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Introduction

In  this paper, we shall discuss the uniqueness problem for solutions

o f stochastic differential equations.

The theory o f  stochastic differential equations, as is well known,

was developed mainly by Ito and furnishes a  very  important tool of

constructing diffusion processes. Skorohod [4] showed the existence of

solutions under the condition that coefficients are only continuous and

then, the problem of the uniqueness of solutions becomes important. In

order to define a diffusion process through a solution of the stochastic

differential equation, it is sufficient to verify th e  uniqueness in the

sense o f th e  probability  law  of solutions. It may be needless to say

that there are many means to verify it ;  in  analytic way, through the

theory o f differential equations (cf. Stroock-Varadhan [5 1)  and in proba-

bilistic way through several transformations such as time change or the

change of drift.

Here, we shall study mainly the pathwise uniqueness of solutions.

I n  Ito's classical theory where the coefficients are assumed to be

Lipschitz continuous, th e  pathwise uniqueness holds and the solution

can be constructed on a given Brownian motion through successive ap-

proximation. T h e  uniqueness in  th e  sense o f th e  probability law is

obvious in  this case. There are several examples where Ito's theory
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can not apply yet we can prove th e  pathwise uniqueness. Such ex-

amples were given by Skorohod II] and Tanaka [61 We will improve

their results below. As we shall see, the pathwise uniqueness generally

implies th e  uniqueness in  th e  sense o f th e  probability law and  thus,
the solution defines a unique diffusion process. In this w ay, we have
some examples (besides the Ito's case) of constructing diffusion processes
through solutions of stochastic differential equations by verifying the
pathwise uniqueness. Other construction of such processes seems to be

much more difficult.

Let 6(x )= (6 ii ( x ) )  and b(x)-=(b i (x )), j =  1, 2, n, be defined on
,  Borel measurable in  x  such that 6  is an  n X n-matrix and b is an

n xl-matrix.* 1 ) W e consider the following Ito's stochastic differential
equation;

(1.1) dx, -=6(x,) dB, b (x,) dt

or in  component wise,

(1.1)' dxf = E ol(xi ) dB1+ bi (x,) dt, i =1, 2, n.

A  presice formulation is  as follows; by a  probability space (2 , P)
with a n  increasing family of Borel fields .F t , which is denoted as

P; .F ,), we mean a  probability space (Q, P )  with a  system

{ , Fi}teLo,..) of sub-Borel fields of such that ..F t C i f  t <s .

Definition 1 .  By a so lution of the equation (1.1), we mean a
probability space with a n  increasing family of Borel fields (2, P;
.97 , )  an d  a  family o f stochastic processes X= ix t = (x l,  x ,  • x 7 ) ,  B,
=(Bi, .14, • B 7 ) }  defined on it such that

*1) For the sake o f  simplicity, we consider the case when the coefficients are
independent o f  t  (i.e. temporally homogeneous case) but a ll the arguments below
remain valid when the coefficients are time dependent, i.e. the case when u = a (t, x )
and b=b(t, x ).
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(i) with probability one, x t a n d  B t a r e  continuous in  t  and

B 0 =0,

(ii) they are adapted to ..F t, i.e., for each t ,  x t and B t are .97r

measurable,

(iii) B t is  a system of .9- 1-martingales such that

<B i, HI> t =6,7 .t,j , j=1 , 2, ,  n , * 2 )

(iv) Br} satisfies

(1.1)" xt—  x0=S
o
6(x /3-Fs ) d ,

o
b(x s ) ds

where the integral by dB , is understood in the sense of the stochastic
integral.

Remark 1. As is well known (e.g. D I, B t is  an n-dimensional

Brownian motion such that B t — B , and 3, 7
 s are independent (t > s).

Now we shall introduce several notions of the uniqueness for solu-

tions o f (1.1).

Definitions 2. (Pat hw ise  uniqueness) W e sha ll say that the

pathwise uniqueness holds for (1.1) if, for any two solutions I=  (x t,

and = (x ;, B p  defined on  a  same probability space (2, P; ,F t ),

x o = x i;  and  .131 = B ; imply x t -=---. x it .

When 6  and b  are Lipschitz continuous, then, as is well known

by Ito's theory, the pathwise uniqueness holds and x t is constructed on

arbitrarily given Brownian motion B t a s  a  measurable function of x o

and B t .
On the other hand, Skorohod [4] proved the existence of solutions

in the sense o f Def. 1 for arbitrarily given distribution of x 0 , when 6

*2) <1 3 1 ,  g i> ,  i s  a  continuous bounded variation process such that Bl.131
— <11t, 13.1 >  is an F t -martingale, ([3]).
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and b  are only continuous and, in such a  general case, the existence

and the uniqueness need to be discussed separately.

Definition 3 .  ( Uniqueness in  th e  se n se  o f  the probability law)
W e  shall say that the uniqueness in  the sense of the probability law

holds for (1.1) if, for any two solutions 1= (x t , B t )  and X' =(x ;, B ;)* 3 )

such that x o = x  and x o' -= x  (a.s.) for some x E R ", the probability law

of the processes x t and x ;  on the space { W , g(FV )}  coincides, where

W is the Fréchet space o f all R n -valued continuous functions on [0, co)

with the compact uniform topology and a ( w7) is the topological Borel

field on W.

Stroock-Varadhan [5] proved the existence and the uniqueness in

the sense of the probability law of solutions o f (1.1) when 6  is bounded

continuous and uniformly elliptic and b  is bounded and measurable.

Remark 2 .  A solution of (1.1) can be defined in a resticted sense

as follows ; le t  YC IV :  b y  a Y-solution of (1.1), we mean a solution

o f (1.1) such that P[x . (co)E Y1= 1 .  Th e uniqueness (Definitions 2
and 3) is defined in  th e same way and all the propositions and corol-

laries below remain valid for Y-solutions.

Proposition 1. The pathw ise uniqueness im plies the  uniqueness
in  the sense of the probability  law.

P ro o f. L e t  X =(x t , B t ) and 3E'= ( x ;,  B ;)  b e  tw o  solutions of

(1.1), (which may be defined on different probability spaces) such that

x o --= x  and 4 =  x  ( a . s . ) .  L e t  W  be defined a s  in  D ef. 3  and let

P(dw i  dw2) and / ) / (dwi dw2) be the probability law of a n d  o n

the space ( W X  W , ( We X W )) respectively.

Let P w 2 (dw 1 )  be the regular conditional distribution of P (dw i  div2)
given w2; i.e., (i) for each w2 , it is a probability measure on ( W, .q( W )),

* s )  They may be defined o n  different probability spaces.
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(ii )  fo r each  B E W ), Pw 2 (13) i s  a (  W)-measurable i n  w z, (iii) for

an y  B , B 'E W ), P(B  x  B ') =1 R (dw2), where R  is  the prob-

ability law of B t on ( fr, ( W)), i.e., the Wiener measure on ( W, w)).
S im ilarly  P , ( d w i )  is  d efin ed  fo r  P r(dw i  dw2). Define a  probability
measure Q(dwi dw2 dw3) o n  ( Fr- x Wx W, a(wx wx W )), by

(1.2) Q (dwi dw2 dw 3)=P w 3 (d w i)P(d w 2 )R  (dw3).

Let a 1(w) be the B orel algebra generated by w (s), s < t .  a t ( wx W)

and a t ( wx wx W ) are  defined sim ilarly. W e shall show th at 1w3 (t),

.21 ( W x W x W )1 i s  a  system  of martingales w ith  respect to  Q  such
th a t  <1 4 1 4 > f =d t i . t  i.e., w3 i s  a n  n-dimensional Brownian motion
such that w3 (t)— w 3 (s) is independent of a s ( wx wx W ).  For this, we

need the following

Lemma 1. I f  B E at ( P(B )  (P ,,(B ) )  is a t ( W)-measurable
in  w.

P ro o f. L e t  PL ( .)  b e  th e  regular conditional distribution given

a t ( W); ( i)  fo r  each  w , i t  i s  a  probability measure o n  ( W, *To),
( i i ) fo r each B E P V ) ,  PL(B )  i s  at( W)-measurable, ( i i i )  fo r each B

E  ( w), B'E ( W ) ,  P(B  x  B ') ta,(B )R  (dw ). It is sufficient to

p ro ve th at i f  B E a t(  W ) th en  Pw (B) -=  P ( B ) ,  a . s . .  F o r  th is ,  i t  is

enough to show that, i f  F(w ) is  .4 ( W)-measurable and bounded,

1w  . w F (W 2 )  IB (W i )  P(dw i  dw 2 )=Ç F(w ) P(B ) R(dw).

B y  th e  theory of m ultip le W iener in teg ra ls  (D J) o r  b y  a  resu lt in

D i, w e  m a y  assume that

-

F(w2 )=c+ 1
0  

s (w2 ) dw 2 (s) * 4 )

PP.(w2 ) dw2 ,=E  C (w 2 ) d  1 a n d  0,(w ) i s  a  measurable a ,(W)-adapted
o •  '

*4 )

process.
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= c 8(w2) dw2 + s(w2)dw2 a.a.w2(R(dw2)),

where c  is  a constant and the in tegra l b y dw2 is  a  stochastic integral.
S ince (B i , .F , )  i s  a m artingale , i t  i s  c l e a r  t h a t  (wz(t), at( W x  W),
P(dw i  dw 2 ) )  is  a martingale. Now,

F (w 2) 1- b(w 1) P (dw 1w2)w xw

-
=  Cf/ g w i . ) P ( d w i  dw2)-f- Os(w 2) dw 2)/(w i)P(dw i dw2)wx w wxwOt

+ 0 s(W 2) dW 2 ) (WO P ( dW 1 dW 2)
W x W  0

and the second term  is  0  since (w 2 (t), a t(w x Tv)) is  a martingale and
/B(tv i )  is  .2 t ( TV x W )-measurable. Thus, th e  above integral is equal to

c w Pf,(B) R (dw)+
 I IT,(Ç0 s(w) dw) P fv (B ) R (dw )= ,(w )11,(B )R (dw ).

N ow we return to th e proof of the proposition. If F 1 , F2, F 3  are
a s ( W)-measurable bounded functions, then

xW xW 
D44(t)— 11(s)] F i(w 1) F 2(w 2) F 2(w 3) Q (dw (lw 2 dw 3)

= vr [w i (t) — wi (s)10 vvF i(w 1) Pw(dwi))

x (S w F2 (w 2) P (dw2)) F3(w) R (dw).

S in c e  
w

.FI (w i ) P ( d w i )  and 1
w

F 2 (w 2 ) P w' (dw 2)  are . ( W)-measurable in
w  b y the above lemma, the above integral is 0.

Sim ilarly, w e can prove that

W x W 
Cw ,i(t)—  w (s)][w (t)—  iv (s)J—  u (t — s)}

X Fi(w i)F2(w 2)F3(w 3)Q (dwi dw2 dw3)= O.
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Thus we have proved that 1w3(t), at(wx wx Tv), 021 is a  system

of martingales such that <14, t=  w t .  Since (x 1, B 1)  and (w i , w3)

are the equivalent processes and so are  (x ;, B 't )  and (iv2 , w3 ) ,  we have

tw o  solutions (iv', w3) a n d  (1v2, w3) o n  th e  same probability space

( W x W x W , .(W x W  X W ), 4; at(Ivx wx W )).  Since wi (0)= w 2 (0)

= x  a .s . (Q ), th e  pathwise uniqueness implies wi (t)= w 2 (t) a .s . (Q ).

This implies that P(dw i  dw 2) 1) ( (dwi dw2) and hence th e  uniqueness

in  the sense of probability law holds. Another consequence is that, for
a.a. W3 (R(dw 3)),  P  x  3 (w 1 (0 = w 2 ( t ) )=  1  and this implies that there

exists F (w ) such that wi = w2 F(w3). By Lem m a 1 , th e  mapping

w— —> F(w) is R t ( TV)/.4t ( W ) measurable. Thus we have

Corollary 1. I f  th e  pathwise uniqueness holds an d  i f  a solution

(x t , B 1)  exists such that x 0 = x ER, then there exists a function F (w);

w E  W - >  F  (w )E  W  such  tha t it is  . 1 ( W)/.1 1( W)-measurable a n d

x.=F  (B.) a.s..

Remark 3 .  T he uniqueness in  th e  sense of probability law does

not necessarily imply the pathwise uniqueness. The following example

is  due to Tanaka. Let n =1, 6  (x )=  1 for x _._ 0 and = —1 for x < 0,

and b  (x )= . O. The existence of a solution (1.1) is shown in  the fol-

lowing way ; le t B (t )  be a one dimensional Brownian motion and x(0)

be a  real random variable such that they a re  mutually independent.
t

L et x (t) = x (0) + B ( t )  an d  [3(0 --= c,ci" (x (s)) d B  (s ). T h en  1-3  (t )  i s  a

Brownian motion and [x (t ), B (t)1  is clearly a solution. The uniqueness
t

of the probability law is obvious since, for any solution, 
o
t3- (x (s )) dB(s)

is  a  Brownian m otion. The pathwise uniqueness does not hold since,

fo r  x (0) = 0, i f  x  ( t )  is  a so lution then  — x ( t )  is  a lso  a solution.

Similarly, i f  n = 1, 6  (x )= sgn x I x 1'9 , 0 <  8 <  2
1  and  b (x )=  0 , and if

t
solutions are restricted to Y-solutions where Y= {w ; / [ s ,,,( , ) =.0 ] ds=0,

vt> 01, th e uniqueness in  th e  sense of probability law holds but the
pathwise uniqueness does not hold,
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Proposition 2 .  S uppose the uniqueness in  th e  sense o f  th e  prob-
ab ility  law  h o ld s . Suppose f u rth e r th at  a so lu tio n  (x ,, B O  of  (1.1)
ex ists such that x o = x  a.s. f o r every x E R " and  if  P x  i s  the probability

law  of  x , on (W , .v( W)) w hich is unique by the f irst assum ption, x - - - *
Px (B ) is universally  measurable f o r every B E a( W). Then { Px , x E Rn

}

has the  strong Markov property.

P r o o f .  This was proved essentially in Stroock-Varadhan [5]. Let

(x t , B I )  be a solution on ( 2 , , , P ; . F , )  and 6  be an ,Ft-stopping time

such that P(6 <  0 0 )= 1 . W e  assume, as w e  may, that (x t , B t )  is

given as function space-type, i.e., (S2, ( W x  W ,  ( w X  W )) .  Let

P (  /.53 -
0)  be the regular conditional distribution g iv e n  F .  Let

I3 t=Bt+0. — B ,  and ;i' t " .:+ a-. S in c e  b y  Doob's optional sampling

theorem,

E (1 3 ,— B Is + o . ; A n B ) =0 for every A E .F s „  and E g",,

we have E(T 3— Eis ; A /..F)= O.

Thus, ( a t ,
 F , ,  P (  t - F ,) )  is a system of martingales. Similarly, we

can prove

E[{ (13 —  13!)(bi, — 6,1-(t — s)}. ; A /  0.1=0 v A E <iz s .

Thus, (T it, E t)  is  a solution on (2 , ,F,P( A F.-); :0" . . t)  and the uniqueness

in  th e  sense o f  probability law implies P ( i .E B /F ,) - =P x ,(B ) ,v B

Ea(v).

Corollary 2 .  Suppose t h a t  th e  uniqueness in  th e  se n se  of the

probability  law  ho lds and th at, f o r  ev ery  Borel probability  m easure /.1

on R n ,  a solution (x t , B O  of  (1.1) ex ists such that P[x o E dx 1=,a(dx ).
T hen Px (B ) , B E a (fv ) ,  is univ ersally  m easurable in x  and the proba-

b ility  law  Q  o f  x , o n  (W , a(w )) is  g iv e n  b y  Q (B )=Px (B ) ,a(d x ) ,

B E at( W). T hus { Px , x  E W I has the  strong Markov property.
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P ro o f. By the proof o f Prop. 2, we have

P (x. E BAF 0 ) = P, o (B), v B E a( Tv).

Thus, Px (B )  is  -4;1 (̀.1ln)*5 ) measurable and since this holds fo r  every

Borel probability measure a, P x (B )  is  [-\ (Rn) measurable, that is,

universally measurable. Obviously, 4(B)— P (x. E B )= F i x (B) p(dx).

Corollary 3 .  S uppose th a t the p a t  hw ise uniqueness holds and
that, f o r  every B orel probability measure a o n  IV, a so lu tion  o f  (1.1)
exists such that P(x o E d x )=  i i (d x ) .  T hen , there exists a  function

F (x , w); w ) E  R n X W F (x , w )E TV such that, f o r every t ,  it is

(R n
)  x a i(w )" R /at(W)-measurable an d  every solution ( x 1, B t )  of

(1 .1)  satisfies x .= F (x o , B .) where R  is  the W iener measure (i.e., the
probability law of  B ) on  (W , P( W )).

P ro o f. A s is proved in  Prop. 1, i f  x o = x  a.s ., there exists F(w)
=F(x , w ): w   F ( x ,  w ) E  W  such that it is d i ( W )/a t ( W)-measur-
able and

x .=F (x , B .) ,  a .s . .

Let ( x t , BO be a solution on (2 , 3 , P ;  t ).
Since (x t , B t )  is  a lso  a solution on (2, P( . /..F0); .F1), w e  have
x .=-F(x o , B )  a . s . .  Now the measurability o f F  can be proved easily.

Finally, we shall give some non-trivial example o f th e  pathwise
uniqueness. Skorohod ([41) and Tanaka ( [ 6 ] )  proved th e  pathwise
uniqueness of the solution, in one-dimensional case, of the equation

(1.3) d x 1 -6 (x 1 ) dB r

*5) 5m (R n ) is  the completion o f  a (Rn) ( = the set o f a ll Borel subsets o f Isin)
by the measure ju.
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i f  6 (x )  satisfies I 6 (x ) - 6 (y )I xœ yl v x ,  y E  R 1 f o r  some con-

stants K > 0  and a > .
2

This can be strengthened and the uniqueness holds fo r a >

In  fact, we can prove the following

1
2

Theorem 1 .  Let

(1.4) d x t= 6 (x t) d B t + b (x t ) dt,

where

(6  i(x i) 0

(x ) = 2(x 2.). . ,  b ( x ) =  ( b 1 (x ), b 2 (x ), , bn (x))* 6 )

0 6n(xn)

such that

(i) there exists a positive increasing function p  (u ),  u E (0, co)
such that

I 0 i(E ) CA) I (1E— I), Ye, E R1 , = 1, 2, n

and 1p - 2 (u ) du= ± 0 0 ,
o +

(ii) there exists a positive increasing concave function (u ),

u E (0, co), such that

b i (y ) IS K ( I x - Vx, yE Rn, 1, 2,

and 1K- 1 (u ) du= ± 00 .
o +

Then the pathwise uniqueness holds fo r  (1.4).

P ro o f. L et a o  1> a1> az > • • > ak —> 0 be defined by

*°) x --(x i , x2 , •••,
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a t ) i9- 2 ( u ) d u = 1 ,  r ia- 2 ( u )d u - -  2, •••, Y k  I  0- 2 (U) du=k,••••
a2a  k

Then there exists a  twice continuously differentiable function o ( u )  on

[O, 0 0 )  su ch  th a t çok (0 )= 0 ,

{

0, 0 .<u .<ak

ço u ) =  between 0  and 1, ak<u<ak - i

1, U > ak -1

and

0, O u < a k

2between 0  and p - 2 (u ) ,  ak<u<ak - 1(14(//)-= 

L0, u> ak _ i.

W e extend gok(u) o n  (— C<D , 0 0 ) sym m etrically, i.e., 49k(u)=9k(i u 1).
Clearly yok (u ) is a  twice continuously differentiable function on (-0 0 , 0 0 )

such that çO k (U )t lu i, k 00.

Now le t  (x ( t ) ,  B ( t ) )  and  (x i( t) , B '( t) )  be tw o solutions of (1.4)

on the same probability space such that x(0).= x / (0 )  and B(t)-=- .13'(t).
Then,

x i (t) — x' i (t)= 1 0 16i(x i (s)) — (x i i (s))1 dB i (s)

+ Ç rb i(x (s)) — b i(x '(s))]d s, i =1, 2, ..., n,

and by Ito's formula,

çok(x i( t)— x , i( 0 ) = 0 60ax i ( s) —x , i(s)) Cai ( xi(s)) .- 0- i(x " (s) ) 1

dB i (s)-1-Ço ço;(x i (s)— xi i (s))[b i(x (s))— bi(x '(s))1ds

+  2
1  Ço r k (x i (s)— x' i (s))[(1i(x i ( s ) ) - 0 - i(x/ i (s))1 2 ds
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= 1 1 +  +  1 3 ,  say.

Then, E [/i1= 0

and, since (a; is uniformly bounded,

lE[1211 oE[x(I x(s) —  x / (s) D1 ds 01C (E x(s) — d S * 7 )

by Jensen's inequality.

W e have, for 1 3,

1131‹ 2
1 1:91(x i (s)— x' i (s))P 2 (  x i (s)— x' i (s)l) ds

1
 •  m ax  [91(0/92 (I ii i ) ] < 1  t • 2  — " 3

6  akS1u1Sak-i 2 k k —> oo.

Also, çok (x i (t) — x' f ( t ) )  1 x i ( t )  -  x' 1( t)  a s  k —> • T h u s  w e  have

El xi (t) —  x'i (t)l K x(s) —  x' (s) l) ds, i =1 , 2, • .•, a

and hence, we have

El x (t )—  x '(t ) < K 4 :K (E  x (s )—  x 1 (s ) ) ds.

A s  is well known, this implies E I x (t)—  x '(t) 0  an d  therefore x (t )
x '(t ).  Thus, the pathwise uniqueness holds for solutions of (1.4).

Q.E.D.

A s  a  corollary, th e  pathwise uniqueness holds fo r  (1.4) i f  6  is
1Holder continuous o f order and b  is Lipschitz continuous.2

T h e  condition 1  p - 2 (u) du= o °  is , in  a  c e r ta in  s e n se , best pos-

sible. F o r ,  consider th e  equation (1.3) when n = 1. If 6(x 0 )=- 0  and

1 6 - 2 (x )dx  < co for some s >O there are  infinitely many solutions
E> lx -  x 0 1>0

*7 ) Kt and Ky are positive constants.
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o f  (1.3) j u s t  a s  t h e  e x a m p l e  o f  Girsanov [2].
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