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SDE techniques
We develop some techniques to study solutions of SDEs, in particular changing the drift via
absolutely continuous changes of measures, how solutions of SDEs change upon conditioning
and the concept of local time with its relation to stochastic calculus.
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1 Girsanov's theorem
Equivalence of measures in a filtered probability space, Girsanov transformation, applications of
Girsanov formula: Doob's transform, change of measure, weak solution to SDE via Girsanov.

Let (Ω,ℱ,(ℱt)t⩾0) be a filtered probability space with a right-continuous filtration and let ℙ,ℚ two
probability measures on this space. Assume that ℚ≪ℙ and define the positive martingale

Zt≔𝔼[H |ℱt], t⩾0,
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where H = dℚ
dℙ is the Randon-Nikodym derivative of ℚ to wrt. to ℙ, i.e. the unique random variable

H∈L1(ℙ) such that ℚ(A)=𝔼ℙ(H1A).

Note that (Zt)t⩾0 is uniformly integrable and Z∞=limt→∞Zt=𝔼[H |ℱ∞] in L1(ℙ) and a.s.

Bayes formula: if X ∈L1(ℚ)∩L1(ℙ) and X ∈ℱt then for any t⩾ s

𝔼ℚ[X |ℱs]=
𝔼ℙ[ZtX |ℱs]

Zs
, ℚ−a.s. (1)

this is well defined when Zs>0 and note that ℚ(Zs=0)=𝔼ℙ[Zs1Zs=0]=0.

Define T =inf{s⩾0:Zs=0} and recall that on T<∞we have that Zs=0 for all s⩾T , thenℚ(T <∞)=
𝔼ℙ[ZT1ZT=0]=0 and if ℙ≪ℚ we have also that ℙ(T <∞)=0 so Zt>0 for all t>0 ℙ-a.s.

Remark 1. There is no reason in general that the martingale (Zt)t⩾0 is continuous. Think for example
to the filtration (ℱt)t⩾0 generated by a Poisson process (Nt)t⩾0.

We are going to assume all along that (Zt)t⩾0 is continuous and that ℙ∼ℚ.

Lemma 2. (Xt)t⩾0 is aℚ-martingale iff (Zt Xt)t⩾0 is a ℙ-martingale. The same is true also for local
martingales.

Proof. We will prove only one of the directions. Assume tha ZX is a ℙ-martingale, then by Bayes
formula (1) we have𝔼ℚ[Xt|ℱs]=Zs

−1𝔼ℙ[ZtXt|ℱs]=Xs so (Xt)t⩾0 is a martingale (check that indeed Xt

is in L1(ℚ) for any t⩾0). Assume now that the stopped process (ZX)T is a ℙ-martingale for some
stopping time T , moreover observe that for any A∈ℱs we have for s< t,

𝔼ℚ[Xs
T1A]=𝔼ℙ[Zs

TXs
T1A]=𝔼ℙ[Zt∧TXt

T1A]=𝔼ℚ[Xt
T1A]

(the first and last equality can be obtained by considering the partition 1=1T<s+1T⩾s and the same
for t) so

𝔼ℚ[Xt
T |ℱs]=Xs

T .

By localization if (XZ) is a ℙ-local martingale this shows that X is aℚ-local martingale. In this part
of the proof we just used that ℚ≪ℙ but in order to prove the converse one has to use that ℙ≪ℚ to
have Zt>0 always. □
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Assume that (Xt)t⩾0 is a continuous spositive local martingale which is almost surely Xt>0 then we
can define the continuous local martingale

Lt=log(X0)+�
0

t
Xs

−1dXs

and note that (Xt)t⩾0 is the solution to the SDE dXt=XtdLt and a solution Y to this equation is given by

Yt=exp�Lt −
1
2[L]t�=ℰ(L)t

and by using Ito formula one can check that the process (Yt
−1Xt)t⩾0 is constant, therefore Xt=X0Yt.

The process ℰ(L) is called the stochastic exponential of the continuous local martingale L. Via the
stochastic exponential we can associate a continuous local martingale L to any continuous stricly
positive local martingale X .

So we can write Zt=ℰ(L)t (which defines L given Z).

Take (Mt)t⩾0 to be a ℙ-local martingale and let M̃≔M −[L,M] then by Ito formula

d(ZM̃)t=ZtdM̃t − M̃tdZt+d[Z ,M̃]t=ZtdMt −M̃tdZt+d[Z ,M]t −Ztd[L,M]t||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=0

=ZtdMt −M̃tdZt

where we used that [Z ,M]t=[Z , M̃]t and that dZt=ZtdLt. Therefore ZM̃ is a ℙ-local martingale and
by the previous lemma we have that M̃ is aℚ-local martingale. Therefore we proved that

Theorem 3. (Girsanov) Assume ℚ∼ℙ and define Z =ℰ(L) as above. Then if M is a ℙ-local mar-
tingale, the process M̃≔M −[L,M] is aℚ-local martingale. In particular since [M]=[M̃] we have
that if M is a Brownian motion then M̃ is also a Brownian motion.

Remark 4. Note that L̃=L −[L] so we have

Zt
−1=exp(−Lt+[L]t/2)=exp(−L̃t − [L̃]t/2)=ℰ(−L̃t)

and is easy to check that

𝔼�dℙdℚ�ℱt�=Zt
−1, t⩾0.

So the relation betweenℚ andℙ is simmetric, indeed M̃=M −[L,M]=M −[L̃,M̃] and M=M̃ −[(−L̃),
M̃].
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Remark 5. By Girsanov's theorem we see that equivalent measures agree on classifying a process as
a semimartingale. Indeed if X =X0+M+V is a ℙ semimartingale then X is also aℚ-semimartingale
with decomposition X =X0+ M̃+ Ṽ where M̃=M − [L,M] and Ṽ =V +[L,M].

In many applications we have a measure ℙ and a positive continuous martingale (Zt)t⩾0 with which
we can define a new measureℚ such that

dℚ
dℙ �ℱt

=Zt, t⩾0.

This is enough to define the measureℚ on ℱ∞=∨t⩾0ℱt. If this is not the full ℱ then we can simply
let dℚ=Z∞dℙ where Z∞=limt→∞Zt provided the martingale is uniformly integrable.

Note that Z is uniformly integrable iffℚ≪ℙ.

However in many aplications we only have that (Zt)t⩾0 is a martingale but not uniformly integrable.
In that case we can apply Girsanov's theorem on any bounded interval [0,T] so we can also deduce
that it extends to this situation.

Example 6. (Brownian motion with drift) Let 𝛾∈ℝn and B to be a n-dimensional Brownian motion,
define the process Lt=γ⋅Bt

Zt=exp�Lt −
1
2[L]t�=exp�γ⋅Bt −

1
2|γ|

2t�, t⩾0,

is a strictly positive continuous local martingale and it defines a new measureℚ onℱ∞ under which
the process

B̃t
𝛼=Bt

𝛼− [L,B𝛼]t=Bt
𝛼−𝛾𝛼t, 𝛼=1, . . . ,n, t⩾0,

is aℚ-Brownian motion. So underℚ the process B is Brownian motion with a drift 𝛾. The measure
ℚ is not absolutely continuous wrt. ℙ. Indeed consider the event

A={{{{{{{{{{{{{{{{{{{{{{{{limt→∞

B̃t+𝛾t
t =𝛾}}}}}}}}}}}}}}}}}}}}}}}}∈ℱ∞

for which we have (by the law of iterated log) ℚ(A)=1 while ℙ(A)=0 unless 𝛾=0. And similarly
one shows that ℙ,ℚ are singular. This is linked to the fact that (Zt)t⩾0 is not uniformly integrable.

2 Doob's transform

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Let (Xt,Bt)t⩾0 be the solution of an SDE with Markovian drift b:ℝ+×ℝn→ℝn and diffusion coeffi-
cient 𝜎:ℝ+×ℝn→ℒ(ℝm,ℝn) where B is the Brownian motion driving the SDE.
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Let h∈C1,2(ℝ+×ℝn;ℝ>0) be a stricly positive function such that

(∂t+ℒ)h(t,x)=0,

for all t∈[0, t∗] and x∈ℝn whereℒ is the generator of the SDE, i.e. ℒ=b ⋅∇+ 1
2Tr[𝜎𝜎

T∇2]�.

By Ito formula the process Zt≔h(t,Xt) is a positive local martingale. Let us assume that (Zt)t∈[0,t∗] is
a (true) martingale and that Z0=h(0,X0)=1 (this can be always arranged by normalizing h). Then we
can use the process (Zt)t to define a new measure

dℚ≔Zt∗dℙ.

(If needed we can extend Zt=Zt∗ if t> t∗). Note that by construction the process Z is continuous and
Z0=1.

By using Girsanov's theorem we know that the process

B̃=B− [B,L]

is a ℚ-Brownian motion where L is the only local martingale such that Z =ℰ(L). Since dZt=ZtdLt

we have that

dZt=𝜎(t,Xt)T∇h(t,Xt) ⋅ dBt, dLt=Zt
−1dZt=

𝜎T(t,Xt)∇h(t,Xt)
h(t,Xt)

⋅dBt=𝜎T(t,Xt)∇logh(t,Xt) ⋅dBt

for t⩽ t∗ and dZt=0 if t> t∗. Therefore

dB̃t=dBt −𝜎T(t,Xt)∇logh(t,Xt)dt, t∈[0, t∗],

and dB̃t=dBt if t> t∗. As consequence the process X solves now a new SDE (underℚ)

dXt=[b(t,Xt)+𝜎(t,Xt)𝜎T(t,Xt)∇logh(t,Xt)]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
b̃(t,Xt)dt

dt+𝜎(t,Xt)dB̃t, t∈[0, t∗]

with the same diffusion coeffient 𝜎 but a new drift

b̃(t,x)=b(t,x)+1t∈[0,t∗](𝜎𝜎T∇logh)(t,x), t⩾0,x∈ℝn.

This construction is called Doob's h-transform.

Exercise 1. Try to perform the same construction for a martingale problem, i.e. not relying on the process B but only
on X. I.e. starting from a measure ℙ on the canonical path space C(ℝ+;ℝn) solving the martingale problem for ℒ
construct a new measure ℚ which solves a new martingale problem with a modified drift as above.

Example 7. Take h(t,x)=exp�𝛾⋅x− 1
2 |𝛾|

2� where 𝛾∈ℝn and t⩾0. Then the Doob's h-transformed
process of a Brownian motion with this funciton gives a Brownian motion with drift.
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If (Zt)t is only a martingale in an open interval I =[0, t∗) with possibly t∗=+∞. Then we can still
define ℚ on ℱt to be given by dℚ|ℱt≔Ztdℙ|ℱt and check that this gives a well-defined probability
measure onℱ∞=∨t⩾0ℱt. In this case is natural to restict all the measures to ℱ∞ i.e. to requireℱ∞=
ℱ.

Remark 8. We do not need to require that h is positive everywhere (actually this will not be the
case in the applications). What we need is that the process Zt= h(t,Xt) is a local martingale, i.e.
(∂t+ℒ)h(t,Xt) = 0 a.s. and for almost every t⩾0 and that Zt>0 almost surely. If h is not stricly
positive we can always define the stopping time T =inf{t⩾0:Zt=0}, then the stopped process (Zt

T)t⩾0
is a positive local martingale and some condition is needed to ensure that it is a martingale. Remember
that we require that Z0=1 and by construction (Zt)t⩾0 is continuous. In this setting one can perform
the Doob's transform up to the random stopping time T . Note that under the measure ℚ we always
have T =+∞ almost surely.

3 Diffusion bridges

We use now Doob's transform to describe the regular conditional law of a Markovian diffusion (Xt)t⩾0
conditioned on the event that XT =y with T >0 and deterministic, and y∈ℝn. I will assume also that
X0=x0. We need to assume that the process (Xt)t⩾0 is a Markov process with transition density given
by

ℙ(Xt∈dx′|Xs=x)= p(s,x; t,x′)dx′, s< t∈[0,T],x,x′∈ℝn,

for some measurable and positive function p. Note that we cannot take s= t here. Recall that ℙ(Xt∈
dy|Xs=x) means the regular conditional probability kernel for the conditional law of Xt given Xs.

Define now the function

hy(s,x)≔ p(s,x;T ,y)
p(0,x0;T ,y)

, s∈[0,T),x∈ℝn.

Let Zt
y≔ hy(t,Xt), this is non-negative process, and it is also a martingale, indeed by the Markov

property of X

𝔼[Zt
y|ℱs]=𝔼[hy(t,Xt)|ℱs]=𝔼[hy(t,Xt)|Xs]=�ℝn

hy(t,x′)p(s,Xs; t,x′)dx′

= 1
p(0,x0;T ,y)

�
ℝn

p(s,Xs; t,x′)p(t,x′;T ,y)dx′=
p(s,Xs;T ,y)
p(0,x0;T ,y)

=Zs
y

by Chapman–Kolmogorov equations (the consistency condition for the transition density of a Markov
process).
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We want to define a probability kernel (ℚy)y∈ℝn on (Ω,ℱ) such that they are the regular conditional
probabiliy of ℙ given XT , that is they have to satisfy

ℙ(A)=𝔼[ℙ(A|XT)]=𝔼[ℚXT(A)]=�
ℝn
ℚy(A)ℙ(XT∈dy)=�

ℝn
ℚy(A)p(0,x0;T ,y)dy

for all A∈ℱ. Take A∈ℱs for some s<T , by Markov property we have for any bounded measurable g,

𝔼[1A g(XT)]=𝔼[1A𝔼[g(XT)|ℱs]]=𝔼[1A𝔼[g(XT)|Xs]]=𝔼�1A�
ℝn

g(y)p(s,Xs;T ,y)dy�

=�
ℝn

g(y)𝔼[1A p(s,Xs;T ,y)]dy

since

𝔼[g(XT)|Xs]=�
ℝn

g(y)p(s,Xs;T ,y)dy.

This means that we have ℙ(A|XT)=q(XT) and we can take

q(y)≔𝔼�1A
p(s,Xs;T ,y)
p(0,x0;T ,y)

�,

since we have proven that

𝔼[q(XT)g(XT)]=𝔼[1A g(XT)]=�
ℝn

g(y)q(y) p(0,x0;T ,y)dy.

As a consequence we can take

ℚy(A)≔𝔼�1A
p(s,Xs;T ,y)
p(0,x0;T ,y)

�, A∈ℱs

and have that y↦ℚy indentify a well-defined probability kernel on ℱT − since for any A∈ℱT − the
function y↦ℚy(A) is measurable in y and for any y,ℚy is a probability in A.

Remark 9. Is it possible with some care to extendℚy to the full ℱ, but we refrain to do so here.

We have now the formula

ℙ(A|XT)=ℚXT(A), A∈ℱT −.

I want now to describe better the measure ℚy (at least up to time T), we observe that ℚy is obtained
as the Doob's h-transform of ℙ in the interval [0,T) with h=hy function

hy(s,x)≔ p(s,x;T ,y)
p(0,x0;T ,y)

, s∈[0,T),x∈ℝn.
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As a consequence we can show that the process X underℚy satisfies an SDE provided I can apply Ito
formula to hy, that is I have to require that (s,x)↦ p(s,x;T ,y) is C1,2([0,T)×ℝn). Given that Doob's
transform give that X underℚy solves the new SDE (or an equivalent martingale problem)

dXt=b(t,Xt)dt+𝜎𝜎T∇loghy(t,Xt)dt+𝜎(t,Xt)dBt, t∈[0,T).

Is easy to see from specific examples that the function 𝜎𝜎T∇loghy(t,x) is singular when t↗T .

Exercise 2. Compute the SDE satisfied by a n-dimensional Brownian motion when we condition it to reach the point
y at time T >0.

Observe that underℚy we have that

ℚy�lim
t↑T

Xt= z�=1z=y.

for any y, z∈ℝn. Observe also that

ℙ�lim
t↑T

Xt=y�=ℙ(XT =y)=0

since XT has density p(0,x0;T , ⋅). So the measures ℚy are all singular wrt. ℙ.

4 Doob's transform/Conditioning
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Last lecture: we described the law of a diffusion (Xt)t⩾0 conditioned to reach a point y at a time T .

More precisely, take ℙ to be the law of a diffusion (Xt)t⩾0,. The goal was to identify the probability
kernel y∈ℝn↦ℙy∈Π(𝒞n) such that we can disintegrate ℙ as

ℙ(A)=�
ℝn
ℙy(A)ℙ(XT∈dy)=𝔼[ℙXT(A)], A∈ℱ, (2)

where ℙ(XT ∈dy) represent the law of XT under ℙ. We define the law of X conditioned to reach a
point y at a time T as the law of X under ℙy. Being the event {XT = y} of zero probability for ℙ in
general, this is a reasonable way to define this event. We see indeed that ℙXT(A)=𝔼[1A|XT].

We had to assume that the process (Xt)t⩾0 is Markov wrt. the given filtration (ℱt)t⩾0 and that it has a
transition probability given by the density p(s,x; s′,x′) so that

ℙ(Xs′∈dx′|Xs=x)= p(s,x; s′,x′)dx′, s< s′,x,x′∈ℝn.

We can the introduce the martingale Zt
y=hy(t,Xt) t∈[0,T), given by

hy(t,x)= p(t,x;T ,y)
p(0,x0;T ,y)

, t∈[0,T),
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where we assume that X0=x0∈ℝn and that p(t,x;T ,y)>0 for all x and t∈[0,T). (this can be obtained
by first conditioning on X0 and then performing the construction). Usually p(t, x; T , y) is not well
defined when t→T . E.g. in the case of Brownian motion one has

p(t,x;T ,y)=(2𝜋(T − t))−d/2exp((((((((((− |x−y|2
2(T − t))))))))))).

Then one use this to construct the Doob's transformed measure ℙy onℱT − by letting

dℙy|ℱt=Zt
ydℙ|ℱt, t∈[0,T).

And one can check that this definition satisfy (2) for A∈ℱT −. Now if A2∈𝜎(Xt: t⩾T) we have

ℙ(A2)=𝔼[𝔼[1A2|ℱT]]=𝔼[𝔼[1A2|XT]]=𝔼[𝜑A2(XT)]

with 𝜑A(x)=𝔼[1A|XT =x]. So now consider also an event A1∈𝜎(Xt: t<T). In this case we have

ℙ(A1∩A2)=𝔼[1A1𝔼[1A2|ℱT]]=𝔼[1A1𝜑A2(XT)]=�ℝn
ℙy(A1)𝜑A2(y)ℙ(XT∈dy).

Let assume that we have proven that

ℙy�lim
t↑T

Xt=x�=1x=y, x∈ℝn,

then we can write

ℙ(A1∩A2)=�ℝn
𝔼y[1A1𝜑A2(XT)]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

ℙy(A1∩A2)

ℙ(XT ∈dy).

So this shows us that we can define

ℙy(A1∩A2)=𝔼y[1A1𝜑A2(XT)]=𝔼y[1A1]𝜑A2(y).

This defines ℙy in 𝜎(Xt: t<T)∨𝜎(Xt: t⩾T)=𝜎(Xt: t⩾0). Soℙy can be used to define the conditional
law of X .

One can then show that if the process X satisfies the SDE

dXt=b(t,Xt)dt+𝜎(t,Xt)dBt, t⩾0

then under ℙy the process X satisfies the SDE (provided hy(t,x) is C1,2 for any t<T)

dXt=[b(t,Xt)+(𝜎𝜎T∇loghy)(t,Xt)]dt+𝜎(Xt)dBt, t<T

and

dXt=b(t,Xt)dt+𝜎(Xt)dBt, t⩾T .
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Recall that under ℙy we have XT −=XT =y.

Remark 10. This approach can be exteded to condition a diffusion to reach a sequence of states y1,...,
yn at given times T1< ⋅ ⋅ ⋅ <Tn.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

5 Condition a diffusion to not leave a domain

Consider the following situation: we want to condition a one dimensional Brownian motion (Bt)t⩾0 to
stay positive for all times t⩾0. This event has probability zero (since eventually BM will visit zero
and by strong Markov property will have 1/2 probability to go negative + Borel-Cantelli). So the idea
is to use less singular conditioning to arrive to describe this event.

Assume B0=x0>0. In this case the convenient thing to do is to fix R>x0 and ask consider the stopping
time

TR≔inf{t⩾0:Bt∈[0,R]}

and the event ER≔ {BTR=R}. Now we know that ℙ(ER) = x0/R∈ (0, 1). We can then define the
conditional probability

ℙR(A)≔ ℙ(A∩ER)
ℙ(ER)

and now we would like to send R→∞ and study the limit.

Let Tx=inf{t⩾0:Bt=x}. We want to say that

{T0=+∞}=∩R>0{BTR=R}

note that (ER)R is a descreasing sequence of events.

I want to describe ℙR. Let A∈ℱs, observe that

ℙR(A)= ℙ(A∩ER)
ℙ(ER)

= 𝔼[1A𝔼[1ER|ℱs]]
ℙ(ER)

= 𝔼[1A𝔼[1TR>s1ER|ℱs]]+𝔼[1A𝔼[1TR⩽s1ER|ℱs]]
ℙ(ER)

=
𝔼[1A1TR>sℙXs(ER)]+𝔼[1A1TR⩽s1BTR=R]

ℙ(ER)

where ℙx(ER) is the probability of ER for a BM starting at x at time 0. Note that ℙ0(ER) = 0 and
ℙR(ER)=1 therefore setting

h(x)=ℙx(ER)/ℙx0(ER)=x/x0

10



we have that

ℙR(A)=𝔼[1A1TR>sh(Bs)]+𝔼[1A1TR⩽sh(BTR)]=𝔼[1Ah(Bs∧TR)].

Remember that we did this for any s⩾0 and A∈ℱs. So

dℙR|ℱs=h(Bs∧TR)dℙ|ℱs.

If we take Zt
R=h(Bt∧TR) then (Zt

R)t⩾0 is a non-negative martingale (indeed 0⩽Zt
R⩽R).

We have to pay attention to the fact that Zt
R could touch zero and this happens at the stopping time T0.

After time T0 the process Zt
R will stay in zero.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

(Next lecture we continue)

Note that

Zt
R=ℰ(L)t, Lt=�

0

t
1s⩽TR(logh)′(Bs)dBs.

By Girsanov's theorem we have that under the measure ℙR the process B satisfy the SDE

dBt=
1t⩽TR

Bt
dt+dWt, t⩾0,

where W is a ℙR-Brownian motion.

6 Conditioning Brownian motion to stay positive

(Bt)t⩾0 BM. R>0 Tx≔inf {t⩾0:Bt=x} and SR≔TR∧T0. B0=x0∈(0,R). Note that ℙ(Tx<∞)=1 for
all x∈ℝ. We introduced the measure

ℚR(A)=𝔼(1Ah(Bs∧SR)), A∈ℱs

with h(x)=x/x0. By Girsanov's theorem we have that underℚR (Bt)t⩾0 solves the SDE

dBt=
1t<SR

Bt
dt+dWt, t⩾0

11



where W is aℚR Brownian motion. Important observation

ℚR(T0<TR)=𝔼(1T0<TRh(BSR))=𝔼(1T0<TRh(BT0))=0

so under ℚR we will never touch 0 before R and therefore under ℚR we have SR=TR almost surely
and that Bt>0 for all t∈[0,TR].

Now we want to take the limit R→∞. Observe that if A∈ℱTR then ℚR(A)=ℚR′(A) for any R′⩾R
since TR′>TR and

𝔼ℚR′[1A]=𝔼ℙ[1Ah(BTR∧SR′)]=𝔼ℙ[1A𝔼[h(BTR∧SR′)|ℱTR]]=𝔼ℙ[1Ah(BTR∧SR)]=𝔼ℚR[1A].

Thefore for any R>0 and A∈ℱTR we can define a measure ℚ by letting ℚ(A)≔ limR′→∞ℚR′(A).
Therefore the measure is well defined on ∨R⩾0ℱTR. Observe that limR→∞ℚ(TR⩽s)=0 by continuity of
B. For anyΑ∈ℱs we can defineℚ(A)≔limR→∞ℚ(A,TR>s) and check that it is the unique extension
ofℚ which is consistent with it on ∨R⩾0ℱTR.

Underℚ the process B satisfies the SDE

dBt=
1
Bt
dt+dWt, t⩾0.

Therefore we discovered that under ℚ the process B satisfies the SDE defining the Bessel process R
of dimension d=3:

dRt=
d −1
2

1
Rt
dt+dWt, t⩾0.

Recall that the Bessel process Rt=|Xt| is defined as the modulus of a d-dimensiona Brownian motion
(Xt)t⩾0.

Theorem 11. The law of a one dimensional Brownian motion conditioned never to hit zero is the same
as the law of the modulus of a 3d Brownian motion.

From this identification we can derive the corollary that the BM conditioned not to hit zero is transient
and go to infinity with probability 1.

7 Condition a diffusion not to leave a domain
In the previous argument we relien on many properties of the problem (i.e. Brownian motion, one
dimension). We would like now to sketch how to solve the conditioning problem for more general
processes and more general domains. We will not give all the details or all the necessary assumptions.

Assume (Xt)t⩾0 is a Markov diffusion process in ℝd (think to the solution of an SDE with nice coef-
ficients) and let D⊆ℝd be a open, connected domain and bounded and let 𝜏D=inf{t⩾0:Xt∈D}. Let
ℙx be the law of the Markov process starting from x∈ℝd and let ℒ the generator of the process.

12



X𝜏D

Xt
x

Let us assume that ℙ(𝜏D<∞)=1. If we want to force the process to stay in D forever we are asking
something which has probability 0 under ℙ. So we start by approximating the event we want and
just ask that the process stay in D up to time T >0 and define ℚT as the corresponding conditional
probability:

ℚT(A)≔ 𝔼x0[1A1𝜏D>T]
𝔼[1𝜏D>T]

.

By reasoning as in the previous example we obtain the formula: for any A∈ℱs and s<T

ℚT(A)= 𝔼x0[1A gT −s(Xs∧𝜏D)]
gT(x0)

=𝔼x0[1AZs
T]

where

gT(x)≔𝔼x[1𝜏D>T].

The formula follows by a simple application of the Markov property. It also holds that Zs
T ≔

gT −s(Xs∧𝜏D)/gT(x0) is a martingale up to time T and Z0T = 1. Note that we have ℚT(𝜏D ⩽ T) = 0
so the process X will never hit the boundary before T under ℚT . We will assume that (T , x)↦
gT(x) is C1,2, under this condition we can perform Doob's transformation and deduce that if under
ℙ the process X satisfies the SDE

dXt=b(t,Xt)dt+𝜎(t,Xt)dWt

then underℚT it will satisfy the SDE (we denote here 𝜎(t,Xt)∗ the transpose of 𝜎(t,Xt))

dXt=b(t,Xt)dt+𝜎(t,Xt)𝜎(t,Xt)∗
∇gT −t(Xt)
gT −t(Xt)

dt+𝜎(t,Xt)dWt
T , t∈[0,T]

provided gt(x)>0 for all t>0 and x∈D. Note that gT(x)=0 if x∈∂D. To take T→∞ in this SDE is
now a bit more difficult that in the BM case because the drift depends on T (and therefore the Brow-
nian motion W T depends on T). So assumptions have to be made and essentially the most important
is to require that the existence of the limit

lim
T→∞

∇gT(x)
gT(x)

13



and moreover that it is given by

lim
T→∞

∇gT(x)
gT(x) =

∇𝜑0(x)
𝜑0(x)

where 𝜑0 is the eigenfunction of (−ℒ) with Dirichlet boundary conditions on D and with lowest
eigenvalue 𝜆0>0. The idea is that the function gT(x) for T→∞ has the asymptotic expansion

gT(x)=e−𝜆0T𝜑0(x)+o(e−𝜆0T)

uniformly in x∈D and the same for the derivative ∇gT(x). Moreover note that the function g if it is
C1,2(ℝ+×D)∩C(D̄) then it is a solution to the parabolic PDE

∂tgt(x)=ℒgt(x), x∈D,

gt(x)=0, x∈∂D.

In order to be sure that these conditions are met one has to make more precise assumptions on b,𝜎 and
on D.

−ℒ𝜑0=𝜆0𝜑0

and 𝜑0(x)=0 for x∈∂D and 𝜑0(x)>0 for x∈D.

In this setting one can prove that the family (ℚT)T>0 weakly convergence to a measure ℚ such that
the process X is a weak solution to the SDE

dXt=b(t,Xt)dt+𝜎(t,Xt)𝜎(t,Xt)∗
∇𝜑0(Xt)
𝜑0(Xt)

dt+𝜎(t,Xt)dWt, t∈[0,T].

So in general one can expect that a diffusion conditioned to stay inside a given domain satisfy this
SDE as soon as we can solve the Dirichlet problem and the solution is suitably regular.

For details see the work of Pisky on Annals of Probability ('80).

Remark 12. This approach cannot be directly used for conditioning BM to stay positive because in
this case the function gT(x) does not decay exponentially in T as T→∞. The Brownian motion can
stay away from zero by going very far out, and this happens with algebraically decaying probability.

Example 13. Take (Xt)t⩾0 to be Brownian motion in d=1 and D=(0,L). In this case we can make
even precise the above discussion. However the conclusion is that if we condition the BM to stay in
D forever it will statisfy the SDE

dXt=
∇𝜑0(Xt)
𝜑0(Xt)

dt+dWt, t⩾0

where 𝜑0 is the lowest eigenfunction of −Δ with zero b.c. on [0,L], namely 𝜑0=sin(𝜋x/L). The
eigenvalue 𝜆0= (𝜋/L)2 describe the exponential decay of the probability ℙx(𝜏D>T) ≈ e−𝜆0T𝜑0(x).
Therefore we have

dXt=
𝜋
L
cos(𝜋Xt/L)
sin(𝜋Xt/L)

dt+dWt
L, t⩾0.

14



Now if we take (formally) the limit L→∞ we have

dXt=
1
Xt
dt+dWt, t⩾0.

as we expect from our previous computations for the BM conditioned to stay positive.

Example 14. (Brownian motion in the Weyl chamber) Let X =(X 1, . . . ,X n) be a family of n indepen-
dent one dimensional BMs and let S={x∈ℝd:x1<x2< ⋅ ⋅ ⋅ < xn} (Weyl chamber) and take x0∈S and
X0=x0. I want to condition X to stay inside S. Consider the function

h(x)=
∏i< j (x j −x i)
∏i< j (x0

j −x0i)
, x∈S

which is strictly positive in S and 0 on the boundary of S. One can check that this function is harmonic
in S, i.e. (−Δℝn)h(x)=0whereΔℝn is the Laplacian inℝn which is the generator of X . Assuming that
this is the relevant eigenfunction for describing the conditioning, we get that X conditioned to stay in
S solves the SDE

dX i=�
j≠i

1
Xt

j −Xt
idt+dWt

i, t⩾0.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Some comments about Exercise 2 in Sheet 5. Brownian bridge: BM conditioned to reach a point at a
given time. E.g. y∈ℝ at time t=1. Two ways to construct it. Let (Xt)t be a Brownian motion in d=1

a) Gaussian approach: define the process

Xt
y≔Xt+ t(X1−y),

and show that X1,X y are independent (via computation of the covariance). So the law 𝜇y of X y

is the law of the BM conditioned to arrive in y at time 1.

𝜇y(d𝜔)≔ℙ(X ∈d𝜔|Xt=1)

(we use the fact that BM is a Gaussian process). This method can be used for other Gaussian
processes.

b) SDE/Markovian approach (following the method in the lecture) (we use that BM is a Markov
process with known transition density, the method works for a large class of Markov processes).
The canonical process Y under the conditional law 𝜇y satisfies the SDE

dYt=−1t<1
Yt −y
1− t dt+dBt

The two descriptions have to agree. Indeed note that Y is a Gaussian process (since the SDE is linear):
think how to prove it and then check that covariance and mean agree. But of course the construction
itself shows that the law of Y and the law of X y agree.

15



Note that (Xt
y)t∈[0,1] is not adapted to the filtratrion ℱX of (Xt)t⩾0 but it is adapted to the “enlarged

filtration” ℋt≔ℱt
X∨𝜎(X1).

If we consider the process (Xt
y)t∈[0,1] with respect to its own filtration (𝒢t)t⩾0 (which is smaller than

(ℋt)t) then by considering the associated martingale problem and using point b) we deduce that there
should exists a Brownian motion B̃ on the same probability space (since 𝜎(x)>0 and we are in one
dimension, so our simplified argument given at the beginning of the course works) such that

Xt
y=−1t<1

Xt
y −y
1− t dt+dB̃t,

This means that (Xt
y)t is a semimartingale and if we can determine the drift of Xt

y (by some statistical
procedure) we can infer the point y (if we know that it is a BM conditioned to arrive somewhere at
time 1). At the same time the BM (B̃) contains the “new information” which cannot be predicted by
observing the process (and so it is martingale).

So enlarging the filtration by adding the observation 𝜎(X1) to all the 𝜎-fields transforms the BM into
the Brownian Bridge above, however it still remains a semimartingale.

There is a whole subfield of stochastic analysis which try to understand how stochastic processes
change when enlarging the filtrations (problem of enlargement of filtrations).

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

8 General change of drift
We want now use Girsanov transform to create new processes starting from known ones in more
general ways than Doob's transform allows.

For any continuous local martingale (Lt)t⩾0 and a probability measure ℙ on a filtered space (Ω,ℱ,
(ℱt)t⩾0) we can consider the new measure

dℚL=ℰ(L)∞dℙ

provided 𝔼[ℰ(L)∞]=1. In this case one can show that (ℰ(L)t)t⩾0 is a martingale and the Girsanov
theorem tells us that

M̃t=Mt −[L,M]t, t⩾0

is a continuous local ℚ-martingale for any local ℙ-martingale M.

So a key point here is how we check that

𝔼[ℰ(L)∞]=𝔼�exp�L∞− 12[L]∞��=1,

in practice indeed is not obvious how to estimate the local martingale L∞ appearing there.
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Example 15. To keep in mind a useful example one could think that (Xt)t⩾0 is aℙ-BM inℝn and that
we are given a vector field b:ℝ+×ℝn→ℝn measurable and let

Lt≔�0
t∧T

b(s,Xs)dXs

for some T which can be finite or not and maybe a stopping time. In this case we have

𝔼[ℰ(L)∞]=𝔼�exp��
0

T
b(s,Xs)dXs −

1
2�0

T
|b(s,Xs)|2ds��.

In order to estimate this kind of quantities and establish that (ℰ(L)t)t⩾0 is a martingale it is useful to
consider Novikov's condition.

Observe that (ℰ(L)t)t⩾0 is always a positive local-martingale and is supermartingale (by a Fatou argu-
ment) so the point is to show that 𝔼[ℰ(L)∞]⩾1 since we know that 𝔼[ℰ(L)∞]⩽1.

If you recall the example of the BM with drift in that case one would indeed have ℰ(L)∞=0 a.s.

Novikov condition (in the form given to it by Krylov) is a sufficient criterion to ensure that𝔼[ℰ(L)∞]=
1.

Theorem 16. (Novikov-Krylov's condition) Let L be a local martingale starting at 0 and assume that

lim
𝜀↓0
𝜀log𝔼�exp�1−𝜀

2 [L]∞��=0

then 𝔼[ℰ(L)∞]=1. In particular this holds if (this is usually called Novikov's condition)

𝔼�exp�12[L]∞��<∞.

Remark 17. This is not a necessary conditions, it does not care of the sign of L but there are examples
where 𝔼[ℰ(L)∞]=1 but 𝔼[ℰ(−L)∞]<1. A finer condition is Kazamaki condition, which reads

𝔼[exp(L∞/2)]<∞,

but this is not easy to check usually since there are not many ways to estimate the exponential of a
stochastic integral. To see that Kazamaki is finer than Novikov, observe that

𝔼[exp(L∞/2)]=𝔼[exp(L∞/2−[L]∞/4)exp([L]∞/4)]
=𝔼[E(L)∞1/2exp([L]∞/4)]
⩽𝔼[E(L)∞]1/2𝔼[exp([L]∞/2)]1/2

⩽𝔼[exp([L]∞/2)]1/2

where we used Hölder and the fact that𝔼[E(L)∞]⩽1. In particular, if𝔼[exp([L]∞/2)] is finite, then
so must be 𝔼[exp(L∞/2)], while the converse is not necessarily true.
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Example 18. Continuing Example 15. Novikov's condition reads

𝔼�exp�12�0
T
|b(s,Xs)|2ds��<∞.

It is not difficult to show by using the Markov property of the Brownian motion and the assumption
that b is of linear growth, i.e. that there exists a constant C<∞ such that

|b(t,x)|2⩽C(1+ |x|2), x∈ℝn, t⩾0,

that Novikov's condition is in this case satisfied. Take T ⩾0 to be a deterministic time. Then we can
defined the measureℚT as above and underℚT the process

X̃t=Xt −�0
t∧T

b(Xs)ds, t⩾0

is a ℚT Brownian motion. (pay attention that this equation is for ℝn-valued processes). Now the
family of measures (ℚT ,ℱT)t⩾0 is a consistent family and therefore it admits a unique extensionℚ∞

toℱ∞=∨TℱT . This happens because the process (ℰ(L)t)t⩾0 with

Lt=�0
t
b(s,Xs)dXs

is a martingale for t⩾0 excluding t=∞ (is not uniformly integrable in general). Underℚ∞ we have
that X satisfy the SDE

dXt=b(Xt)dt+dBt t⩾0.

for someℚ∞–Brownian motion B.

Remark 19. (Another Novikov-type condition) In some situations (including Example 18 above),
it is useful to apply the following criterion (see Exercise 1.40 from Revuz-Yor), instead of trying to
verify Novikov directly.

Let B be a Brownian motion, H a predictable process and T>0 fixed; assume that there exist constants
a,c>0 such that 𝔼[exp(a |Ht|2)]⩽ c for all t∈[0,T]. Then for Lt≔∫0

t Hs ⋅ dBs, it holds

𝔼[E(L)T]=1.

Examples of such H include Ht=b(Bt) for b of linear growth as above, but also any Gaussian process
(e.g. H = B̃ BM independent of B).

Theorem 20. If b is of linear growth uniformly in time then there exists a weak solution to the SDE
inℝn

dXt=b(Xt)dt+dBt t⩾0.
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We can apply the same method to more general equations. Starting from the solution of an SDE of
the form

dXt=b(Xt)dt+𝜎(Xt)dBt t⩾0

and performing the change of drift to a new measureℚ given by the density (ℰ(L)t)t⩾0 wrt. ℙ with

Lt=�0
t
c(Xs)dBs

(assuming (ℰ(L)t)t⩾0 is a martingale) we obtain that underℚ the process X is the solution of the SDE
(B̃t=Bt −∫0

t c(Xs)ds)

dXt=(b(Xt)+𝜎(Xt)c(Xt))dt+𝜎(Xt)dB̃t t⩾0.

So we can change the drift only in directions belonging to the image of 𝜎(x).

This observation has application in coupling of diffusions.

Exercise 3. Think about how to perform this change of drift in a martingale problem formulation. (the difficulty
is that the is no B in view in the martingale problem). Here is meant without going thru the SDE formulation of
martingale problem.

Proof. (of Novikov's condition, via Krylov's proof) The goal is to prove that 𝔼[ℰ(L)∞]=1 and by
Fatou and a stopping time argument it is enough to check that 𝔼[ℰ(L)∞]⩾1.

We start by observing that by Hölder's inequality

𝔼[ℰ((1−𝜀)L)∞]=𝔼�exp�(1−𝜀)�L∞− 12[L]∞��exp�
𝜀(1−𝜀)
2 [L]∞��

⩽�𝔼�exp�p(1−𝜀)�L∞− 12[L]∞����
1/p
�𝔼�exp�q𝜀(1−𝜀)

2 [L]∞���
1/q

⩽�𝔼�exp�L∞− 12[L]∞���
(1−𝜀)

�𝔼�exp�(1−𝜀)
2 [L]∞���

𝜀

⩽{𝔼(ℰ(L)∞)}(1−𝜀)�𝔼�exp�
(1−𝜀)
2 [L]∞���

𝜀
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Now we are in good shape because we just need to control L multiplied with a coefficient less than 1.
Therefore is enough to show that 𝔼[ℰ((1−𝜀)L)∞]=1 given that we know by assumption that

lim
𝜀↓0
�𝔼�exp�(1−𝜀)

2 [L]∞���
𝜀
=1.

Now we use again the Hölder trick and try to prove that ℰ((1−𝜀)L)∞∈Lp for some p>1 because in
this case I can prove (by localization) that (ℰ((1−𝜀)L)t)t⩾0 is a uniformly integrable martingale and
therefore that 𝔼[ℰ((1−𝜀)L)∞]=1. So take some p>1 and observe that (to be done rigorously via a
localizing sequence LTn)

𝔼[ℰ((1−𝜀)L)∞p ]=𝔼�exp�p(1−𝜀)L∞− 12 p(1−𝜀)2[L]∞��

one can now apply Hölder to split again this expectation into the form

⩽�𝔼�exp�p′p(1−𝜀)�L∞− 12[L]∞����
1/p′
�𝔼�exp�q′c(p,𝜀)2 [L]∞���

1/q′

take p′ so that p′p(1−𝜀)=1 and observe that (thinking about localization we have 𝔼[ℰ(L)∞]=1)

⩽(𝔼[ℰ(L)∞])1/p′�𝔼�exp�q′c(p,𝜀)2 [L]∞���
1/q′

⩽�𝔼�exp�q′c(p, 𝜀)2 [L]∞���
1/q′

and now one check that all the coefficients are such there exists an 𝜀′∈(0,1) (for suitable choice of p
and sufficiently small 𝜀>0) such that

q′c(p,𝜀)2 ⩽ 1−𝜀′
2

which implies

𝔼[ℰ((1−𝜀)L)∞p ]⩽((((((((((𝔼[[[[[[[[[[exp((((((((((1−𝜀′
2 [L]∞))))))))))]]]]]]]]]]))))))))))

1/q′
.

Using again our assumption we know that 𝔼�exp�1−𝜀′
2 [L]∞��<∞ for all 𝜀′ > 0 so this allow to

conclude that

𝔼[ℰ((1−𝜀)L)∞p ]<∞

and this finish the proof the theorem. □
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Next lecture: uniqueness in law via Girsanov's theorem and maybe the Brownian martingale represen-
tation theorem.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

9 Uniqueness in law via Girsanov's theorem

Consider the SDE inℝn with initial condition X0=x0∈ℝn

dXt=b(t,Xt)dt+dBt, t⩾0

where b:ℝ+×ℝn→ℝn is a measurable time-dependent vector field. We are going to assume that

�
0

T
|b(s,Xs)|2ds<+∞, a.s. for all T ⩾0. (3)

The goal is to show that under this condition all weak solutions of the SDE have the same law, in other
words we want to establish uniqueness in law.

We are going to use Girsanov's transformation to remove the drift by absorbing it into the Brownian
motion B.

Assume therefore to be given a weak solution (X ,B). Define the increasing sequence of stopping
times

𝜏n≔inf�t⩾0:�
0

t
|b(s,Xs)|2ds⩾n�.

By assumption we have that 𝜏n→∞ a.s. when n→∞ by (3). Then we can define a new measureℚn

dℚn

dℙ =exp�−�
0

𝜏n
b(s,Xs)dBs −

1
2�0

𝜏n
|b(s,Xs)|2ds�

so that the process

B̃t=Bt − [L,B]t=Bt+�0
𝜏n∧t

b(s,Xs)ds

is a ℚn Brownian motion. In particular up to the random time 𝜏n we have Xt= B̃t. So (Xt)t∈[0,𝜏n] is a
Brownian motion (in the sense that the stopped process X𝜏n has the law of a Brownian motion stopped
at a stopping time).

Let now AT∈ℬ(𝒞n×𝒞n) such that {(X ,B)∈AT}∈ℱT then

𝔼ℙ[1(X,B)∈AT1T⩽𝜏n]=𝔼ℚn�1(X,B)∈AT1T⩽𝜏nexp��0
𝜏n

b(s,Xs)dBs+
1
2�0

𝜏n
|b(s,Xs)|2ds��

=𝔼ℚn�1(X,B)∈AT1T⩽𝜏nexp��0
𝜏n

b(s,Xs)dXs −
1
2�0

𝜏n
|b(s,Xs)|2ds��

21



Moreover note that B is an adapted function of X (by the SDE) so B=Φ(X)whereΦ:𝒞n→𝒞n is some
measurable and adapted functional (recall that 𝒞n=C(ℝ+;ℝn)). We write also 𝜏n=�̃�n(X) to stress
that it is a given measurable function �̃�n:𝒞n→ℝ+∪{+∞} of X . Therefore

𝔼ℙ[1(X,B)∈AT1T⩽𝜏n]=𝔼ℚn�1(X,Φ(X))∈AT1T⩽�̃�n(X)exp��0
�̃�n(X)

b(s,Xs)dXs −
1
2�0

�̃�n(X)
|b(s,Xs)|2ds��

=𝔼ℚn�1(X,Φ(X))∈AT1T⩽�̃�n(X)𝔼ℚn�exp��
0

�̃�n(X)
b(s,Xs)dXs −

1
2�0

�̃�n(X)
|b(s,Xs)|2ds�|ℱT��

=𝔼ℚn�1(X,Φ(X))∈AT1T⩽�̃�n(X)exp��0
�̃�n(X)∧T

b(s,Xs)dXs −
1
2�0

�̃�n(X)∧T
|b(s,Xs)|2ds��

=�
𝒞n

1(𝜔,Φ(𝜔))∈AT1T⩽�̃�n(𝜔)exp��0
T

b(s,𝜔s)d𝜔s −
1
2�0

T
|b(s,𝜔s)|2ds�𝕎(d𝜔),

where 𝕎 is the law of a ℝn valued Brownian motion (i.e. the Wiener measure). So we proved that
the probabilityℙ((X ,B)∈AT ,T ⩽𝜏n) can be expressed independently of the given weak solution and
therefore if (X 1,B1,ℙ1) and (X 2,B2,ℙ2) are two weak solutions of the SDE then

ℙ1((X 1,B1)∈AT ,T ⩽�̃�n(X 1))=ℙ2((X 2,B2)∈AT ,T ⩽�̃�n(X 2)) (4)

moreover if both these weak solutions satisfy the assumptions on the drift we have that

ℙ1�lim
n
�̃�n(X 1)=∞�=ℙ2�lim

n
�̃�n(X 2)=∞�=1

we can take the limit n→∞ in (4) and conclude that for any T ⩾0 and AT given as above we have

ℙ1((X 1,B1)∈AT)=ℙ2((X 2,B2)∈AT)

which implies uniqueness in law since we can also take T→∞ to have that

ℙ1((X 1,B1)∈A)=ℙ2((X 2,B2)∈A)

for any A∈ℬ(𝒞n×𝒞n).
So we proved that

Theorem 21. The SDE inℝn

dXt=b(t,Xt)dt+dBt, t⩾0

where b:ℝ+×ℝn→ℝn is a measurable time-dependent vector field has uniquess in law in the class
of weak solutions which satisfy

�
0

T
|b(s,Xs)|2ds<+∞, a.s. for all T ⩾0. (5)

In particular, if b is bounded then we have (unconditional) uniqueness in law for the SDE.

Remark 22. The conclusion of Theorem 21 regarding unconditional uniquess also covers the case
of drifts with linear growth (which, combined with Theorem 20, provides a complete result on weak
existence and uniqueness in law for the SDE in this case).
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We can in fact prove much more: if X is a solution to the SDE, then

|Xt|⩽|x0|+�
0

t
|b(s,Xs)| ds+ |Bt|

⩽|x0|+Ct+C�
0

t
|Xs| ds+|Bt|

⩽C�
0

t
|Xs| ds+�|x0|+CT + sup

t∈[0,T ]
|Bt|� ∀t∈[0,T]

An application of Grönwall's lemma then allows to deduce the pathwise estimate (namely valid for
a.e. fixed 𝜔∈Ω)

sup
t∈[0,T ]

|Xt(𝜔)|⩽eCT�|x0|+CT + sup
t∈[0,T ]

|Bt(𝜔)|� ∀T >0.

Since for any p∈[1,∞) it holds𝔼[supt∈[0,T ] |Bt|p]<∞ (e.g. apply Doob's inequality, or the reflection
principle), we conclude that

𝔼� sup
t∈[0,T ]

|Xt|p�<∞ ∀T <∞, p∈[1,∞)

which in particular implies a.s. finiteness of ∫0
T |b(s,Xs)|2ds (and a lot more).

Exercise 4. Prove that, under the conditions of Theorem 21, the unique weak solution X is a Markov process.

Remark 23. The proof of Theorem 21 works also if b:ℝ+×𝒞n→ℝn such that (b(t,Xt))t⩾0 is adapted
to the filtration generated by X . In this more general context the solution of the SDE it not a Markov
process anymore.

Remark that from the proof we have the representation formula

𝔼ℙ[1(X,B)∈AT1T⩽𝜏n]=�𝒞n
1(𝜔,Φ(𝜔))∈AT1T⩽�̃�n(𝜔)exp��0

T
b(s,𝜔s)d𝜔s −

1
2�0

T
|b(s,𝜔s)|2ds�𝕎(d𝜔)

Recalling that the exponential term is integrable (it holds 𝔼[E(L)T]⩽1, since E(L) is a supermartin-
gale), we can take by dominated convergence the limit n→∞ and obtain that

ℙ((X ,B)∈AT)=�
𝒞n

1(𝜔,Φ(𝜔))∈ATexp��0
T

b(s,𝜔s)d𝜔s −
1
2�0

T
|b(s,𝜔s)|2ds�𝕎(d𝜔).

In particular one has the explicit representation formula (path integral formula)

ℙ(X ∈AT)=�
𝒞n

1𝜔∈ATexp��0
T
⟨b(s,𝜔s),d𝜔s⟩ℝn − 12�0

T
|b(s,𝜔s)|ℝn

2 ds�𝕎(d𝜔) (6)

for any AT∈𝜎(𝜔t: t∈[0,T])⊆ℬ(𝒞n).

It could be tempting to try to use the formula (6) to simulate a diffusion, indeed by Monte-Carlo
methods one could take independent samples (B(k))k∈ℕ of a Brownian motion and observe that by the
law of large numbers one has

ℙ(X ∈AT)= lim
N→∞

1
N�

k=1

N

1B(k)∈ATexp��0
T
⟨b(s,Bs

(k)), dBs
(k)⟩ℝn − 12�0

T
|b(s,Bs

(k))|ℝn
2 ds�

23



the appeal of this method would be that it is very easy to simulate an (approximate) Brownian motion
(i.e. via the Levy construction). Unfortunately is not easy to have a robust approximation of the
stochastic integral in the exponent: i.e. if one try to replace it by Riemann sums then the resulting
object converge very slowly to its “real value” and moreover it show very wild oscillations due to
the fact that the exponential function “amplifies” very large positive fluctuations of its argument (all
these problems are “similar” or “of the same nature” of the subtleties related to the integrability of the
stochastic exponential ℰ(L)).

A particular situation which is quite nice is when b(x)=−∇V(x) with a sufficiently smooth function
V . Indeed in this case we have, by Ito formula on the canonical space𝒞n with the Wiener measure𝕎:

V(𝜔T)=V(𝜔0)+�0
T
∇V(𝜔s)d𝜔s+

1
2�0

T
ΔV(𝜔s)ds

provided V ∈C2(ℝn) so that by “integrating by parts” we have

exp��
0

T
⟨b(𝜔s), d𝜔s⟩ℝn − 12�0

T
|b(𝜔s)|ℝn

2 ds�=exp�−�
0

T
∇V(𝜔s)d𝜔s −

1
2�0

T
|∇V(s,𝜔s)|2ds�

=exp�V(𝜔0)−V(𝜔T)−
1
2�0

T
(|∇V(𝜔s)|2−ΔV(𝜔s))ds�=Φ(𝜔)

and the stochastic integral disappear from the exponent. This make the numerical method more stable
since now the functional Φ:𝒞n→ℝ+ is easily seen to be continuous in the uniform topology on𝒞n.

The formula

ℙ(X ∈AT)=�
𝒞n

1𝜔∈ATexp�V(𝜔0)−V(𝜔T)−
1
2�0

T
(|∇V(𝜔s)|2−ΔV(𝜔s))ds�𝕎(d𝜔)

can be also used to understand other properties of the solutions X of the SDE. Take for example X0=x
(call ℙx the law of the associated solution to the SDE) and f :ℝn→ℝ and observe that

𝔼x( f (XT))=�
𝒞n

f (𝜔T)exp�V(𝜔0)−V(𝜔T)−
1
2�0

T
(|∇V(𝜔s)|2−ΔV(𝜔s))ds�𝕎x(d𝜔)

where 𝕎x is the Wiener measure starting from x, i.e. with 𝜔0= x almost surely. So we can express
the transition kernel P of the time-homogeneous markov process (Xt) as

(PTf )(x)=𝔼x( f (XT))=�
𝒞n

f (𝜔T)exp�V(𝜔0)−V(𝜔T)−
1
2�0

T
(|∇V(𝜔s)|2−ΔV(𝜔s))ds�𝕎x(d𝜔).

|(PTf )(x)|⩽‖ fe−V‖∞eV (x) exp�−12�0
T
inf

x∈ℝn
(|∇V(x)|2−ΔV(x))ds�.
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So for example, if infx∈ℝn (|∇V(x)|2−ΔV(x))⩾2𝛼>0 then we have the exponential decay

e−V (x)|(PTf )(x)|⩽e−𝛼T‖ fe−V‖∞,

in other words

‖e−V (PTf )‖∞⩽ e−𝛼T‖ fe−V‖∞.

Exercise 5. Using the path-integral formula show that for any two bounded functions f , g and under appropriate
conditions on V :

� (PTf )(x)g(x)e−2V(x)dx=� f (x)(PTg)(x)e−2V(x)dx

which shows that PT is symmetric wrt. the measure e−2V(x)dx and taking g=1 show that e−2V(x)dx properly normal-
ized is an invariant measure for the SDE

dXt=−∇V(Xt)dt+dBt,

meaning that if X0 is taken with probability distribution ∝e−2V(x)dx then

𝔼[ f (X0)]=𝔼[ f (XT)],

for all T ⩾0.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Remark on Ex 3 of Sheet 6:

Note the relevant Hilbert space is L2(ℝn) where

� f (x)∇𝛼g(x)dx=� (−∇𝛼) f (x)g(x)dx

so ∇𝛼∗=−∇𝛼

H(A) f = |∇− iA|2 f +Vf =�
𝛼=1

n

(∇𝛼− iA𝛼)∗(∇𝛼− iA𝛼) f +Vf

=�
𝛼=1

n

(−∇𝛼+ iA𝛼)(∇𝛼− iA𝛼) f =�
𝛼=1

n

(−∇𝛼∇𝛼f + i∇𝛼(A𝛼f )+ iA𝛼∇𝛼f +A𝛼2 f )

=−Δ f + i2A ⋅∇ f +(i (∇⋅A)+ |A|2) f

From the rep. formula by using Jensen's inequality and taking 𝜓0⩾0

|(e−H(A)t𝜓0)(x)|⩽ (e−H(0)t𝜓0)(x)

𝜓(t,x)=�
n⩾0

e−Ent⟨𝜑n,𝜓0⟩𝜑n(x)=e−E0t⟨𝜑0,𝜓0⟩𝜑0(x)+e−E0t�
n

e−(En−E0)t⟨𝜑n,𝜓0⟩𝜑n(x)
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Suggestion: take 𝜓0 to be the lowest eigenfunction of either H(A) or H(0).

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

10 Ito–Tanaka formula and local times of semimartingales

We want to extend Ito formula to functions which are not C2.

Let X be a (one-dimensional) semimartingale and f :ℝ→ℝ a convex function.

Recall that for f convex there always exists f−′ (the derivative from the left) and it is an increasing
function.

Let 𝜌∈C∞(ℝ) which is compactly supported on {x<0}, for example in (−1,0) and define

fn(x)≔n�𝜌(ny) f (x+y)dy

which is a smooth function such that fn→ f pointwise and for which fn′(x)↗ f−′(x). By Ito formula

fn(Xt)= fn(X0)+�
0

t
fn′(Xs)dXs+

1
2At

fn

with At
fn≔∫0

t fn′′(Xs)d[X]s a continuous, increasing process. Eventually by using stopping times we
can localize the problem so that f−′ is bounded, morover we note that by Doob's inequality we have
(where X =M+V is the decomposition of the semimartingale)

𝔼[[[[[[[[[[ supt∈[0,T ]
��
0

t
( fn′(Xs)− f−′(Xs))dMs�

2]]]]]]]]]]≲𝔼���0
T
( fn′(Xs)− f−′(Xs))dMs�

2�

≲𝔼��
0

T
( fn′(Xs)− f−′(Xs))2d[M]s�→0

by dominated convergence (again maybe put a stopping time to guarantee boundedness). This shows
that in probability and uniformly on compact sets (in t)

�
0

t
fn′(Xs)dMs→�

0

t
f−′(Xs)dMs.
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On the hand, always by dominated convergence (decomposing the finite measure dVs into positive and
negative parts)

�
0

t
fn′(Xs)dVs→�

0

t
f−′(Xs)dVs.

We can conclude that we have the following lemma

Lemma 24. If X is a continuous semimartingale and f a convex function, then there exists a contin-
uous increasing process (At

f)t such that

f (Xt)= f (X0)+�
0

t
f−′(Xs)dXs+

1
2At

f , t⩾0.

We now can take f (x) nice and simple convex functions like |x−a|, (x−a)± where (x)+=(x∧0) and
(x)−≔(−x)+. As a corollary of the previous lemma we then have

Theorem 25. (Tanaka's formula) For any a∈ℝ there exists a continuous increasing process (Lt
a)t⩾0

such that

|Xt −a|= |X0−a|+�
0

t
sgn(Xs −a)dXs+Lt

a

(Xt −a)+=(X0−a)++�
0

t
1Xs>adXs+

1
2Lt

a

(Xt −a)−=(X0−a)− −�
0

t
1Xs⩽adXs+

1
2Lt

a

where sgn(x)=1x>0−1x⩽0.

Remark 26. This proves in particular that |Xt −a|, (Xt −a)± are semimartingales. The process (Lt
a)t⩾0

it is called the local time of X at a.

Proof. Each of the formulas derives from the previous lemma by computing the left derivative of the
various convex functions. The missing point is to identify the various increasing processes Asgn(x−a),
A(x−a)+,A(x−a)−. Note that

Xt −a=(Xt −a)+− (Xt −a)−=X0−a+�
0

t
(1Xs>a+1Xs⩽a)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=1

dXs+
1
2(At

(x−a)+− At
(x−a)−)

so we have

0=Xt −X0−�
0

t
dXs=

1
2(At

(x−a)+− At
(x−a)−)⇒At

(x−a)+=At
(x−a)− ≔Lt

a.
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Moreover

|Xt −a|= (Xt −a)++(Xt −a)−+�0
t
(1Xs>a −1Xs⩽a)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=sgn(Xs−a)

dXs+
1
2(At

(x−a)++At
(x−a)−)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

Lt
a

□

The increasing process (Lt
a)t⩾0 is associated with a measure dLt

a on ℝ+ (times) which represents the
time the process X “spent” in a up to time t. We are going to make this precise in the following.

By Ito formula wrt. the semimartingale (|Xt −a|)t⩾0 (with X =M+V)

(Xt −a)2=(|Xt −a|)2=(|X0−a|)2+2�
0

t
|Xs −a|sgn(Xs −a)dXs+2�

0

t
|Xs −a|dLs

a+[|X⋅−a|]t

=(X0−a)2+2�
0

t
(Xs −a)dXs+2�

0

t
|Xs −a|dLs

a+�
0

t
sgn(Xs −a)2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=1

d[M]s

And by comparing with the standard Ito formula

(Xt −a)2=(X0−a)2+2�
0

t
(Xs −a)dXs+[X]t�

=[M]t

we conclude that

�
0

t
|Xs −a|dLs

a=0, t⩾0

which proves that the measure (dLs
a)s⩾0 is supported in the (random) set {s∈ℝ:Xs=a} of times. The

process La increases only when the process X visits a (in general this will be a “fractal-like” and with
zero Lebesgue measure).

For Brownian motion is it true (we will not prove it) that the set {s∈ℝ:Xs=a} is the support of the
measure (Lt

a)t⩾0.

Theorem 27. (Ito–Tanaka formula) If f is the difference of two convex functions and X a continuous
semimartingale, then

f (Xt)= f (X0)+�
0

t
f−′(Xs)dXs+

1
2�ℝ Lt

a f ′′(da)

and in particular ( f (Xt))t⩾0 is a semimartingale.

In this formula f ′′(da) denotes the measure associated to the second derivative of a convex function
(and therefore of a difference of two convex functions, by linearity).
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Recall that for any convex function f we have the formula

f (x)=𝛼+𝛽x+ 12� |x−a| f ′′(da), x∈ℝ

and

f−′(x)=𝛽+
1
2� sgn(x−a) f ′′(da), x∈ℝ

for some𝛼,𝛽∈ℝ and f ′′(da) is the measure associated to the increasing function ( f−′(x))x∈ℝ (convex
functions are those functions whose second distributional derivative is a positive Radon measure).

The idea is that

d
dx |x−a|=2𝛿(x−a)

which justify intuitively the 1/2 in the formula.

Proof. We can write

f (Xt)=𝛼+𝛽Xt+
1
2� |Xt −a| f ′′(da)

by Tanaka's formula

f (Xt)=𝛼+𝛽X0+𝛽�
0
dXs+

1
2� |X0−a| f ′′(da)+ 12���0

t
sgn(Xs −a)dXs� f ′′(da)

+12�Lt
a f ′′(da)

Note that this computation makes sense since the stochastic integral ∫0
t sgn(Xs −a)dXs is a measurable

function of a, more precisely (see the relevant exercise in Sheet 7) the function

(a, t,𝜔)↦��
0

t
sgn(Xs −a)dXs�(𝜔)

is a measurable function onℬ(ℝ)⊗𝒫 (𝒫 is the previsible 𝜎 field onℝ+×Ω) and also a (stochastic)
Fubini theorem applies so that

���
0

t
sgn(Xs −a)dXs� f ′′(da)=�

0

t
�� sgn(Xs −a) f ′′(da)�dXs

Moreover we note that

𝛽�
0

t
dXs+

1
2�0

t
�� sgn(Xs −a) f ′′(da)�dXs=�

0

t
f−′(Xs)dXs

which completes the proof. □
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Corollary 28. (Occupation-time formula) There is a ℙ-negligible set 𝒩 outside which for any t⩾0
and any positive Borel function g:ℝ→ℝ+ we have

�
0

t
g(Xs)d[X]s=�

ℝ
g(a)Lt

ada.

Remark 29. The measure d[X]s can be understood as some “intrinsic” time of the semimartingale.
In particular, for Brownian motion X we have d[X]s= ds and if we take g(x) =1x∈A for some set
A∈ℬ(ℝ) we have

Leb({s∈[0, t]:Xs∈A})=�
0

t
1Xs∈Ads=�

A
Lt

ada.

In this sense Lt
ada represents the time spent by X in the infinitesimal neighborhood a±da.

Proof. For any g:ℝ→ℝ+we can find a convex function f such that f ′′=g, i.e. we can take f ′′(da)=
g(a)da in the formula above. By Tanaka's formula we then have

f (Xt)= f (X0)+�
0

t
f−′(Xs)dXs+

1
2�ℝ g(a)Lt

ada. ℙ−a.s.

Take a countable family (gn)n⩾0 of compactly supported continuous functions which is dense in C0(ℝ)
and consider now fn so that fn′′ = gn, note that fn∈C2 and fn,−′ = fn,+′ = fn′. I have now both Ito-
Tanaka's formula and Ito formula (note that fn is the difference of two convex functions)

fn(Xt)= fn(X0)+�
0

t
fn′(Xs)dXs+

1
2�0

t
gn(Xs)d[X]s. ℙ−a.s.

So by comparing these two formulas we have

ℓt(gn)≔�
ℝ

gn(a)Lt
ada=�

0

t
gn(Xs)d[X]s. ℙ−a.s.

This equality holds a.s. for any gn and one can choose a ℙ-negligible set 𝒩 such that the equalities
holds simultaneously for all n and all t⩾0 (since the quantity ℓt(gn) is continuous in time and therefore
can be detemined by looking to a dense set of times (tk)k).

One note now that for any t⩾0, the functional ℓt is a positive linear functional on C0(ℝ) which is
continuous in the uniform norm on C0(ℝ) so can be extended by continuity to all functions in C0(ℝ)
and by a monotone class argument to all Borel positive functions. □

Thursday no lecture.
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Next lecture on tuesday: we prove that a↦Lt
a is cadlag and that there is a formula of the form

Lt
a=lim

𝜀↓0

1
𝜀�0

t
1Xs∈(a,a+𝜀)d[X]s

and for X a martingale

Lt
a=lim

𝜀↓0

1
2𝜀�0

t
1Xs∈(a−𝜀,a+𝜀)d[X]s.

We continue to discuss some properties of local time of Brownian motion and reflected Brownian
motion.

11 Regularity of local times and reflected Brownian motion,
Takana's SDE

We want to look at a↦Lt
a where Lt

a is the local time in a of a semimartingale X .

Recall the occupation time formula

�
0

t
𝜑(Xt)d[X]t=�

ℝ
𝜑(x)Lt

xdx

for all t⩾0 and 𝜑:ℝ→ℝ+ positive bounded Borel function.

Remark 30. Note that using this formula one can prove that Ito formula extends to any f such that
f ′′ is locally integrable with respect to the Lebesgue measure, i.e.

f (Xt)= f (X0)+�0
t
f ′(Xs)dXs+

1
2�ℝ f ′′(x)Lt

xdx

Observe that

f ′(x)− f ′(y)=�
x

y
f ′′(z)dz

so f ′ is of bounded variation and, by dominated convergence, continuous.

So far we know only that a↦Lt
a is measurable in a. Denote X =M+V

Tanaka's formula give

Lt
a=2�(Xt −a)+−(X0−a)+−�

0

t
1Xs>adMs −�

0

t
1Xs>adVs�

Define

M̂t
a≔�

0

t
1Xs>adMs
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We want to apply Kolmogorov's continuity theorem to a∈ℝ↦(M̂t
a)t∈[0,T ]∈C([0, T];ℝ) seen as

a random variable with values on CT =C([0,T];ℝ) with norm ‖ f ‖CT =supt∈[0,T ] ‖ f (t)‖. Recall that
Kolmogorov's continuity theorem states that a stochastic process Y :ℝ→ℬ has a continuous version
if

𝔼‖Y(a)−Y(b)‖ℬ
p ⩽CL|a−b|1+c

for some p,c>0 and a,b∈[0,L] for all L with some finite CL. Moreover a consequence of the theorem
is alos that the process Y can be chosen to be locally Hölder continuous with index 𝛾∈ (0, c/p),
namely for any L>0

‖Y(a)(𝜔)−Y(b)(𝜔)‖ℬ⩽KL(𝜔)|a−b|𝛾, a,b∈[0,L]

almost surely.

In our case we takeℬ=CT and then we need to estimate for some p⩾2

𝔼[ sup
t∈[0,T ]

|M̂t
a − M̂t

b|p]

By Burkholder-David-Gundy (BDG) inequality, (see next exercise sheet) take b>a,

𝔼[ sup
t∈[0,T ]

|M̂t
a −M̂t

b|p]⩽Cp𝔼[[M̂ a −M̂ b]T
p/2]

⩽Cp𝔼���0
T
(1Xs>a −1Xs>b)2d[M]s�

p/2�

by occupation time formula

≲Cp𝔼���
a

b
LT

xdx�p/2�

by Jensen's inequality

≲Cp(b−a)p/2𝔼��
a

b
(LT

x )p/2 dx
b−a�≲p (b−a)p/2sup

x∈ℝ
𝔼[(LT

x )p/2].

In order to show that supx∈ℝ𝔼[(LT
x )p/2] is finite we observe that since

|(XT −a)+− (X0−a)+|⩽ |XT −X0|

𝔼[(LT
x )p/2]=𝔼��2�(XT −a)+− (X0−a)+−�

0

T
1Xs>adMs −�

0

T
1Xs>adVs��

p/2�

≲p𝔼[|XT −X0|p/2]+𝔼���
0

T
1Xs>adMs�

p/2�+𝔼���
0

T
1Xs>adVs�

p/2�

≲p𝔼[|XT −X0|p/2]+𝔼[|[M]T |p/4]+𝔼���
0

T
|dVs|�

p/2�=LT
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this shows that supx∈ℝ𝔼[(LT
x )p/2] is finite provided LT is finite. In this case Kolmogorov's continuity

criterion tells us that a↦ M̂t
a is continuous in a uniformly in t. If the quantity LT is not finite, then

we introduce a suitable sequence of stopping times (Tn)n, Tn→∞ and look at that stopped martingale
(M̂t

a)tTn. For example take

Tn=inf{{{{{{{{{{{{{{{{{{{{t⩾0: sups∈[0,t]
|Xs −X0|+ [M]t+�

0

t
|dVs|⩾n}}}}}}}}}}}}}}}}}}}}

so that we now know that (t,a)↦(M̂t
a)Tn is continuous in both variables and then taking the limit as

n→∞ we deduce that (t,a)↦M̂t
a is also continuous in both variables since Tn→∞ almost surely.

Actually from this proof one could also deduce that the process a↦ M̂t
a for fixed t is locally Hölder

continuous for any 𝛾<1/2, i.e.

sup
t∈[0,T ]

|M̂t
a −M̂t

b|⩽CL(𝜔)|b−a|𝛾, a,b∈[0,L].

holds almost surely for some random constant CL which can be taken to be

CL(𝜔)=CL
NT(𝜔)

where NT≔infn⩾0 {n:Tn>T} where CL
NT(𝜔) is the constant appearing in the bound

sup
t∈[0,Tn]

|M̂t
a − M̂t

b|⩽CL
n(𝜔)|b−a|𝛾, a,b∈[0,L]

which holds for any n⩾0 by considering the stopped process.

As far as ∫0
t
1Xs>adVs is concerned we have letting

V̂t
a≔�

0

t
1Xs>adVs

and using dominated convergence

V̂t
a+=lim

b↘a
V̂t

b=�
0

t
1Xs>adVs= V̂t

a

since limb↘a1Xs>b=1Xs>a. However we have limb↗a1Xs>b=1Xs⩾a so

V̂t
a−=lim

b↗a
V̂t

b=�
0

t
1Xs⩾adVs≠ V̂t

a

So the process a↦ V̂t
a is almost surely cadlag. Additionally

V̂t
a− − V̂t

a=�
0

t
1Xs=adVs=�

0

t
1Xs=adXs
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since by the occupation time formula and Ito isometry, we have ∫0
t
1Xs=adMs=0, since

��
0

⋅
1Xs=adMs�

T
=�

0

T
1Xs=ad[M]s=�

0

T
1Xs=ad[X]s=�

ℝ
1x=aLT

xdx=0

almost surely. Putting all together we have proven the following theorem

Theorem 31. For any continuous semimartingale X there exists a modification of the local time
process (Lt

a)t,a which is continuous in t and cadlag in a and moreover we have

Lt
a −Lt

a−=2�
0

t
1Xs=adXs=2�

0

t
1Xs=adVs.

In particular, if X is a local martingale then the local time has bicontinuous version.

Corollary 32. If X is a continuous semimartingale then

Lt
a=lim

𝜀↓0

1
𝜀�0

t
1Xs∈[a,a+𝜀[d[X]s

and if X is a martingale

Lt
a=lim

𝜀↓0

1
2𝜀�0

t
1Xs∈]a−𝜀,a+𝜀[d[X]s

Proof. Just use the occupation time formula and the continuity from the right of local times. □

Remark 33. For Brownian motion this implies that Lt
0 is measurable with respect to the filtrationℱ |B|

generated by |B| since 1Bs∈]−𝜀,+𝜀[=1|Bs|<𝜀 ∈̂ℱ |B| and [B]s= s and

Lt
0=lim

𝜀↓0

1
2𝜀�0

t
1|Bs|<𝜀ds.

12 Brownian motion and local time

Let B be a one dimensional Brownian motion. By Ito–Tanaka formula we have

|Bt|= |B0|+�
0

t
sgn(Bs)dBs+Lt (7)

where we let Lt to be the local time in zero of B. Is not important in this case to specify which version
of the sign it is used since by the occupation time formula

��
0

⋅
1Bs=0dBs�

T
=�

0

T
1Bs=0ds=�ℝ 1x=0LT

xdx=0.
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We want to show next that Rt= |Bt| is an interesting process which satisfies a reflected SDE and
is called the reflected Brownian motion, this will make link also with another process which is the
maximum of the Brownian motion

St≔sup
s⩽t

Bs

St

Bt

t

Take again

Rt= |Bt|=�
0

t
sgn(Bs)dBs+Lt

and define

𝛽t≔�
0

t
sgn−1(Bs)dBs

where we denote sgna the signum function which satisfy sgna(0) = a . Note that sgn−1 is the left
derivative of the absolute value.

Observe by Lévy characterisation that 𝛽 is a Brownian motion, indeed [𝛽]t=∫0
t sgn−1(Bs)2d[B]s=

[B]t= t, moreover

�
0

t
sgn0(Bs)d𝛽s=�

0

t
sgn0(Bs)sgn−1(Bs)dBs=�

0

t
sgn0(Bs)2dBs=Bt −�

0

t
1Bs=0dBs||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=0

=Bt

since using the local time of B I have [∫0
⋅
1Bs=0dBs]∞=0.

The first observation out of this computation is that (B,𝛽) is a weak solution of the SDE

dBt=sgn0(Bt)d𝛽t,
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this is called Tanaka's SDE. So we have proven weak existence for this equation. This solution is
unique in law (obviously) since any solution will be such that B is a Brownian motion. However this
SDE do not have strong solutions. Indeed if (X ,W) is a strong solution (starting in X0=0), we have

dXt=sgn0(Xt)dWt,

and X is a Brownian motion, moreover

�
0

t
sgn0(Xt)dXt=�

0

t
sgn0(Xt)2dWt=Wt −�

0

t
1Xs=0dWs=Wt

since [∫0
⋅
1Xs=0dWs]T =∫0

T
1Xs=0ds=0. By Ito-Tanaka's formula

|Xt|=�0
t
sgn−1(Xs)dXs+Lt

X,0

where Lt
X,0 is the local time of X in 0, and this shows that

Wt=�
0

t
sgn0(Xt)dXt=�

0

t
sgn−1(Xs)dXs= |Xt|−Lt

X,0

and recalling that we have (since X is a martingale)

Lt
X,0=lim

𝜀↓0

1
2𝜀�0

t
1|Xs|<𝜀ds,

which implies that W is measurable wrt. the filtration generated by |X |. If we had a strong solution
then we would have that ℱt

X⊆ℱt
W⊆ℱt

|X | which is not possible because you cannot recover the sign
of a Brownian motion only knowing its absolute value.

So there are no strong solution and a consequence there is no pathwise uniqueness (by
Yamada–Watanabe).

Exercise 6. Prove that if B is a Brownian motion, then we have the relation Lt
|B|,0=2Lt

B,0.

We go back to the equation

Rt= |Bt|=�
0

t
sgn−1(Bs)dBs||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

𝛽t

+Lt

we want to show that in this equation both R,L are functions of the Brownian motion 𝛽t which we
think as given, according to the following definition

36



Definition 34. (Reflected SDE) The family (X ,ℓ ,W) is a weak solution of the one dimensional reflected
SDE

dXt=dWt+dℓt

if W is a Brownian motion, ℓ a continuous positive non-decreasing process and X a continuous posi-
tive process such that

�
0

∞
1Xs>0dℓs=0.

The solution is strong if (X ,ℓ) is adapted to the noise W.

Therefore (R,L,𝛽) is a weak solution of this reflected SDE. We will need the followin analysis lemma
(we useℝ+=ℝ⩾0)

Lemma 35. (Skorokhod lemma) Let y∈C(ℝ+;ℝ) such that y(0)⩾0. There exists a unique pair (z,a)
with z∈C(ℝ+;ℝ+) and a∈C(ℝ+;ℝ+) with a non-decreasing, a(0)=0, such that

a) zt=yt+at

b) ∫0
∞
1zs>0das=0.

Moreover

a(t)= sup
s∈[0,t]

(ys)−= sup
s∈[0,t]

(−ys∨0). (8)

at

−ys

t

zt

Proof. Exercise prove that if we let a as in eq. (8) then a),b) are satisfied, this settles the existence
part. As for uniqueness we assume that both (z,a) and (z′,a′) are two solutions of this problem. Then
yt= zt −at= zt′−at′ so we have zt − zt′=at −at′ so ht= zt − zt′ is of bounded variation (as a difference of
two increasing functions) and we can write (by Ito formula)

d(zt −zt′)2=2�
0

t
(zs −zs′)d(zs −zs′)=2�

0

t
(zs − zs′)d(as −as′)=2�

0

t
(zs −zs′)das −2�

0

t
(zs − zs′)das′

=2�
0

t
(−zs′)das −2�

0

t
(zs)das′⩽0
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where we used that ∫0
t zsdas=∫0

t zs′das′=0 and that zs, zs′⩾0. So ht
2⩾0 is decreasing and since h0=0

we have that ht=0 for any t. This establish uniqueness. □

As a consequence of this lemma we have that the reflected SDE has a unique solution in law (and
pathwise) which is given therefore by

ℓt= sup
s∈[0,t]

(−Ws)+= sup
s∈[0,t]

(−Ws)=St
−W Xt=Wt+ℓt

where we note St
W=sups⩽tWt and the solution is strong.

Definition 36. We call the process X the reflected Brownian motion

We deduce as a consequence that if we consider

Rt= |Bt|=�
0

t
sgn−1(Bs)dBs||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

𝛽t

+Lt

then we have

Lt= sup
s∈[0,t]

(−𝛽s)+= sup
s∈[0,t]

(−𝛽s)=St
−𝛽.

From this we deduce

Theorem 37.

Law(|B|,L)=Law(𝛽+L,L)=Law(𝛽+S−𝛽,S−𝛽)=Law(SW −W ,SW)

where W here is a generic Brownian motion. This formula allows to compute the joint law of the
supremum SW of a Brownian motion W together with the Brownian motion, in terms of the law of the
reflected Brownian motion R.

Remark 38. Some of the utility of this relation come from the fact that it implies that

Law(|Bt|,Lt)=Law(St
W −Wt,St

W)

and that by the reflection principle one can compute explicitly the law Law(St
W −Wt,St

W), or moreover
that

Law(|B|)=Law(SW −W)

which given informations on the supremum SW in terms of the modulus of another Brownian motion.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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