ℝn)

and there exists a constant L such that (Lipshitz condition)

| f (t,𝜔,y1, z1)− f (t,𝜔,y2, z2)|⩽L(|y1−y2|+ |z1−z2|), y1,y2∈ℝn, z1, z2∈ℝn×d

for almost every (t,𝜔).

Let us note that solutions to BSDEs are by definition only strong (because the given filtration is that
of the driving Brownian motion).

Let us introduce the notations

LT
2(V)≔L𝒫

2 ([0,T]×Ω;V).

Note that L2 in the theory of BSDEs plays a particular role because at the core of the solution theory
there is the martingale representation theorem.

Note that our driver is quite general and in applications (below) to PDEs one will take

f (t,𝜔,y, z)= f̃ (t,X t0,x(𝜔),y, z)

for example.

Theorem 24. Under these conditions the BSDE (14) has a unique solution (Y ,Z)∈LT
2(ℝn)×LT

2(ℝn×d).

Proof. The idea is to proceed via a fixpoint argument. We consider the map Φ: (Y ,Z) ∈LT
2(ℝn) ×

LT
2(ℝn×d)↦(Y ′,Z ′)∈LT

2(ℝn)×LT
2(ℝn×d) defined as follows. Fixed (Y ,Z)∈LT

2(ℝn)×LT
2(ℝn×d) we

let (Y ′,Z ′) be the unique solution to the equation

−dYs′= f (t,𝜔,Ys,Zs)ds−Zs′dWs, YT′=𝜉 (12)
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Note that the solution of this equation is explicitly given by the Brownian martingale representation
theorem (MRT). Indeed we need to solve the integral equation

Yt′=𝜉−�
t

T
dYs′=𝜉+�

t

T
f (t,𝜔,Ys,Zs)ds −�

t

T
Zs′dWs,

but we have

Y0′=𝜉+�
0

T
f (t,𝜔,Ys,Zs)ds −�

0

T
Zs′dWs,

so Z ′ is determined by the MRT applied to the L2 random variable 𝜉+∫0
T f (t,𝜔,Ys,Zs)ds and

Y0′=𝔼�𝜉+�
0

T
f (t,𝜔,Ys,Zs)ds�.

As consequence

𝔼�𝜉+�
0

T
f (t,𝜔,Ys,Zs)ds�ℱt�=Y0′+�

0

t
Zs′dWs=Y0′+�

0

T
Zs′dWs −�

t

T
Zs′dWs

=𝜉+�
t

T
f (t,𝜔,Ys,Zs)ds−�

t

T
Zs′dWs|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=Yt′

+�
0

t
f (t,𝜔,Ys,Zs)ds

so we concldue that we have

Yt′=𝔼�𝜉+�
0

T
f (s,𝜔,Ys,Zs)ds�ℱt�−�

0

t
f (t,𝜔,Ys,Zs)ds

which gives an explicit formula for Yt′. Note that there is no formula for Z ′ (it is implicitly determined
by the MRT). This procedure defines the map Φ.

One has to prove that Φ is a contraction. In order to do this is convenient to use appropriate equivalent
norms on LT

2(ℝn)×LT
2(ℝn×d) and we replace the LT

2 norm by the norm

‖ f ‖LT ,𝛽
2

2 ≔𝔼�
0

t
e𝛽s| f (s)|2ds

for some 𝛽⩾0. And then one can show that Φ is a contraction on LT ,𝛽
2 (ℝn) ×LT ,𝛽

2 (ℝn×d) for suffi-
ciently large 𝛽. The idea is to take (Y 1,Z 1), (Y 2,Z 2)∈LT ,𝛽

2 (ℝn)×LT ,𝛽
2 (ℝn×d) and let (Ỹ 1, Z̃ 1)=Φ(Y 1,

Z 1), (Ỹ 2, Z̃ 2)=Φ(Ỹ 2, Z̃ 2) then one uses the Ito formula on the process t↦e𝛽t|Ỹt
1− Ỹt

2|2 to get

e𝛽t|Ỹt
1− Ỹt

2|2+�
t

T
e𝛽s|Z̃s

1− Z̃s
2|2ds+𝛽�

t

T
e𝛽s|Ỹs

1− Ỹs
2|2ds

=MT −Mt+2�
t

T
e𝛽s⟨Ỹs

1− Ỹs
2, f (s,𝜔,Ys

1,Zs
1)− f (s,𝜔,Ys

2,Zs
2)⟩ds
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where M is uniformly integrable martingale. From this and with some trivial estimates one gets the
contrction property, that is for sufficienlty large 𝛽 one has

‖Φ(Y 1,Z 1)−Φ(Y 2,Z 2)‖LT ,𝛽
2 (ℝn)×LT ,𝛽

2 (ℝn×d)⩽C𝛽‖(Y 1,Z 1)−(Y 2,Z 2)‖LT ,𝛽
2 (ℝn)×LT ,𝛽

2 (ℝn×d)

for some C𝛽∈(0,1). Uniqueness is also an easy consequence of the contraction property of the map
Φ. □

5.2 Representation formula for non-linear PDEs

Recall the notation

ℒtf (t,x)=�
i=1

d

b i(t,x)∇if (t,x)+ �
i, j=1

d

ai, j(t,x) ⋅∇i∇ jf (t,x), t⩾0,x∈ℝd,

where f ∈C1,2(ℝ+×ℝd;ℝ) and b:ℝ+×ℝd→ℝd, a:ℝ+×ℝd→ℝd×d and b,a are sufficiently regular
and a= 1

2𝜎𝜎T for some 𝜎:ℝ+×ℝd→ℝd×d. We argued that if (Xs
t,x)s⩾t is the solution to

dXs
t,x=b(s,Xs

t,x)ds+𝜎(s,Xs
t,x)dWs, s⩾ t, (13)

with

Xt
t,x=x∈ℝd

and if we let Ys=u(s,Xs
t,x), Zs=𝜎(X t,x)∇u(t,Xs

t,x) for s⩾ t the the pair (Y ,Z) satisfies the BSDE (9).

This was our motivation to look into the solution theory of a more general class of BSDEs of the form

−dYs= f (s,𝜔,Ys,Zs)ds −ZsdWs, YT =𝜉 (14)

where (Ω,ℱ,ℙ) is the canonical d-dimensional Wiener space, 𝜉∈L2(Ω,ℱT ,ℙ;ℝn)=L2(ℱT;ℝn)
(i.e. 𝜉 takes values in ℝn and is ℱT measurable) and Y ,Z are adapted processes taking values respec-
tively in ℝn and ℝn×d ≈L(ℝd,ℝn). Morever f :ℝ+×Ω×ℝn ×ℝn×d →ℝn (called the generator or
driver) is an adapted process, i.e. (y, z)↦ f (t,𝜔,y, z) is measurable wrt. ℱt. Standard conditions are
that

f (⋅, ⋅, 0, 0)∈L𝒫
2 ([0,T]×Ω;ℝn) (15)

and there exists a constant L such that (Lipshitz condition)

| f (t,𝜔,y1, z1)− f (t,𝜔,y2, z2)|⩽L(|y1−y2|+ |z1−z2|), y1,y2∈ℝn, z1, z2∈ℝn×d

for almost every (t,𝜔).
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We proved a theorem guarateeing that under these conditions the BSDE (14) has a unique solution

(Y ,Z)∈LT
2(ℝn)×LT

2(ℝn×d).

We let now (Xs
t,x)s⩾0 solving the (forward) SDE

dXs
t,x=b(s,Xs

t,x)ds+𝜎(s,Xs
t,x)dWs, s⩾ t, (16)

for s⩾ t and such that Xs
t,x=x for s⩽ t. For given

f :ℝ+×ℝd×ℝn×ℝn×d→ℝn

and

Ψ:ℝd→ℝn,

let (Ys
t,x,Zs

t,x)s∈[0,T ] the solution of the BSDE (s∈[0,T])

−dYs
t,x= f (s,Xs

t,x,Ys
t,x,Zs

t,x)ds−Zs
t,xdWs, YT =Ψ(XT

t,x) (17)

This system of a forward SDE and a BSDE is called a (decoupled) forward-backward-SDE (FBSDE),
is decoupled because the forward process (Xs

t,x)s does not depends on (Y t,x,Z t,x) (otherwise is called
fully-coupled).

We will assume that 𝜎,b are Lipshitz and of linear growth, that f depends in a Lipschitz way on Y ,Z
(like in the general theory of the previous lecture) and moreover we have that

| f (t,x, 0, 0)|+ |Ψ(x)|⩽C(1+ |x|p),

for some p⩾1/2. In this case the generator f (t,X t,x(𝜔),y, z) satisfies the condition (15) and the final
condition Ψ(XT

t,x) is in L2 because from the general theory of SDEs we can prove that solutions to (16)
satisfy

sup
s∈[0,T ]

𝔼[|Xs
t,x|2p]⩽K(1+ |x|2p)

for some K >0. This can be proven easily from a combination of BDG inequality (remember these
are the Lp for the stochastic integral) and Grownwall's lemma, via the integral formulation of the SDE
exploiting the linear growth of the coefficients b,𝜎.

From these assumptions it follows that the data of the BSDE satisfy the standard assumptions (those
we introduced the last lecture) and therefore by the Theorem we proved it has a unique solution (Ys

t,x,
Zs

t,x)s∈[0,T ].

Observe also that the process (Xs
t,x)s∈[0,T ] is a Markov process (exercise, it follows from the unique-

ness of solutions to the SDE) and one has for all t⩽u

Xs
t,Xt

u,x
=Xs

t,x, u⩽ s
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almost surely.

We want to prove now that we can express Ys
t,x,Zs

t,x as deterministic functions of Xs
t,x. Namely that

there exists two functions u,v such that Ys
t,x=u(s,Xs

t,x) and Zs
t,x=𝜎(s,Xs

t,x)v(s,Xs
t,x).

Introduce (ℱt,s)s⩾t to be the completed right-continuous filtration generated by (Wu − Wt)u⩾t, i.e. the
future filtration of W after time t.

Proposition 25. The solution (Ys
t,x,Zs

t,x)s∈[0,T ] is (ℱt,s)s∈[t,T ] adapted. In particular ℱt,s is ℱt,t mea-
sureable and therefore deterministic and (Ys

t,x)s∈[0,t] is also deterministic.

Proof. Consider the new Brownian motion W̃s=Wt+s−Wt and let ℱ̃ its complected right-contrinuous
filtration. Let (X ′,Y ′,Z ′) be the solution to the FBSDE:

dXs′=b(t+ s,Xs′)ds+𝜎(t+ s,Xs′)dWs′, s⩾0, X0′=x,

−dYs′= f (t+ s,Xs′,Ys′,Zs′)ds−Zs′dWs, s⩾0, YT −t′ =Ψ(XT −t′ ).

By the general theory this FBSDE has a unique solution and then it is clear that Xs′=Xt+s
t,x for s∈[0,

T − t] and similarly (Ys′,Zs′)=(Yt+s
t,x,Zt+s

t,x ) for s∈[0,T − t]. However X ′,Y ′,Z ′ are adapted to (ℱ̃s)s⩾0

which means that (Xt+s
t,x ,Yt+s

t,x,Zt+s
t,x )s⩾0 is adapted to (ℱ̃s)s⩾0 and therefore (Xs

t,x,Ys
t,x,Zs

t,x)s∈[t,T ] is adapted
to (ℱt,s)s∈[s,T ] and therefore (Xt

t,x,Yt
t,x,Zt

t,x) is deterministic.

When t′⩽ t to see that (Yt′
t,x,Zt′

t,x) is deterministic one can just take W̃s=Wt′+s−Wt′ and repeat the above
argument by replacing there t with t′. Indeed the crucial remark is that Xt′

t,x=x for any t′⩽ t. □

Proposition 26. There exists two deterministic measurable functions u,v such that Ys
t,x=u(s,Xs

t,x) and
Zs

t,x=𝜎(s,Xs
t,x)v(s,Xs

t,x)

Proof. By induction, as follows. Assume first f does not depends on y, z. Then in this case

Ys
t,x=𝔼��

s

T
f (r,Xr

t,x)dr +Ψ(XT
t,x)�ℱs�=𝔼��

s

T
f (r,Xr

t,x)dr +Ψ(XT
t,x)�Xs

t,x�=u(s,Xs
t,x)

because (Xs
t,x)s⩾0 is a Markov process and we can use the Markov property in the 2nd equality and the

3rd equality is just the statement that there exists a measurable function which represents the condi-
tional expectation wrt. 𝜎(Xs

t,x). Similarly one can show that Zs
t,x=𝜎(s,Xs

t,x)v(s,Xs
t,x). (See Perkowski).

In the general case we introduce an iterative procedure. Define Y (0) = Z (0) = 0 then define (Y (k+1),
Z (k+1)) and the solution of the BSDE with driver f (r,Xr

t,x, Y (k),Z (k)). We know from the proof of
existence and uniqueness that there exists only one fixed point for this iteration and therefore (Y (k),
Z (k))→(Y t,x,Z t,x) (if you want this is the Picard iteration to construct the solution to the BSDE). From
this we deduce that there exists functions uk,vk such that Ys

(k)=uk(s,Xs
t,x) and Zs

(k)=𝜎(s,Xs
t,x)vk(s,Xs

t,x),
and the is not difficult to pass to the limit by letting ui(s,x)≔ limsupk→∞ (uk(s, x))i (componentwise)
and then ui(s,Xs

t,x)= limk→∞Ys
(k)=Ys

t,x by convergence of the Picard iterations. Similarly one reason
for the sequence Z (k) to deduce that

Zs
t,x= lim

k→∞
Zs

(k)=𝜎(s,Xs
t,x) lim

k→∞
vk(s,Xs

t,x)=𝜎(s,Xs
t,x)v(s,Xs

t,x).
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This concludes the proof. □

Finally it remains to identify the functions u,v as associated to a nonlinear PDE.

We reason as follows: let u be the solution of the semilinar parabolic PDE

∂tu(t,x)+ℒtu(t,x)+ f (t,x,u(t,x),𝜎(t,x)∇u(t,x))=0, t∈[0,T],x∈ℝd

with final condition u(T ,x)=Ψ(x).

Theorem 27. (Generalised Feynman-Kac formula for quasilinear equations) Assume that u∈C1,2([0,
T]×ℝd;ℝn) is a solution to the PDE (26) such that

|u(s,x)|+ |𝜎(s,x)∇u(s,x)|⩽C(1+ |x|k)

for some k ⩾1. Then if (Xs
t,x,Ys

t,x,Zs
t,x)s∈[0,T ] is the unique solution to the FBSDE with final condition

Ψ and driver f then we have

Ys
t,x=u(s,Xs

t,x), Zs
t,x=𝜎(s,Xs

t,x)∇u(s,Xs
t,x), s, t∈[0,T],x∈ℝd.

In particular

u(t,x)=Yt
t,x, t∈[0,T],x∈ℝd,

and therefore the PDE has a unique solution.

Proof. We apply Ito formula

du(s,Xs
t,x)=(∂s+ℒs)u(s,Xs

t,x)ds+𝜎(s,Xs
t,x)∇u(s,Xs

t,x)dWs

=− f (s,Xs
t,x,u(s,Xs

t,x),𝜎(s,Xs
t,x)∇u(s,Xs

t,x))ds+𝜎(s,Xs
t,x)∇u(s,Xs

t,x)dWs

which means that the pair (u(s,Xs
t,x),𝜎(s,Xs

t,x)∇u(s,Xs
t,x)) is a solution to the BSDE, the final condi-

tion is ok since u(T ,XT
t,x)=Ψ(XT

t,x) and by uniqueness we have (u(s,Xs
t,x),𝜎(s,Xs

t,x)∇u(s,Xs
t,x))=(Ys

t,x,
Zs

t,x) for all s∈[0,T]. □

Remark 28. With stronger conditions on the coefficients of the PDE one can prove directly that given
a solution to the BSDE which then, as we have seen can always be represented as Ys

t,x=u(s,Xs
t,x) and

Zs
t,x=𝜎(s,Xs

t,x)v(s,Xs
t,x) for some functions u,v, then one necessarily have that u∈C1,2 and v=∇u and

u solves the PDE. (see the notes of Perkowski for some literature on this).

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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