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Chapter 1
Brownian motion, Poisson process and Levyprocesses

1.1 Definition and equivalent characterizations of Brownian
motion

Definition 1.1. A stochastic process B�:R+�
!R is a Brownian motion if

1. B0=0,

2. for any 0� t1� t2� : : : � tn 2R+ we have that Bt1¡B0, Bt2¡Bt1, . . . , Btn¡Btn¡1 are
independent random variables and Bti¡Bti¡1�N(0; ti¡ ti¡1);

3. for almost every ! 2
 the function t 7¡!Bt(!) is continuous (i.e., in C0(R+;R)).

1.1.1 Brownian motion as a Markov process
We consider the following completed natural filtration of Bt given by

Ft=�(Bs; s2 [0; t]):

Theorem 1.2. A Brownian motion Bt is a Ft Markov process with transition kernel given by

p(x; t; y; s)= 1
2�(t¡ s)

p exp
�
¡(x¡ y)2

2(t¡ s)

�
; (1.1)

where 0� s< t.

Proof. We have to prove that for any 0� s< t and any Borel set A�R there exists a version of
P(Bt2AjFs) which is �(Bs) measurable.

By Definition 1.1 we have that Bt¡Bs is independent of Bs¡B0=Bs and Bt¡Bs�N(0; t¡s)

P(Bt2AjFs) = P((Bt¡Bs)+Bs2AjFs)

=
Z
A

1
2�(t¡ s)

p exp
�
¡(x¡Bs)2
2(t¡ s)

�
:

�

Corollary 1.3. For any 0<t1<t2< � � �<tn we have that the law of (Bt1; : : : ; Btn) is given by

1

(2�)n
Q

i=1
n (ti¡ ti¡1)

q exp

 
¡
X
i=1

n
(xi¡xi¡1)2
2(ti¡ ti¡1)

!
; (1.2)

where t0=0 and x0=0.

Proof. We prove the theorem for n=2. The general case can be proved by induction.
Let A1; A2 be two Borel subsets of R, then we have

P(Bt12A1; Bt22A2) =
Z
A1

1
2�t1

p exp
�
¡ x1

2

2t1

�
P(Bt22A2jBt1=x1)dx1

=
Z
A1

1
2�t1

p exp
�
¡ x1

2

2t1

� Z
A2

1
2�(t2¡ t1)

p exp
�
¡(x2¡x1)2
2(t2¡ t1)

�
dx2

!
dx1
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where to obtain the last equality we use Theorem 1.2. �

Corollary 1.4. Let Bt be a Markov process with transition kernel ( 1.1), B0=0 and such that for
almost every ! 2
 the function t 7¡!Bt(!) is in C0(R+;R), then Bt is a Brownian motion.

Proof. We have only to prove that Bt satisfies the second property of Definition 1.1. Using
the same reasoning of Corollary 1.3, we obtain that, if Bt is a Markov process with transition
kernel (1.1), then it has finite dimensional marginals given by (1.2). This implies that for any
0� t1� t2� :::� tn2R+ we have that Bt1¡B0, Bt2¡Bt1, . .. , Btn¡Btn¡1 are independent random
variables and Bti¡Bti¡1�N(0; ti¡ ti¡1): �

1.1.2 Brownian motion as a Gaussian process

Theorem 1.5. Brownian motion is a Gaussian process such that B0=0 and

E[Bt] = 0 (1.3)
cov(Bt; Bs) = min (t; s): (1.4)

Proof. The fact that Brownian motion is a Gaussian process follows by the explicit expression of
finite dimensional marginals given in Corollary 1.3.

Using the definition of Brownian motion we have E[Bt] =E[Bt¡B0] = 0 and, if s� t,

cov(Bt; Bs)= cov(Bt¡Bs; Bs)+ cov(Bs; Bs)= s: �

Corollary 1.6. Let Bt be a Gaussian process with mean ( 1.3) and co-variance ( 1.4), and suppose
that B0= 0 and for almost every ! 2
 the function t 7¡!Bt(!) is in C0(R+;R), then Bt is a
Brownian motion.

Proof. We have only to prove that Bt satisfies the second property of Definition 1.1. Since
Bt1¡B0, Bt2¡Bt1, . . . , Btn¡Btn¡1 are Gaussian random variables (being linear combinations of
jointly Gaussian random variables) we have to prove that cov(Bti¡Bti¡1;Btj¡Btj¡1)=0 if i=j.
Suppose that tj<ti then

cov(Bti¡Bti¡1; Btj¡Btj¡1) = cov(Bti; Btj)¡ cov(Bti¡1; Btj)¡ cov(Bti; Btj¡1)+ cov(Bti¡1; Btj)
= tj¡ tj¡ tj¡1+ tj¡1=0;

which concludes the proof. �

1.2 Lévy construction of Brownian motion

1.2.1 Haar and Schauder functions
We define Haar functions hnk(t) for n=0; 1; : : : 2N and k=0; : : : ; 2n¡1¡ 1 in the following way:
for n=0 we put h00(t)= 1 and for n=0 we write

hn
k(t)= 2

n¡1
2

�
Ih 2k

2n
;
2k+1
2n

�(t)¡ Ih 2k+1
2n

;
2k+2
2n

�(t)�:
We define also Schauder functions as

en
k(t)=

Z
0

s

hn
s (s)ds:

Lemma 1.7. The set of Haar functions forms an orthonormal basis of L2([0; 1]).

Proof. The orthonormality is a consequence of the fact that hnk(t) and hn
k 0(t) are supported in

different sets when k=k 0, and that hnk(t) has integral 0 on the dyadic set of the form
h

k 0

2n¡1
;
k 0+1

2n¡1

i
(for any k 02N).
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In order to prove that the Haar functions form a complete basis of L2([0; 1]) we have only to
prove that for any function f 2L2([0; 1]) such that

R
0

1
f(t)hnk(t)=0 we have f =0.

Consider the probability space ([0; 1]; B ; dx) (where B is the complete �-algebra generated

by Borel sets and dx is the Lebesgue measure) and consider the filtration Bn =
nh

k

2n
;
k+1

2n

i
;

k=0; : : : ; 2n¡ 1
o
, with n2N. It is clear that �(Bnjn2N)=B. If

R
0

1
f(t)hnk(t)=0 for n�N thenRh

k

2n
;
k+1
2n

if(t)=0 for n�N . This implies that

fn=E[f jBn] = 0:

On the other hand
R
0

1
fn
2(t)dt=0 and so fn is a Bn martingale bounded in L2([0;1]). Thus, by Doob

Convergence Theorem for martingales, we have that fn!E[f jB] = f in L1([0; 1]). This implies
that f = lim fn=0. �

Lemma 1.8. We have that supt2[0;1] jenk(t)j � 2
¡n¡1

2 and the series

X
n=0

1
0@ X

k=0

2n¡1¡1

en
k(t)enk (s)

1A=min (t; s) (1.5)

is absolutely convergent and it is equal to min (t; s):

Proof. The bound on jenk(t)j follows by a direct computation. In order to prove equality (1.5) we
note that

R
0

1
I[0;t](�)hnk(�)d� =enk(t) (and a similar relation holds for enk(s)). Using Parseval identity

for orthonormal bases in an Hilbert space we obtain

min (t; s) =
Z
0

1

I[0;t](�)I[0;s](�)d�

=
X
n=0

1
0@ X

k=0

2n¡1¡1 Z
0

1

I[0;t](�)hnk(�)d�
Z
0

1

I[0;s](�)hnk(�)d�

1A
=
X
n=0

1
0@ X

k=0

2n¡1¡1

en
k(t)enk (s)

1A
and the previous series is absolutely convergent. �

1.2.2 Lévy construction of Brownian motion
Let Zn;k(!) be a sequence of independent random variables such that Zn;k�N(0;1). Consider the
following sequence of stochastic processes

Bt
N(!)=

X
n=0

N
0@ X

k=0

2n¡1¡1

Zn;k(!)enk(t)

1A:
From now on we restrict Definition 1.1, to processes of the form B: [0;1]�
!R, i.e., defined only
on the set [0; 1] and not on the whole positive real line R+.

If we have a sequence of independent Brownian motions B~t1; : : : ; B~t
n defined on [0; 1], we can

easily build a Brownian motion Bt defined on the whole real positive line R+ in the following way:
if n¡ 1<t�n (where n2N) we define Bt=

P
k=1
n¡1B1

k+Bt¡n+1
n :

Theorem 1.9. The sequence of stochastic processes Bt
N is almost surely convergent on [0; 1]: Let

Bt be the limit of Bt
N, then Bt is a Brownian motion on [0; 1].

Proof. First we prove that the sequence of functions t 7¡! Bt
N(!) is uniformly convergent in

C0([0;1];R) for almost every !2
: In order to prove this, we use Weierstrass criterion for uniform
convergence in C0([0; 1];R), proving that, writing Kn(!) = supt2[0;1]

����P
k=0
2n¡1¡1Zn;k(!)enk(t)

����, we
have

P
n=0
1 Kn<+1 almost surely.
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Using the fact that for fixed n the functions enk(t) have disjoint support, and exploiting the
bound supt2[0;1] jenk(t)j � 2

¡n¡1
2 , we have that

Kn(!)� 2¡
n¡1
2 sup

k

jZn;k(!)j:

We want to prove that there exists a positive random variable C: 
!R, almost surely finite, such
that

sup
k

jZn;k(!)j �nC(!):

Define Bn= f! jsupk jZn;k(!)j>ng then C(!)<+1 whenever ! 2 limsupnBn. If we are able to
prove thatP(limsupnBn)=0 then C(!)<+1 almost surely. In order to prove thatP(limsupnBn)=
0, we use Borel-Cantelli Lemma and the fact that

P
nP(Bn)<+1.

Indeed

P(Bn)�
X
k=0

2n¡1¡1

P(jZn;k(!)j>n)� 2n

n 2�
p exp

�
¡n2
2

�
where we used the fact that Zn;k�N(0; 1). This implies thatX

n

P(Bn)�
X
n

2n

n 2�
p exp

�
¡n2
2

�
<+1

which means that C < +1 almost surely. On the other hand we have that Kn(!) �
2¡

n¡1
2 supkjZn;k(!)j and soX

n

Kn(!)�
X
n

2¡
n¡1
2 sup

k

jZn;k(!)j �C(!)
X
n

n2¡
n¡1
2 <+1:

Thus the sequence Bt
N(!) is almost surely convergent in C0([0; 1];R).

Let Bt denote the limit of Bt
N when Bt

N is convergent and 0 otherwise. We have that Bt satisfies
the condition 1 and 3 of Definition 1.1. In order to prove that Bt satisfies property 2 of Definition
1.1 we prove that Bt is a Gaussian process such that E[Bt] = 0 and cov(Bt;Bs)=min (s; t). Using
Corollary 1.6, this is equivalent to prove that Bt is a Brownian motion.

First we prove that for any t2 [0; 1] the sequence of random variables Bt
N converges to Bt in

L2(
). Since Bt
N converges to Bt almost surely it is sufficient to prove that Bt

N forms a Cauchy
sequence in L2(
). We have that

E[(Bt
N ¡Bt

M)2] = E

240@X
n=M

N
0@ X

k=0

2n¡1¡1

Zn;k(!)enk(t)

1A1A235
=

X
n=M

N

(enk(t))2

when M �N and using the fact that Zn;k are i.i.d. normal random variables with variance 1. On
the other hand, by Lemma 1.8, the series

P
n=0
+1 (enk(t))2= t <+1 is absolutely convergent, this

means that

lim
M!1

X
n=M

N

(enk(t))2=0;

which implies that Bt
N is a Cauchy sequence in L2(
).

The fact that (Bt1
N ; : : : ; Btn

N) converges to (Bt1; : : : ; Btn) in L2(
) implies that Bt is a normal
stochastic process (being the L2 limit of a normal stochastic process), with E[Bt]= limNE[Bt

N] and
cov(Bt;Bs)= limN cov(Bt

N ;Bs
N). On the other hand we have that limNE[Bt

N]= limN 0=0 and, by
Lemma 1.8,

lim
N

cov(Bt
N ; Bs

N)= lim
N

E[Bt
NBs

N] = lim
N

X
n=0

N
0@ X

k=0

2n¡1¡1

en
k(t)enk (s)

1A=min (t; s): �
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1.3 Definition Poisson process
Definition 1.10. Let fNtgt2R+ be a stochastic process, we say that Nt is a Poisson process of
parameter �> 0 if

1. N0=0,

2. for any t16 ���6 tn we have that Nt2¡Nt1,...,Ntn¡Ntn¡1 are independent and distributed as

Nti¡Nti¡1�Po(�(ti¡ ti¡1));

3. the paths of Nt (namely for any ! 2
 the function t 7!Nt(!)) are cadlag.

1.4 Poisson processes and Poisson point processes
We say that a measure � on R+ is a counting measure if for any B 2B(R+) (i.e. B(R+) is the
Borel �-algebra) we have �(B)2N0. This is equivalent to say that there is a set S �R+ and for
any x2S there is a point number nx2N such that

�(dt)=
X
x2S

nx�x(dt)

where �x(dt) is the Dirac delta with unitary mass in x2R+, namely

�x(B)=
�
1 if x2B
0 if x2B :

We denote by N(R+) the set of counting measure on R+.

Definition 1.11. A random measure �: 
!N(R+) is called point process.

We can build a point process from a Poisson process in the following way

�N((a; b]) =Nb¡Na
(this is due to the fact that Nt is an increasing cadlag function). We call the random measure �N

the Poisson point process of parameter � (or also the Poisson point process related to the Poisson
process N).

Theorem 1.12. Suppose that � is a point process such that

1. for any B 2B(R+) bounded, �(B)�Po(�jB j);
2. for any B1; : : : ; Bn2B(R+) the random variables �(B1); : : : ; �(Bn) are independent.

Then the stochastic process Nt= �([0; t]) is a Poisson process. Conversely suppose that �N is the
Poisson point process related to the Poisson process Nt then it satisfies the condition 1 and 2 above.

Remark 1.13. If G is an open set, there are some (at most countable) disjoint intervals fIk=(ak;
bk)gk2N such that [kIk=G.

Furthermore if F is a closed set there are closed intervals Jk= [ak; bk] such that F =\kJk.

Remark 1.14. Suppose that fXngn2N and fYngn2N are sequences of random variables such that
Xn!X , Yn!Y almost surely and Xn is independent of Yn then X is independent of Y .

Lemma 1.15. Suppose that �N is a Poisson point process then the properties 1, 2 of Theorem
1.12 hold when B;B1; : : : ; Bn are open or closed sets.

Proof. Consider first the case where B1; : : : ; Bn are disjoint intervals Bk= Ik=(ak; bk). Then, by
continuity of (locally bounded) measure from below, we have that

�(Bk)= lim
n!+1

�

��
ak+

bk¡ ak
n

; bk¡
bk¡ ak
n

��
= lim
n!+1

�
N
bk¡

bk¡ak
n

¡N
ak¡

bk¡ak
n

�
�Po

�
�

�
(n¡ 1)
n

(bk¡ ak)
��

:

1.4 Poisson processes and Poisson point processes 11



This implies that �(Bk) is a Poisson random variable of parameter Po(�(bk¡ ak)). Furthermore
since N

bk¡
bk¡ak
n

¡N
ak¡

bk¡ak
n

is independent of N
bk0¡

bk0¡ak0
n

¡N
ak0¡

bk0¡ak0
n

(for k= k 0) then �(Bk)

is independent of �(Bk 0) for k 0= k being the limit of independent random variables.
We can generalize the previous reasoning to general open sets B1=G1, . . . , Bn=Gn thanks to

Remark 1.13. The proof for closed sets follows similar lines. �

Remark 1.16. Lebesgue measure is outer regular: for any (bounded) Borel set B and for any
"> 0 there is a open set G�B such that jGnB j<".

Furthermore if B is Borel set such that jB j<+1, for any " > 0 there is a closed set F �B
such that jB nF j<�.

Lemma 1.17. Suppose that �N is a Poisson point process then if jB j=0 then �N(B)=0 almost
surely.

Proof. If jB j=0, by Remark 1.16, there is a sequence B� : : :�Gn� : : :�G1 of open sets such
that jGnnB j= jGnj= 1

n
. If K=\n2NGn then G�K and so �N(B)6 �N(K). On the other hand,

by the continuity for above of (locally bounded) measure, we have �N(K) = limn!+1�
N(Gn).

Since �N(Gn)�Po
�
�

n

�
we have �N(K)�Po(0) and so �N(K)= 0 almost surely. Since �N(B)6

�N(K)= 0 almost surely the thesis follows. �

Lemma 1.18. Suppose that �N is a Poisson point process then 1, 2 of Theorem 1.12 hold.

Proof. By Remark 1.16, for any bounded Borel set B there is a sequence of closed sets F 1� : : :�
F n� : : :�B such that jB nF nj6 1

n
. If K=[n2NF n, we have that �N(K)� limn!+1Po(�jF nj)�

Po(�jK j). On the other hand jB nK j= limn!+1 jB nF nj= 0, and so �N(B) = �N(K) + �N(B n
K)�Po(�jK j)=Po(�jB j), since jK j= jB j and since �N(B nK)=0 almost surely, for Lemma 1.17.

Using that if F1; : : : ; Fn are closed and disjoint, by Lemma 1.15, �N(F1), . . . , �N(Fn) are
independent and Remark 1.16. �

Proof of Theorem 1.12. By Lemma 1.18, what remains to prove is that if � is point process
satisfying 1 and 2 in the statement of the theorem then the processNt= �([0; t]) is a Poisson process.

Since, by the outer continuity of measures, for any t0 we have limt!t0
+�([0; t]) = �([0; t0]) the

process Nt is right continuous. Furthermore the process Nt is increasing, since �(A)6 �(B) when-
ever A�B, limt!t0

¡Nt exists, which implies that Nt is a process with cadlag paths.
Furthermore for any t16 : : : 6 tn2R+, since Nt¡Ns= �((s; t]) (for s6 t), we have that, by

the properties 1 and 2, Nti¡Nti¡1�Po(�(ti¡ ti¡1)) and they are independent, Nt is a Poisson
process. �

1.5 Existence of Poisson process and its properties
In this section we build the Poisson process building the Poisson point process associated.

Remark 1.19. In order to build a Poisson point process on R+ it is sufficient to construct a
Poisson point process on [0;1]. Indeed suppose that �~1; : : : ; �~n; : : : ; are a sequence of Poisson point
process on [0; 1] with parameter �> 0 and independent. Then we can defined a point process � on
R+ in the following way: if B is a Borel set of R+ we have

�(B) :=
X
n=1

+1

�~n((B ¡ [n¡ 1])\ (0; 1])

where B ¡ k= fb¡ k; b2Bg.

Consider P �Po(�) (i.e. a Poisson random variable of parameter �) and let X1; : : : ; Xn; : : :
be a sequence of i.i.d random variables uniformly distributed on [0; 1] (i.e. Xk� U([0; 1])) and
independent of P . We defined the random measure �~ on [0; 1] in the following way

�~(!;dt)=
X
n=1

P (!)

�Xn(!)(dt)
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where ! 2
 and the sum is equal to zero when P (!)= 0.

Theorem 1.20. Using the previous notations, the random measure �~ is a Poisson point process
(i.e., by Theorem 1.12 the process Nt= �~([0; t]) is a Poisson process).

In order to prove Theorem 1.20 we introduce the following sequence of random variables: let
B1; : : : ; Bn be Borel subsets of [0; 1] forming a partition of [0; 1], for any r 2N and k 2f1; : : : ; ng
we defined the random variables

Yk
r(!)=

X
`=1

r

IfX`2Bkg(!):

Lemma 1.21. For any r2N the random vector (Y1r;:::;Ynr) is distributed as a multinomial random
vector of parameter (p1= jB1j;:::; pn= jBnj), i.e. for any r1;:::; rn such that r1+ ���+rn=r we have

P(Y1r= r1; : : : ; Yn
r= rn)=

r!
r1!� � �rn!

p1
r1� � �pnrn:

Proof. The variable Ykr counts the number of points in the set Bk considering a set (X1; : : : ; Xr)
of i.i.d. random variables. This means that the vector (Y1r; : : : ; Ynr) is distributed as a multinomial
random variable with parameter (p1=P(X12B1); p2=P(X12B2); : : : ; pn=P(X12Bn)). Since
Xk are uniform random variables P(Xk2B`)= jB`j. �

Proof of Theorem 1.20. Fix a Borel partition B1; : : : ; Bn of [0; 1] we want to compute the
joint probability of the random variables (�~(B1); : : : ; �~(Bn)) and prove that it is given by the
law of n independents random variables distributed as Poisson random variables with parameter
�~(Bk)�Po(�jBkj). Since any list of Borel disjoint subsets of [0; 1] can be completed to form a
partition of [0; 1] by adding the complement of the union the theorem is proved.

Consider r1; : : : ; rn2N0 and r= r1+ � � �+ rn, we have that

P(�~(B1)= r1; : : : ; �~(Bn)= rn) = P(P = r; Y1
r= r1; : : : ; Yn

r= rn)=
= P(P = r)P(Y1r= r1; : : : ; Yn

r= rn)

= e¡��r

r!
r!

r1!� � �rn!
p1
r1� � �prn

=
Y
k=1

n
e¡�pk

rk!
(pk�)rk:

Since the law of P(�~(B1)= r1; : : : ; �~(Bn)= rn) is a product of functions depending only on rk the
random variables �~(B1), . . . , �~(Bn) are independent. Furthermore we have that

P(�~(Bk))=
e¡�pk

rk!
(pk�)rk

which implies that �~(Bk)�Po(�pk)=Po(�jBkj). �

1.6 Simplicity of the Poisson process

We want now to prove a fundamental property of the Poisson process, namely that it is a simple
process. If Xt is a cadlag stochastic process we define the following process

�Xt=Xt¡ lim
s!t¡

Xt=Xt¡Xt¡:

Definition 1.22. Let Mt: 
!N0�R, t2R+, be a stochastic process taking values in the integer
number. We say that Mt is simple if supt2R+ j�Mtj6 1 almost surely, i.e. the process Mt has
jump of at most size 1.

1.6 Simplicity of the Poisson process 13



Theorem 1.23. Every Poisson process is simple.

In order to prove Theorem 1.23, we introduce the factorial of a discrete measure: suppose that
� is a discrete measure on R+ taking values in N0, i.e. there is an at most countable set S �R+

and a map n�:S!N such that

�(dt)=
X
x2S

nx�x(dt):

A measure of the previous for is simple if nx< 2, namely

�(fxg)6 1; x2R+: (1.6)

Remark 1.24. Let �N be the Poisson point process associated with the Poisson process Nt, then
Nt is a simple process is simple if and only if the measure �N is simple (in the sense of equation
(1.6)) almost surely.

We define the second factorial of �, denoted by �(2), as the measure on R+
2 for which

�(2)(dt1;dt2)=
X

x1;x22S;x1=x2

nx1nx2�(x1;x2)(dt1;dt2)+
X
x2S

nx(nx¡ 1)�(x;x)(dt1;dt2)

Remark 1.25. If D(2)= f(x; x); x2R+g�R+
2 is the diagonal of R+

2 we have that

�(2)(D(2))=
X
x2S

nx(nx¡ 1)>
X
x2S

Ifny>2g(x):

This means that � is simple if and only if

�(2)(D(2))= 0:

Exercise 1.1. Prove that if a B1; B2 are Borel sets we have

�(2)(B1�B2)= �(B1)�(B2)¡ �(B1\B2):

Lemma 1.26. For any Borel sets B1; B22B(R+) we have

E[�N;(2)(B1�B2)]=�2jB1jjB2j:

Proof. By Exercise 1.1 we have that

�N;(2)(B1�B2)= �N(B1)�N(B2)¡ �N(B1\B2):
Thus we have

E[�N;(2)(B1�B2)] = E[�N(B1)�N(B2)]¡E[�N(B1\B2)]
= E[�N(B1n(B1\B2))�N(B2n(B1\B2))]+

+E[�N(B1n(B1\B2))�N(B1\B2)]+
+E[�N(B1\B2)�N(B2n(B1\B2))]+E[(�N(B1\B2))2]
¡E[�N(B1\B2)]

= �2jB1n(B1\B2)jjB2n(B1\B2)j+�2jB1n(B1\B2)j jB1\B2j+
+�2jB1\B2jjB2n(B1\B2)j+�2jB1\B2j2+�jB1\B2j ¡�jB1¡B2j

= �2jB1j jB2j;

where we used that �N(L1) is independent of �N(L2) when L1\L2=;, and E[�N(L1)]=�jL1j and
E[(�N(L1))2] =�2jL1j2+�jL1j. �

Proof of Theorem 1.23. By Remark 1.24 and Remark 1.25, the process Nt is simple if and only
if �N;(2)(D(2))=0 almost surely. Since �N;(2)(D(2))>0 is enough to prove that E[�N;(2)(D(2))]=0.
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Then, by Lemma 1.26, we have that

E[�N;(2)(D2)] =
X
k=0

+1

E[�N;(2)(D2\ [k; k+1)2)]

=
X
k=0

+1  
lim

n!+1

X
r=1

n

E

�
�N;(2)

�
D2\

�
k+ r¡ 1

n
; k+ r

n

���!

=
X
k=0

+1
 

lim
n!+1

X
r=1

n

�2
���������k+ r¡ 1

n
; k+ r

n

���������2
!

=
X
k=0

+1 �
lim

n!+1

�2

n

�
=0:

�

1.7 Levy processes
Definition 1.27. Let Xt be a stochastic process, we say that Xt is a Levy process if

1. X0=0,

2. the process Xt has independent and homogeneous increments, i.e. for any t16 � � � 6 tn we
have Xt2¡Xt1;: : :;Xtn¡Xtn¡1 are independent and Xti¡Xti¡1�Xti¡ti¡1 (i.e. Xti¡Xti¡1

has the same law of Xti¡ti¡1),

3. the process Xt has cadlag paths, for each ! 2
 the function t 7!Xt(!) is cadlag.

Two important examples of Levy processes are Brownian motion and Poisson process.
From the definition we can deduce that the law of the process Xt to a fixed time t > 0 cannot

be a generic law but it must be infinite divisible.

Definition 1.28. We say that a probability measure � on R is infinite divisible if for any n2N

there is a probability measure �
1
n such that

�= �
1
n � �

1
n � � � � � �

1
n:

n times

Exercise 1.2. Suppose that Y1 and Y2 are two independent random variables with probability law �1 and �2
respectively. Prove that the of Y1+Y2 is given by �1 � �2 (i.e. for any Borel set B 2B(R) we have �1� �2(B)=R
R
�1(B ¡x)�2(dx).

Theorem 1.29. Let Xt be a Levy process, then, for any t2R+, the law of Xt is infinite divisible.

Proof. Obviously since X0=0, the law of X0 is infinite divisible. Then, consider t > 0. For any
n2N we have that

Xt=
X
k=0

n¡1

Xt(k+1)
n

¡Xtk

n

:

By definition of Levy process Xt(k+1)
n

¡Xtk

n

are i.i.d random variables. Then, by Exercise 1.2, if

Xt� � and Xt(k+1)
n

¡Xtk

n

�X t

n

� �
1
n we have �= �

1
n � � � � � �

1
n. �

There is a converse of Theorem 1.29 that we state without proof.

Theorem 1.30. Let � be an infinite divisible probability measure, then there is a Levy process
such that X1� �.

We want to give an important class of exmples of Levy processes other than Brownian motion
and Poisson process.
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Definition 1.31. Consider a Poisson process Nt with a paramter �> 0 and let Y1; : : : ; Yn; : : : be
a sequence of i.i.d. random variables indepedent of the process N. We call Xt a compound Poisson
process with paramter � and jump Law(Yi) the process

Xt(!)=
X
k=1

Nt(!)

Yk(!)

where the sum is equal to zero when Nt(!)= 0.

Theorem 1.32. Compound Poisson processes are Levy process.

Proof. Since N0=0, X0=0.
In order to prove the theorem it is useful to introduce the process

Zt=
X
k=1

btc

Yk

where Zt=0 for t < 1. The process Zt is a cadlag process (i.e. it is a process with cadlag paths),
furthermore we have that

Xt(!)=ZNt(!)(!);

i.e. for any ! 2
 the map t 7!Xt(!) is the composition of the cadlag function t 7!Zt(!) and the
cadlag increasing function t 7!Nt(!). Since the composition of a cadlag function with a increasing
cadlag function is cadlag, the function t 7!Xt(!) is cadlag.

What reamian to prove is that Xt has independent and homogeneous increments. We prove
the statement for t16 t26 t3, since the general case can be proven in a similar way. We write

K1=Xt2¡Xt1; K2=Xt3¡Xt2; K1
0=Xt2¡t1; K2

0=Xt3¡t2

and we want to prove that

'(K1;K2)(u; v)=E[exp(iuK1+ ivK2)]= 'K1
0(u)'K2

0(v)=E[exp(iuK1
0)]E[exp(ivK2

0)] (1.7)

where '(K1;K2), 'K1
0, 'K2

0 are the characteristic functions of (K1;K2),K1
0,K2

0 respectively. Equation
(1.7) will imply that Xt3¡Xt2 is independent of Xt2¡Xt1 (since two random variables are indepen-
dent if and only if their joint characteristic function is the product of their marginal charateristic
functions) and their are distributed as Xt3¡Xt2�Xt3¡t2 and Xt2¡Xt1�Xt2¡t1.

By definition of Poisson process we have that Nt3¡Nt2, Nt2¡Nt1 and Nt1 are independent we
have

'(K1;K2)(u; v) = E[E[eiuK1+ivK2jNt1; Nt2¡Nt1; Nt3¡Nt2]]
=

X
k1;k2;k32N

P(Nt3¡Nt2= k1; Nt2¡Nt1= k2; Nt1= k3)

E[eiuK1+ivK2jNt3¡Nt2= k1; Nt2¡Nt3= k2; Nt1= k3]
=

X
k1;k2;k32N

P(Nt3¡Nt2= k1)P(Nt2¡Nt3= k2)P(Nt1= k3)

E

h
e
iu

¡P
j=k3+k2+1
k1+k2+k3 Yj

�
+iv

¡P
j=k3+1
k1+k2 Yj

�i
=

X
k1;k2;k32N

P(Nt3¡Nt2= k1)P(Nt2¡Nt3= k2)P(Nt1= k3)

E
h
e
iu

¡P
j=k3+k2+1
k1+k2+k3 Yj

�i
E
h
e
iv

¡P
j=k3+1
k1+k2 Yj

�i
=

=
X

k1;k22N
P(Nt3¡t2= k1)P(Nt2¡t1= k2)E

h
e
iu(

P
j=1
k1 Yj)

i
E
h
e
iv(

P
j=1
k2 Yj)

i
= E[eiuK1

0
]E[eivK2

0
] = 'K1

0(u)'K2
0(v):

�
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Chapter 2

Filtrations, martingales and stopping times

2.1 Some definitions

We fix a probability space (
;F ;P).

Definition 2.1. We say that fFtgt2R+ is a filtration if Ft�F are �-algebras such that for any
s6 t we have Fs�Ft.

We write

F1=�(Ft; t2R+):

Definition 2.2. A stochastic process Mt is called adapted to the filtration Ft if for any s2R+ Mt

is Ft measurable.
A stochastic process Mt is called a cadlag process if for any !2
 the map t 7!Mt(!) is cadlag.

Definition 2.3. Let X be a stochastic process we call

FtX=�(Xs; s6 t)

the natural filtration of (or the natural filtration generated by) X.

Remark 2.4. A stochastic process is obviously adapted with respect to its natural filtration.

Definition 2.5. Let Mt be an adapted stochastic process we say that E[jMtj]<+1 we say that:

� Mt is a (Ft)-martingale if E[MtjFs] =Ms;

� Mt is a (Ft)-supermartingale if E[MtjFs]6Ms;

� Mt is a (Ft)-submartingale if E[MtjFs]>Ms.

We say that Mt is a cadlag (super/sub)martingale if Mt is cadlag and it is also a (super/sub)mar-
tingale.

We denote by

N~ = fA2F ;P(A)= 0g;

N =�fA2F ;P(A)=0g:

Definition 2.6. Let fFtgt2R+ be a filtration we define the completion fGtgt2R+ of filtration
fFtgt2R+ as

Gt=�(Ft;N )= fA2F ;9B 2Ft such thatP(A�B)=0g

where A�B= (AnB)[ (B nA). If a filtration fFtgt2R+ coincide with its completion we say that
Ft is complete.

If fFtgt2R+ is a filtration we define

Ft+=
\
s>t

Ft:

17



Remark 2.7. In general Ft=Ft+. Indeed let FtB be the natural filtration of a Brownian motion
and define

At= f! 2
; Bt(!) is right differentiable at tg=
n
! 2
; lim

n!+1
n
�
Bt+

1
n

(!)¡Bt(!)
�
exists

o
:

Obviously At2Ft+B but At2FtB since it is not possible to know if a function is right differentiable
if we have only information of a function from the left.

Definition 2.8. Let fFtgt2R+ be a filtration the right-continuous completion of Ft the filtration
fHtgt2R+ the filtration defined as

Ht=�(Ft+;N ):

If fFtgt2R+ coincides with its right-continuous completion we say that it is complete and right-
continuous.

If for any t2R+ we have Ft=Ft+ we say that Ft is right continuous.

Definition 2.9. We say that the filtration fFtgt2R+ satisfies the usual condition if it is complete
and it is right-continuous.

2.2 Some theorems on filtrations

Theorem 2.10. Let Mt be a (super/sub)martingale with respect to the filtration fFtgt2R+, then
it is also a (super/sub)martingale with respect to fGtgt2R+ (where fGtgt2R+ is the completion of
fFtgt2R+).

Proof. Exercise. �

Theorem 2.11. Let Mt be a right-continuous (super/sub)martingale with respect to the filtration
fFtgt2R+, then it is also a (super/sub)martingale with respect to fHtgt2R+ (where fHtgt2R+ is
the right-continuous completion of fFtgt2R+).

Proof. The proof can be found in [7] Chapter 1 Section 1 (the proof not required at the exam) �

Theorem 2.12. Let Bt be a Brownian motion and let GtB its complete natural filtration then GtB
is right continuous (i.e. with the previous notations Ht

B= GtB).

Lemma 2.13. Let Bt be a Brownian motion and �2C then

F�(Bt; t)= exp
�
�Bt¡

�2t
2

�
is a martingale with respect to its natural filtration FtB (and so with respect to the completed natural
filtration GtB).

Proof. For any s6 t we have that

E[F (Bt; t)jFsB] = E

�
exp
�
�Bt¡

�2t

2

���������Ft�
= exp

�
�Bs¡

�2t
2

�
E[exp(�Bt¡�Bs)jFt]

= exp
�
�Bs¡

�2t
2

�
E[exp(�Bt¡�Bs)]

= exp
�
�Bs¡

�2t
2

�
exp
�
�2(t¡ s)

2

�
=F�(Bs; s)

where we use that Bt¡Bs is independent of FsB. �
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Proof of Theorem 2.12. For simplicity we write Gt= GtB. The statement is equivalent to prove
that

Gt=
\
n2N

Gt+ 1
n

for each t > 0, so all the limits s#t with countable limits t+ 1

n
! t for n!+1.

Fix t; s1; : : : ; sm> 0 and u1; : : : ; um2R we want to prove that

E

"
exp

 
i

 X
k=1

m

ukBsk

!!����������Gt
#
=E

"
exp

 
i

 X
k=1

m

ukBsk

!!����������Gt+
#
: (2.1)

The equality is obviously true when s1; : : : ; sm 6 t, so we have to prove only the case where
min (sk)>t.

We prove explicitly only the casem=2 and s2>s1>t, the general case can be proved in a similar

way. We have, by Doob martingale convergence (using the fact E
h
exp(i (u1Bs1+u2Bs2))

������Gt+ 1
n

i
is

a uniformly integrable martingale (since it is bounded))

E[exp(i (u1Bs1+u2Bs2))jGt+] = lim
n!+1

E
h
exp(i (u1Bs1+u2Bs2))

������Gt+ 1
n

i
= lim

n!+1
exp
�
¡ u2

2s2
2

�
E
h
E[exp(i (u1Bs1))F iu2(Bs2; s2)jGs1]

������Gt+ 1
n

i
= lim

n!+1
exp
�
¡ u2

2(s2¡ s1)
2

�
E
h
exp(i (u1+u2)Bs1)

������Gt+ 1
n

i
= lim

n!+1
exp
�
¡ u2

2(s2¡ s1)
2

¡ (u1+u2)2

2
s1

�
E
h
F i(u1+u2)(Bs1; s1);

������Gt+ 1
n

i
= lim

n!+1
exp
�
¡ u2

2(s2¡ s1)
2

¡ (u1+u2)2

2
s1

�
F i(u1+u2)

�
Bt+

1
n

; t+ 1
n

�
= exp

�
¡ u2

2(s2¡ s1)
2

¡ (u1+u2)2

2
s1

�
F i(u1+u2)(Bt; t)

= E[exp(i (u1Bs1+u2Bs2))jGt];

where in the last step we used that Bt is continuous. Since the measure is uniquely determined by
the characteristic function, a consequence of the equality (2.1) for any Borel set A�Rm we have
that the conditional probability

P((Bs1; : : : ; Bsm)2AjGt+)=P((Bs1; : : : ; Bsm)2AjGt)

almost surely. Furthermore since the sets of the form

f(Bs1; : : : ; Bsm)2Ag

where m;sk;A vary in m2N, s1;: :: ; sm2R+ and A2B(Rm), generates the �-algebra G1 we have
that for any C 2G1

P(C jGt+)=P(C jGt)

almost surely. In particular if C 2Gt+ we have

IC=P(C j Gt+)=P(C jGt)=E[IC jGt]

almost surely. Since Gt is complete the previous equality proves that C 2Gt, and so Gt+�Gt. �

We conclude this section with a definition and a theorem (whose prove is not required for the
exam).

Definition 2.14. Let Xt and Yt be two stochastic process we say that

� the process Y is a modification of X if for any t> 0 we have P(Xt=Yt)= 1;
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� the processes Y and X are indistinguishable if P(Xt=Yt; t2R+)=1.

Remark 2.15. Suppose that X; Y are two right-continuous processes, then the definition of
indistiguishability and modification coincide.

Theorem 2.16. Let fHtgt2R+ be a filtration and Mt be a (sub)martingale with respect to Ht.
Suppose also that fHtgt2R+ is complete and right-continuous (i.e. fHtgt2R+ satisfies the usual
condition), that H0 contains all the null-sets, and the map t!E[Mt] is right-continuous then there
is a modification M~t of Mt which is a cadlag (sub)martingale with respect to fHtgt2R+.

2.3 Stopping times
We fix a general filtration fFtgt2R+ (i.e. here we do not require that fFtgt2R+ is complete or right-
continuous if not state otherwise).

Definition 2.17. Let T :
!R+ be a F measurable random variable. We say that T is a stopping
time with respect to the filtration fFtgt2R+ if for any t2R+ we have

fT 6 tg2Ft:

Remark 2.18. We say that T : 
!R+ is a Ft+ stopping time if for any t2R+ we have

fT 6 tg2Ft+:
Since

fT < tg=
[
n2N

�
T 6 t¡ 1

n

�
2�
�
F�

t¡ 1
n

�
+
; n2N

�
�Ft

we have that T is a Ft+ stopping time if and only if for any t2R+

fT < tg2Ft:

We want to do some examples of stopping times which will be useful in the following. Let
B 2B(R) be a Borel set we define

�B= inf ft> 0; Xt2Bg;

�~B= inf ft> 0; Xt2Bg:

The random variable �B is called first entrance time of the set B, and �~B is called first hitting time
of the set B.

If X has left limit we define

�B= inf ft> 0; Xt2B or Xt¡2Bg;

�~B= inf ft > 0; Xt2B or Xt¡2Bg;

Obviously if Xt is continuous we have �B= �B and �~B=�B.

Proposition 2.19. Suppose that Xt is a cadlag or a left continuous process and B=G is an open
set then �G and �~G are Ft+ stopping times. In particular if Ft is right continuous then �G and �~G
are (Ft)stopping times.

Proof. Since the paths t 7!Xt(!) are right-continuous we have that �G(!); �~G(!)<t if and only if
there is s2 [0; t) (or s2 (0; t) in the case of �~G) such that Xs(!)2G. Since X is right continuous
and G is open this is equivalent to say that there is a q 2 [0; t)\Q (or (0; t)\Q for �~G) such that
Xq(!)2G. This means that

f�G<tg=
[

q2[0;t)\Q
fXq 2Gg2 �(Xs; s2 [0; t))�Ft

f�~G<tg=
[

q2(0;t)\Q
fXq2Gg2�(Xs; s2 [0; t))�Ft:
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By Remark 2.18 the thesis is proved. �

Proposition 2.20. Suppose that B=F is a closed subset of R and that Xt is cadlag, then �F are
(Ft)stopping times.

Proof. We start by proving that

f�F 6 tg= fX02F g[fXs2F and Xs¡2F ; for some s2 (0; t]g

It is clear that the event on the left is contained in the event on the right. To prove the opposite
inclusion suppose that �F 6 t. If the event on the right does not happen for any k 2N there is
t<uk<t+

1

k
such that orXuk or Xuk¡ are in F . Since uk! t, as k!+1, both Xuk, Xuk¡ converge

to Xt as uk! t and since F is closed Xt2F . This proves the equality.
Let

Fn=
�
y 2R; there isx2F such that jx¡ y j< 1

n

�
;

i.e. Fn is the 1

n
neighborhood of F . We now want to prove that

fX02F g[fXs2F and Xs¡2F ; for some s2 (0; t]g=
\
n2N

[
q2[0;t]\Q

fXq2Fng

Indeed, suppose thatXs2F for some s2 [0; t] then we can find a sequence qj2 [0; t]\Q (or (0; t]\Q)
such that X(qj)2Hn for j big enough. This prove that the left hand side of the previous equality
is contained in the right hand side.

Conversely suppose that there is a sequence qn2 [0; t]\Q such that Xqn2Fn for each n2N.
Since [0; t] is closed there is a increasing or decreasing subsequence qnj converging to some s2 [0; t].
This means that Xqj converges to Xs (if qj is decreasing) or to Xs¡ (if the sequence is decreasing).
This means that or Xs or Xs¡ must belong to F =

T
n2NFn. �

Proposition 2.21. Suppose that B=F is a closed subset of R and that Xt is cadlag, then �~F are
(Ft)stopping times.

Proof. We note that

f�~F 6 tgc=(f�F 6 tg)c[ (f�~F c=0g\ f�F 6 tg)
Indeed the only possibility that �~F is bigger then t but �F 6 t is that X0 2 F but Xs 2 F for
each s 2 (0; t] (this is true because F is closed and X is right-continuous and so if Xk 2 F in a
neighborhood of t+ then Xt2 F ) which is equivalent to say that {�~F c= 0} and �F 6 t. By the
previous propositions we have that f�F 6 tg 2 Ft�Ft+ and f�~F c= 0g 2 F0+. Since Ft+ is a �-
algebra this implies that f�~F 6 tgc2Ft+, which means that f�~F 6 tg2Ft+. �

Corollary 2.22. If the process Xs is continuous and F is closed �F is a (Ft)stopping time and �~F
a Ft+ stopping time.

We want to study the composition of a process Xt and a stopping time. First we introduce the
following definition.

Definition 2.23. If T is a stopping time we defined the �-algebra FT as �2FT if and only if for
any t> 0 we have

�\fT 6 tg2Ft:

Proposition 2.24. Let T ; S two stopping times then

1. if S6T then FS�FT;
2. FT^S=FT \FS;
3. if F 2FT_S then F \fS6T g2FT;
4. FT_S=�(FT ;FS).

Proof. Exercise. �
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Even if Xt is a process adapted with respect to the filtration Ft is not true (in general) that
XT is a FT measurable random variable. We need then the following definition.

Definition 2.25. A process Xt is said to be progressive with respect to the filtration fFtgt2R+ if
for any t2R+ the map X�(�): [0; t]�
!R is B([0; t])
Ft measurable.

Theorem 2.26. Suppose that X is progressive and T is a stopping time then XT is FT measurable
on the event fT <+1g.

Proof. We claim that for any t2R+ the map

! 7!XT (!)^t(!)

is Ft measurable. Obviously T ^ t is a stopping time and T ^ t is Ft measurable. This means (by
definition of stopping time as measurable map taking values in R+) that the map

! 7! (T (!)^ t; !)2 [0; t]�


is a measurable map form measure space (
;Ft) to the measure space ([0; t]�
;B([0; t])
Ft).
By definition of progressive the map

(s; !)2 [0; t]�
 7!Xs(!)2R

is measurable from the measure space ([0; t]�
;B([0; t])
Ft) into (R;B(R)). This implies that
the composition of the two maps ! 7! (T (!)^ t; !) with (s; !) 7!Xs(!) (which is ! 7!XT (!)^t(!))
is a measurable map from (
;Ft) into R. The previous statement means that

fXT^t2Bg2Ft
for any Borel set B 2B(R), and so

fXT 2B; T <+1g\fT 6 tg= fXT^t2Bg\fT 6 tg2Ft:

This show that fXT 2B; T <+1g2FT proving the claim. �

Proposition 2.27. Let Xt be an adapted cadlag process with respect to the filtration fFtgt2R+

then it is also progressive.

Proof. Fix � > 0 define on [0; � ]�
 the function

Xn(t; !)=X0(!)If0g(t)+
X
k=0

2n¡1

X(k+1)�
2n

(!)I� k�

2n
;
(k+1)�
2n

i(t):
The function Xn is a sum of products of B([0; � ])
F� measurable functions and thus it is B([0;
� ])
F�. By right-continuity of Xt we have that, for any (t; !)2 [0; � ]�
, Xn(t; !)!Xt(!) as
n!+1, thus Xt is also B([0; � ])
F� when restricted to [0; � ]. �

2.4 Doob's optional sampling theorem
The aim of this section is to prove the following results.

Lemma 2.28. Let T ; S be Ft stopping times taking values in a finite set t16 t26 � � �6 tm6+1.
If Xt is a submartingale then

E[XT jFS]>XS

almost surely.

Proof. The proof can be found in Chapter 1 Lemma 1.45 of [1]. �

Theorem 2.29. Let M be a cadlag submartingale with respect to Ft and let T ; S be Ft-stopping
times then for any � > 0

E[XT^� jFS]>XT^S^� ;
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almost surely. If, in addition,

1. T is almost surely finite,

2. E[jXT j]<+1,

3. lim�!+1E[jX� jIT>� ] = 0
then

E[XT jFS]>XT^S ;

almost surely. Finally an analogous theorem holds for cadlag supermartingales and martingales.

Proof. The proof uses Lemma 2.28 and it can be found in Chpater 1 Theorem 1.43 of [1]. �

2.5 Martingale inequalities
Lemma 2.30. Let M be a submartingale, fix a 0<� <+1 and let H � [0; � ] be a finite set. Then
for any r > 0 we have

P
�
max
t2H

Mt> r
�
6 E[M�

+]
r

and

P
�
min
t2H

Mt6¡r
�
6 E[M�

+]¡E[M0]
r

where Mt
+=max (Mt; 0).

Proof. Let S =min ft 2H:Mt> rg with S =+1 if Mt< r for each t 2H, then Theorem 2.29,
with T = � , gives

E[M�]>E[MS^�] =E[MSIfS<+1g] +E[M�IfS=+1g]

Since M�> r we get

rP
�
max
t2H

Mt> r
�
= rP(S <+1)6E[MSIfS<+1g]6E[M�IfS<+1g]6E[M�

+IfS<+1g]6E[M�
+]:

Let T be T =min ft2H;Mt6¡rg taking S=0 in Theorem 2.29 we get

E[M0]6E[MT^�] =E[MTIfT<+1g] +E[M�IfT=+1g]:

Thus we get

¡rP
�
min
t2H

Mt6¡r
�
=¡rP(T <+1)>E[MTIfT<+1g]>E[M0]¡E[M�IfT=+1g]

>E[M0]¡E[M�
+]: �

Theorem 2.31. Let M be a cadlag submartingale and fix 0<� <+1. Then for any r>0 we have

P
�
max
t2[0;� ]

Mt> r
�
6 E[M�

+]
r

P
�

min
t2[0;� ]

Mt> r
�
6 E[M�

+]¡E[M0]
r

:

Proof. Let H be a countable dense subset of [0; � ] that contains 0 and � , and let H1�H2� �� � �
Hn� ��� �H be finite sets such that

S
n2NHn=H. From Lemma 2.30 we have for any b<r, since

Mt is cadlag,

P
�
max
t2[0;� ]

Mt>b
�
=P

�
max
t2H

Mt>b
�
= lim
n!+1

P
�
max
t2Hn

Mt>b
�

6E[M�
+]

b
:

Taking b!r, the first inequality is proved. The second inequality can be proved in a similar way. �
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Theorem 2.32. Let Mt be a cadlag nonnegative submartingale and fix 0<� <+1. Then for any
p> 1 we have

E
�

sup
t2[0;� ]

Mt
p
�
6
�

p

p¡ 1

�p
E[M�

p]:

Proof. Hereafter we writeMt
�= sups2[0;t]Ms. The first step of the proof is to establish the following

inequality, for any r > 0, we have

P(M�
�>r)6 E[M�IM�

�>r]
r

: (2.2)

Let Tr: 
!R+ be the function defined as

Tr= inf ft > 0;Mt>rg:

Since Tr= �~G (i.e. T is the hitting time of the set G) of the open set G=(r;+1)�R+, then, by
Proposition 2.19, Tr is a Ft+-stopping time, and so a Ht-stopping time (where fHtgt2R+ is the
right-continuous and completed enlargement of fFtgt2R+). SinceMt is cadlag we have thatMTr>r,
furthermore if M�

�>r then Tr6 � , and thus

rP(M�
�>r)6E[MTrIfM�

�>rg]6E[MTrIfTr6� g]:

SinceMt is a cadlag Ft-submartingale, by Theorem 2.11, it is also a cadlag Ht-submartingale, thus
Theorem 2.29 gives

E[MTrIfTr6� g] = E[M�^Tr]¡E[M�IfTr>� g]
6 E[M�]¡E[M�IfTr>� g] =E[M�IfTr6� g]
6 E[M�IfM�

�>rg];

and this verifies inequality (2.2).
Consider 0<b<+1 and let �M�

� be the probability law of M�
�

E[(M�
�^ b)p] =

Z
0

+1
(x^ b)p�M�

�(dx)

=
Z
0

b

xp�M�
�(dx)+ bpP(M�

�>b)

=
�
¡xp

Z
x

+1
�M�

�(dy)
�
x=0

x=b

+ p

Z
0

b

xp¡1
�Z

x

+1
�M�

�(dy)
�
dx+ bpP(M�

�>b)

= ¡bpP(M�
�>b)+ p

Z
0

b

xp¡1P(M�
�>x)dx+ bpP(M�

�>b)

= p

Z
0

b

xp¡1P(M�
�>x)dx:

So, by Holder inequality, we get

E[(M�
�^ b)p] =

Z
0

b

pxp¡1P(M�
�>x)dx

6
Z
0

b

pxp¡2E[M�IfM�
�>xg]dx

= E

�
M�

Z
0

b^M�
�

pxp¡2dx
�
= p
p¡ 1E[M�(M�

�^ b)p¡1]

6 p
p¡ 1E[M�

p]
1
p E[(M�

�^ b)p]
p¡1
p :

Since 0<E[(M�
�^ b)p]

p¡1
p 6 b, we can divide the previous inequality by E[(M�

�^ b)p]
p¡1
p obtaining

that

E[(M�
�^ b)p]

1
p 6
�

p
p¡ 1

�
E[M�

p]
1
p:
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Rising both sides to the power p and taking b!+1, by Monotone convergence theorem, we get
the thesis. �

We want to provide an important application of the Theorem 2.32.

Theorem 2.33. (Fernique's theorem for Brownian motion) Fix � 2R+, then there for any
C� <

1

2�
we have

E

"
exp

 
C�

�
sup

t2[0;� ]
jBtj

�
2

!#
=E[exp(C�B��2)]<+1:

Proof. We have that

E

"
exp

 
C�

�
sup

t2[0;� ]
jBtj

�
2

!#
=
X
n=0

+1
C�
n

n!
E

"�
sup

t2[0;� ]
jBtj

�
2n

#

6
X
n=0

+1
C�
n

n!

�
2n

2n¡ 1

�
2n

E[jB� j2n]:

We have that �
2n

2n¡ 1

�n
=
�
1+ 1

2n¡ 1

�n
! e; n!+1;

which implies that there is K> 0 for which

sup
n2N

�
2n

2n¡ 1

�n
6K:

Furthermore we have that

E[jB� j2n] =
1
(2�)�

p Z
R

e
¡x2

2�x2ndx= 2
(2�)�

p Z
0

+1
e¡yy

2n¡1
2 dy= 2n¡

1
2�n

2�
p ¡

�
2n+1
2

�
=

=2n (2n)!
22nn!

= (2n)!�n

2nn!
:

This implies that

E

"
exp

 
C�

�
sup

t2[0;� ]
jBtj

�
2

!#
6K

X
n=0

+1
C�
n(2n)!
2n(n!)2

�n:

Using Stirling approximation we have that

(2n)!
(n!)2

� (2n)2ne¡2n 4�n
p

(n)2ne¡2n2�n
� 22n

� n
p ;

as n!+1, which implies that there exists a constant K 0> 0 for which

(2n)!
(n!)2

6K 022n:

Thus we obtain

E

"
exp

 
C�

�
sup

t2[0;� ]
jBtj

�
2

!#
6K

X
n=0

+1

2nC�n�n

which is convergent whenever C� 6 1

2�
. �
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Chapter 3
Continuous (local) martingales

3.1 The space of continuous L2 martingales

In this section we want to consider continuous L2(
) martingales.

Definition 3.1. Let Mt be a martingale with respect to the filtration fFtgt2R+, we say that Mt

is a continuous martingales (bounded) in L2 if for any ! 2
 the map t 7!Mt(!) is continuous
and if for any t2R+, E[Mt

2]<+1. We denote by Mc
2(fFtgt2R+) (or simply Mc

2) the set of L2

continuous martingales.

On Mc
2 we define the function

dMc
2(M;N)=

X
n2N

2¡n(1^ (E[jMn¡Nnj2])1/2):

The functionMc
2 is not a distance onMc

2. Indeed, although it is positive, symmetric and satisfies
triangular inequality it is not true that dMc

2(M;N)=0 if and only if N =M . In any case a positive,
weak, result holds.

Proposition 3.2. Consider M;N 2Mc
2 then dMc

2(M;N)= 0 if and only if M and N are indis-
tinguishable.

Proof. If dMc
2(M;N)=0 then for any n2N we have E[(Mn¡Nn)2]= 0. Since M;N are martin-

gales then (Mt¡Nt)2 is a submartingale (since is the composition of the martingale M ¡N with
a convex function), which implies that

E[(Mt¡Nt)2]6E[(Mbtc+1¡Nbtc+1)2] = 0:

This implies that for any t2R+ thenP(Mt=Nt)=1, and soN is a modification of M . Since bothN
andM are continuous, and thus they are cadlag and for cadlag martingales the a process is a mod-
ification of another if and only if they are indistinguishable thenM and N are indistinguishable. �

Proposition 3.2 suggests to consider the space

M̂c
2=Mc

2/�ind

where �ind is the equivalence relation for which N �indM if the process N is indistinguishable from
M . By Proposition 3.2 the function dMc

2 is compatible with respect the the equivalence relation
�ind and so it pass to the quotient. With an abuse of notation we denote again by dMc

2 the function
dMc

2 on the set M̂c
2.

Remark 3.3. It is important to note that by Theorem 2.32 an equivalent metric on M̂c
2 is given by

d~Mc
2(M;N)=

X
n2N

2¡n
 
E
�

sup
t2[n¡1;n]

jMt¡Ntj2
�
1/2
^ 1

!
:

Theorem 3.4. The set M̂c
2(fGtgt2R+) of L2 continuous martingales with respect to the continuous

filtration fGtgt2R+ is a complete metric space with respect to dMc
2.
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Proof. The function dMc
2 is positive, symmetric and satisfies the triangular inequality and for

Proposition 3.2 dMc
2(fN g; fM g) if and only if M �indN (and so they are the same object in M̂c

2).
What remains to prove is that M̂c

2 is complete with respect to dMc
2. Let fMng be a Cauchy

sequence in M̂c
2 (where Mn is some sequence in Mc

2 of on of their representative), then we have
that for any for any t2R+

(1^E[jMt
k¡Mt

hj2])1/26 (1^E[jMbtc+1
k ¡Mbtc+1

h j2])1/26 2btc+1dMc
2(Mk;Mh):

It follows that for each t2R+, the sequence fMt
kgk2N is a Cauchy sequence in L2(
). This means

that for each t2R+ there is an adapted process Yt such that Mt
k!Yt in L2(
). Furthermore if Y~t

is any adapted modification of Yt (which is equivalent to any modification since the set of measure
0 are inside Gt being fGtgt2R+ a complete filtration) we have also Mt

k!Y~t in L2(
). Furthermore
the process Yt (and so any modification of it) are Gt martingale. Indeed for any A2Gs we have that

E[IAYt] = lim
k!+1

E[IAMt
k] = lim

k!+1
E[IAMs

k] =E[IAYs]

from which we can conclude that Yt is a martingale.
In general Yt 2Mc

2 since it can happen that t 7! Yt(!) is not continuous. We want now to
prove that there is a modification of Yt which is continuous. By Remark 3.3 we can choose Mnk a
subsequence of Mt

n for which

P
�

sup
06t6k

jMt
nk¡Mt

nk+1j> 2¡k
�
6 2¡k:

Indeed consider an increasing sequence nk"+1 such that

d~Mc
2(Mn;Mm)6 2¡3k

for any n;m>nk. Then we have that�
1^E

�
sup

16t6k
jMt

n¡Mt
mj2
��

1/2
6 2kd~Mc

2(Mn;Mm)6 2¡2k

for n;m>nk. Thus, by Markov inequality we have

P
�

sup
06t6k

jMt
nk¡Mt

nk+1j> 2¡k
�
6 22kE

�
sup

16t6k
jMt

n¡Mt
mj2
�
6 22k¡4k6 2¡2k:

Since X
k=1

+1

P
�

sup
06t6k

jMt
nk¡Mt

nk+1j> 2¡k
�
6
X
k=1

+1

2¡k<+1

for Borel-Cantelli lemma


1=
�
limsup
k!+1

�
sup

06t6k
jMt

nk¡Mt
nk+1j> 2¡k

��c
= liminf
k!+1

�
sup

06t6k
jMt

nk¡Mt
nk+1j6 2¡k

�
has measure 1. This means that for any for any � > 0 and ! 2
1 the sequence of function t 7!
Mt

nk(!) is a Cauchy sequence in C0([0; � ];R), and so for any ! 2
1 there is a unique continuous
function t 7!Mt(!) such that Mt

nk(!)!Mt(!) uniformly on compact subsets of R+. Consider the
process

Mt(!)=
�

limk!+1Mt
nk(!) ! 2
1

0 ! 2
1

then Mt(!) is a continuous process, it is adapted (since 
12 G0� Gt being a set of full measure)
and Mt

nk!Mt almost surely. This implies that Mt is a modification of Yt, thus Mt2Mc
2 and

E[bMk¡Mk
nj2]! 0

as n!+1 and for any k 2N. This implies that dMc
2(M;Mn)! 0 as n!+1 which proves the

thesis. �
Remark 3.5. It is possible to generalize the previous theorem considering Mcadlag

2 , i.e. the set
of L2(
) cadlag martingales, instead of Mc

2. Theorem 3.4 implies thatMc
2 is a closed subspace of

Mcadlag
2 .
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If X is a (progressive) process and T is a stopping time, then we denote by

Xt
T =Xt^T

the process X stopped at the stopping time T .

Definition 3.6. Let M be an adapted continuous process. We say that M is a local martingale
if there is a sequence of stopping time T16 T2< � � � 6 Tn6 � � � such that Tn!+1 almost surely
as n!+1 and Mt

Tn is a continuous martingale. Hereafter, we call a sequence of stopping times
fTngn2N with the previous properties localization stopping times.

Remark 3.7. If M0 is L2(
) and since we only consider continuous local martingale, we can always
consider the localization sequence fTngn2N such that MTn is a Mc

2 martingale. Indeed, consider

Sn= inf ft> 0; jMtj>ng;
then

jMt
Sn^Tnj6 jM0j _n2L2(
):

In the same way if M02L1(
) we can suppose that MTn is a bounded martingale.

3.2 Bounded variation processes
Let f :R+!R be a continuous function. For any t2R+ we denote by �([0; t]) the set of (finite)
partitions of the interval [0; t]. It is important to note that �([0; t]) has a partial order given by the
inclusion ��� 0. Furthermore, for any two partition �;� 0, the union �[� 0 is the smallest partition
containing both �;� 0 and the intersection �\� 0 is the biggest partition which is contained in both
� and � 0. We can defined also the diameter of a partition as

j� j=max fjti¡ ti¡1j; ti2� nf0gg:

Finally, we denote by �([0;1)) the set of partitions of [0;+1) which are locally finite, i.e. if
� 2�([0;1)) then �t=(�\ [0; t])[ftg is a finite partition of [0; t].

Definition 3.8. Let F : �([0; t])!R be a function we say that the limit

lim
j� j!0

F (�)

exists if, for any sequence �1��2� � � � � �n� � � � 2�([0; t]) of increasing partitions of [0; t] such
that j�nj!0, as n!+1, the limit limn!+1F (�n) exists and it does not depend on the sequence.
In this case, we write

lim
j�j!0

F (�)= lim
n!+1

F (�n):

Let f be a measurable function, we denote by

Vt(f):= sup
�2�([0;t])

 X
ti2�nf0g

jf(ti)¡ f(ti¡1)j
!

:= sup
�2�([0;t])

Vt
�(f)

the variation of the function f in the interval [0; t].

Remark 3.9. By triangular inequality, if ��� 02�([0; t]) then

Vt
�(f)6Vt�

0
(f):

Definition 3.10. A function f is said to have bounded variation on R+ if, for any t2R+, we
have Vt(f)<+1.

Definition 3.11. Consider two Borel functions f ; g:R+!R we define the Riemann-Stieltjes
integral

R
0

t
g(t)df(t), as the following limitZ

0

t

g(t)df(t)= lim
j� j!0

X
ti2�nf0g

g(�i)(f(ti)¡ f(ti¡1));
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where �i is any point ti¡16 �i<ti.

Herafter if �2�([0; t]) and ��=f�tigti2�nf0g such that ti¡16 �ti<ti, g; f are two Borel function
we define

¡(�; ��; g; f)=
X

ti2�nf0g
g(�ti)(f(ti)¡ f(ti¡1)):

Theorem 3.12. Let g be a continuous function and let f be a right-continuous function with
bounded variation, then the Riemann-Stieltjes integral is well defined.

Proof. Let ��� 0 be two partitions, then there is a map

I�
0;�:� 0!�

associating with any tj 00 2� 0 the ti2� which is the biggest ti2� that is less or equal then ti6 tj 00 .
Using this notation, we have

j¡(�; ��; g; f)¡¡(� 0; ��0; g; f)j=
����������
X

ti2�nf0g
g(�ti)(f(ti)¡ f(ti¡1))¡

X
tj 0
0 2� 0nf0g

g(�tj0
0 )(f(tj0)¡ f(tj¡10 ))

����������=
=
����������

X
tj 0
0 2� 0nf0g

�
g
�
�I�0;�(tj 00 )

�
¡ g(�tj0)

�
(f(tj 00 )¡ f(tj 0¡10 ))

����������6
6
�

max
tj 0
0 2� 0nf0g

������g��I�0;�(tj 00 )�¡ g(�tj 00 )
������� X

tj 0
0 2� 0

(f(tj 00 )¡ f(tj 0¡10 ))
!

6
�

max
ti2�nf0g

�
sup

t;s2[ti¡1;ti]
jg(t)¡ g(s)j

��
Vt(f):

If �1� � � � � � � � ��n� � � � 2�([0; t]) is any increasing sequence such that j�nj! 0, since

max
ti2�nnf0g

�
sup

t;s2[ti¡1;ti]
jg(t)¡ g(s)j

�
! 0; n!+1;

being g uniformly continuous on [0; t], the sequence f¡(�n; ��; g; f)gn2N is a Cauchy sequence
on R which has a unique limit. If now f�n0 gn2N is another increasing sequence by the previous
computation we have

j¡(�n; ��; g; f)¡¡(�n0 ; ��0; g; f)j6

6
���������� X
ti2�nnf0g

g(�ti¡1)(f(ti)¡ f(ti¡1))¡
X

tj
02�n0 [�nnf0g

g(�tj0
0 )(f(tj0)¡ f(tj¡10 ))

����������+
+
����������
X

ti2�n0 nf0g
g(�ti¡1)(f(ti)¡ f(ti¡1))¡

X
tj
02�n0 [�nnf0g

g(�tj0
0 )(f(tj0)¡ f(tj¡10 ))

����������6
6
�

max
ti2�nnf0g

�
sup

t;s2[ti¡1;ti]
jg(t)¡ g(s)j

�
+ max
ti2�n0 nf0g

�
sup

t;s2[ti¡1;ti]
jg(t)¡ g(s)j

��
Vt(f):

This means that f¡(�n; ��; g; f)gn2N and f¡(�n0 ; ��0; g; f)gn2N have the same limit which is the
Riemmann-Stieltjes integral

R
0

t
g(t)df(t). �

For the following it is useful the following lemma.

Proposition 3.13. Suppose that f is a cadlag bounded variation function, then the map t 7!Vt(f)
is a cadlag function and

Vt(f)¡Vt¡(f)= jf(t)¡ f(t¡ )j:

Proof. We give here only a sketch of the proof for a detailed treatment of the topic see Chapter
2 and Chapter 10 of [8].

30 Continuous (local) martingales



For any a; b2R+ we denote by �([a; b]) the partitions of [a; b] and we write

V (f ; [a; b])= sup
�2�([a;b])

X
ti2�nfag

jf(ti)¡ f(ti¡1)j:

It is possible to prove that for any c2 (a; b) we have

V (f ; [a; b])=V (f ; [a; c])+V (f ; [c; b])

and obviously Vt(f)=V (f ; [0; t]), thus

Vt(f)=Vt0(f)¡V (f ; [t; t0])

and so lims!t+Vt(f)=Vt0(f)¡ lims!t+V (f ; [s; t0]), and so Vt(f) is right continuous if lims!t+V (f ;
[s; t0])=V (f ; [t; t0]). If � 2�([t; t0]) is any partition of [t; t0] let t�;min the first element in � after
t then

V �(f ; [t; t0])¡jf(t)¡ f(tmin)j=V �nftg(f ; [tmin; t0])6V (f ; [tmin; t0])

From which we get
V �(f ; [t; t0])¡V (f ; [tmin; t0])6 jf(t)¡ f(tmin)j:

Taking the limit j� j! 0 we get

06V (f ; [t; t0])¡ lim
s!t+

V (f ; [s; t0])6 lim
s!t+

jf(t)¡ f(s)j=0

since f is cadlag. In a similar way if � 2�([0; t]) and being t�;max the first element in � before t
we have

Vt
�(f)¡ jf(t)¡ f(t�;max)j6Vt�;max(f)

to which we get Vt(f)¡Vt¡(f)6 jf(t)¡ f(t¡ )j. In a similar way

Vt�;max

�nftg(f)+ jf(t)¡ f(t�;max)j6Vt(f)

taking � nftg=�~2�([0; t�;max]) we get

jf(t)¡ f(t�;max)j6Vt(f)¡Vt�;max

�nftg(f)!Vt(f)¡Vt�;max(f)

and so taking t�;max! t we get jf(t)¡ f(t¡ )j6Vt(f)¡Vt¡(f). �
Remark 3.14. An important consequence of Proposition 3.13 is that if f is a continuous function
with bounded variation then the function t 7!Vt(f) is an increasing continuous function.

Definition 3.15. A continuous adapted process X on R+ has bounded variation if Vt(X�(!))<+1
almost surely.

Theorem 3.16. Let Mt be a continuous local martingale with bounded variation, then Mt=M0

almost surely.

Proof. Without loss of generality, we can suppose that Mt2Mc
2 and that Vs(M)<C for some

C > 0. Indeed, if Tn is the localization sequence making for which MTn is a martingale and we
denote by

Sn= inf ft> 0; jMtj>ng^ inf ft> 0; Vt(M�)>ng;

then also Tn^Sn is a localization sequence andMTn^SnIfM06ng is aMc
2 (more precisely, bounded)

martingale and Vt(M�) 6 n (we recall that by Proposition 3.13 and Remark 3.14 the function
Vt(M�) is continuous and so inf ft> 0; Vt(M�)>ng is a Ft stopping time). If the theorem holds for
MTn^SnIfjM0j6ng, i.e. Mt

Tn^Sn=M0 on jM0j6n almost surely, then

Mt= lim
n!+1

Mt
Tn^Sn=M0

almost surely. Thus, it is enough to prove the theorem for M with the previous conditions.
Since Mt is a martingale, for any � 2�([0; t]), we have that

E[(Mt¡M0)2] =E[Mt
2]¡E[M0

2] =E

" X
ti2�nf0g

Mti
2 ¡Mti¡1

2

#
=E

" X
ti2�nf0g

(Mti¡Mti¡1)2
#
;
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where we used the fact that E[MtiMti¡1] =E[E[MtijFti]Mti¡1] =E[Mti¡1
2 ]. Thus we have that

E[(Mt¡M0)2] = E

" X
ti2�nf0g

(Mti¡Mti¡1)2
#

6 E

"
sup

ti2�nf0g
jMti¡Mti¡1j

 X
ti2�nf0g

jMti¡Mti¡1j
!#

6 E
�

sup
ti2�nf0g

jMti¡Mti¡1jVt(M�)
�
6CE

�
sup

ti2�nf0g
jMti¡Mti¡1j

�
:

By Doob's martingale inequality we have that supti2�nf0g jMti¡Mti¡1j6 sups2[0;t] jMsj which is an
L2(
) (and thus L1(
)) random variable. Furthermore, sinceMs is continuous, and thus uniformly
continuous on [0; t], limj�j!0supti2�nf0g jMti¡Mti¡1j= 0. By Lebesgue dominated convergence
theorem, this implies that

E[(Mt¡M0)2]6 lim
j� j!0

CE
�

sup
ti2�nf0g

jMti¡Mti¡1j
�
=0: �

3.3 Quadratic variation of local martingales
Definition 3.17. Let Mt be a continuous local martingale we say that the continuous adapted
increasing process [M ]t is the quadratic variation of Mt if [M ]0= 0 and Mt

2 ¡ [M ]t is a local
martingale.

We first we establish that if quadratic variation of a local martingale is unique.

Proposition 3.18. Suppose that Mt is a local martingale then if the quadratic variation [M ] exists
is unique up to indistiguishability.

Proof. Let K and K 0 two processes which are continuous, adapted and increasing and such that
M2¡K and M2¡K 0 are local martingales. Then we have that

K 0¡K =M2¡K ¡M2+K 0

is a local martingale, being the sum of local martingales. Furthermore, since increasing continuous
processes have bounded variation, K 0¡K has also bounded variation. This means that K 0¡K is
a continuous local martingale with bounded variation, which implies that Kt¡Kt

0=K0¡K0
0=0

almost surely. This means that K is indistinguishable from K 0. �

Theorem 3.19. Let M be a continuous local martingale, then there is one (up to indistiguisha-
bility) continuous increasing process [M;M ] such that fMt

2¡ [M;M ]tgt2R+ is a local martingale.
Furthermore, if �1� � � � ��n+1� � � � we have that

[M;M ]t= lim
n!+1

X
ti2�n

(Mti^t¡Mti¡1^t)
2 (3.1)

in probability.

3.3.1 A special version of the theorem
We will prove first a special version of the previous theorem (with a stronger kind of convergence).

Proposition 3.20. Let M be a continuous martingale such that E[jMtj4]<+1 for any t2R+,
then there is a unique increasing continuous process [M;M ]t such that Mt¡ [M;M ]t 2Mc

2 and
for any increasing if �1� � � � ��n+1� � � � we have that

[M;M ]t= lim
n!+1

X
ti2�nnf0g

(Mti^t¡Mti¡1^t)2

in L2(
).

Lemma 3.21. Let Mt be a martingale and consider t1<t2 and t3<t4 then E[(Mt2¡Mt1)(Mt4¡
Mt1)] is nonzero if and only if [t1; t2]\ [t3; t4] = ;, in that case we have

E[(Mt2¡Mt1)(Mt4¡Mt3)jFtmin] =E[Mtfin
2 ¡Mtin

2 jFtmin];
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where [t1; t2]\ [t3; t4] = [tfin; tin] and tmin=min (t1; t2; t3; t4).

Proof. Suppose that [t1; t2]\ [t3; t4]=; and we can suppose, without loss of generality, that t2<t3.
Then

E[(Mt2¡Mt1)(Mt4¡Mt3)]=E[(Mt2¡Mt1)E[(Mt4¡Mt3)jFt2]] =

=E[(Mt2¡Mt1)(Mt2¡Mt2)]= 0:

Suppose then that [t1; t2]\ [t3; t4]=; and we can assume without loss of generality that t16min (t1;
t2; t3; t4). Then we have two possibilities: either [t1; t2]\ [t3; t4] = [t3; t2] or [t1; t2]\ [t3; t4] = [t3; t4]
(i.e. either t26 t4 or t4<t2). In the first case we get

E[(Mt2¡Mt1)(Mt4¡Mt3)jFt1]=E[Mt2Mt4jFt1]¡E[Mt2Mt3jFt1]¡E[Mt1Mt4jFt1]+E[Mt1Mt3jFt1]

=E[Mtfin
2 jFtmin]¡E[Mtin

2 jFtmin]¡E[Mt1
2 jFt1] +E[Mt1

2 jFt1]

The other case can be treated in a similar way. �

Let us fix a sequence of partitions f0g� �1� � � � � �n� � � �R+ which have a finite number of
points when intersected with any bounded subset of R+. We write

�k;t= f�k\ [0; t]g[ftg:

If Mt is a process, then we denote by Qt
M;�n and Kt

M;�n the following continuous processes

Qt
M;�n=

X
ti2�n;tnf0g

(Mti¡Mti¡1)2;

Kt
M;�n=

X
ti2�n;tnf0g

Mti¡1(Mti¡Mti¡1):

Remark 3.22. It is important to note that

Mt
2¡M0

2¡ 2Kt
M;�n=Qt

M;�n:

Lemma 3.23. Suppose that M is a martingale such that Mt 2 L4(
), then there is a constant
C > 0 (not depending on of �n) such that

E[(Qt
M;�n)2]6

�
3
4

�
2

C
�
E
�

sup
s2[0;t]

jMsj4
��1

2 6C (E[Mt
4])

1
2:

Proof. We have that

E[(Qt
M;�n)2] = E

" X
tj2�n;t

(Mtj¡Mtj¡1)4
#
+

+2E
" X
tj2�n;t

(Mtj¡Mtj¡1)2
 X
tj<tj

02�n;t
(Mtj¡Mtj¡1

0 )2
!#

6 E

"
sup

tj2�n;t
(Mtj¡Mtj¡1)2

X
tj2�n

(Mtj¡Mtj¡1)2
#
+

+2E
" X
tj2�n;t

(Mtj¡Mtj¡1)
2E

" X
tj<tj

02�n;t
(Mtj¡Mtj¡1

0 )2
����������Ftj

##
=

6 E
�

sup
tj2�n;t

(Mtj¡Mtj¡1)4
�1
2(E[(Qt

M;�n)2])
1
2 +

+2E
" X
tj2�n;t

(Mtj¡Mtj¡1)
2E[Mt

2¡Mtj
2 jFtj]

#

6
 
E
�

sup
s2[0;t]

Ms
4
�1
2 +4E

�
sup
s2[0;t]

Ms
4
�1
2

!
(E[(Qt

M;�n)2])
1
2:
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�

Lemma 3.24. The sequence of processes fKt
M;�ngt2R+ is a Cauchy sequence in Mc

2.

Proof. Since Kt
M;�n is a finite sums of products of L4(
) random variables Kt

M;�n2L2(
). We
want to prove that Kt

M;�n is a martingale. Consider s< t2R+

E[Kt
M;�njFs] =

X
tk6s;tk2�nnf0g

Mtk¡1(Mtk¡Mtk¡1)+

+E[Mtk�¡1(Mtk�¡Mtk�¡1)jFs] +
X

s<tk+1

E[Mtk¡1(Mtk¡Mtk¡1)jFs];

where tk� is such that tk�¡1<s6 tk�. We can use now the Lemma 3.21, obtaining

E[Mtk�¡1(Mtk�¡Mtk�¡1)jFs] =Mtk�¡1E[Mtk�¡Mtk�¡1jFs] =Mtk�¡1(Ms¡Mtk�¡1)

E[E[Mtk¡1(Mtk¡Mtk¡1)jFtk¡1]jFs] =E[Mtk¡1
2 ¡Mtk¡1

2 jFs] = 0:

We want that for any m> n!+1 and ` 2N we have E[(K`
M;�n¡K`

M;�m)2]! 0. Fix ` 2N,
then if m> n there is a map In;m: �m;t! �n;t associating to any tj 2 �m the maximum point
In;m;t(tj)2�n;t such that In;m(tj)6 tj. We have that

E[(K`
M;�n¡K`

M;�m)2] =E

24 X
tj2�m;t

(MIn;m;t(tj¡1)¡Mtj¡1)(Mtj¡Mtj¡1)
!
2

35=
=

X
tj;tj 02�m

E[(MIn;m;t(tj¡1)¡Mtj¡1)(Mtj¡Mtj¡1)(MIn;m;t(tj 0¡1)
¡Mtj 0¡1)(Mtj 0¡Mtj 0¡1)]=

=2
X

tj<tj 02�m
E[E[(MIn;m;t(tj 0¡1)

¡Mtj 0¡1)(Mtj¡Mtj¡1)(Mtj 0¡Mtj 0¡1)jFtj¡1]� ]

�(MIn;m;t(tj¡1)¡Mtj¡1)]+
X
tj2�m

E[(MIn;m;t(tj¡1)¡Mtj¡1)2(Mtj¡Mtj¡1)2]: (3.2)

If tj¡1<tj6 tj¡10 , then

E[(MIn;m;t(tj 0¡1)
¡Mtj 0¡1)(Mtj¡Mtj¡1)(Mtj 0¡Mtj 0¡1)jFtj¡1] =

=E[E[(MIn;m;t(tj 0¡1)
¡Mtj 0¡1)(Mtj¡Mtj¡1)(Mtj 0¡Mtj 0¡1)jFtj¡10 ]jFtj¡1] =

=E[E[(Mtj 0¡Mtj 0¡1)jFtj 0¡1](MIn;m;t(tj 0¡1)
¡Mtj 0¡1)(Mtj¡Mtj¡1)jFtj] = 0:

Thus, only the second term in the sum (3.2) is nonzero, and we get

E[(K`
M;�n¡K`

M;�m)2] =

=E
" X
tj2�n

(MIn;m;t(tj¡1)¡Mtj¡1)2(Mtj¡Mtj¡1)2
#
6

6E
��

sup
tj2�m;t

(MIn;m;t(tj¡1)¡Mtj¡1)
2
�
Qt
M;�m

�
6E

�
sup

tj2�m;t

(MIn;m;t(tj¡1)¡Mtj¡1)
4
�
1/2
�

�E[(Qt
M;�m)2]

1
2 6CE

�
sup

tj2�m;t

(MIn;m;t(tj¡1)¡Mtj¡1)4
�
1/2

E[Mt
4]:

We have that
E
�

sup
tj2�m;t

(MIn;m;t(tj¡1)¡Mtj¡1)4
�
! 0 (3.3)

as m>n!+1. Indeed, suptj2�m;t (MIn;m;t(tj¡1)¡Mtj¡1)4 converges pointwise to 0 since Ms is a
continuous process, and thus, for any ! 2
, s 7!Ms(!) is a uniformly continuous function when
s2 [0; t]. Furthermore,

sup
tj2�m;t

(MIn;m;t(tj¡1)¡Mtj¡1)46 sup
s2[0;t]

Ms
4
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which, by Doob martingale inequality for p = 4, and the fact that Ms 2 L4(
) for every s 2
R+, is sups2[0;t]Ms

4 2 L1(
). Thus, if we apply the Lebesgue dominated convergence theorem
to E[suptj2�m;t (MIn;m;t(tj¡1)¡Mtj¡1)

4] we get the limit. �

Proof of Proposition 3.20. We have that

Mt
2¡M0¡Qt

M;�n=2Kt
M;�n:

For Lemma 3.24 the sequence Kt
M;�n converges to some processM~ 2Mc

2. In particular means that
for any t > 0, Kt

M;�n!M~t in L2(
) and so limn!+1Qt
M;�n exists in L2(
) and we have

lim
n!+1

Qt
M;�n=2M~ ¡Mt

2+M0
2

to some process Q~ tM. It is easy to prove (exercise) that Q~ tM is increasing (more precisely non-
decreasing) in t, and also Q~0M =0. Furthermore Mt

2¡M0
2¡Q~ tM =M~ is a Mc

2. By the uniqueness
of quadratic variation (proved in Proposition 3.18) we have Q~ tM = [M ]t. �

3.3.2 Quadratic variation of continuous local martingale

Proof of Theorem 3.19. We can consider a local martingale such that M0=0. Indeed in the
general case we have [M ]t= [M ¡M0]t:

(Mt)2¡ [M ¡M0]t=(Mt¡M0+M0)2¡ [M ¡M0]t=(Mt¡M0)2¡ [M ¡M0]t+2M0Mt:

Since (Mt¡M0)2¡ [M ¡M0]t is a local martingales (by definition of quadratic variation) and
2M0Mt is a local martingale (being the product of a local martingale and a F0 measurable random
variable) we have that (Mt)2¡ [M ¡M0]t is a local martingale and so [M ]t= [M ¡M0]t.

Let Mt be a local martingale with M0= 0. Then we can define the sequence of increasing
stopping times

Tn= inf ft> 0; jMtj>ng:

We have that Mt
Tn is a bounded (and so Mc

4) martingale and so there is the quadratic variation
[MTn]t and it is such that

[MTn]t= lim
j�j!0

X
ti2�nf0g

(Mti^t
Tn ¡Mti¡1^t

Tn )2= lim
j� j!0

X
ti2�nf0g

(Mti^t^Tn¡Mti¡1^t^Tn)2

in L2(
). So in particular the sequence limj� j!0

P
ti2�nf0g (Mti^t¡Mti¡1^t)

2 converges in proba-

bility to some process continuous process ([MTn]t) on the set Tn6 t. Since Tn!+1 almost surely,
the set P([n2NfTn6 tg) = 1. Thus the [M ]t := limn!+1 [MTn]t= limj� j!0

P
ti2�nf0g

(Mti^t¡
Mti¡1^t)2<+1 exists almost surely for any t2R+. Finally Mt

2¡ [M ]t is a local martingale since
(Mt

2¡ [M ]t)Tn=(Mt
Tn)2¡ [MTn]t are martingales. �

3.3.3 The case of Brownian motion
In this subsection we compute the quadratic variation of Brownian motion.

Theorem 3.25. Let Bt be an Ft Brownian motion then

[B]t= t:

Proof. The Brownian motion is a L4(
) martingale (more generally, it is a Lp(
) martingale for
any 16 p<+1). This means that for any sequence of increasing partitions j�nj! 0 we have

[B]t= lim
j�nj!0

X
ti2�nt nf0g

(Bti¡Bti¡1)2: �
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3.3.4 Quadratic covariation
LetM and N be two (local) martingale, then the productMN is in general not a local martingale.
For this reason we introduce the following

Definition 3.26. Let M and N be two continuous local martingales we say that the continuous
bounded variation process [M;N ] is the (quadratic) covariation of M and N if

MtNt¡ [M;N ]t
is a local martingale.

Remark 3.27. For the quadratic covariation the following formula holds

[M;N ]t=
1
2
([M +N ]t¡ [M ¡N ]t):

Indeed,

MtNt¡
1
2
([M +N ]t¡ [M ¡N ]t) = 1

2
(Mt+Nt)2¡

1
2
(Mt¡Nt)2¡

1
2
([M +N ]t¡ [M ¡N ]t)

= 1
2
[(Mt+Nt)2¡ [M +N ]t]¡

1
2
((Mt¡Nt)2¡ [M ¡N ]t):

We have the following convergence result for the covariation of local continuous martingales.

Theorem 3.28. Let M;N be two continuous local martingale. If f�ng is a sequence of increasing
partitions such that j�nj! 0, then

[M;N ]t= lim
n!+1

X
ti2�nnf0g

(Mti^t¡Mti¡1^t)(Nti^t¡Nti¡1^t) (3.4)

in probability (or in L2 if M;N 2Mc
4).

Proof. The result follows from Proposition 3.20 and Theorem 3.19 and from the observation that

[M;N ]t=
1
2
([M +N ]t¡ [M ¡N ]t)= lim

j�j!0

1
2

X
(Mti+Nti¡Mti¡1¡Nti¡1)

2+

¡1
2

lim
j� j!0

X
(Mti¡Nti¡Mti¡1+Nti¡1)2= lim

j� j!0

X
(Mti¡Mti¡1)(Nti¡Nti¡1):

�

We have the following useful results.

Proposition 3.29. Let M;M1;M2 and N be some local martingales then

1. [M;M ]t= [M ]t;

2. for �; � 2R [�M1+ �M2; N ]t=�[M1; N ]t+ �[M2; N ]t;

3. [M;N ]t= [N;M ]t;

4. [M;N ]t26 [M ]t[N ]t.

Proof. Exercise (Hint: use the characterization ( 3.4)). �
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Chapter 4

Ito Integral and Ito formula

4.1 Integration with respect to continuous martingales

4.1.1 Integration of bounded simple processes and L2 martingales

Definition 4.1. Let Xt be an adapted with respect to the filtration fFtg. We say that Xt is a
simple (bounded) process if there is a � 2�((0;1)) and a sequence Ptn of Ftn (bounded) random
variables, such that

Xt=
X
tn2�

Ptn I(tn;tn+1](t):

Hereafter we denote by Eb the set of bounded simple processes.

Definition 4.2. LetM be an L2 martingale and X be a simple process define the process Ito integral
X �M as the process

(X �M)t :=
Z
0

t

XtdMt :=
X
tn2�t

Ptn(Mtn+1^t¡Mtn^t):

Hereafter we identify the integral with respect to the increasing process [M ]t as the Lebesgue
integral with respect to the abstract measure �[M ](dt) on R+ such that

�[M]((a; b])= [M ]b¡ [M ]a; �[M ](f0g)=0:

If Yt is an adapted process such that, for almost every !2
, the Yt(!)2Lloc
1 (�[M ](!)(dt)) we defineZ

0

t

Ysd[M ]s :=
Z
0

t

Ys�[M ](ds): (4.1)

It is important to note that when Yt is continuous, since the process [M ] is increasing and so it
has bounded variation, the integral (4.1) can be interpreted as the Riemann-Stieltjes integral of
the function Yt(!) with respect to the function [M ]t(!) namelyZ

0

t

Ysd[M ]s= lim
j�j!0

X
ti2�nf0g

Yti¡1(Mti¡Mti¡1);

almost surely. When instead Yt is some bounded simple process Yt=
P

tn
Ptn
0 I[tn;tn+1)(!) we haveZ

0

t

Ysd[M ]s=
X
tn

Ptn
0 ([M ]tn+1^t¡ [M ]tn^t):

The previous formula implies that if Yt is a bounded simple process with respect to Definition 4.1
then

R
0

t
Ysd[M ]s is an adapted (continuous) process.

37



Proposition 4.3. The process X�M is in Mc
2 and we have

[X �M ]t=
Z
0

t

Xt
2d[M ]t

and so

E[((X �M)t)2] =E

�Z
0

t

Xt
2d[M ]t

�
: (4.2)

Remark 4.4. Equality (4.2) is called Ito isometry .

Before proving Proposition 4.3 we prove the following general theorem.

Theorem 4.5. Let M 2Mc
2 be a continuous L2(
) martingale then Mt

2¡ [M ]t is a martingale
(and, thus, not only a local martingale).

Proof. Without loss of generality we can supposeM0=0 (in the other case we takeM~t=Mt¡M0).
Since both Mt and [M ]t are continuous and being, by definition, Mt

2¡ [M ]t a local martingale,
writing

Tn= inf ft> 0; jMtj; [M ]t>ng;

we have that (Mt
TN)2¡ [M ]t^Tn is a bounded martingale. In particular this means that for any s<t

E[(Mt
TN)2¡ [M ]t^TnjFs] = (Ms

TN)2¡ [M ]s^Tn: (4.3)

Since Mt2Mc
2, Mt

2 is a submartingale and so, by Doob stopping time theorem,

Mt^Tn
2 6E[Mt

2jFTn^t]

which implies that the family of random variable fMt^Tn
2 gn2N is uniformly integrable, since the

family of random variable fE[MtjFt^Tn]gn2N is uniformly integrable.
Since Tn is increasing with respect to n, and [M ]t is an increasing process (with respect to t)

then [M ]t^Tn is increasing with respect to n. Thus by monotone convergence theorem, we have that

E[[M ]t] = lim
n!+1

E[[M ]t^Tn] = lim
n!+1

E[(Mt
Tn)2]6E

h
lim

n!+1
(Mt

Tn)2
i
6E[Mt

2]<+1

where we used the fact that (Mt
Tn)2 is uniformly integrable and thus we can exchange the limit with

the expectation E[�]. This means that [M ]t2L1(
). Furthermore, again by monotone convergence
theorem we get

lim
n!+1

E[[M ]t^TnjFs] =E
h

lim
n!+1

[M ]t^Tn
������Fsi=E[[M ]tjFs]:

Finally since (Mt
Tn)2!Mt

2 almost surely and f(Mt
Tn)2gn2N is uniformly integrable we get

lim
n!+1

E[(Mt
Tn)2jFs] =E

h
lim

n!+1
(Mt

Tn)2
������Fsi=E[Mt

2jFs]:

Thus, taking the limit n!+1 in equality (4.3), we obtain

E[Mt
2¡ [M ]tjFs] =Ms

2¡ [M ]s

and, so, that Mt
2¡ [M ]t is a martingale. �

Proof of Proposition 4.3. Since M is continuous X �M is continuous. Furthermore since both
X and M are adapted and X �M is piecewise the product of adapted processes it is also adapted.
Finally, since, for any t2R+, X �Mt is the finite sum of products of a bounded random variable
and a L2(
) random variable X �Mt is in L2(
).

We now prove that X �M is a martingale. Consider t> s2R+ then

E[(X �M)tjFs]=
X

tn+16s
Ptn(Mtn+1¡Mtn)+E[Ptk(Mtk+1¡Mtk)jFs]+E

"X
tn>s

Ptn(Mtn+1¡Mtn)

����������Fs
#
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where tk6 s6 tk+1. Then Ptk and Mtk are Ftk�Fs measurable thus

E[Ptk(Mtk+1¡Mtk)jFs] =Ptk(E[Mtk+1jFs]¡Mtk)=Ptk(Ms¡Mtk)=Ptk(Ms^tk+1¡Mtk):

Furthermore we get

E

"X
tn>s

Ptn(Mtn+1¡Mtn)

����������Fs
#
= E

"X
tn>s

E[Ptn(Mtn+1¡Mtn)jFtn]
����������Fs
#

= E

"X
tn>s

Ptn(E[Mtn+1jFtn]¡Mtn)

����������Fs
#

= E

"X
tn>s

Ptn(Mtn¡Mtn)

����������Fs
#
=0:

Thus we get that

E[(X �M)tjFs] =
X

tn+16s
Ptn(Mtn+1¡Mtn)+Ptk(Ms^tk+1¡Mtk)= (X �M)s:

We finally prove that [X �M ]t=
R
0

t
Xs
2d[M ]s using the characterization (3.1), consider t2R+, we

can consider a sequence f�ngn2N such that � � �n, where � is the partition of (0;+1) in the
definition of the simple process (i.e. Xt is constant on intervals of the partitions �n and so

Xtk=PI�n;�(tk)

where I�n;�: �n! � is the usal map associating with tk 2 �n the maximum element tk 00 2 � such
that tk 00 6 tk) this means that

lim
j�nj!0

X
ti2�nt nf0g

((X �M)ti¡ (X �M)ti¡1)2= lim
j�nj!0

X
ti2�nt nf0g

Xti¡1
2 (Mti¡Mti¡1)2=

= lim
j�nj!0

X
tr2�

Ptr
2

X
sk2�nt \[tr;tr+1]nftrg

(Msk¡Msk¡1)2=

=
X
tr2�

Ptr
2 lim
j�nj!0

X
sk2�nt \[tr;tr+1]nftrg

(Msk¡Msk¡1)2=

=
X
tr2�

Ptr
2 ([M ]tr+1^t¡ [M ]tr^t)=

X
tr2�

Xtr
2 ([M ]tr+1^t¡ [M ]tr^t)=

Z
0

t

Xsd[M ]s:

Finally, since X �M 2Mc
2, by Theorem 4.5, (X �M)t2¡ [(X �M)]t= (X �M)t2¡

R
0

t
Xs
2d[M ]s is a

martingale with (X �M)02¡ [(X �M)]0=0. This means that

E

�
(X �M)t2¡

Z
0

t

Xs
2d[M ]s

�
=E

�
(X �M)02¡

Z
0

0

Xs
2d[M ]s

�
=0: �

The Ito integral has also the following properties.

Proposition 4.6. Consider c2R, M1;M22Mc
2, X1;X22Eb and T a stopping time then we have

1. (cX1) �M1= c(X1 �M1),

2. (X1+X2) �M1=X1 �M1+X2 �M2,

3. [X1 �M1; X2 �M2]t=
R
0

t
X1;sX2;sd[M1;M2]s,

4. X1 �M1
T =(X1 �M)T,

5. [X1 �M1
T ]t=

R
0

t
X1;s
2 d[MT ]s=

R
0

T^t
X1;s
2 d[M ]s,

6. X2 � (X1 �M1)= (X1X2) �M1.
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Proof. Exercise. �

4.1.2 Integration of progressive processes and L2 martingales
Thanks to Ito isometry (4.2) it is possible to extend to more general processes Xt. We introduce
the space Lpro;loc

2 (
�R+;dPd[M ]) that is the space of progressive processes Zt such that for any
t> 0 we have

kZkM;[0;t]
2 =E

�Z
0

t

Zs
2d[M ]s

�
<+1:

Hereafter we use the notation

L[0;t]
2 (M) :=Lpro

2 (
� [0; t];dPd[M ]); t> 0

L2(M) :=Lpro;loc
2 (
�R+;dPd[M ])=

\
t>0

Lpro
2 (
� [0; t];dPd[M ]):

Exercise 4.1. Let (
; F ;P) be a probability space with filtration fFtgt2R+, and consider the subset P of
P �F 
B(R+) defined as

A2P()8t> 0 (A\ (
� [0; t]))2Ft
B([0; t]):

Prove that P is a �-algebra, and that the process X�(�):R+� 
!R is progressive if and only if X is P
measurable.

Remark 4.7. The space L2(M) is a complete metric space with distance given by (for example by)

d(H;K)=
X
`2N

2¡`
(�

E

�Z
0

`

jHs¡Ksj2d[M ]s

��1
2
^ 1
)
; K;H 2L2(M):

For any t> 0 L[0;t]2 (M) is a Hilbert space with scalar product given by

(K;H)L[0;t]2 (M)=E

�Z
0

t

KsHsd[M ]s

�
; K;H 2L[0;t]2 (M):

Finally a sequence Kn!K in L2(M) with respect the metric above, if and only if, for any t> 0,
Kn!K converges to K in L[0;t]

2 (M).

Exercise 4.2. Using Exercise 4.1, prove the assertions in Remark 4.7.

Indeed, the following proposition holds.

Proposition 4.8. Consider Z 2Lpro;loc
2 (
�R+;dPd[M ]). Then there is a sequence fXngn2N of

simple processes such that, for any t2R+,

E

�Z
0

t

(Zs¡Xs
n)2d[M ]s

�
! 0; n!+1:

Proof. By Remark 4.7, the thesis of Proposition 4.8 is equivalent to prove that, for any t > 0, Eb
is dense in Lpro

2 (
� [0; t];dPd[M ]). Since Lpro
2 (
� [0; t]; dPd[M ]) is a Hilbert space, the density

of the subspace Eb� Lpro
2 (
� [0; t]; dPd[M ]) is equivalent to the fact that Eb?= f0g, where the

Eb?�Lpro
2 (
� [0; t]; dPd[M ]) is the orthogonal subspace of Eb namely Ks2 Eb? if and only if for

any Xs2Eb we have

E

�Z
0

t

XsKsd[M ]s

�
=0:

So consider K 2Eb? and define the process

Ys=
Z
0

s

Krd[M ]r:

40 Ito Integral and Ito formula



The process Ys is an adapted L1(
) process (it is adapted since Kr is progressive and [M ]r is
continuous and adapted and thus it is progressive). Since [M ]s is continuous Ys is continuous and
since [M ]s is of bounded variation and Ks2L2([0; t];d[M ])�L1([0; t];d[M ]) almost surely Ys is of
bounded variation almost surely. Consider s1<s26 t and F 2Fs1, then Xs= IF(!)I[s1;s2](s)2Eb.
This means that

0=E

�Z
0

t

XsKsd[M ]s

�
=E

�
IF

Z
s1

s2

Ksd[Ms]
�
=E[IF(Ys2¡Ys1)];

and thus

E[IFYs2] =E[IFYs1]:

Since the last equality holds for a generic F 2Fs1, by definition of conditional probability we get

E[Ys1jFs2] =Ys2:

This means that Ys is a continuous bounded variation martingale, and thus, by Theorem 3.16,
Ys = Y0= 0 almost surely. Since [M ]s is an increasing continuous process, this means that Ks

must be zero with respect to a set of measure 0 of the measure dPd[M ], and by definition of
Lpro
2 (
� [0; t];dPd[M ]), K=0 as an element of Lpro

2 (
� [0; t];dPd[M ]). This means that Eb?=f0g
and so Eb is dense in Lpro

2 (
� [0; t];dPd[M ]) and so on Lpro;loc
2 (
�R+;dPd[M ]). �

Definition 4.9. Consider Z 2Lpro;loc
2 (
�R+; dPd[M ]) and M 2Mc

2 we define the Ito integral
Z �M as the limit

Z �M = lim
n!0

Xn �M

where Xn 2 Eb is some sequence of bounded simple processes such that for any t > 0 E[
R
0

t(Zs¡
Xs
n)2d[M ]s]! 0 as n!+1.

Theorem 4.10. If Z 2Lpro;loc
2 (
�R+;dPd[M ]) the Ito integral Z �M is well defined (i.e. it exists

and it is unique up to indistiguishability), furthermore Z �M 2Mc
2

[Z �M ]t=
Z
0

t

Zs
2d[M ]s

and

E[(Z �M)t2] =E

�Z
0

t

Zs
2d[M ]s

�
:

Proof. By Proposition 4.8, there is a sequence Xn2 Eb such that E[
R
0

t(Xs
n¡Zs)2d[M ]s]! 0. In

particular this means that the sequence Xn �M is a Cauchy sequence in Mc
2 indeed

dMc
2(Xn �M;Xm �M) =

X
`2R

2¡`(E[j(Xn �M)`¡ (Xm �M)`j2]^ 1)

=
X
`2R

2¡`
�
E

�Z
0

`

(Xsn¡Xs
m)2d[M ]s

�
^ 1
�

=
X
`2R

2¡`
��

E

�Z
0

`

(Xs
n¡Z)2d[M ]s

�
+E

�Z
0

`

(Xs
m¡Z)2d[M ]s

��
^ 1
�

which converges to 0 when n;m!+1. This implies that Xn �M converges to some Z �M 2Mc
2.

Suppose that Xn0 is such that E[
R
0

t jXs
n0¡Zsj2d[M ]s]! 0 then Xn �M ¡Xn0 �M converges to 0

in Mc
2. This implies that Z �M is uniquely defined up to indistiguishability.

Since Xn �M converges to Z �M in Mc
2, it means that for any t 2R+ the random variable

(Xn �M)t2 converges to (Z �M)t2 in L1(
). Furthermore we have that

E

���������Z
0

t

(Xs
n)2d[M ]s¡

Z
0

t

Zs
2d[M ]s

�������� � 6 E

�Z
0

t

j(Xs
n)2¡Zs2jd[M ]s

�
6
�
E

�Z
0

t

(Xs
n+Zs)2d[M ]s

��1
2
�
E

�Z
0

t

(Xsn¡Zs)2d[M ]s

��1
2
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and so
R
0

t (Xs
n)2d[M ]s converges to

R
0

t
Zs
2d[M ]s in L1(
). Furthermore, by what we say before,

(Xn �M)t converges to (Z �M)t in L2(
) and so (Xn �M)t2 converges to (Z �M)t in L1(
). So let
t> s we have that

E

�
(Z �M)t2¡

Z
0

t

Z�
2d[M ]�

��������Fs� = lim
n!+1

E

�
(Xn �M)t¡

Z
0

t

(X�
n)2d[M ]�

��������Fs�
= lim

n!+1

�
(Xn �M)s¡

Z
0

s

(X�
n)2d[M ]�

�
= (Z �M)s2¡

Z
0

s

Z�
2d[M ]� (4.4)

where we used that, by Theorem 4.5,E[(Xn �M)t¡
R
0

t(X�
n)2d[M ]� jFs]=(Xn �M)s¡

R
0

s(X�
n)2d[M ]�.

Equality (4.10) proves that (Z �M)t ¡
R
0

t
Z�
2d[M ]� is a martingale and by uniqueness of qua-

dratic variation

[Z �M ]t=
Z
0

t

Z�
2d[M ]�:

Finally since Z �M 2Mc
2, again by Theorem 4.5,

E[(Z �M)t2] =E

�Z
0

t

Zs
2d[M ]s

�
: �

The Ito integral Z �M satisfies some useful properties.

Proposition 4.11. Consider c2R, M1; M22Mc
2, Z1; Z2; Z1e ; Z2e progressive processes such that

Z1;Z22Lloc
2 (
�R+;dPd[M1]), Z12L2(
�R+;dPd[M2]) and Z~1;Z~22L4(
�R+;dPd[M1]) and

T a stopping time then we have

1. (cZ1) �M1= c(Z1 �M1);

2. (Z1+Z2) �M1=Z1 �M1+Z2 �M2;

3. Z1 � (M1+M2)=Z1 �M1+Z1 �M2;

4. [Z1 �M1; Z2 �M2]t=
R
0

t
Z1;sZ2;sd[M1;M2]s,

5. Z1 �MT =(Z1 �M)T,

6. [Z1 �MT ]t=
R
0

t
Z1;s
2 d[MT ]s=

R
0

T^t
Z1;s
2 d[M ]s,

7. Z~2 � (Z~1 �M1)= (Z~2Z~1) �M1.

Proof. Exercise. �

We want to conclude this section with an important approximation theorem when the process
Zt is a continuous adapted process.

Theorem 4.12. Let Zt be a continuous bounded adapted process such that, for any t 2 R+,
E[
R
0

t
Zs
2d[M ]s]<+1 then if f�ngn2N is a sequence of increasing partitions such that j�nj! 0 we

have

(Z �M)t= lim
n!0

X
ti2�nt nf0g

Zti¡1(Mti¡Mti¡1) (4.5)

in L2(
).

Proof. We write

Zt
�n=

X
ti2�nnf0g

Zti¡1I(ti¡1;ti](t):
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If we prove that

E

�Z
0

t

jZt�n¡Ztj2d[M ]s

�
! 0

the theorem is proved. We have that

E

�Z
0

t

jZt�n¡Ztj2d[M ]s

�
6E

�
max

ti2�nt nf0g

�
sup

s2[ti¡1;ti]
jZti¡1¡Zsj

�
[M ]t

�
:

On the other hand, since jZ j6K for some constant K,

max
ti2�nnf0g

�
sup

t2[ti¡1;ti]
jZti¡1¡Ztj

�
[M ]t6 2K[M ]t

which is an L1(
) random variable (since M 2Mc
2). Furthermore

max
ti2�nnf0g

�
sup

s2[ti¡1;ti]
jZti¡1¡Zsj

�
! 0; n!+1

since t 7!Zt is continuous on R+ and so uniformly continuous on [0; t]. By Lebesgue dominated
convergence theorem we get the thesis. �

Remark 4.13. The boundedness of Z can be replaced with the condition that, for any t2R+,
sups2[0;t] jZsj 2Lp(
) and [M ]t2Lq(
) for 1

p
+ 1

q
6 1.

More generally, if M is a local martingale and Z is a continuous process, then the convergence
in (4.5) holds in probability.

4.1.3 The Brownian motion case
The integration with respect Brownian motion is a special case of integration with respect Mc

2

martingales introduced above. In this case the space of progressive processes Zt that can be
integrated must satisfy the condition

E

�Z
0

t

Zs
2ds
�
<+1;

in other words they must be progressive function in the space

Lloc
2 (
�R+;P
dt):

The Ito integral (Z �B)�=
R
0

�
ZsdBs is an Mc

2 martingale and we have�Z
0

�
ZsdBs

�
t

=
Z
0

t

Zs
2ds; E

��Z
0

t

ZsdBs

�
2
�
=E

�Z
0

t

Zs
2ds
�

the second equality is usually called Ito isometry.

4.1.4 Integration with respect to local martingale
In this section let Mt be a continuous local martingale such that M0=0. Consider a progressive
process such that for any t2R+ Z

0

t

Xs
2d[M ]s<+1

almost surely.

Theorem 4.14. Let Mt a local martingale and Xt a progressive process such that
R
0

t
Xs
2d[M ]s<

+1, then there is a unique (up to indistiguishability) process X �M such that there is a sequence
of increasing stopping times Tn!+1 such that MTn2Mc

2 and XTn 2Lloc
2 (
�R+; dPd[M ]Tn)

such that

(X �M)Tn=(XTn �MTn):
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Proof. We can choose the sequence of stopping times Tn in the following way

Tn
(1) = inf ft> 0; jMtj>ng

Tn
(2) = inf

�
t> 0;

Z
0

t

Xs
2d[M ]s>n

�
and so Tn=Tn

(1)^Tn
(2). Since MTn is a bounded martingale it is in Mc

2. Furthermore, by Propo-
sition 4.11, we have

E

�Z
0

t

Xs
Tnd[MTn]s

�
=E

�Z
0

t^Tn
Xs
Tnd[M ]s

�
6n

this means that there is a uniqueMc
2 martingale defined as XTn �MTn. Since Tn!+1 as n!+1

the process X �M is well defined. Finally by Proposition 4.11 and the uniqueness of Ito integral
for L2 martingales the process X �M is unique. �

4.2 Ito Formula continuous semimartingales

4.2.1 One dimensional Ito formula

Definition 4.15. Let Xt be a continuous adapted process. We say that Xt is an Lp-continuous
semimartingale if there are a bounded variation process At such that, for any t2R+, Vt(A�)2Lp(
)
(i.e. the variation of the process At is an Lp random variable), and an martingale M in Lp(
)
such that

Xt=At+Mt: (4.6)

An adapted process Xt is called a semimartingale if the decomposition ( 4.6) holds, where At is a
continuous bounded variation process and M is a local martingale.

Remark 4.16. Thanks to Theorem 3.16, the decomposition (4.6) of a semimartingale is unique;
i.e. if Xt=At

1+Mt
1 and Xt=At

2+Mt
2 for some continuous bounded variation processes A1;A2 and

some continuous local martingalesM1;M2 then A1=A2 almost surely andM1=M2 almost surely.

Hereafter if Zt is a predictable process such that the Riemann-Stieltjes integral
R
0

t
ZsdAs exists

and such that
R
0

t
Zs
2d[M ]s<+1 almost surely we defineZ

0

t

ZsdXs :=
Z
0

t

ZsdAs+
Z
0

t

ZsdMs

where the first is a Riemann-Stieltjes integral and the second is the Ito integral with respect to the
local martingale Ms. Furthermore we defined the quadratic variation of the seminartingale Xt as

[X]t := [M ]t:

Finally if X1=A1+M1;X2=A2+M2 are two continuous semimartingales we define the quadratic
covariation as

[X1; X2]t := [M1;M2]t:

Theorem 4.17. Let f 2C2(R;R) be a bounded function with bounded first and second derivatives,
then if Xt is an L4 semimartingale then f(Xt) is an L2 semimartingale and we have

f(Xt) = f(X0)+
Z
0

t

f 0(Xs)dXs+
1
2

Z
0

t

f 00(Xs)d[X ]s

= f(X0)+
Z
0

t

f 0(Xs)dAs+
Z
0

t

f 0(Xs)dMs+
1
2

Z
0

t

f 00(Xs)d[M ]s: (4.7)
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Lemma 4.18. Let Mt be a Mc
4 martingale then for any partition � 2�([0; t]) we have

E

24 X
ti2�nf0g

((Mti¡Mti¡1)2¡ [M ]ti+ [M ]ti¡1)
!
2

351/26 3 � sup
s2[0;t]

jMsj4
�
1/2

+E[[M ]t2]1/2
!
�

�
 
E
�

sup
ti2�nf0g

(Mti¡Mti¡1)4
�
1/2

+E
�

sup
ti2�nf0g

([M ]ti¡ [M ]ti¡1)2
�
1/2

!
:

Proof. We have that

E

24 X
ti2�nf0g

((Mti¡Mti¡1)2¡ [M ]ti+[M ]ti¡1)
!
2

35=
=

X
ti;ti02�nf0g

E[((Mti¡Mti¡1)
2¡ [M ]ti+ [M ]ti¡1)((Mti0¡Mti0¡1)

2¡ [M ]ti0+ [M ]ti0¡1)]:

If ti= ti0, we can assume that ti>ti0 then

E[((Mti¡Mti¡1)2¡ [M ]ti+ [M ]ti¡1)((Mti0¡Mti0¡1)
2¡ [M ]ti0+[M ]ti0¡1)]=

=E[E[(Mti¡Mti¡1)2¡ [M ]ti+ [M ]ti¡1jFti¡1]((Mti0¡Mti0¡1)
2¡ [M ]ti0+[M ]ti0¡1)]=

=E[(E[Mti
2 ¡ [M ]tijFti]¡Mti¡1

2 + [M ]ti¡1)((Mti0¡Mti0¡1)
2¡ [M ]ti0+ [M ]ti0¡1)]=

=E[(Mti¡1
2 ¡ [M ]ti¡1¡Mti¡1

2 + [M ]ti¡1)((Mti0¡Mti0¡1)
2¡ [M ]ti0+[M ]ti0¡1)]= 0:

This implies that

E

24 X
ti2�nf0g

((Mti¡Mti¡1)
2¡ [M ]ti+[M ]ti¡1)

!
2

35=
=E
" X
ti2�nf0g

((Mti¡Mti¡1)2¡ [M ]ti+[M ]ti¡1)2
#

6E
"�

sup
ti2�nf0g

(Mti¡Mti¡1)2
� X

ti2�nf0g
(Mti¡Mti¡1)2

!#
+

+2E
��

sup
ti2�nf0g

(Mti¡Mti¡1)2
�
[M ]t

�
+E

��
sup

ti2�nf0g
([M ]ti¡ [M ]ti¡1)

�
[M ]t

�
:

The thesis follows applying Holder inequality and Lemma 3.23. �
Proof. Let f�ngn2N�

Q
([0; t]) be a increasing sequence of partition such that j�nj! 0 then, by

Lagrange theorem, we have

f(Xt) = f(X0)+
X

ti2�nnf0g
(f(Xti)¡ f(Xti¡1))

= f(X0)+
X

ti2�nnf0g
f 0(Xti¡1)(Xti¡Xti¡1)+

1
2

X
ti2�nnf0g

f 00(�Xti
;Xti¡1

)(Xti¡Xti¡1)2

where �Xti
;Xti¡1

is some point between Xti and Xti¡1.
On the other handX

ti2�nnf0g
f 0(Xti¡1)(Xti¡Xti¡1) =

X
ti2�nnf0g

f 0(Xti¡1)(Ati¡Ati¡1)+

+
X

ti2�nnf0g
f 0(Xti¡1)(Mti¡Mti¡1):

On the other hand, by Theorem 3.12,X
ti2�nnf0g

f 0(Xti¡1)(Ati¡Ati¡1)!
Z
0

t

f 0(Xs)dAs
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almost surely, since t 7! f 0(Xt) is a continuous map and t 7!At has bounded variation. Furthermore
since Vt(A)2L4(
), the previous convergence is also in L4(
) and so

Vt

�Z
0

�
f 0(Xs)dAs

�
6 kf 0kL1Vt(A);

which is in L4(
)�L2(
). Furthermore by Theorem 4.12X
ti2�nnf0g

f 0(Xti¡1)(Mti¡Mti¡1)!
Z
0

t

f 0(Xs)dMs

in L2(
) (actually as a martingale in Mc
2).

For the remaining term
P

ti2�nf0g f
00(�Xti

;Xti¡1
)(Xti¡Xti¡1)2, we want to prove that it con-

verges to 1

2

R
0

t
f 00(Xt)d[M ]s in L2(
). Indeed we have���������� X

ti2�nf0g
f 00(�Xti

;Xti¡1
)(Xti¡Xti¡1)2¡

Z
0

t

f 00(Xt)d[M ]s

����������=
=1
2

���������� X
ti2�nf0g

f 00(�Xti
;Xti¡1

)((Mti¡Mti¡1)2¡ [M ]ti+ [M ]ti¡1)
����������+

+
X

ti2�nf0g
jf 00(�Xti

;Xti¡1
)jjMti¡Mti¡1jjAti¡Ati¡1j+

1
2

X
ti2�nf0g

Z
ti¡1

ti

jf 00(�Xti
;Xti¡1

)¡ f 00(Xs)jd[M ]s:

By Lemma 4.18, we have

E

24���������� X
ti2�nnf0g

f 00(�Xti
;Xti¡1

)((Mti¡Mti¡1)
2¡ [M ]ti+[M ]ti¡1)

����������
2

356
63kf 00kL13

 �
sup
s2[0;t]

jMsj4
�
1/2

+E[[M ]t2]1/2
!
�

�
 
E
�

sup
ti2�nnf0g

(Mti¡Mti¡1)4
�
1/2

+E
�

sup
ti2�nnf0g

([M ]ti¡ [M ]ti¡1)2
�
1/2

!

The last factor converges to 0, as j�nj!0, since supti2�nnf0g(Mti¡Mti¡1)4!0, supti2�nnf0g([M ]ti¡
[M ]ti¡1)2!0 almost surely, by the uniform continuity of Ms and [M ]s on [0; t], and by Lebesgue dom-
inated convergence theorem, which can be used because supti2�nnf0g(Mti¡Mti¡1)46sups2[0;t]Ms

42
L1(
) and supti2�nnf0g ([M ]ti¡ [M ]ti¡1)26 [M ]t22L1(
). Furthermore we get

E

24���������� X
ti2�nf0g

jf 00(�Xti
;Xti¡1

)jjMti¡Mti¡1jjAti¡Ati¡1j
����������
2

356
6kf 00kL1E

�
sup

ti2�nnf0g
jMti¡Mti¡1j2Vt(A)2

�
6 kf 00kL1E

�
sup

ti2�nnf0g
jMti¡Mti¡1j4

�
1/2

E[Vt(A)4]
1
2

which converges to 0 since E[supti2�nnf0g jMti¡Mti¡1j4]1/2!0 as j�nj!0 as shown above. Finally

E

24����������
Z
ti¡1

ti
 X
ti2�nf0g

jf 00(�Xti
;Xti¡1

)¡ f 00(Xs)j
!
d[M ]s

����������
2
356

6E
�
[M ]t2

�
max

ti2�nnf0g
sup

s2[ti;ti¡1]
[jf 00(�Xti

;Xti¡1
)¡ f 00(Xs)j]

��
6

6E
�
[M ]t2

�
max

ti2�nnf0g
sup

s2[ti;ti¡1];k2[0;1]
[jf 00(Xti+ k(Xti¡1+Xti))¡ f 00(Xs)j]

��
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The last term goes to 0, since by uniform continuity of Xs on [0; t] and the continuity of f 00 (and
thus the uniform continuity of f 00 on compact subsets of R) we have

max
ti2�nnf0g

sup
s2[ti;ti¡1];k2[0;1]

[jf 00(Xti+ k(Xti¡1+Xti))¡ f 00(Xs)j]! 0

almost surely. Furthermore since

[M ]t2
�

max
ti2�nnf0g

sup
s2[ti;ti¡1];k2[0;1]

[jf 00(Xti+ k(Xti¡1+Xti))¡ f 00(Xs)j]
�
6 2kf 00kL1[M ]t22L1(
);

we can apply Lebesgue dominated convergence theorem, obtaining the thesis. �

Theorem 4.17 can be generalize to the case of �generic� semimartingale.

Theorem 4.19. Let Xt be a continuous semimartingale and let f 2C2(R;R). Then f(Xt) is a
semimartingale and we have

f(Xt)= f(X0)+
Z
0

t

f 0(Xs)dXs+
1
2

Z
0

t

f 00(Xs)d[X]s

Proof. As usual there is a sequence of stopping time Tn!+1 such that jAt
Tnj; jMt

Tnj; jXt
Tnj6n

on the set fjX0j6ng (recall that since fjX0j6ng2F0 the process Mt
Tn remains a martingale on

the set fjX0j6ng). We can also replace the function f with some bounded function fb;n2C2(R)
which is equal to f on [¡n; n]. This permits to apply Theorem 4.17, on fjX0j6ng, obtaining

f(Xt
Tn) = fb;n(Xt

Tn)=

= fb;n(X0)+
Z
0

t

fb;n
0 (Xs

Tn)dXs
Tn+ 1

2

Z
0

t

fb;n
00 (Xs

Tn)d[XTn]s

= f(X0)+
Z
0

t^Tn
f 0(Xs)dXs+

1
2

Z
0

t^Tn
f 00(Xs)d[X]s:

Taking the limit n!+1, we get the thesis. �

4.2.2 Multidimensional Ito formula
Ito formula can be generalize to the case of n continuous semimartingales (X1; : : : ; Xn).

Theorem 4.20. Let X1; : : : ;Xn be n semimartingales and let f :Rn!R be a C2(Rn;R) function
then

f(X�t)¡ f(X�0)=
X
j=1

n Z
0

t @f

@xj
(X�t)dXt

j+ 1
2

X
j;i=1

n Z
0

t @2f

@xj@xi
(X�t)d[X i; X j]t;

where X�t= (Xt
1; : : : ; Xt

n)2Rn. Furthermore if f 2C2(Rn) is bounded and X� 2Mc
4 then f(X�) is

in Mc
2.

Proof. The proof is similar to the one of Theorem 4.17 and Theorem 4.19 where Theorem 3.28
equation (3.4) is used instead of Theorem 3.19 equation (3.1). �

4.2.3 Ito processes and Ito formula

Definition 4.21. Consider (B1;:::;Br) be r independent Brownian motions, and consider fGtgt2R+

be their completed natural filtration, we say that the process Xt is an Ito process if there is some
random variable X0 whic is G0 measurable, and there are some progressive processes �t(!);�t1(!);:::;
�t
r(!) such that, for any t> 0,Z

0

t

j�sjds;
Z
0

t

(�s1)2ds; : : : ;
Z
0

t

(�sr)2ds<+1
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almost surely, for which

Xt=X0+
Z
0

t

�sds+
Z
0

t

�s
1dBs1+ � � �+

Z
0

t

�s
rdBsr:

Theorem 4.22. (Ito formula for Ito processes) Consider f 2 C2(R) and let X be an Ito
process, then f(Xt) is also an Ito process and we have

f(Xt)¡ f(X0)=
X
k=1

r Z
0

t

f 0(Xs)�skdBsk+
Z
0

t
 
�sf 0(Xs)+

1
2

X
k=1

r

(�sr)2f 00(Xs)

!
ds:

Proof. The proof follows form the fact that

[X]t= [X;X]t=

"X
k=1

r Z
0

�
�s
kdBsk;

X
k 0=1

r Z
0

�
�s
k 0dBsk

0

#
t

=

=
X
k=1

r X
k 0=1

r �Z
0

�
�s
kdBsk;

Z
0

�
�s
k 0dBsk

0
�
t

=

=
X
k=1

r X
k 0=1

r Z
0

t

�s
k�s

k 0d[Bk; Bk 0]s:

Since

[Bk; Bk 0]s= �k;k 0s

(the proof is left as an exercise) the theorem is proved. �

More generally if �t
k;j:R+�
!R and �j:R+�
!R (k= 1; : : : ; n and j = 1; : : : ; m) are

progressive processsuch that Z
0

t

(�s
k;j)2ds;

Z
0

t

j�s
j jds<+1

almost surely for every k=1; : : : ; n and j=1; : : : ;m we defined m2N Ito processes as

Xt
j=X0

j+
Z
0

t

�s
jds+

X
k=1

n Z
0

t

�s
k;jdBsk:

Then we have the following theorem.

Theorem 4.23. Let X�t=(Xt
1;:::;Xt

n) be an Ito process on Rn then for any function f 2C2(Rn;R)
we have

f(X�t)¡ f(X�0)=
X
k=1

m Z
0

t

0@X
j=1

n
@f

@xj
(X�s)�s

k;j

1AdBsk+
+
Z
0

t

0@X
j=1

n
@f

@xj
(X�s)�s

j+ 1
2

X
j;i=1

n X
k=1

m
@2f

@xj@xi
(X�s)�s

k;j�s
k;i

1Ads:
Proof. The theorem follows from the fact that

[Xi; X j]t=

"X
k=1

m Z
0

�
�s
k;idBsk;

X
k 0=1

m Z
0

�
�s
k 0;jdBsk

0

#
t

=

=
X
k=1

m X
k 0=1

m �Z
0

�
�s
k;idBsk;

Z
0

�
�s
k 0;jdBsk

0
�
t

=
X
k=1

m X
k 0=1

m Z
0

t

�s
k;i�s

k 0;jd[Bsk; Bsk
0
] =

=
X
k=1

m X
k 0=1

m Z
0

t

�s
k;i�s

k 0;j�k;k 0ds=
Z
0

t
 X
k=1

m

�k;i�s
k;j

!
ds: �
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4.3 Other stochastic integrations and their Ito formulas

4.3.1 Backward stochastic integration

Definition 4.24. Let Xt be a semimartingale and let Zt be a continuous (adapted) process. We say
that Zt is backward stochastic integrable with respect to Xt if for any � >0 the following limit existsZ

0

�

Zsd¡Xs= lim
�2�([0;� ]);j� j!0

X
tk2�nf0g

Ztk(Xtk¡Xtk¡1)

in probability (and it does not depend on the partition j� j! 0). When it exists we call
R
0

�
Zsd¡Xs

the backward integral of Z with respect (or driven by) Xt.

Theorem 4.25. Let Z and X be two semimartingales, then Z is backward integrable with respect
to X and we have Z

0

�

Zsd¡Xs=
Z
0

�

ZsdXs+ [Z;X ]s:

Proof. Let Z =A+N and X =B+M (where A;B are continuous bounded variation processes
and N;M are local martingales) be the canonical decomposition of Zt and Xt, respectively, and
consider a partition � 2�((0;+1)). Then we haveX

tk2�tnf0g
Ztk(Xtk¡Xtk¡1)=

X
tk2�tnf0g

Ztk(Btk¡Btk¡1)+
X

tk2�tnf0g
Ztk(Mtk¡Mtk¡1):

Since Zt is continuous and Bt is of bounded variation and continuous, we have

lim
j�j!0

X
tk2�tnf0g

Ztk(Btk¡Btk¡1)=
Z
0

t

ZsdBs;

where the last integral is in the Riemann-Stieltjes sense. We now want to computeX
tk2�tnf0g

Ztk(Mtk¡Mtk¡1)¡
X

tk2�tnf0g
Ztk(Mtk¡Mtk¡1)=

=
X

tk2�tnf0g
(Ztk¡Ztk¡1)(Mtk¡Mtk¡1)=

=
X

tk2�tnf0g
(Atk¡Atk¡1)(Mtk¡Mtk¡1)+

X
tk2�tnf0g

(Ntk¡Ntk¡1)(Mtk¡Mtk¡1):

We have that X
tk2�tnf0g

(Atk¡Atk¡1)(Mtk¡Mtk¡1)! 0

almost surely. Indeed,���������� X
tk2�tnf0g

(Atk¡Atk¡1)(Mtk¡Mtk¡1)
����������6 X

tk2�tnf0g
jAtk¡Atk¡1jjMtk¡Mtk¡1j

6
�

sup
tk2�nf0g

jMtk¡Mtk¡1j
� X

tk2�tnf0g
jAtk¡Atk¡1j

!
6
�

sup
tk2�nf0g

jMtk¡Mtk¡1j
�
Vt(A�):

Since suptk2�nf0g jMtk¡Mtk¡1j!0 almost surely as j� j!0, and Vt(A)<+1 since At has bounded
variation,

P
tk2�tnf0g (Atk¡Atk¡1)(Mtk¡Mtk¡1)! 0.

Since both M;N are both continuous local martingales, we haveX
tk2�tnf0g

(Ntk¡Ntk¡1)(Mtk¡Mtk¡1)! [N;M ]t

in probability. Since, by definition of quadratic variation of continuous semimartingales, [Z;X]t=
[N;M ]t, the theorem is proved. �
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Theorem 4.26. (Ito formula for backward integral) Suppose that Xt is a continuous semi-
martingale and let f 2C3(R). Then

f(Xt)¡ f(X0)=
Z
0

t

f 0(X�)d¡X� ¡
1
2

Z
0

t

f 00(Xs)d[X]s:

Proof. We first prove that the integral
R
0

t
f 0(X�)d¡X� is well defined. By Ito formula, since

f 2C3(R) and so f 02C2(R), we have that f 0(Xt) is a semimartingale such that

f 0(Xt)= f 0(X0)+
Z
0

t

f 00(Xs)dXs+
1
2

Z
0

t

f 000(Xs)d[Xs]:

By Theorem 4.25, the integral
R
0

t
f 0(X�)d¡X� is well defined and we haveZ

0

t

f 0(X�)d¡X� =
Z
0

t

f 0(Xs)dXs+[f 0(X�); X]t=

=
Z
0

t

f 0(Xs)dXs+
�Z

0

�
f 00(Xs)dXs+

1
2

Z
0

�
f 000(Xs)d[Xs]; X

�
t

=

=
Z
0

t

f 0(Xs)dXs+
�Z

0

�
f 00(Xs)dXs;

Z
0

�
dXs

�
=
Z
0

t

f 0(Xs)dXs+
Z
0

t

f 00(Xs)d[X ]s:

By Ito formula (for standard Ito integral) we have that

f(Xt)¡ f(X0)=
Z
0

t

f 0(X�)dX� +
1
2

Z
0

t

f 00(Xs)d[X]s
and so

f(Xt)¡ f(X0)=
Z
0

t

f 0(X�)d¡X� ¡
1
2

Z
0

t

f 00(Xs)d[X ]s: �

4.3.2 Stratonovich and midpoint integral

Definition 4.27. Let Zt be a continuous process and Xt be a continuous semimartingale. We say
that Zt is Stratonovich integrable with respect to Xt if, for any � > 0, the following limitZ

0

�

Zs �dXs= lim
�2�([0;� ]);j� j!0

X
tk2�nf0g

�
1
2
(Ztk+Ztk¡1)

�
(Xtk¡Xtk¡1)

exists in probability, and it does not depend on �2�([0; � ]). When it exists, we call
R
0

�
Zs�dXs the

Stratonovich integral of Z with respect (or driven by) Xt.
Furthermore, we say that Zt is mid-point integrable with respect to Xt if, for any � > 0, the

following limit Z
0

�

Zs �~ dXs= lim
�2�([0;� ]);j� j!0

X
tk2�nf0g

Ztk+tk¡1
2

(Xtk¡Xtk¡1)

exists in probability, and it does not depend on �2�([0; � ]). When it exists, we call
R
0

�
Zs�~dXs the

mid-point integral of Z with respect (or driven by) Xt.

It is simple to deduce, from Theorem 4.25 and Theorem 4.26, an existence and Ito formula
theorem for Stratonovich integral.

Theorem 4.28. Let Zt and Xt be two continuous semimartingale. Then the Stratonovich integral
exists and we have Z

0

t

Zs � dXs=
Z
0

t

ZsdXs¡
1
2
[Z;X]s:

Furthermore, if f 2C3(R) then we have

f(Xt)¡ f(X0)=
Z
0

t

f 0(Xs) � dXs:
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Proof. By Theorem 4.12 (or, better, a generalization of Theorem 4.12 for semimartingales) and
Theorem 4.25, we have that

lim
�2�([0;� ]);j� j!0

X
tk2�nf0g

�
1
2
(Ztk+Ztk¡1)

�
(Xtk¡Xtk¡1)=

=1
2

lim
�2�([0;� ]);j� j!0

X
tk2�nf0g

Ztk(Xtk¡Xtk¡1)+
1
2

lim
�2�([0;� ]);j� j!0

X
tk2�nf0g

Ztk¡1(Xtk¡Xtk¡1)=

=1
2

Z
0

�

Zsd¡Xs+
1
2

Z
0

�

ZsdXs=
Z
0

�

ZsdXs+
1
2
[Z;X ]:

Applying the previous formula in a way similar as the one of the proof of Theorem 4.26, we get thatZ
0

t

f 0(X�) �dX� =
Z
0

t

f 0(X�)dXs+
1
2

Z
0

�

f 00(Xs)d[X]s
and so

f(Xt)¡ f(X0)=
Z
0

t

f 0(Xs)dXs+
1
2

Z
0

�

f 00(Xs)d[X]s=
Z
0

t

f 0(X�) �dX�: �

Remark 4.29. It is important to note that for the Stratonovich integral the fundamental theorem
of calculus holds.

Unfortunately for the existence of the mid-point integral it is not enough that the process Zt
is a semimartingale. In what follows, we provide a stronger condition for the existence of the mid-
point integral.

Theorem 4.30. Let Xt and Zt be two semimartingale such that the process [X; Z]t is (almost
surely) absolutely continuous with respect to the Lebesgue measure. Then Z is mid-point integrable
with respect to X and we haveZ

0

�

Zs �~ dXs=
Z
0

�

Zs � dXs=
Z
0

�

ZsdXs+
1
2
[X;Z]:

Remark 4.31. We say that a function g:R+!R is absolutely continuous, if there is a function
g 02Lloc

1 (R+;R) such that

g(t)¡ g(0)=
Z
0

t

g 0(s)ds:

The function g 0(t) coincides (Lebesgue)-almost everywhere with the derivative of g.

Remark 4.32. The request that the quadratic variation [Z; X ]t is absolutely continuous with
respect to Lebesgue is satisfied by any Ito processes. Indeed suppose thatX and Z are Ito processes,
i.e. there are some progressive processes �1;t(!); �1;t1 (!); : : : ; �1;tr (!) and �2;t(!); �2;t1 (!); : : : ; �2;tr (!)
such that, for any t> 0, Z

0

t

j�j;sjds;
Z
0

t

(�j;s1 )2ds; : : : ;
Z
0

t

(�j;sr )2ds<+1

almost surely, for j 2f1; 2g, for which

X =X0+
Z
0

t

�1;sds+
X
k=1

r Z
0

t

�1;s
k dBsk;

Zt=Z0+
Z
0

t

�2;sds+
X
k=1

r Z
0

t

�2;s
k dBsk:

Then, by the properties of Ito integral with respect to quadratic variation we have that

[Z;X ]t=
Z
0

t
 X
k=1

r

�1;s
k �2;s

k

!
ds:
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The function  X
k=1

r

�1;s
k �2;s

k

!
2Lloc

1 (R+;ds)

almost surely since �j;sk 2Lloc
2 (R+;ds) almost surely.

We now state a generalization of the continuity theorem for L1(R+; dt) functions. Consider
a sequence of functions �n:R+!R such that there is �n2�((0;+1)) such that j�nj! 0 and a
constant C 2N for which

�n(t)=
X

tk
n2�nnf0g

hk;nI[tk¡1n ;tk
n)(t) (4.8)

where
jhk;nj6 tk+Cn ¡ tk: (4.9)

Lemma 4.33. Let a2L1(R+;dt) and consider a sequence of measurable (bounded) functions �n:
R+!R+ satisfying the conditions ( 4.8) and ( 4.9). ThenZ

R+

ja(t)¡a(t+ �n(t))jdt! 0; n!+1:

Proof. Let a= g where g2C0(R+;R) with compact support contained in [0;K]�R+ (for some
K > 0). If supn (supt2R+ j�n(t)j)=C we have that

jg(t)¡ g(t+ �n(t))j6 I[0;K+C](t)kgkL1(R):

Furthermore, by the continuity of g, we have that

jg(t)+ g(t+ �n(t))j! 0:

Thus, by Lebesgue dominated convergence theorem,Z
R+

jg(t)¡ g(t+ �n(t))jdt! 0; n!+1:

Let a2L1(R+; dt) be a generic integrable function, then, by the density of continuous functions
with compact support in L1(R+;dt), for any ">0 there is g"2C0(R+) with compact support such
that Z

R+

ja(t)¡ g"(t)jdt < ":

Then we haveZ
R+

ja(t)¡ a(t+ �n(t))jdt=
Z
ja(t)¡ g(t)jdt+

Z
jg(t)¡ g(t+ �n(t))jdt+

+
Z
R+

jg(t+ �n(t))¡ a(t+ �n(t))jdt:

Since �n(t) is piecewise constant there is a partition � 2�((0;+1)) such that

�n(t)=
X

tk2�nf0g
hkI[tk¡1;tk)(t)

for some hk2R+. Then we haveZ
R+

jg(t+ �n(t))¡a(t+ �n(t))jdt=
X

tk2�nnf0g

Z
tk¡1

tk

jg(t+hk;n)¡a(t+hk;n)jdt=

=
X

tk2�nnf0g

Z
tk¡1+hk;n

tk+hk;n

jg(t)¡a(t)jdt6
X

tk2�nnf0g

X
jth¡tk¡1j6hk;n

Z
th¡1

th

jg(t)¡a(t)jdt:

By the hypotheses on �n, we have that there is C 2N such that hk;n< jtk+C¡ tkj, in other words
the sums

P
jth¡tk¡1j6hk;n

R
th¡1

th jg(t)¡a(t)jdt contains at most C different terms. This means thatZ
R+

jg(t+ �n(t))¡a(t+ �n(t))jdt6C
Z
R+

jg(t)¡ a(t)jdt6C":
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This implies that

limsup
n!+1

��������Z
R+

ja(t)¡a(t+ �n(t))jdt
��������6

6limsup
n!+1

��������(C+1)"+
Z
R+

jg(t)¡ g(t+ �n(t))jdt
��������6 (C+1)":

Since "> 0 is arbitrary we proved the theorem. �

Proof. If Z=A+N and X=B+M are the canonical decomposition of Z and X, repeating the
proof of Theorem 4.25 we have that,X

tk2�tnf0g
Ztk+tk¡1

2

(Xtk¡Xtk¡1)=

=
X

tk2�tnf0g
Ztk+tk¡1

2

(Btk¡Btk¡1)+
X

tk2�tnf0g
Atk+tk¡1

2

(Mtk¡Mtk¡1)+

+
X

tk2�tnf0g
Ntk+tk¡1

2

(Mtk¡Mtk¡1):

Since Zt is continuous and B is bounded variation we have

lim
j�j!0

X
tk2�tnf0g

Ztk+tk¡1
2

(Btk¡Btk¡1)!
Z
0

t

ZsdBs:

We have also ���������� X
tk2�tnf0g

Atk+tk¡1
2

(Mtk¡Mtk¡1)¡
X

tk2�tnf0g
Atk¡1(Mtk¡Mtk¡1)

����������6
6
�

sup
tk2�tnf0g

jMtk¡Mtk¡1j
� X
tk2�tnf0g

������Atk+tk¡1
2

¡Atk¡1

������
6
�

sup
tk2�tnf0g

jMtk¡Mtk¡1j
� X
tk2�~tnf0g

jAsk¡Ask¡1j6
�

sup
tk2�tnf0g

jMtk¡Mtk¡1j
�
Vt(A)! 0

almost surely, where �~2�((0;+1)) is defined as �~=� [tk2�nf0g
� tk+ tk¡1

2

	
.

What remains to prove is that, for any increasing sequence �n2�((0;+1)) such that j�nj! 0,
then X

tk2�tnf0g
Ntk+tk¡1

2

(Mtk¡Mtk¡1)!
Z
0

t

NsdMs+
1
2
[N;M ]t:

First we note thatX
tk2�tnf0g

Ntk+tk¡1
2

(Mtk¡Mtk¡1)=
X

tk2�tnf0g
Ntk+tk¡1

2

n�
Mtk¡Mtk+tk+1

2

�
+
�
Mtk+tk+1

2

¡Mtk¡1

�o
=

X
tk2�tnf0g

Ntk+tk¡1
2

�
Mtk¡Mtk+tk+1

2

�
+

X
tk2�tnf0g

Ntk¡1

�
Mtk+tk+1

2

¡Mtk¡1

�
+

+
X

tk2�tnf0g

�
Ntk+tk¡1

2

¡Ntk¡1

��
Mtk+tk+1

2

¡Mtk¡1

�
=

=
X

sk2�~tnf0g
Nsk¡1(Msk¡Msk¡1)+

X
tk2�tnf0g

�
Ntk+tk¡1

2

¡Ntk¡1

��
Mtk+tk+1

2

¡Mtk¡1

�
where �~t=

¡
�t[tk2�tnf0g

� tk+ tk¡1
2

	�
\ [0; t]. The sequenceX

sk2�~tnf0g
Nsk¡1(Msk¡Msk¡1)!

Z
0

t

NsdMs

in probability. The only thing that we have to prove is thatX
tk2�tnf0g

�
Ntk+tk¡1

2

¡Ntk¡1

��
Mtk+tk+1

2

¡Mtk¡1

�
! 1

2
[N;M ]t
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in probability. We prove this convergence in the case where N;M 2Mc
4, since the general case can

be reduced to this one by localization. First we prove thatX
tk2�tnf0g

�
Ntk+tk¡1

2

¡Ntk¡1

��
Mtk+tk+1

2

¡Mtk¡1

�
¡

X
tk2�tnf0g

�
[N;M ]tk+tk¡1

2

¡ [N;M ]tk¡1
�

converges to 0 in L2(
). Indeed, repeating the proof of Lemma 4.18 we get

E

24 X
tk2�tnf0g

�
Ntk+tk¡1

2

¡Ntk¡1

��
Mtk+tk+1

2

¡Mtk¡1

�
¡

X
tk2�tnf0g

�
[N;M ]tk+tk¡1

2

¡ [N;M ]tk¡1
�!235

63
 �

sup
s2[0;t]

(jMsj+ jNsj)4
�
1/2

+E[[M ]t2+[N ]t2]1/2
!
�

�

 
E
�

sup
ti2�~tnf0g

((Mti¡Mti¡1)4+(Nti¡1¡Nti))
�
1/2

+

E
�

sup
ti2�~tnf0g

([M ]ti¡ [M ]ti¡1+ [N ]ti¡ [N ]ti¡1)2
�
1/2

!
:

which goes to 0 when j� j! 0. What remains to prove is that

1
2
[N;M ]t¡

X
tk2�tnf0g

�
[N;M ]tk+tk¡1

2

¡ [N;M ]tk¡1
�
! 0:

Since [N;M ]t is absolutely continuous with respect to Lebesgue, there is at(!)2Lloc
1 (R+;dt) such

that [N;M ]t=
R
0

t
asds. Thus we have

1
2
[N;M ]t¡

X
tk2�tnf0g

�
[N;M ]tk+tk¡1

2

¡ [N;M ]tk¡1
�
=

=1
2

X
tk2�tnf0g

�
[N;M ]tk¡ 2[N;M ]tk+tk¡1

2

+ [N;M ]tk¡1
�
=

=1
2

X
tk2�tnf0g

 Z
tk+tk¡1

2

tk

asds¡
Z
tk¡1

tk+tk¡1
2

asds

!
=

=1
2

X
tk2�tnf0g

 Z
tk¡1

tk+tk¡1
2

a
s+

tk¡tk¡1
2

ds¡
Z
tk¡1

tk+tk¡1
2

asds

!
=

=1
2

X
tk2�tnf0g

 Z
tk¡1

tk+tk¡1
2 �

a
s+

tk¡tk¡1
2

¡ as
�
ds

!
:

In other words we have����������12[N;M ]t¡
X

tk2�nt nf0g

�
[N;M ]tk+tk¡1

2

¡ [N;M ]tk¡1
�����������6

61
2

Z
R+

jI[0;t](s+ �n(s))at+�n(t)¡ I[0;t](s)asjds:

where the functions �n(t) are defined as

�n(t)=
X

tk2�~;k even

tk+2¡ tk
2

I[tk;tk+1)(t):

Obviously �n satisfies the conditions (4.8) and (4.9), and thus, by Lemma 4.33 we have

1
2

Z
R+

jI[0;t](s+ �n(s))at+�n(t)¡ I[0;t](s)asjds:! 0

as n!+1, since I[0;t](s)as2L1(R+;dt). This concludes the proof of the theorem. �
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Chapter 5

Consequences of Ito formula and Girsanov
theorem

5.1 Applications of Ito formula to Brownian motion

5.1.1 Martingale representation theorem

Consider a Brownian motion Bt and let FtB be its natural (in general not completed) filtration.
We want to prove that any L2(
) (cadlag) martingale Mt with respect to the filtration FtB is an
Ito process.

We start with the following proposition.

Proposition 5.1. Let K 2L2(FtB), then there is a progressive function h(s)2L2(
� [0; t];dPdt)
(which is unique up to set of measures 0 with respect the measure dPdt) such that

K =E[K] +
Z
0

t

h(s)dBs: (5.1)

First we prove the following lemma.

Lemma 5.2. Consider the family of functions

Jt= span
�
e
i�1(Bt2¡Bt1)+ � � �+i�n¡1(Btn¡Btn¡1)j�1; : : : ; �n2R; t16 � � �6 tn6 t

	
�L2(Gt):

Then Jt is dense in L2(FtB).

Proof. Since L2(FtB) is an Hilbert space it is enough to prove that Jt?= f0g, namely that if
K 2L2(FtB) such that

E
�
Ke

i�1(Bt2¡Bt1)+� � �+i�n¡1(Btn¡Btn¡1)
�
=0 (5.2)

for any �1; : : : ; �n2R; t16 � � �6 tn6 t then K =0 almost surely.
Consider the (bounded) measure �:Rn¡1!R defined as if F 2B(Rn¡1) we have

�(F )=E[K If(Bt2¡Bt1; : : : ;Bt2¡Bt1)2F g(!)]:

The measure � is bounded, indeed j�(F )j6E[jK j]<+1, and the function

�̂(�1; : : : ; �n¡1)=

=E
�
Ke

i�1(Bt2¡Bt1)+ � � �+i�n¡1(Btn¡Btn¡1)
�
=
Z
Rn¡1

ei�1x1+� � �+�n¡1xn�(dx1; : : : ;dxn)

is its characteristic function (or equivalently its Fourier transform). Condition (5.2) implies that
�̂(�1; : : : ; �n¡1) = 0. Since the characteristic function of bounded measure on Rn characterizes
completely the measure, this implies that �(F ) = 0 for any F 2B(Rn¡1). Since n 2N and F 2
B(Rn¡1) are generic, and the sets of the form

f(Bt2¡Bt1; : : : ; Bt2¡Bt1)2F g2FtB
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generates the �-algebra FtB (since by definition FtB=�(Bsjs6 t)), this means that

E[K jFtB] = 0

almost surely. Since K is FtB-measurable we have that K =E[K jFtB] = 0 almost surely and then
the thesis. �

Lemma 5.3. Suppose that K 2Jt, then the thesis of Proposition 5.1 holds.

Proof. Let t16 t26 � � �6 tn6 t and consider the martingales

Bt
j=
Z
tj^t

tj+1^t
dBs

and the bounded variation processes

T j(t)=
Z
tj

tj+1^t
ds

for j=1; : : : ; n¡ 1. Consider the (complex) processes

F�1; : : : ;�n¡1(T 1(s); : : : ; T n(s); Bs
1; : : : ; Bs

n)= exp

 X
r=1

n¡1 �
i�rBs

r+ 1
2
�r
2T r(s)

�!
:

Applying Ito formula to the function F (or better to the real and imaginary part of the function F ),
we get

F�1; : : : ;�n¡1(T 1(t); : : : ; T n(t); Bt
1; : : : ; Bt

n)¡ 1=

=
Z
0

tX
r=1

n

@yrF�1; : : : ;�n¡1(T 1(t); : : : ; T n(t); Bt
1; : : : ; Bt

n)dt+

+
Z
0

tX
r=1

n

@yr+nF�1; : : : ;�n¡1(T 1(t); : : : ; Tn(t); Bt
1; : : : ; Bt

n)dBsr+

+1
2

Z
0

t X
r;r0=1

n

@yr+n;yr0+nF�1; : : : ;�n¡1(T
1(t); : : : ; Tn(t); Bt

1; : : : ; Bt
n)d[Br; Br 0]s: (5.3)

By noting that

Bs
j=
Z
0

s

I[tj;tj+1](�)dB�

and so

[Bj ; Bj 0]s=
Z
0

s

I[tj;tj+1](�)I[tj 0;tj 0+1](�)d� = �j;j 0

Z
0

s

I[tj;tj+1]d(�)= �j;j 0T
j(s)

and finally that

@yrF�1; : : : ;�n¡1=
�r
2

2

@yr+n;yr0+nF�1; : : : ;�n¡1=¡�r;r 0�r
2;

we obtain that the first and last term in the sum (5.3) cancel out, and so

F�1; : : : ;�n¡1(T
1(t); : : : ; T n(t); Bt

1; : : : ; Bt
n)¡ 1=

=
Z
0

tX
r=1

n

@yr+nF�1; : : : ;�n¡1(T 1(s); : : : ; Tn(s); Bs
1; : : : ; Bs

n)dBsr=

=
Z
0

t
 X
r=1

n

@yr+nF�1; : : : ;�n¡1(T 1(s); : : : ; T n(s); Bs
1; : : : ; Bs

n)I[tr;tr+1](s)

!
dBs=

=
Z
0

t

h(s)dBs
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for the (bounded and continuous) process

h(s)=
X
r=1

n

@yr+nF�1; : : : ;�n¡1(T 1(t); : : : ; Tn(t); Bt
1; : : : ; Bt

n)I[tr;tr+1](s):

Since

F�1; : : : ;�n¡1(T 1(t); : : : ; Tn(t); Bt
1; : : : ; Bt

n)=

=exp(i�1(Bt2¡Bt1)+ � � �+ i�n¡1(Btn¡Btn¡1))C(t)

where C(t)> 0 is a suitable constant, the lemma is proved. �

Proof. First we prove uniqueness of the representation (5.1). Suppose that there are h; h0 2
L[0;t]
2 (B) such that

K=E[K] +
Z
0

t

h(s)dBs=E[K] +
Z
0

t

h0(s)dBs;

then we have that

0=E[(K ¡E[K]¡K+E[K])2] =E

��Z
0

t

(h(s)¡h0(s))dBs
�
2
�
=

=E
�Z

0

t

(h(s)¡h0(s))2ds
�
;

and so h=h0 up to a set of measure zero with respect to dPdt.
We want to prove the existence. Let L�L2(FtB) be the following space

L=
�
k+

Z
0

t

h(s)dBs; k2R; h2L[0;t]2 (B)
�
:

We want to prove that L is a closed subspace of L2(FtB). Indeed let Pn2L be a Cauchy sequence
in L2(FtB), this means that there are some kn2R and hn(s)2L[0;t]2 (B) such that

P n= kn+
Z
0

t

hn(s)dBs:

We have that

E[(Pn¡Pm)2] =E

��
kn¡ km+

Z
0

t

(hn(s)¡hm(s))dBs
�
2
�
=

=(kn¡ km)2+2(kn¡ km)E
�Z

0

t

(hn(s)¡hm(s))dBs
�
+E

��Z
0

t

(hn(s)¡hm(s))dBs
�
2
�
=

=(kn¡ km)2+E

�Z
0

t

(hn(t)¡hm(t))dt
�
:

Since Pn is a Cauchy sequence in L2(FtB), then also kn is a Cauchy sequence inR and hn is a Cauchy
sequence in L[0;t]

2 (B), i.e. there is k 2R and a h2L[0;t]2 (R) such that kn! k in R and hn! h in
L[0;t]
2 (B). If we write P = k+

R
0

t
h(s)dBs, the previous observations imply that Pn!P in L2(Gt).

On the other hand, P 2L and, since Pn is a generic Cauchy sequence in L, it follows that L is closed.
Furthermore, by Lemma 5.3, Jt�L, and thus, Jt�L=L. Finally, by Lemma 5.2, Jt=L2(FtB)

and so L=L2(FtB). �

Theorem 5.4. Let Mt be a L2(
) martingale with respect to the filtration FtB. Then there is a
process h2L2(B) and M02R such that

Mt=M0+
Z
0

t

h(s)dBs

(where we identify indistinguishable processes).
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Proof. We can consider the sequence of martingales

Mt
n=Mt^n¡Mt^(n¡1):

We have thatMn
n2L2(Gn) andMt¡M0=

P
n=1
+1 Mt

n (the previous sums is always convergent since
for any t>0 only a finite number of its elements are nonzero). This means that, by Proposition 5.1,
there is a sequence hn2L[0;n]2 (B) such that

Mn
n=

Z
0

n

hn(s)dBs:

Since Mt
n is a martingale we have that, for any 06 t6n

Mt
n=E[Mn

njGt] =E

�Z
0

n

hn(s)dBs

��������FtB�= Z
0

t

hn(s)dBs;

almost surely. Furthermore, since Mt
n=Mn

n for t>n, if we extend hn(s)=0 when s>n, we have
that

Mt
n=

Z
0

n

hn(s)dBs=
Z
0

t

hn(s)dBs:

Finally, since Mt
n=0 for t6n¡ 1, by the uniqueness part of Proposition 5.1, we have that

hn(t)=0

for t<n¡ 1 and dPdt almost everywhere. So, if we write

h(t)=
X
n=1

+1

hn(t);

we have that h2L2(M) (since, for any finite t > 0, only a finite number of terms, in the previous
sum, are nonzero) and also

Mt¡M0=
X
n=1

+1

Mt
n=

X
n=1

+1 Z
0

t

hn(s)dBs=
Z
0

tX
n=1

+1

hn(s)dBs=
Z
0

t

h(s)dBs:

Since Mt is adapted, M0 must be F0B measurable, and so M0 is a constant almost surely. In
conclusion, for any t>0 we have Mt=M0+

R
0

t
h(s)dBs almost surely. This means that the process

M0 +
R
0

t
h(s)dBs is a modification of Mt. Since M0 +

R
0

t
h(s)dBs is continuous the theorem is

proved. �

Corollary 5.5. If Mt is a L2(
) martingale with respect to the filtration FtB, then it admits a
continuous modification.

Proof. By the previous theorem, Mt is indistinguishable from M0+
R
0

t
h(s)dBs which is a contin-

uous martingale since is the Ito integral with respect to a continuous martingale. �

Corollary 5.6. Let Mt be a continuous local martingale with respect to FtB then there is h(s)2
Lloc
2 (R+;dt) such that

Mt=M0+
Z
0

t

h(s)dBs:

Proof. By localization, we can reduce to the case whereMTn2L2(
), then we apply Theorem 5.4,
and then we take Tn!+1. �

Corollary 5.7. LetMt be a continuous local martingale with respect to FtB then it is an Ito process.

Remark 5.8. It is possible to extend all the previous result replacing FtB with GtB (i.e. the
completed natural filtration of the Brownian motion B).
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Remark 5.9. It is possible to prove (see, e.g., Chapter 5 Section 4 of [10]) a generalization of
Corollary 5.6 and Corollary 5.7 in the following sense: suppose that Mt is a local martingale
(without supposing the continuity) with respect to the natural filtration FtB (or the completed
natural filtration GtB) of a Brownian motion Bt, then there is a progressive process h2Lloc

2 (R+;dt)
such that

Mt=M0+
Z
0

t

h(s)dBs:

This means that any local martingale, with respect to the natural filtration FtB (or the completed
natural filtration GtB) of a Brownian motion, admits a continuous version.

Remark 5.10. It is possible to generalize Proposition 5.1 and Theorem 5.4 to the case where FtB
�

is natural filtration of a set B� = (Bt
1; : : : ; Bt

n) of n independent Brownian motions. In this case,
the thesis of Proposition 5.1 becomes: there are some processes h1(s); : : : ; hn(s)2L[0;t]2 (B1; : : : ;Bn)
such that

K =E[K] +
X
r=1

n Z
0

t

hr(s)dBsr:

The martingale representation theorem takes a similar form.

5.1.2 Lévy characterization of Brownian motion
In this section, we want to prove a charaterization of n-dimensional Brownian motion which will
be very useful in the following.

Theorem 5.11. Let (M1; : : : ;Mn) be n local martingales such that (M0
1; : : : ;M0

n)= 0 and

[M i;M j]t= t:

Then (M1; : : : ;Mn) are n independent Brownian motions.

Proof. Let �1; : : : ; �n2R and define the functions

F�1; : : : ;�n(Mt
1; : : : ;Mt

n; t)= exp

 
i
X
k=1

n �
i�kMt

k+ 1
2
�k
2t

�!
:

We have that, for any �1; : : : ; �n 2R, F�1; : : : ;�n(Mt
1; : : : ; Mt

n; t) is a local martingale. Indeed,
applying Ito formula, we have

F�1; : : : ;�n(Mt
1; : : : ;Mt

n; t)¡ 1=

=
Z
0

tX
r=1

n

@yr(F�1; : : : ;�n)(Ms
1; : : : ;Ms

n; s)dMs
r+
Z
0

t

@tF�1; : : : ;�n(Ms
1; : : : ;Ms

n; s)ds+

+1
2

Z
0

t X
r;r 0=1

n

@yryr0(F�1; : : : ;�n)(Ms
1; : : : ;Ms

n; s)d[M r;M r 0]s=

=
Z
0

tX
r=1

n

@yr(F�1; : : : ;�n)(Ms
1; : : : ;Ms

n; s)dMs
r+

+
Z
0

t
 
1
2

X
r=1

n

@yryr(F�1; : : : ;�n)(Ms
1; : : : ;Ms

n; s)+ @tF�1; : : : ;�n(Ms
1; : : : ;Ms

n; s)

!
ds:

We have that

@yryr(F�1; : : : ;�n)=¡�r2F�1; : : : ;�n
and

@tF�1; : : : ;�n=
1
2

X
r=1

n

�r
2
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and thus
1
2

X
r=1

n

@yryr(F�1; : : : ;�n)(Ms
1; : : : ;Ms

n; s)+ @tF�1; : : : ;�n(Ms
1; : : : ;Ms

n; s)= 0:

Thus, we have that

F�1; : : : ;�n(Mt
1; : : : ;Mt

n; t)¡ 1=
Z
0

tX
r=1

n

@yr(F�1; : : : ;�n)(Ms
1; : : : ;Ms

n; s)dMs
r

is a local martingale. Furthermore, since F�1; : : : ;�n(Mt
1; : : : ; Mt

n; t) is bounded, it is a real
martingale.

We prove that for any t16 ���6 t` (Mt2
1 ¡Mt1

1 ;:::;Mt2
n¡Mt1

n), . . ., (Mt`
1 ¡Mt`¡1

1 ;:::;Mt`
n¡Mt`¡1

n )
are independent. Let A2Ft`¡1 then

exp

 
1
2

X
r=1

`

�r
2(t`¡ t`¡1)

!
E
�
IAexp

¡
i
X

�r(Mt`
r ¡Mt`¡1

r )
��

E

"
IA
F�1; : : : �n(Mt`

1 ; : : : ;Mt`
n; t`)

F�1; : : : �n(Mt`
1 ; : : : ;Mt`

n; t`)

#
=

=E

"
IA

F�1; : : : �n(Mt`
1 ; : : : ;Mt`

n; t`)
E[F�1; : : : �n(Mt`

1 ; : : : ;Mt`
n; t`)jFt`]

#
=

=E

"
IA

F�1; : : : �n(Mt`
1 ; : : : ;Mt`

n; t`)
F�1; : : : �n(Mt`¡1

1 ; : : : ;Mt`¡1
n ; t`¡1)

#
=E[IA] =P(A):

In other words,

E
�
IAexp

¡
i
X

�r(Mt`
r ¡Mt`¡1

r )
��
= exp

 
1
2

X
r=1

`

�r
2(t`¡ t`¡1)

!
P(A):

Since, by the proof of Lemma 5.2, spanfexp(i
P

�r(Mt`
r ¡Mt`¡1

r )); �1; : : : ; �r 2Rg is dense in
L2(�((Mt`

1 ¡Mt`¡1
1 ; : : : ;Mt`

n¡Mt`¡1
1 ))) we have that for any F 2�((Mt`

1 ¡Mt`¡1
1 ; : : : ;Mt`

n¡Mt`¡1
1 ))

we have

P(A\F )=E[IA IF ] =E[P(A)IF ] =P(A)P(F ):

This proves that (Mt`
1 ¡Mt`¡1

1 ;:::;Mt`
n¡Mt`¡1

1 ) is independent of Ft`¡1, and sinceMt
j are adapted,

is independent of (Mt2
1 ¡Mt1

1 ;:::;Mt2
n¡Mt1

n), .. ., (Mt`¡1
1 ¡Mt`¡2

1 ;:::;Mt`¡1
n ¡Mt`¡2

n ). Repeating the
argument for each time we obtain that (Mt2

1 ¡Mt1
1 ;:::;Mt2

n¡Mt1
n), ..., (Mt`

1¡Mt`¡1
1 ;:::;Mt`

n¡Mt`¡1
n )

are independent. Finally by the previous computation we get

E
�
exp
¡
i
X

�r(Mt`
r ¡Mt`¡1

r )
��
= exp

 
1
2

X
r=1

`

�r
2(t`¡ t`¡1)

!
and so (Mt`

1 ¡Mt`¡1
1 ; : : : ;Mt`

n¡Mt`¡1
n )�N(0; (t`¡ t`¡1)IRn). Since Mt

j are continuous this prove
that Mt are Brownian motions. �

5.2 Girsanov theorem and applications

Remark 5.12. From now on we use the following notation: if A;C are two semimartingales and
B is a progressive process we write

dAt=BtdCt
if and only if

At¡A0=
Z
0

t

BsdCs:
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Remark 5.13. With the previous notation if F :Rn!R is a C2 function andX� is a semimartingale
on Rn the Ito formula reads

dF (X�)t=
X
k=1

n

@ykF (X�t)dXt
k+ 1

2

X
k;r=1

n

@ykyrF (X�t)d[Xk; Xr]t:

Remark 5.14. If At;Ct and Bt are as in Remark 5.12, if dAt=BtdCt and Ct is a local martingale
also At is a local martingale.

5.2.1 Preliminaries

Definition 5.15. A martingale Lt is uniformly integrable if the family of random variables
fLtgt2R+ is uniformly integrable.

Theorem 5.16. Let Lt be a uniformly integrable martingale then the there is a F1-measurable
random variable L12L1(
) such that

Lt=E[L1jFt]
almost surely.

Proof. See Theorem 3.19 and Theorem 3.21 in [4] (see also Section 4 of [2]). �

Remark 5.17. It is important to note that if L is an uniform integrable cadlag martingale we can
extend the Doob optional stopping time in the following way: let T be a (generic) stopping time
(i.e. we assume that T =+1 in a set with possibly positive probability) then we have

LT =E[L1jFT ]:

Definition 5.18. Consider a measure space (
;F) and let P and Q be two probability measures
on (
;F), we say that Q is absolutely continuous with respect to P (and we write Q�P) if
for any A 2 F such that P(A) = 0 also Q(A) = 0. We say that the measure Q is equivalent to
the measure P (and we write Q�P) if Q is absolutely continuous with respect to P, and P is
absolutely continuous with respect to Q (i.e., Q�P and P�Q).

Theorem 5.19. (Radon-Nikodym theorem) Let (
;F) be a measure space and consider two
probability measure P and Q, then Q is absolutely continuous with respect to P if and only if
there is f 2L1(
;F ;P) such that

Q(A)=
Z
A

f(!)dP(!):

Proof. See Chapter 14, Section 14.13 of [9]. �

Remark 5.20. The function f in the thesis of Radon-Nikodym theorem is called the density (or
derivatives) of the measure Q with respect to P, and it is unique up to P-zero-measure sets. In
the following we use the notation

dQ
dP

= f:

Consider two probability measures P and Q on (
;F) and let fFtgt2R+ be a filtration. We
can consider the measures PFt=PjFt and QFt=QjFt (i.e., the probability measures P and Q
respectively restricted (as set functions) to the �-algebra Ft�F). If Q is absolutely continuous
with respect to P, then, for every t2R+, QFt is absolutely continuous with respect to PFt which
implies that, for every t2R+, there is a L1(
;Ft;P) random variable such that

dQFt
dPFt

=Dt
Q:
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Here write also
dQF1
dPF1

=D1
Q

Definition 5.21. We say that the probability measure Q is locally absolutely continuous with
respect to the measure P and the filtration fFtgt2R+, if, for any t 2R+, the measure QFt (i.e.
the probability measure QjFt restricted to the �-algebra Ft) is absolutely continuous PFt.

If Q is locally absolutely continuous with respect to Q

Theorem 5.22. Let Q be a probability measure locally absolutely continuous with respect to P

and the filtration fFtgt2R+, then the process Dt
Q is a martingale with respect to the measure P

and the filtration fFtgt2R+. Furthermore if Q is absolutely continuous with respect to P, we have
that Dt

Q is uniformly integrable and we have

Dt
Q=EP[D1

QjFt] (5.4)

P-almost surely.

Proof. Let t > s2R+ and consider A2Fs�Ft, we have

Q(A)=EP[IADt
Q] =EP[EP[IADt

QjFs]] =EP[IAE[Dt
QjFs]]:

On the other hand, since A2Fs, by definition of density of absolutely continuous measures, we have

Q(A)=EP[IADs
Q];

i.e. EP[IAE[Dt
QjFt]]=EP[IADs

Q]. The second part of the theorem can be proved in a similar way
taking t=1, obtaining that

EP[D1
QjFt] =Dt

Q

P-almost surely. By Doob theorem this proves that Dt
Q is an uniformly integrable martingale. �

Proposition 5.23. Suppose that Dt
Q admits a continuous modification (we denote this modifica-

tion again by Dt
Q then for any (bounded when Q is locally absolutely continuous and also unbounded

when Q is absolutely continuous) stopping time T we have

dQFT
dPFT

=DT
Q (5.5)

Furthermore if Q�P we have

inf
t2R+

Dt
Q> 0

P-almost surely.

Proof. We consider the case when Q is absolutely continuous, the case where Q is only absolutely
continuous can be proved in a similar way. If T is a stopping time, we have that for the (Doob)
optional stopping time theorem (extended to possibly infinite stopping time see Remark 5.17) we
get

E[D1jFT ] =E[E[D1jFt]jFT ] =E[DtjFT ] =DT :

Equality (5.5) can, then, be proved in a way similar to the one of equality (5.4).
In order to prove the second assertion, consider

T"= inf ft> 0; Dt
Q6 "g:

The random variable T" is a stopping time since it is the first hitting time of an closed for the
continuous process Dt

Q. By definition of �-algebra generated by a stopping time we have that,
fT"<+1g2FT". This means, for the first part of the theorem,

Q(fT"<+1g)=EP[IfT"<+1gD1] =EP[IfT"<+1gE[D1jFT"]] =EP[IfT"<+1gDT"]6 ";
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where we used that DT"6 " since Dt is cadlag. From the previous inequality follows that

Q

 \
n2N

n
T1
n

<+1
o!

= lim
n!+1

Q
�n

T1
n

<+1
o�
6 lim
n!+1

1
n
=0:

Since P is equivalent to Q we get that

P

 \
n2N

n
T1
n

<+1
o!

=0

and so inft2R+Dt
Q is strictly positive P-almost surely. �

5.2.2 Girsanov theorem in the Brownian motion case
Now we want to consider the case where the filtration Ft is equal to the (in general not completed)
natural filtration of an n-dimensional Brownian motion (B1; : : : ; Bn) with respect the probability
measure P.

Under these assumptions, if Q is a probability measure locally absolutely continuous with
respect to P, the processDt

Q is a P-martingale and so, by Remark 5.9, there is a continuous version
of Dt

Q. For this reason from now on we suppose that Dt
Q is a continuous martingale.

Lemma 5.24. Under the assumptions of this section, suppose that Dt is a (strictly) positive local
continuous P-martingale, then there is a unique progressive process h�=(h1; : : : ; hn)2Lloc

2 (R+;R
n)

such that

Dt=E(h�)t :=D0 � exp
 X
k=1

n Z
0

t

hk(s)dBsk¡
1
2

Z
0

t
 X
k=1

n

jhk(s)j2
!
ds

!
:

Proof. Since Dt is continuous and strictly positive 1

Dt
2Lloc

2 (R+; d[D]) almost surely (since it is
bounded almost surely). Then consider

Lt=
Z
0

tdDs

Ds
:

Since Dt is a continuous local P-martingale also Lt is a continuous local P-martingale. Thus, by
Corollary 5.6 and Remark 5.10, there is a (unique) progressive process h�2Lloc

2 (R+;R) such that

Lt=
X
k=1

n Z
0

t

hk(s)dBsk:

Thus we have that Z
0

td[D]s
Ds
2 = [L]t=

Z
0

t
 X
k=1

n

jhk(s)j2
!
ds:

Then, by Ito formula applied to log(Dt), we get

log(Dt)= log(D0)+
Z
0

tdDs

Ds
¡ 1
2

Z
0

td[D]s
Ds
2 =Lt¡

1
2
[L]t=

=
X
k=1

n Z
0

t

hk(s)dBsk¡
1
2

Z
0

t
 X
k=1

n

jhk(s)j2
!
ds:

The uniqueness follows from the uniqueness of canonical decomposition of continuous semimartin-
gales and the uniqueness of martingale representation theorem. �

Remark 5.25. It is important to note that if Dt=E(h�)t then

Dt¡D0=
X
k=1

n Z
0

t

Dshk(s)dBsk:
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Theorem 5.26. Consider P;Q; Dt
Q as above (with the assumption of the beginning of this sub-

section), suppose also that Dt
Q is almost surely strictly positive, and let h�Q2Lloc

2 (R+;R
n) be the

progressive process such that

Dt
Q= E(h�Q)t;

then if M is a continuous local martingale with respect to the measure P then

M~t=Mt¡
"
M;

X
k=1

n Z
0

�
hk
Q(s)dBsk

#
t

=Mt¡
X
k=1

n Z
0

t

hk
Q(s)d[M;Bk]s

is a continuous local martingale with respect to Q.

Lemma 5.27. Under the hypothesis of Theorem 5.26, if Xt is a continuous stochastic process such
that XtDt

Q is a continuous local martingale under P, then Xt is a continuous local martingale
under Q.

Proof. We first prove that if T is a (bounded) stopping time such that (XDQ)tT =Xt
TDt

Q;T is a
continuous martingale under P, then XT is a continuous martingale under Q.

If Xt
TDt

Q;T is a martingale then Xt
T 2 L1(
; Ft;Q), indeed by definition of martingality

jXt
TDt

Q;T j 2L1(
;Ft;P) and so

+1>EP[jXt
TDt

T j] =EP[jXt
T jDt

T ] =EP[jXt
T jE[Dtmax

Q jFT^t]] =EP[E[jXt
T jDtmax

Q jFT^t]] =

=EP[jXt
T jDtmax

Q ] =EQ[jXt
T j]

where tmax>max (T ), we used that Xt
T =XT^t is FT^t measurable, and that, by Proposition 5.23

we have EP[Dtmax

Q jFT^t] =DT^t
Q =Dt

Q;T .
Consider t > s2R+, and let A2Fs. Since A\fT >sg=(Ac[fT 6 sg)2Fs, we have

EP[IA\fT>sgXT^tDT^t
Q ] =EP[IA\fT>sgXt

TDt
Q;T ] =

=EP[IA\fT>sgXsTDs
Q;T ] =EP[IA\fT>sgXT^sDT^s

Q ]

Furthermore the set A\ fT > sg 2FT^s�FT^s and so IA\fT>sg is FT^s (and thus FT^t) mea-
surable. This means that

EP[IA\fT>sgXT^tDT^t
Q ]=EP[IA\fT>sgXT^tEP[Dtmax

Q jFT^t]]=EP[IA\fT>sgXT^tEP[Dtmax

Q jFT^t]]

=EP[IA\fT>sgXT^tDtmax

Q ] =EQ[IA\fT>sgXT^t];

and also

EP[IA\fT>sgXT^sDT^s
Q ] =EP[IA\fT>sgXT^sEP[Dtmax

Q jFT^s]] =

=EP[IA\fT>sgXT^sEP[Dtmax

Q jFT^s]] =EP[IA\fT>sgXT^sDtmax

Q ] =EQ[IA\fT>sgXT^s]:

Thus

EQ[IA\fT>sgXt
T ] =EQ[IA\fT>sgXT^t] =EQ[IA\fT>sgXT^s] =EQ[IA\fT>sgXs

T ]

Obviously IA\fT6sgXT^t= IA\fT6sgXs= IA\fT6sgXT^s and so we get

EQ[IA\fT6sgXt
T ] =EQ[IA\fT6sgXT^t] =EQ[IA\fT6sgXT^s] =EQ[IA\fT6sgXsT ]:

Finally we can conclude that

EQ[IAXt
T ] =EQ[IAXs

T ]

for any A2Fs, which means, since XsT is Fs measurable, that EQ[Xt
T jFs] =Xs

T .
Suppose that XtDt

Q is a P-local martingale then there is a sequence of bounded stopping times
Tn!+1, for which (XDQ)t

Tn is a P-martingale. For the first part of the proof of the lemma XTn

is a Q-martingale. Since Q is equivalent to P, Tn!+1 Q-almost surely, which implies that Tn is
a localization sequence forXt (with respect to the measure Q) and soXt is aQ-local martingale. �
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Proof of Theorem 5.26. Suppose that M is a local martingale (with respect to P) and consider
M~ . By Ito formula we have that

M~tDt
Q¡M~0D0

Q=
Z
0

t

M~sdDs
Q+

Z
0

t

Ds
QdM~s+

Z
0

t

d[M~ ; DQ]s=

=
Z
0

t

M~sdDs
Q+

Z
0

t

Ds
QdMs¡

X
k=1

n Z
0

t

Ds
Qhk

Q(s)d[M;Bk]s+ [M;DQ]t=

=
Z
0

t

M~sdDs
Q+

Z
0

t

Ds
QdMs¡

X
k=1

n Z
0

t

Ds
Qhk

Q(s)d[M;Bk]s+

"
M;

X
k=1

n Z
0

�
Ds

Qhk
Q(s)dBsk

#
t

=

=
Z
0

t

M~sdDs
Q+

Z
0

t

Ds
QdMs¡

X
k=1

n Z
0

t

Ds
Qhk

Q(s)d[M;Bk]s+
X
k=1

n Z
0

t

Ds
Qhk

Q(s)d[M;Bk]s=

=
Z
0

t

M~sdDs
Q+

Z
0

t

Ds
QdMs:

Since, by Hypothesis, Mt is a (continuous) P-local martingale and, by Theorem 5.22, Ds
Q is a

(continuous) P-martingale we have that M~ tDt
Q is a continuous P-local martingale.

Thus by Lemma 5.27, M~ t is a Q-local martingale. �

Remark 5.28. An important consequence of Theorem 5.26 is that, under the assumption of this
section, if Q is absolutely continuous with respect to P and X is a P-semimartingale then X is
also a Q-semimartingale. Indeed if X=A+M is the canonical decomposition of X (with respect
to Q) we have

X =A+M =

 
A+

X
k=1

n Z
0

t

hk
Q(s)d[M;Bk]s

!
+M~ :

Since M~ is a Q-martingale and (A +
P

k=1
n R

0

t
hk
Q(s)d[M; Bk]s) is a sum of bounded variation

processes (P-almost surely and so also Q-almost surely beingQ absolutely continuous with respect
to Q) X is a Q-semimartingale with canonical decomposition (A+

P
k=1
n R

0

t
hk
Q(s)d[M;Bk]s)+M~ .

Theorem 5.29. Under the hypotheses of Theorem 5.26 we have that

B~tk=Bt
k¡
Z
0

t

hk(s)ds

is a Brownian motion with respect to the probability Q.

Lemma 5.30. Under the hypotheses and the notations of Theorem 5.26 we have that the quadratic
variation of M (with respect to P) and of M~ (with respect to Q) coincide.

Proof. We want to prove that (M~ t2¡ [M ]t)Dt
Q is a P-local martingale since, by Lemma 5.27, this

implies that M~t2¡ [M ]t is a Q-local martingale. The thesis follows from the definition of quadratic
variation for local martingales.

By Ito formula we have that

d((M~t2¡ [M ]t)Dt
Q)=2M~ tDt

QdM~t¡Dt
Qd[M ]t+(M~t2¡ [M ]t)dDt

Q+ 1
2
2Dt

Qd[M~ ]t+

+2M~ td[M~ ; DQ] = 2M~ tDt
QdMt¡ 2

X
k=1

n

Dt
Qhk

Q(t)d[M;Bk]t+(M~t2¡ [M ]t)dDt
Q+

+2M~ td

"
M;

X
k=1

n Z
0

�
Ds

Qhk
Q(s)dBsk

#
t

=

=2M~ tDt
QdMt¡ 2

X
k=1

n

Dt
Qhk

Q(t)d[M;Bk]t+(M~t2¡ [M ]t)dDt
Q+

X
k=1

n

2M~tDt
Qhk

Q(t)d[M;Bk]t=

=2M~tDt
QdMt+(M~ t2¡ [M ]t)dDt

Q:
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This proves that (M~ t2¡ [M ]t)Dt
Q is a P-local martingale and so M~t2¡ [M ]t is a Q-local martin-

gale. �

Remark 5.31. Lemma 5.30 easily generalize to the case of quadratic covariation of two martin-
gales.

Remark 5.32. By Remark 5.28, Lemma 5.30 and Remark 5.31, we have that if X and Y are two
semimartingales with respect to P (and thus also with respect to Q) the quadratic covariation
[X;Y ] with respect to P coincides with the quadratic covariation with respect to Q.

Proof. Since Bt
k is a P-martingale (and so a P-local martingale) and"

Bk;
X
r=1

n Z
0

�
hr(s)dBsr

#
t

=
X
r=1

n Z
0

t

hr(s)d[Bk; Br]s=
X
r=1

n Z
0

t

hr(s)�k;rds=
Z
0

t

hr(s)ds;

by Theorem 5.26, B~tk are Q-local martingale. Furthermore the quadratic covariation of B~tk with
respect to Q are equal to the quadratic covariation of Bk with respect to P and so

[B~k; B~r]t= [Bk; Br]t= �k;rt:

The thesis follows from Levy characterization of Brownian motion. �

5.2.3 The Novikov condition
In general we have not a direct definition of the measure Q (since it is difficult to describe what
a measure on an infinite dimensional space) what it is usually done is to defined the measure Q
through the process Dt

Q i.e. we defined

dQFt
dPFt

: =Dt
Q= E(h�)t= exp

 X
k=1

n Z
0

t

hk(s)dBsk¡
1
2

Z
0

t
 X
k=1

n

jhk(s)j2
!
ds

!
:

For a generic h�(s)2Lloc
2 (R+;R

n) (P-almost surely) the process E(h�)t is only a local martingale.
On the other hand, by Theorem 5.22, the process E(h�)t can be the density of some a locally
absolutely continuous probability measure Q only when E(h�)t is a continuous martingale (or when
Q is absolutely continuous with respect to P, E(h�)t must be also uniformly integrable). We present
here some sufficient criterion for having such a property.

Theorem 5.33. Suppose that h�(s)2Lloc
2 (R+;R

n) almost surely, then E(h�)t is a martingale if for
any t > 0 we have one of the following conditions hold:

1. E
�
exp
¡ 1
2

R
0

tP
k=1
n (hk(s))2ds

��
<+1 (Novikov's criterion);

2.
P

k

R
0

t
hk(s)dBsk is a (real) martingale and E

�
exp
¡ 1
2

P
k=1
n R

0

t
hk(s)dBsk

��
<+1 (Kazamaki's

criterion).

Furthermore if one of the two previous conditions hold for t=+1 (when h�(s)2L2(R+;R
n) almost

surely) E(h�)t is a uniformly integrable martingale.

Lemma 5.34. Let X be a positive random variable on a probability space (
;F ;P) and consider
C �L1(
;F ;P) such that there is � 2R+ and, for any Y there is a �-algebra �(Y )�FY �F, for
which, for any A2F we have

E[jY jIA]6 (E[IAE[X jFY ]])�

then the family C is uniform integrable.

Proof. We recall that if X is a random variable for any " > 0 there is �"> 0 for which for any
F 2F such that P(F )<�", we have E[jX jIF ]<".

Consider K> 0 and let A= fjY j>Kg then we have

P(jY j>K)6 E[IAjY j]
K

6 (E[IAE[X jFY ]])�
K

6 (E[IAX ])�

K
6 (E[X])�

K
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Fix "> 0, then there is K" such that (E[X])�

K
<�"1/�, and by the previous inequality we get

P(A)=P(jY j>K)6 �"1/�:
and thus

E[IfjY j>K"gjY j]6 (E[IfjY j>K"gE[X jFY ]])�6 (E[IfjY j>K"gX])
�6 ("1/�)�= ": �

Proof. We prove the case with finite t. The case t=+1 can be proved in a similar way.
We prove that 1.)2. and that 2. implies that E(h�) is a (real) martingale.
If 1 hold then

E

""X
k

Z
0

�
hk(s)dBsk

#
t

2
#
=E

" Z
0

tX
k=1

n

(hk(s))2ds

!
2
#
6 8E

"
exp

 
1
2

Z
0

tX
k=1

n

(hk(s))2ds

!#
<+1

Since the quadratic variation of
P

k

R
0

�
hk(s)dBsk is in L2(
), we get that

P
k

R
0

�
hk(s)dBsk is a Mc

4

martingale, and so a real martingale (and not only a local one). We recall that E(h�)t is a positive
local martingale and thus (by Fatou lemma) it is a supermartingale. Since E(h�)0 = 1 by the
supermartingale property

E[E(h�)t]6 1:
Thus, by Cauchy-Schwarz inequality, we have

E

"
exp

 
1
2

X
k

Z
0

t

hk(s)dBsk
!#
6 (E[E(h�)t])1/2

 
E

"
exp

 
1
2

Z
0

tX
k=1

n

(hk(s))2ds

!#!
1/2

6
 
E

"
exp

 
1
2

Z
0

tX
k=1

n

(hk(s))2ds

!#!
1/2

<+1:

This prove that 1.)2.
Suppose that 2. holds. We recall that if E(h�)t is a positive local martingale, and so it is a (real)

martingale if and only if E[E(h�)t] = 1. Writing Lt=
P

k=1
n R

0

t
hk(s)dBsk, Lt is a (real) martingale

and since exp
¡ 1
2
x
�
is a convex function we have exp

¡ 1
2
Lt
�
is a submartingale and thus, for any

stopping time T we get

exp
�
1
2
LT^t

�
6E

�
exp
�
1
2
Lt

���������FT^t�:
Let 0< a < 1 and consider a localization sequence Tna for the local martingale E(ah�)t. For any
A2Ft we have

E[IAE(ah�)Tna^t]6 (E[E(h�)Tna^t])a
2

�
E

�
IAexp

�
aLTna^t
a+1

���
1¡a2

6

6
�
E

�
IAexp

�
1
2
LTna^t

���
(1¡a2) 2a

a+1 6
�
E

�
IAE

�
exp
�
1
2
Lt

���������FTna^t���2(1¡a)a
where we use that E[E(h�)Tna^t]61 (since E(h�)t is a supermartingale and Jensen inequality applied

to the function x
a+1
2a (being a+1

2a
> 1). By Lemma 5.34, this proves that the family of random

variables fE(ah�)Tna^tgn2N is uniformly integrable and so E(ah�)Tna^t!E(ah�) in L1(
). Thus for
any t> s we get

E[E(ah�)tjFs] = lim
n!+1

E[E(ah�)Tna^tjFs] = lim
n!+1

E(ah�)Tna^s=E(ah�)s:

Thus for any a2 (0; 1), the process E(ah�)t is a real martingale.
Finally we get

1=E[E(ah�)t]6 (E[E(h�)t])a
2

�
E

�
IAexp

�
aLTna^t
a+1

���
1¡a2

6

6(E[E(h�)t])a
2

�
E

�
exp
�
1
2
Lt

���
2(1¡a)a

<+1;
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and so taking the limit a! 0 we obtain

16E[E(h�)t]
and thus the thesis. �

5.2.4 Some applications

5.2.4.1 Cameron-Martin theorem

The Cameron-Martin theorem can be seen as a special case of Girsanov theorem when the process
h2L2(R+;R) is deterministic.

In this case E(h)t is a uniform integrable martingale. Indeed, for any t2 [0;+1] we have

E

�
exp
�
1
2

Z
0

t

jh(s)j2ds
��
6 exp

�
1
2

Z
0

+1
jh(s)j2ds

�
<+1:

So by Novikov condition E(h)t is a uniform integrable martingale. This means that the measure
Qh defined as

dQFtB
h

dPFtB
:= exp

�Z
0

t

h(s)dBs¡
1
2

Z
0

t

(h(s))2ds
�

is absolutely continuous with respect to P.
Consider a function F :C0([0; � ];R)!R which is measurable (with respect the Borel �-algebra

of C0([0; � ];R)) from the space of continuous functions from [0; � ] into R. We can compose the
function F with a Brownian motion Bt obtaining

F (B[0;� ]) :=F (B�);

(where we denote by B[0;� ] the restriction of Brownian motion with respect to the time t2 [0; � ])
which is a random variable on defined on the space 
 (since the Brownian motion can be seen
as a measurable function from 
 into the space of continuous function C0(R+;R)). The random
variable F (B[0;� ]) is measurable with respect to F�B= �(Bsjs6 �) (since we consider simply the
restriction of B on the times t2 [0; � ]).

Theorem 5.35. Let F, h are as above and suppose that F (B[0;� ])2L1(
) then

EP[F (B[0;� ])]=EP

"
F

 �
B�¡

Z
0

�
h(s)dBs

�
[0;� ]

!
exp
�Z

0

t

h(s)dBs¡
1
2

Z
0

t

(h(s))2ds
�#

:

Proof. By Theorem 5.29 the process Bt
0=Bt¡

R
0

t
h(s)dBs is a Brownian motion with respect to

the measure Qh and so

EP[F (B[0;� ])]=EQh[F (B[0;� ]
0 )]:

The theorem follows from the definition of Qh and Bt
0. �

Thanks to Cameron-Martin theorem above it is possible to derive a integration by parts formula
which is quite important in the derivation of Malliavin calculus. We give here a special simple
version of it.

Corollary 5.36. Let G:R!R be a C1 bounded function with bounded derivative, then, for any
t > 0, we have

E

�
G(Bt)

�Z
0

t

h(s)dBs

��
=E

�
G0(Bt)

�Z
0

t

h(s)ds
��

(5.6)

Exercise 5.1. Fix h2L2(R+;R) and �0> 0, prove that

exp
�
�0

�
sup
t>0

��������Z
0

t

h(s)dBs

����������
2L1(
):
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Proof of Corollary 5.36. The function FG:C0([0; t];R)!R defined as  7!F () :=G((t)) is
a continuous and bounded function. We can apply Cameron-Martin theorem obtaining

E[G(Bt)]=E

�
G

�
Bt¡�

Z
0

t

h(s)dBs

�
exp
�
�

Z
0

t

h(s)dBs¡
�2

2

Z
0

t

(h(s))2ds
��
: (5.7)

Consider �0> 0 then, for any 06 j�j6�0��������G�Bt¡�
Z
0

t

h(s)dBs

�
exp
�
�

Z
0

t

h(s)dBs¡
�2

2

Z
0

t

(h(s))2ds
���������6

6kGkL1exp
�
�0

�
sup
t>0

��������Z
0

t

h(s)dBs

����������
which by Exercise 5.1 is in L1(
). Furthermore, for any j�j6�0¡ " (where �0>"> 0) we have��������@��G�Bt¡�

Z
0

t

h(s)dBs

�
exp
�
�

Z
0

t

h(s)dBs¡
�2

2

Z
0

t

(h(s))2ds
����������6

6
��������G0�Bt¡�

Z
0

t

h(s)dBs

�
exp
�
�

Z
0

t

h(s)dBs¡
�2

2

Z
0

t

(h(s))2ds
�Z

0

t

h(s)dBs

��������+
+
��������G�Bt¡�

Z
0

t

h(s)dBs

�
exp
�
�

Z
0

t

h(s)dBs¡
�2

2

Z
0

t

(h(s))2ds
������������������Z

0

t

h(s)dBs¡
�2

2

Z
0

t

(h(s))2ds
���������6

6(kGkL1+ kG0kL1)exp
�
(�0¡ ")

�
sup
t>0

��������Z
0

t

h(s)dBs

�����������sup
t>0

��������Z
0

t

h(s)dBs

���������6
6C�0;"(kGkL1+ kG0kL1)exp

�
�0

�
sup
t>0

��������Z
0

t

h(s)dBs

����������
where we use that there is a constant C�0;" such that for any x>0, xexp((�0¡")x)6C�0;"exp(�0x).

Since both G(Bt ¡ �
R
0

t
h(s)dBs)exp

�
�
R
0

t
h(s)dBs ¡ �2

2

R
0

t (h(s))2ds
�

and its derivative with

respect to j�j6 �0¡ " are uniformly bounded by a L1(
) function, we can exchange the deriv-
ative operation with the expectation in expression (5.7). This means that taking the derivative
in 0 with respect to � at both sides of expression (5.7) we get

0=¡E
�
G0(Bt)

Z
0

t

h(s)dBs

�
+E

�
G(Bt)

Z
0

t

h(s)dBs

�
: �

Remark 5.37. A particular case of expression (5.6) is when h(s)= I[0;t](s) which gives

E[G(Bt)Bt] = tE[G0(Bt)];

which is equivalent to write Z
R

G(x)xt(dx)= t

Z
R

G0(x)t(dx)

where t(dx)=
1

2�t
p exp

�
¡x2

2t

�
.

5.2.4.2 Law of hitting times for Brownian motion with drift

Using the Cameron-Marint theorem is it possible to hitting time of the Brownian motion with a
drift c2R. Let a> 0 and consider

Ta;c= inf ft> 0; Bt+ ct= ag: (5.8)

Lemma 5.38. (Reflection principle) Let Bt be a Brownian motion and a> 0 then

P
��

sup
s6t

Bt

�
> a
�
=2P(Bt>a):
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Proof. The stopping time Ta :=Ta;0 then the process Xt=BTa+t¡BTa=BTa+t¡a is a Brownian
motion independent of the �-algebra FTa (Proof for exercise). The we have

P
��

sup
s6t

Bt

�
> a
�

= P
��

sup
s6t

Bt

�
> a;Bt> a

�
+P

��
sup
s6t

Bt

�
>a;Bt<a

�
= P(Bt> a)+P

��
sup
s6t

Bt

�
>a; Bt<a

�
= P(Bt> a)+P

��
sup
s6t

Bt

�
>a;Xt¡Ta< 0

�
= P(Bt> a)+P(Ta6 t;Xt¡Ta< 0)

where we have that the equality of sets

fTa6 tg=
��

sup
s6t

Bt

�
> a
�
:

Since fTa6 tg2FTa, Xt¡Ta is independent of FTa, and Xt¡Ta has the same distibution of ¡Xt¡Ta
(being X a Brownian motion) we get

P(Ta6 t;Xt¡Ta< 0)=P(Ta6 t;Xt¡Ta> 0)
and so

P(Ta6 t;Xt¡Ta< 0)=P(Ta6 t; Bt¡a> 0)=P(Ta6 t; Bt>a)=P(Bt>a)=P(Bt> a): �

Corollary 5.39. We have that the density of the random variable Ta;0 is

fTa;0(t)= I[0;+1)(t)
a

2�s3
p e

¡a2

2s :

Thanks to Cameron-Martin theorem we can prove that:

Theorem 5.40. We have that the density of the random variable Ta;c is

fTa;c(s)= I[0;+1)(s)
a

2�s3
p exp

�
ca¡ 1

2
c2s¡ a2

2s

�
:

Proof. Consider

hU(t)= cI[0;U ](t);
and the functions

FU;a
c ()= Ifsups6U((s)+cs)>ag

FU;a()= Ifsups6U(s)>ag:

It is clear that

FU;a

�
(�)+

Z
0

�
h(s)ds

�
=FU;a((�)+ c � )=FU;a

c ():
Thus we have that

P(Ta6U)=P
�
sup
s6U

(Bt+ ct)> a
�
=E[FU;ac (B�)] =

=E[FU;a(B�+ c � )]=E

�
FU;a(B�)exp

�
c

Z
0

t

dBs¡
1
2
c2t

��
=

=E
�
FU;a(B�)E

�
exp
�
c

Z
0

t

dBs¡
1
2
c2t

���������FTa��=E

�
FU;a(B�)exp

�
c

Z
0

Ta

dBs¡
1
2
c2Ta

��
=

=E
�
IfTa6Ugexp

�
cBTa¡

1
2
c2Ta

��
=E

�
IfTa6U gexp

�
ca¡ 1

2
c2Ta

��

=
Z
0

U

fTa;0(t)exp
�
ca¡ 1

2
c2t

�
dt=

Z
0

U a

2�t3
p exp

�
ca¡ 1

2
c2t¡ a2

2t

�
dt: �
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Chapter 6
Stochastic differential equations
6.1 Definition
Fix a probability space (
;F ;P) and two natural numbers n; m 2N, and consider two (Borel-
measurable) maps

� := (�k)k=1; : : : ;m:R+�Rm!Rm;

� := (�jk)k=1; : : : ;m;j=1; : : : ;n:R+�Rm!Rn�m :=Mat(m;n):

Let B� = (B1; : : : ; Bn) be a n-dimensional Brownian motion and consider the filtration

Ft=�(F0;FtB
�);

where FtB
� = �(Bsjs6 t) is the natural �-algebra generated by the Brownian motion B� and F0 is

some �-algebra independent of FtB
� for every t> 0 (i.e. F0 is independent of B�).

Definition 6.1. Consider Y = (Y 1; : : : ; Y m) an F0-measurable random variable taking values in
Rm and let X := (X1; : : : ; Xm):R+�
!Rn be a continuous process adapted with respect to the
filtration fFtgt2R+ (generated by F0 and FtB

�). Furthermore, suppose that for the process Xt we
have, for any t> 0, Z

0

t

j�k(s;Xs)jds;
Z
0

t

j�jk(s;Xs)j2ds<+1

almost surely. Then we say that Xt is a strong solution to the stochastic differential equa-
tion with coefficients (�;�) driven by the n-dimensional Brownian motion B� and with
initial condition Y if Xt is adapted with respect to the filtration �(Y ;FtB

�) and, for any t>0 and
k=1; : : : ;m, we have

Xt
k=Y k+

Z
0

t

�k(s;Xs)ds+
X
j=1

n Z
0

t

�j
k(s;Xs)dBs

j:

Remark 6.2. If Xt satisfies Definition 6.1 we, also, say that Xt satisfies the SDE (�;�) with initial
condition Y . If Xt satisfies the SDE (�; �), then Xt is a continuous semimartingale and we write

dXt= �(t;Xt)dt+�(t;Xt) �dB�t; X0=Y :

Remark 6.3. Hereafter, we denote by
L0(G)

the set of all functions that are measurable with respect to the �-algebra G.

Remark 6.4. By Definition of strong solution we get that there is a function F :R+�L0(F0)�
C0(R+;R

n)!R such that, for any � >0, the restriction F j[0;� ]: [0; � ]�L0(F0)�C0(R+;R
n)!R

is B([0; � ])
B(L0(F0))
F�B
�-measurable (i.e. the map F is progressive), and

Xt=F (t; Y ;B[0;t]):

6.1.1 Some examples
6.1.1.1 The geometric Brownian motion
In the case m=n=1, consider the following SDE

dXt=AXtdt+CXtdBt; X0=Y (6.1)

where A;B 2R. Solutions to equation (6.1) are called geometric Brownian motions. It is possible
to find a function F :R+�R�R!R such that

Xt=F (t; Y ;Bt);
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(note that, in this case, the solution F depends on the Brownian motion Bt only at time t on not
on the whole interval [0; t]). Indeed, suppose that F 2C1(R+�R�R;R) then, by Ito formula,
we have

dXt=dF (t; Y ;Bt)=
�
@tF (t; Y ;Bt)+

1
2
@B
2F (t; Y ;Bt)

�
dt+ @BF (t; Y ;Bt)dBt:

If we want that Xt=F (t; Y ;Bt) is solution to equation (6.1), then we must have

Y = F (0; Y ;B0); (6.2)

AXt=AF (t; Y ;Bt) =
�
@tF (t; Y ;Bt)+

1
2
@B
2F (t; Y ;Bt)

�
; (6.3)

CXt=CF (t; Y ;Bt) = @BF (t; Y ;Bt): (6.4)

From equation (6.4) we get
F (t; Y ;Bt)=G(t; Y )eCBt;

for some function G:R+�R!R. From equation (6.3) we obtain

@tG(t; Y )+
1
2
C2G(t; Y )=AG(t; Y );

and so

G(t; Y )=H(Y ) e
�
A¡1

2
C2

�
t
:

Finally, by equation (6.2) we get H(Y )=Y and therefore

F (t; Y ;Bt)=Ye

�
A¡ 1

2
C2

�
t+CBt

:

This means that equation (6.1) admits a strong that has the form

Xt=Ye

�
A¡ 1

2
C2

�
t+CBt

: (6.5)

Remark 6.5. By Theorem 6.16 below, expression (6.5) gives the unique strong solution to equa-
tion (6.1).

6.1.1.2 Ornstein�Uhlenbeck process
Let m=n=1 and consider the SDE

dXt=AXt+CdWt; Xt=Y ; (6.6)

where A;C 2R. The solutions to equation (6.6) are called Ornstein�Uhlenbeck processes. We can
provide an explicit solution to the previous equation. Indeed, consider

X~t= e¡AtXt;

then we have

dX~t=¡Ae¡AtXtdt+ e¡AtdXt=¡Ae¡AtXtdt+Ae¡AtXtdt+Ce¡AtdBt=Ce¡AtdBt:

Since X~0= e¡A0X0=Y , we get that

X~t=Y +C

Z
0

t

e¡AsdBs:
In this way, we obtain

Xt= eAtY +C

Z
0

t

eA(t¡s)dBs: (6.7)

From the previous expression it is clear that equation (6.6) has a strong solution which is given by
expression (6.7). In this case the function F of Remark 6.4 is given by

F (t; Y ;B[0;t])= eAtY +
Z
0

t

eA(t¡s)dBs= eAt Y +C lim
�!0

X
tk2�tnf0g

e¡A(t¡tk¡1)(Btk¡Btk¡1):

Differently from the geometric Brownian motion case, the function F giving the solution to Orn-
stein�Uhlenbeck process equation depends on the values of Brownian motion B on the whole
interval [0; t] and not only on the Brownian motion Bt evaluated at the final time t.
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6.2 Uniform Lipschitz case

6.2.1 Existence

Definition 6.6. We say that � and � (as in Section 6.1) satisfy a uniform Lipschitz condition
(or assumption A) if there is a constant K such that, for any k=1; : : : ;m, j=1; : : : ; n and any
t> 0, we have

j�k(t; x)j6K(1+ jxj); j�jk(t; x)j6K(1+ jxj);

j�k(t; x)¡ �k(t; y)j6K jx¡ y j; j�jk(t; x)¡�jk(t; y)j6K jy¡xj:

Remark 6.7. Let �> 0 we define the space

X� := fX jX continuous adapted process; kXk�<+1g;
where

kXk�2 := sup
T>0

e¡2�TE
�

sup
06t6T

jXtj2
�
:

Furthermore, if Y 2L2(
;F0;P) we write

X� := fX 2X�jX0=Y g:

Exercise 6.1. Prove that (X�; k�k�) is a Banach space (i.e. k�k� is a norm and X� is complete with respect
to it). Furthermore, show that for any �> 0 we have

kXk�26E
�
sup
t>0

fe¡2�tjXtj2g
�
6 kXk�/22 :

Theorem 6.8. Suppose that (�;�) satisfy assumption A, and suppose that Y 2L2(
;F0;P). Then
there exists �0> 0, for which there is a continuous adapted process Xt strong solution to the SDE
(�; �) with initial condition Y such that, for any �>�0,

E
�
sup
t>0

(e¡2�tjXtj2)
�
<+1: (6.8)

Furthermore, Xt is the unique strong solution to the SDE (�; �) with initial condition Y satis-
fying ( 6.8).

Theorem 6.9. (Banach fixed point theorem) Let (X ; d) be a (complete) metric space and let
T :X !X be a map such that there is 06 k < 1 for which, for any x; y 2X, we have

d(T (x); T (y))6 kd(x; y):
Then the map T admits a unique fixed point, i.e. there is only one x~2X such that

T (x~)=x~:

Furthermore, for any x02X, we have that the sequence fxngn2N�X, defined by recursion as

x1=T (x0); xn+1=T (xn);
converges to x~.

Proof. The proof can be found in [6] Chapter 9 Theorem 9.23. �

Proof of Theorem 6.8. By Exercise 6.1, for any �0> 0 and Y 2L2(
;F0;P), the set X�0Y with
distance d(�; �)= k�¡�k� is a complete metric space. Furthermore, if X 2X�0Y then

E
�
sup
t>0

je¡2�0tXtj2
�
6 kXk�02 ;

and thus X satisfies the condition (6.8) for �= 2�0. This means that if we prove that there is a
unique X a strong solution to the SDE (�; �) and initial condition Y such that X 2X�0Y for any
�0>�0

0 Theorem 6.8 is proved with �0=2�00 .
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For this reason, we will prove that there is �00 > 0 such that for any �0> �0
0 the SDE (�; �)

admits a unique strong solution in X�0Y .
In order to prove the previous statement we will use Banach fixed point theorem. Consider the

map T defined on the set of continuous adapted processes on Rm and taking values in the set of
continuous adapted process on Rm such that for any continuous adapted process X we have

T (X)�k=Y +
Z
0

�
�k(s;Xs)ds+

X
j=1

n Z
0

�
�j
k(s;Xs)dBs

j ; (6.9)

for k=1; : : : ; m. Since �; � satisfy assumption A, we have that

j�k(s;Xs)j6K(1+ jXsj); j�jk(s;Xs)j26K2(1+ jXsj)2;

and so the Riemann-Stieltjes integral and the Ito integrals in equation (6.9) are well defined, and
thus T is well defined. Furthermore X is a strong solution to the SDE (�; �) with initial condition
Y if and only if X=T (X) and thus if and only if X is a fix point of the map T . Thus, if T satisfy
the hypotheses of Banach fix point theorem on X�0Y for �0 big enough, we can exploit Banach fix
point theorem for proving that T has a unique fix point in X�0Y for �0 big enough, concluding in
this way the proof.

In order to apply Theorem 6.9 we have to prove that for any �0>�0
0 there is k < 1 for which

for any X;Z 2X�0Y we have

1. T (X)2X�0Y ,
2. kT (X)¡T (Z)k�06 kkX ¡Zk�0.

Fix k=1; : : : ;m, and �0; T > 0, then we have

e¡2�
0TE

24 sup
t6T

������������
X
j=1

n Z
0

t

�j
k(s;Xs)dBs

j

������������
2
35

(Doob martingale inequality) 6 e¡2�
0TE

24������������Xj=1
n Z

0

T

�j
k(s;Xs)dBs

j

������������
2
35

(Ito isometry) 6 e¡2�
0TE

24X
j=1

n Z
0

T

j�jk(s;Xs)j2ds

35
(Assumption A) 6 e¡2�

0T

 X
k=1

n

E

�Z
0

T

K2(1+ jXsj)2ds
�!

6 2nK2

Z
0

T

e¡2�
0TE[1+ jXsj2]ds

6 nK2

�0
+2nK2

Z
0

T

e¡2�
0(T¡s)

�
e¡2�

0sE
�
sup
`6s

jX`j2
��
ds

6 nK2

�0
+2nK2

�Z
0

T

e¡2�
0(T¡s)ds

��
sup
s>0

e¡2�
0sE
�
sup
`6s

jX`j2
��

6 nK2

�0
+ nK2

�0
(1¡ e¡2�0T)kXk�02

6 nK2

�0
(1+ kXk�02 );

where we used that
R
0

T
e¡2�

0(T¡s)ds6
R
0

T
e¡2�

0sds. This implies thatX
k=1

n Z
0

�
�j
k(s;Xs)dBs

j


�

2

= sup
T>0

e¡2�
0TE

"
sup
t6T

����������X
k=1

n Z
0

t

�j
k(s;Xs)dBs

j

����������
2
#

6 nK2

�0
(1+ kXk�02 ):

74 Stochastic differential equations



We have also that, for any �0> 1,

e¡2�
0TE

"
sup
t6T

��������Z
0

t

�k(s;Xs)ds
��������2
#

6 e¡2�
0TE

"
sup
t6T

�Z
0

t

j�k(s;Xs)jds
�
2
#

6 e¡2�
0TE

��Z
0

T

j�k(s;Xs)jds
�
2
�

6 e¡2�
0TE

��Z
0

T (1+ jT ¡ sj)
(1+ jT ¡ sj) j�

k(s;Xs)jds
�
2
�

(Cauchy-Schwarz ineq.) 6
�Z

0

T 1
1+ jT ¡ sj2ds

�
e¡2�

0TE

�Z
0

T

(1+ jT ¡ sj)2j�k(s;Xs)j2ds
�

6 4K2 artan(T )
Z
0

T

e¡2�
0(T¡s)(1+ jT ¡ sj2)fe¡2�0s(1+E[jXsj2])gds

6 2K2�

�Z
0

T

e¡2�
0(T¡s)(1+ jT ¡ sj2)ds

�
(1+ kXk�02 )

6 2K2�

�Z
0

+1
e¡2�

0s(1+ s2)ds
�
(1+ kXk�02 )

6 CK2�
�0

(1+ kXk�02 );

where we use thatZ
0

+1
e¡2�

0s(1+ s2)ds6 1
2�0

Z
0

+1
e¡s
�
1+ s2

4�02

�
ds6 1

2�0

Z
0

+1
e¡s(1+ s2)ds6 C

2�0
;

for some constant C > 0 (not depending on �0> 1). This means that, for �0> 1,

kT (X)k�0 6
X
k=1

m

kT (X)kk�0

6 mkY kL2(
)+
X
k=1

m Z
0

�
�k(s;Xs)ds


�0
+
X
k=1

m

X
j=1

n Z
0

�
�j
k(s;Xs)dBs

j


�0

6 m

 
kY kL2(
)+

"
nK2

�0

r
+ CK2�

�0

r #
(1+ kXk�0)

!
;

which is bounded when X 2X�0Y . This prove that T (X)2X�0Y when X 2X�0Y for �0> 1.
Suppose now that X;Z 2X�0Y , fix k=1; : : : ;m and �0> 1, then, using the same steps as above

and the second condition of assumption A, we get

e¡2�
0TE

24 sup
t6T

������������
X
j=1

n Z
0

t

�j
k(s;Xs)dBs

j¡
X
k=1

n Z
0

t

�j
k(s; Zs)dBs

j

������������
2
35

6 e¡2�
0TE

24X
j=1

n Z
0

T

(�jk(s;Xs)¡�(s; Zs))2ds

35
6
X
j=1

n

K2

Z
0

T

e¡2�
0TE[jXs¡Zsj2]ds

6 nK2

2�0
kX ¡ZkX�0Y :
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Furthermore, we have, for �0> 1,

e¡2�
0TE

"
sup
t6T

����������
Z
0

t

�k(s;Xs)ds¡
X
k=1

n Z
0

t

�k(s; Zs)ds

����������
2
#
6 CK2�

2�0
kXk�02 :

Using the previous inequality, we get

kT (X)¡T (Z)k�0 6
X
k=1

m Z
0

�
�k(s;Xs)ds¡

Z
0

�
�k(s; Zs)ds


�0

+
X
k=1

m
Xj=1

n Z
0

�
�j
k(s;Xs)dBs

j¡
X
j=1

n Z
0

�
�j
k(s; Zs)dBs

j


�0

6
 
m n K2
p

+m �2K2C
p

2�0
p

!
kX ¡Zk�0:

This means that if �0>max (1;m2n K2+m2�2K2C) we have that there is k < 1 for which

kT (X)¡T (Z)k�06 kkX ¡Zk�0: �

6.2.2 Uniqueness
It is possible to improve the uniqueness result proved in Theorem 6.8.

First, we introduce the notion of weak solution of a SDE.

Definition 6.10. Let B�t be a (Rn dimensional-)Brownian motion on (
;F ;P) and let fJtgt2R+

be a filtration. We say that B�t is a Jt-Brownian motion if

1. B�t is adapted with respect to fJtgt2R+;

2. for every � > 0, the sigma algebra �(B�t¡B�� jt> �) is independent of Jt.

Remark 6.11. If Jt=Ft=�(F0;FtB
�) (i.e. the filtration introduced in Section 6.1), then the n-

dimensional Brownian motion B� is also a Jt=Ft Brownian motion.

Definition 6.12. Let (
;F ;P) be a probability space with a filtration fJtgt2R+. We say that a pair
(X;B�) of (Jt)-adapted continuous processes is a weak solution to the SDE with coefficient
(�; �) with initial condition Y if B� is a n dimensional Jt-Brownian motion and if, for any
t> 0 and k=1; : : : ;m, we have

Xt
k=Y k+

Z
0

t

�k(s;Xs)ds+
X
j=1

n Z
0

t

�j
k(s;Xs)dBs

j: (6.10)

We can introduce a notion of uniqueness for weak solution.

Definition 6.13. Let (�; �) and Y as in Section 6.1 and (
;F ;P) and fJtgt2R+ as in Defini-
tion 6.12, we say that the SDE (�; �) with initial condition Y satisfies the pathwise uniqueness if,
for any n dimensional Jt-Brownian motion B�, if (X;B�) and (X 0; B�) are two weak solutions to
the SDE (�; �) with initial condition Y we have that X and X� are indistinguishable.

Remark 6.14. It is important to note thatr Definition 6.13 must hold for any probability space
(
;F ;P). In other words if (�; �) is an SDE satisfying pathwise uniqueness for any probability
space (
;F ;P) and filtration fJtgt2R+, and weak solutions (X;B�) and (X 0;B�) such that X0=X0

0

then X and X 0 are indistinguishable.

Remark 6.15. Suppose that a SDE (�; �) with initial condition Y satisfies pathwise uniqueness
and it admits a strong solution, then the strong solution is unique (if we identify processes if
they are equal up to set 
1�
 of measure 0). This also implies that any weak solution (X;B�) is
indistinguishable by the (unique) strong solution X driven by the Brownian motion B�.
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Theorem 6.16. Suppose that (�;�) satisfy assumption A, Y be a J0-measurable random variable,
then the SDE (�; �) with initial condition Y satisfies pathwise uniqueness.

First we recall the (integral) Gronwall lemma.

Lemma 6.17. Let f :R+!R+ be a (locally bounded) measurable function from R+ into R+ and
�; � 2R+ such that

f(t)6�+
Z
0

t

�f(s)ds;

then we have

f(t)6� exp(�t)

Proof. Exercise. �

Proof of Theorem 6.16. Let (X;B�) and (X 0; B�) two weak solutions to the SDE (�; �) with
initial condition Y . Consider the continuous adapted process Zt=Xt¡Xt

0 and, for any `2N0, the
stopping time

T`= inf ft; jZtj> `g:

Then we have that the process jZtT`j6 ` (since Z0=0) and it satisfies the differential relation

dZt
T`=(�(t;Xt

T`)¡ �(t;X 0
t
T`))dt+(�(t;Xt

T`)¡�(t;X 0
t
T`)) �dB�t:

By Ito formula, using the fact that Z0=0, that
R
0

� (�(t; Xt
T`)¡ �(t; X 0

t
T`)) � dB�t is an L2(
) mar-

tingale and that Zt
T` is bounded, we get

E[jZtT`j2] = 2
X
k=1

m

E

24Z
0

t

(�k(t;Xs
T`)¡ �k(t;X 0

s
T`))Zs

k;T`ds+
X
j=1

n

(�jk(s;Xt
T`)¡�jk(s;X 0

s
T`))2ds

35:
Using assumption A and Young inequality we obtain

E[jZtT`j2]6 2m(K+nK2)
Z
0

t

E[jZsT`j2] ds

If we denote by f`(t) :=E[jZtT`j2] the previous inequality is equivalent to write

f`(t)6 2m(K+nK2)
Z
0

t

f`(s) ds;

which, by Gronwall lemma for �= 0 and � = 2m(K + nK2), implies that f`(t) = 0. This means
that, for every t> 0, ZtT`= 0 almost surely, and, since Zt

T` is continuous, that the process ZT` is
indistinguishable from 0. Since T`> 0 almost surely, this implies that T`=+1 almost surely and
that Z=X ¡X 0 is indistinguishable from 0. �

6.3 Weak solutions and Girsanov theorem

6.3.1 Tanaka counterexample
We have introduced strong solutions introducing a distinction between them and weak solutions
(i.e. solutions which are not necessarily adapted to the driving Brownian motion).

We now propose an example which does not admit strong solutions. Consider n=m=1 and
let X be a one-dimensional Brownian motion and consider

Bt=
Z
0

t

sign(Xs)dXs;
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where sign(x)=1 if x>0 and sign(x)=1 otherwise. By Lèvy's characterization of Brownian motion
the process (Bt)t is again a Brownian motion. Moreover, we haveZ

0

t

sign(Xs)dBs=
Z
0

t

sign(Xs)2dXs=
Z
0

t

dXs=Xt¡X0;

and so X satisfies the SDE

dXt= sign(Xt)dBt; (6.11)

with B as driving noise and �(x) = sign(x). This coefficient is not Lipschitz (not even contin-
uous. . .), and thus we cannot apply Theorem 6.8. Furthermore, if we consider the initial condition
X0=0, then we have that both (Xt)t>0 and (¡Xt)t>0 are solutions, i.e. path-wise uniqueness do
not hold for (6.11).

However, solutions of the SDE (6.11) cannot be arbitrary. Indeed, let (X;B) be any solution
to equation (6.11), then we have that Xt is a martingale and also

[X;X ]t=
Z
0

t

(sign(Xs))2ds= t:

This means that, by Levy characterization of Brownian motion, the process Xt¡X0 must be a
Brownian motion. We call this kind of uniqueness, uniqueness in law. More formally:

Definition 6.18. Let (�; �) and Y as in Section 6.1, we say that the SDE (�;�) with respect
to the initial condition Y satisfies the uniqueness in law property if for any weak solutions
(X;B�) and (X 0;B� 0) such that X0�X0

0�Y then X�X 0 (i.e. the processes X and X 0 has the same
law).

Remark 6.19. If X and X 0 are two (continuous) processes we say that they have the same law
if, for any (Borel)-measurable bounded function F :C0(R+;R

m)!R, we have

E[F (X)]=E[F (X 0)]:

This is also equivalent to say that for any Borel measurable set A2B(C0(R+;R
m)) (i.e. C0(R+;

Rm) is equipped with the topology of uniform convergence on compact sets) we have

P(X�2A)=E[IA(X)]=E[IA(X 0)]=P(X�02A):

We want now to prove that if (X;B) is a weak solution of the SDE (6.11) with initial condition
X0=0, then the process Xt cannot be adapted with respect to the filtration fFtBgt2R+ generated
by B (and thus Xt cannot be a strong solution to equation (6.11)).

Recall that if ' is a smooth function, by Itô formula we have

'(Xt)= '(X0)+
Z
0

t

'0(Xs)dXs+
1
2

Z
0

t

'00(Xs)ds:

Take now '= '" even with '"(x)= ("+x2)1/2. Then '"
0(x)=x("+x2)¡1/2 and

'"
00(x)= ("+x2)¡1/2¡x2("+x2)¡3/2= "

("+x2)3/2
:

Suppose that Xt is a solution to equation (6.11) and consider the process Zt"=
R
0

t
'"
0(Xs)dXs we

have, for any � > 0,

E
�
sup
t6�

jZt"¡Btj2
�
= EjZ�"¡B� j2=E

�Z
0

�

j'"0(Xs)¡ sign(Xs)j2ds
�

=
Z
0

�

E[j'"0(Xs)¡ sign(Xs)j2]ds! 0;
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as "! 0 by dominated convergence, since '"0(x)=x("+x2)¡1/2! sign(x) if x=/ 0 and is uniformly
bounded so the pointwise (in s) convergence Ej'"0(Xs)¡ sign(Xs)j!E[1Xs=0] =P(Xs=0), since
Xs has the law of a Brownian motion, allows to conclude.

As a consequence, there is a subsequence "n! 0 by subsequences Zt
"n!Bt uniformly almost

surely in any bounded interval. Since '" is even, we also have

Zt
"= '"(Xt)¡

1
2

Z
0

t

'"
00(Xs)ds= '"(jXtj)¡

1
2

Z
0

t

'"
00(jXsj)ds:

Therefore (Zt")t>0 is actually a function of jXtj. We conclude that (Bt)t>0 is measurable (and
adapted) with respect to the filtration Ft

jX j=�(jXsj; s6 t). In particular, this proves that (Xt)t>0
cannot be a strong solution to the SDE (6.11) since otherwise we will have the following inclusion
of completed filtrations

(FtX)t>0� (FtB)t>0�
¡
Ft
jX j�

t>0

which is absurd since knowing the modulus of a Brownian motion does not allow to recover its sign.
We must conclude that X is strictly a weak solution. And that this holds for all weak solutions.
So no strong solutions exists.

What we have discussed is Tanaka's example of a weak solution of an SDE with bounded
coefficients which is however not strong. This shows that some regularity of the coefficients is
needed to ensure existence of strong solutions.

6.3.2 Building weak solutions with Girsanov theorem

We return now to the concept of uniqueness in law introduced in Definition 6.18.
Let (Xt)t>0 be a n-dimensional Brownian motion starting at X0= y 2Rm and b:Rm!Rm a

measurable vector field growing at most linearly at infinity: i.e. there is a constant K such that

jb(x)j6K(1+ jxj):
Then the process

Zt= exp
�Z

0

t

b(Xs)dXs¡
1
2

Z
0

t

jb(Xs)j2ds
�
; t> 0; (6.12)

is a positive local martingale (and therefore a supermartingale).

Lemma 6.20. (Extended Novikov's condition) Consider a (progressive random) process ��2
Lloc
2 (R+;R

m) almost surely and let Xt be a m-dimensional Brownian motion. Suppose that there
is a partition ���([0;+1)) such that, for any tk2� nf0g, we have

E

�
exp
�
1
2

Z
tk¡1

tk

j�sj2ds
��

<+1; (6.13)

then the process

EtX(�)= exp
�Z

0

t

�sdXs¡
1
2

Z
0

t

j�sj2ds
�

is a real martingale (and not only a local martingale).

Proof. Since EtX(�) is a positive local martingale, and thus a positive supermartingale, proving
the lemma is equivalent to deduce that, for any t> 0, we have

E[EtX(�)]= 1:

Let t6 tk then we have that

EtX(�)=
Y
r=1

k

Et(��I[tr¡1tr)(�)):
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By Novikov's condition we have that Et(��I[tr¡1tr)(�)) are real martingales, furthermore
Et(��I[tr¡1tr)(�)) is Ftr measurable. Thus we get

E[EtX(�)] = E

"Y
r=1

k

Et(��I[tr¡1tr)(�))
#
=E

"
E

"Y
r=1

k

Et(��I[tr¡1tr)(�))

����������Ftk¡1
##

= E

"Y
r=1

k¡1

Et(��I[tr¡1tr)(�))E[Et(��I[tk¡1tk)(�))jFtk¡1]

#

= E

"Y
r=1

k¡1

Et(��I[tr¡1tr)(�))Etk¡1(��I[tk¡1tk)(�))

#

= E

"
E

"Y
r=1

k¡1

Et(��I[tr¡1tr)(�))

����������Ftk¡2
##

= E

"Y
r=1

k¡2

Et(��I[tr¡1tr)(�))E[Et(��I[tk¡2;tk¡1)(�))jFtk¡2]

#

= E

"Y
r=1

k¡2

Et(��I[tr¡1tr)(�))

#
���
= E[Et(��I[0;t1)(�))] =1;

where we used the fact that for any r> 1 we have Etr¡1(��I[tr¡1tr)(�))= 1. �

Lemma 6.21. Let Xt be a m dimensional Brownian motion, starting at X0= y 2Rm, and let b:
Rm!Rm be a measurable map growing at most linearly at infinity. Then Zt defined in ( 6.12) is
a real (not only local) martingale.

Proof. We want to apply Lemma 6.20 to the process �t= b(Xt).
Fix t> 0 and � > 0, then we have

E

�
exp
�
1
2

Z
t

t+�

jb(Xr)j2dr
��

6 E

�
exp
�
K2

2

Z
t

t+�

(1+ jXr j)2dr
��

6 E

�
exp
�
3K2

2

Z
t

t+�

(1+x+ jXr¡xj2)dr
��

6 E

�
exp
�
3K2�(1+x)

2

�
exp
�
3K2

2

Z
t

t+�

� jXr¡xj2
dr
�

��
6 E

�
exp
�
3K2�(1+x)

2

�
1
�

Z
t

t+�

exp
�
3K2

2
� jXr¡xj2

�
dr
�

6 exp
�
3K2�(1+x)

2

�
E

�
exp
�
3K2

2
� jXt+�¡xj2

��
;

which is finite whenever 3�K2<
1

t+ �
. When t=0 we can take � < 1

3K2

q
and when t> 1

2

1

3K2

q
we

can take

�6
�

1
3K2t

�
1

1+ 1+ 8

3
p

K

r <
¡3K2t+ 9K4t2+ 12K2

p
6K2

:

We consider now the sequence

t0=0; t1=
2
3

1
3K2

r
; t2= t1+

�
1

3K2t1

�
1

1+ 1+ 8

3
p

K

r ; : : : ; tk= tk¡1+
�

1
3K2tk¡1

�
1

1+ 1+ 8

3
p

K

r :
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We have that the seuquence tk!+1 as k!+1. Indeed, by inequality (6.21), we have that

E

�
exp
�
1
2

Z
tk

tk+1

jb(Xr)j2dr
��

= exp
�
3K2�k(1+x)

2

�
E

�
exp
�
3K2

2
�kjXtk+�k¡xj2

��
<+1

where �0=
2

3

1

3K2

q
and �k=

�
1

3K2tk

�
1

1+ 1+
8
3
p

K

r . Thus the hypotheses of Lemma 6.20 hold for

EX(b(X�)). Since Zt= EX(b(X�))t the lemma is proved. �
We can then consider the measure Q defined as, for any � > 0,

Q(A)=E[Z�1A]; A2F�:

Since by Lemma 6.21 the process Zt is a martingale, Q is a new measure on 
 which is locally
absolutely continuous with respect to P.

Theorem 6.22. Let X be a m-dimensional Brownian motion with respect to the probability P
starting at y2Rm, let b:Rm!Rm be a measurable function with at most linear growth at infinity,
and consider the process

Bt=Xt¡x¡
Z
0

t

b(Xs)ds: (6.14)

Then the pair of processes (X;B) is a weak solution of the SDE (�; �) = (b; Im�m) with (deter-
ministic) initial condition y 2Rm with respect the probability Q defined in equation ( 6.21).

Proof. By Girsanov theorem Bt is a Brownian motion with respect to the probability Q. Fur-
thermore if the drift of the SDE �(x) = b(x) and the diffusion matrix �(x) = Im�m (the identity
matrix in Mat(m;m)) equation (6.14) is equivalent to the fact that (X;B) satisfies equation

dXt= �(Xt)dt+�(Xt) �dBt= b(Xt)dt+dBt: �

6.3.3 About uniqueness in law
Theorem 6.23. Suppose that the SDE (�;�) with initial condition Y satisfies pathwise uniqueness
property then it satisfies the uniqueness in law property.

Proof. (See also Chapter IX Theorem 1.7 of [5]) Suppose that (X;B�) and (X 0;B� 0) are two weak
solution of the SDE (�;�) we want to build a new probability space 
0 containing both the solution
X and X 0 driven by only one Brownian motion B�.

Consider

0=C0(R+;Rm)�C0(R+;Rm)�C0(R+;Rn);

with the Borel �-algebra F . On 
0 we defined a probability law P0, induced by the probability P,
of the form

P0(d!1;d!2;d!3)=P0(d!1j!3)P0(d!2j!3)PB�0 (d!3);

such that, if we denote (!1; !2; !3)2
0, we have that the process

!1(�)�X�; !2(�)�X�0; !3(�)�B��B� 0:

In other words, we want that P0(!3jd!1)PB�0 (d!3) is the law of the weak solution (X;B�)2C0(R+;

Rm)�C0(R+;Rn) and that P0(!2jd!1)PB�
0 (d!3) is the law of the weak solution (X 0;B� 0)2C0(R+;

Rm)�C0(R+;Rn), i.e. we built a probability space where the weak solutions (X;B�) and (X 0;B� 0)
are driven by the same Brownian motion B� =B� 0.

On this new probability, !3 is a Brownian motion and (!1;!3) and (!2;!3) are two weak solution
to the SDE (�; �) with initial condition !1(0)=!2(0)�Y .

Since (�; �) has the pathwise uniqueness property then the processes !1 is indistinguishable
from the process !2 (obviously with respect to the probability P0), i.e.

!1(�)=!2(�);

almost surely. This means that the processes !1(�)�!2(�) has the same law but since !1(�)�X�
and !2(�)�X�0 we conclude that X��X�0. �
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We return to the SDE

dXt= b(Xt)dt+dB�t;

discussed in Section 6.3.2. In Theorem 6.22 we prove that (when b has at most linearly growth at
infinity) then there exists a weak solution. We prove now a result on the uniqueness (in law) of
the previous weak solution.

Theorem 6.24. All the weak solutions (X;B�) of the SDE

dXt= b(Xt)dt+dB�t; t> 0; (6.15)

satisfying for all � > 0 Z
0

�

jb(Xs)j2ds<1; a.s.; (6.16)

have the same law.

Remark 6.25. Under the hypotheses of Theorem 6.24, we do not require that b has at most linear
growth at infinity but that

R
0

� jb(Xs)j2ds <1 almost surely. If b has at most linearly growth at
infinity then Z

0

�

jb(Xs)j2ds6K
Z
0

�

(1+ jXsj)2ds6 2K�
�
1+ sup

s6�
jXsj2

�
;

which is always bounded since the process Xt is continuous.

Proof of Theorem 6.24. Let (X;B) any weak solution of (6.15) satisfying (6.16). Define the
increasing sequence of stopping times (Tn)n>1 as

Tn= inf
�
t> 0: 1

2

Z
0

t

jb(Xs)j2ds>n
�
;

and note that (6.16) implies Tn!1 almost surely. Now consider (Zt)t>0 as in eq. (6.12) above
and observe that the process (Qt)t>0 defined as Qt=Zt

¡1 satisfies

Qt^Tn := Zt^Tn
¡1 = exp

�
¡
Z
0

t^Tn
b(Xs)dXs+

1
2

Z
0

t^Tn
jb(Xs)j2ds

�
= exp

�
¡
Z
0

t^Tn
b(Xs)dBs¡

1
2

Z
0

t^Tn
jb(Xs)j2ds

�
:

Due to the presence of the stopping time, the Novikov's criterion is trivially satisfied, and we can
define the measure Q(n) such that dQ(n)jFt=Qt^TndPjFt for all t> 0 and under which

B~t
(n)=Bt+

Z
0

t^Tn
b(Xs)ds

is a Brownian motion. However by the SDE (6.15) we have B~t^Tn
(n) =Xt^Tn so indeed (Xt)t>0 is

a Q-Brownian motion in the random interval [0; Tn]. As a consequence, for any � > 0 and any
1A(X;B)2F� we have

EP[1A(X;B)1�6Tn]
= EQ[1�6Tn1A(X;B)Q�

¡1]

= EQ

�
1�6Tn1A(X;B)exp

�Z
0

�

b(Xs)dXs¡
1
2

Z
0

�

jb(Xs)j2ds
��

= EQ

�
1�6Tn1A

�
B~t
(n)
; B~t

(n)¡
Z
0

t

b
¡
B~s
(n)�ds�exp�Z

0

�

b
¡
B~s
(n)�dB~s(n)¡ 1

2

Z
0

�����b¡B~s(n)�����2ds��:
Since B~t

(n) is a Q-Brownian motion and B is a P-Brownian motion we get that

EQ

�
1�6Tn1A

�
B~t
(n); B~t

(n)¡
Z
0

t

b
¡
B~s
(n)�ds�exp�Z

0

�

b
¡
B~s
(n)�dB~s(n)¡ 1

2

Z
0

�����b¡B~s(n)�����2ds��
= EP

�
1T6Sn(B)1A

�
B;B ¡

Z
0

�
b(B)ds

�
exp
�Z

0

T

b(Bs)dBs¡
1
2

Z
0

T

jb(Bs)j2ds
��

=E[hA(B)];
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where Sn(B) = inf
�
t> 0: 1

2

R
0

t jb(Bs)j2ds> n
	
and hA:C(R+;Rn)!R+ is a suitable measurable

function depending on A (and on �). Since the previous proof holds for any weak solution (X;B),
if we consider two weak solutions (X(i); B(i)) i=1; 2 we

E
�
1A(X(1); B(1))1

�6Tn(1)
�
=E[hA(B(1))]=E[hA(B(2))]=E

�
1A(X(2); B(2))1

�6Tn(2)
�
;

where Tn
(i)=Sn(X(i)) for i=1; 2. Letting n!1 and using (6.16) to prove that Tn

(i)!1 a.s. for
i=1; 2, we deduce by dominated convergence that

E[1A(X(1); B(1))]=E[1A(X(2); B(2))]:

Since � > 0 is arbitrary this equality holds for all A2B(C(R+;Rm)) and therefore we conclude
that Law(X(1); B(1))=Law(X(2); B(2)) (as measures on C(R+;Rm)). �
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Chapter 7

Local (in time) solutions of SDEs, Markov
property, and relation with PDEs

7.1 Local (in time) solution to SDEs and explosion

7.1.1 Local existence and uniqueness

Definition 7.1. Under the same hypotheses and notation of Section 6.1, we say that the con-
tinuous process Xt is a local strong solution to the SDE (�; �) driven by the Brownian
motion B� with initial condition Y, till the stopping time T if Xt is adapted with respect to
the filtration �(Y ;Ft) and if, for any t> 0 and k=1; : : : ;m, we have

Xt
k;T =Xt^T

k =Y k+
Z
0

T^t
�k(s;Xs)ds+

X
j=1

n Z
0

T^t
�j
k(s;Xs)dBs

j:

Definition 7.2. Under the same hypotheses and notation of Section 6.3, we say that the pair of
continuous process (X;B�) (adapted to the filtration fJtgt2R+) is a local weak solution to the
SDE (�; �) with initial condition Y, till the stopping time T if B� is adapted with respect
to the filtration �(Y ;Ft) and if, for any t> 0 and k=1; : : : ;m, we have

Xt
k;T =Xt^T

k =Y k+
Z
0

T^t
�k(s;Xs)ds+

X
j=1

n Z
0

T^t
�j
k(s;Xs)dBs

j:

Remark 7.3. We can extend the notion of pathwise uniqueness and uniqueness in law (till a
stopping T ) to the case of local strong and weak solutions.

Definition 7.4. We say that the function (�;�) satisfies the local assumption A, if for any bounded
closed set U �Rm there is a constant KU such that, for any t> 0, k=1; : : : ; m, j =1; : : : ; n and
x; y 2U we have

j�k(t; x)j6KU(1+ jxj); j�jk(t; x)j6KU(1+ jxj);

j�k(t; x)¡ �k(t; y)j6KU jx¡ y j; j�jk(t; x)¡�jk(t; y)j6KU jx¡ y j:

Theorem 7.5. Suppose that the SDE (�;�) satisfies the local assumptions A, then, for any random
variable Y 2L2(
;F0;P), the SDE (�;�) driven by the Brownian motion B� with initial condition Y
admits a local strong solution Xt till any stopping times TU of the form, for any U open bounded set,

TU
X= inf ft> 0; Xt2U cg: (7.1)

Furthermore, under the previous hypotheses on (�; �), the solution is pathwise unique.

Remark 7.6. The strong solution Xt built in Theorem 7.5 does not depend on the stopping time
TU
X. The statement of the theorem says that there is a continuous stochastic process Xt taking

values in Rm[f1g such that Xt is a strong local solution to the SDE (�;�) till any stopping time
TU
X.
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Proof of Theorem 7.5. Fix U bounded open set, and define the map

SU(XU;�)k(t)=Y k+
Z
0

TU
X^t

�k(s;XU;s)ds+
X
j=1

n Z
0

TU
X^t

�j
k(s;XU;s)dBs

j:

If we define the set

X�Y := fX 2X�Y ; X0=Y g:

Using the same methods of the proof of Theorem 6.8 we get that

kSU(XU;�)k�06m
 
kY kL2(
)+

"
nKU

2

�0

r
+ CKU

2 �
�0

r #
(1+ kXU;�k�0)

!
;

and also for any XU;�
0

kSU(XU;�)¡SU(XU;�
0 )k�06

 
m n KU

2
p

+m �2KU
2C

p
2�0

p
!
kXU;�¡XU;�

0 k�0:

We can then apply Banach fix point theorem and we obtain the existence and uniqueness of a
process XU;t (which is such that X

U;TU
XU^t=XU;t) for which SU(XU)=XU, which is equivalent to

say that XU;t is a local strong solution to the SDE (�; �) till the stopping times TUX.
In order to prove that the process XU;t does not depend on U , or more precisely that there is

a process X such that

Xt
TU
X

=Xt^TUX=XU;t;

it is enough that if XU is a solution till the stopping time TU
XU and XU 0

0 is a solution till the stopping

time TU 0
XU 0
0
we have

X
U;T

U 0
X
U 0
0
^t
=X

U 0;TU
XU^t;

almost surely. Indeed if XU is a solution till the stopping time TU
XU and XU 0

0 is a solution till the

stopping time TU 0
XU 0
0

then both XU and XU 0
0 is solution to the stopping time

TU;U 0=TU
XU ^TU 0

XU 0:

Consider the process Zt
U ;U 0=XU;t

TU;U 0¡XU;t
0 TU;U 0=XU;t

T
U 0
XU 0

¡XU 0;t
0 TU

XU

, then using the same rea-
soning of the proof of Theorem 6.16

E[jZt
U ;U 0j2]6 2m(K +nK2)

Z
0

t

E[jZs
U ;U 0j2]ds;

and so, by Gronwall inequality, Zt
U ;U 0 is indistinguishable from 0. This proves that

XU;t
T
U 0
XU 0

=XU 0;t
0 TU

XU

;

almost surely. A consequence of the previous proof is that

TU;U 0= inf ft> 0; Xt2U \U 0g;
and so

XU;t
T
U 0
XU 0

=XU 0;t
0 TU

XU

=XU\U 0;t; (7.2)

(i.e. any solution process XU;t
T
U 0
X
U 0

restricted to any open subset U~ �U of U is equal XU~ ;t which is
the solution process of the equation restricted to the subset U~).

In particular, let BN = fx2Rm; jxj<N g then we have

XBN ;t
TBN 0=XBN 0;t;
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if N 06N . Since the sequence TBN is increasing in N , the following process is well defined

Xt(!) :=

(
limN!+1XBN ;t

TBN (!); if t6 limN!+1TBN(!);
1; otherwise:

The process Xt satisfies the properties of the thesis of Theorem 7.5. Indeed, if U is a bounded open
set, there is N > 0 such that U �BN. Let (XU;t; B) the solution to the equation (�; �) stopped in
the set U , then by equality (7.2), we have

Xt
TU
X

=XU\BN ;t=XU;t: �

Definition 7.7. Under the hypotheses and the notation of Theorem 7.5, we call the explosion time
of the SDE (�; �) with initial condition Y the stopping time

EY := lim
N!+1

TBN:

Remark 7.8. From the proof of Theorem 7.5, it is clear that the definition of TYe does not depend
on the increasing sequence BN = fy 2Rm; jy j>N g of open sets converging to all Rm. Indeed TYe

can also be defined as

EY = inf ft> 0; Xt=1g:

Remark 7.9. From the proof of Theorem 7.5, it is clear that P(EY =0)=0.

7.1.2 Explosion time and Lyapunov function
First of all we introduce the operator Lt:C1;2(R+�Rm;R)!L0(R+�Rm;R) given by

Lt(f)(t; x)=
X
k=1

m

�k(t; x)@xkf(t; x)+
1
2

X
k;k 0=1

m X
j=1

n

�j
k(t; x)�jk

0
(t; x)@xkxk0

2 f(t; x):

Lemma 7.10. Let (X;B�) be a local weak solution to the SDE (�;�) till the stopping time T then,
for any f 2C1;2(R+�Rm;R) we have

df(t;Xt
T)= (@tf(t;Xt

T)+Ltf(t;Xt
T))dt+

X
j=1

n
 X
k=1

m

�j
k(t;Xt

T)@xkf(t;Xt
T)

!
dBt

j;T :

Proof. The proof is a simple application of Ito formula. �

Definition 7.11. Let V :Rm!R+ be a positive C2(Rm;R) function, we say that V is a Lyapunov
function for the SDE (�; �) if

1. limx!+1V (x)=+1;

2. there is �;A2R such that

Lt(V )(x)6�V (x)+A:

Theorem 7.12. Suppose the function V is a Lyapunov function for the SDE (�;�). Suppose that
the SDE (�; �) satisfies local assumption A, it has a (local in time) weak solution (X; B�) with
initial condition Y, such that E[V (Y )]<+1, and explosion time EY. Then EY <+1 almost surely.

Proof. In order to prove the theorem, it is enough to prove that for any t>0 then P(EY 6 t)=0.
Consider the sequence of stopping times TN = inf ft> 0; jXtj>N g, applying Ito formula to the

process e¡�tV (Xt) we get

e¡�tV (Xt
TN)¡V (Y )=

Z
0

TN^t
(e¡�sLsV (Xs)¡�e¡�sV (Xs))ds

+
X
j=1

n Z
0

TN^t
 X
k=1

m

e¡�s�j
k(s;Xs)@xkV (Xs)

!
dBs

j:
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When TN>0 we have that jXt^TN j6N . This implies that (on the set TN>0) �jk(s;Xs)@xkV (Xs) is
a bounded process, and thus

R
0

TN^t(
P

k=1
m �j

k(s;Xs)@xkV (Xs))dBs
j is aMc

2martingale. Furthermore
the process (e¡�sLsV (Xs)¡�e¡�sV (Xs)) is bounded and we have also

V (Xt
TN)6

��
max
jxj6N

V (x)
�
+V (Y )

�
2L1(
):

We can take the expectation at both side of the integral obtaining

E[e¡�(TN^t)V (Xt
TN)]¡E[V (Y )]=E

�Z
0

TN^t
(e¡�sLsV (Xs)¡�e¡�sV (Xs))ds

�
6A

�
1¡ e¡�t

�

�
6C

since (e¡�sLsV (Xs)¡�e¡�sV (Xs))6 e¡�sA being V a Lyapunov function, and C 2R+. Thus we
get

(E[V (Y )]+C) > E[e¡�(TN^t)V (Xt
TN)]>E[e¡�(TN^t)V (XTN)ITN<t] (7.3)

> e¡j�jt
�

inf
jxj=N

V (x)
�
P(0<TN <t)¡ e¡j�jtE[V (Y )]P(TN=0) (7.4)

On the other TN!EY almost surely and so, by Remark 7.9,

P(TN =0)!P(EY =0)=0:

We have also

P(0<TN <t)!P(06EY 6 t)=P(EY 6 t):

On the other hand since limx!1V (x)=+1, we have (infjxj=NV (x))!+1 as N!+1. Finally
we get

ej�jt(E[V (Y )]+C)> limsup
N!+1

��
inf
jxj=N

V (x)
�
P(0<TN <t)

�
we need to have P(0<TN <t)! 0, and thus P(EY 6 t)= 0. �

Corollary 7.13. Under the hypotheses of Theorem 7.12, we have that, for any t> 0,

E[V (Xt)]6 e�t
�
E[V (Y )]+ A(1¡ e¡�t)

�

�
: (7.5)

Proof. Under the previous hypotheses, by the proof of Theorem 7.12, more precisely inequality
(7.3), we get

E[e¡�(TN^t)V (Xt
TN)]6

�
E[V (Y )]+ A(1¡ e¡�t)

�

�
: (7.6)

Since, by Theorem 7.12, TN := infft>0; jXtj>N g!+1 almost surely (and thus TN ^ t! t almost
surely), we get the thesis of corollary, by taking the limit of inequality (7.6) as N!+1. �

An important consequence of the previous corollary is the following one.

Theorem 7.14. Suppose that the SDE (�; �) satisfies local assumption A and that there is K>0
for which

j�k(x)j6K(1+ jxj); j�jkj6K(1+ jxj): (7.7)

Suppose that there is p> 0 such that E[jY jp], then, for any t> 0, we have E[jXtjp]<+1.

Proof. By Corollary 7.13 it is enough to prove that

V (x)= (1+ jxj2)p/2=

 
1+

X
k=1

m

(xk)2
!p

2
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is a Lyapunov function for the SDE (�; �) when the linear growth at infinity of the coefficients
holds. We have

Lt(V (x)) = p

 
1+

X
k=1

m

(xk)2
!p

2
¡1
0@X
k=1

m

�k(t; x)xk+ 1
2

X
k=1

m
0@X

j=1

n

�j
k(t; x)�jk(t; x)

1A1A
+p(p¡ 2)

 
1+

X
k=1

m

(xk)2
!p

2
¡2
0@ 1
2

X
k;h=1

m
0@X

j=1

n

�j
k(t; x)�jk(t; x)xkxh

1A1A:
Thus, using inequality (7.7), we get

Lt(V (x)) 6 p(1+ jxj2)p/2¡1(Km(1+ jxj)jxj+K2mnjxj2)
+jp(p¡ 2)jK2(1+ jxj2)p/2¡2(1+ jxj2)jxj2

6 C[(1+ jxj2)p/2¡1(1+ jxj2)+ (1+ jxj2)p/2¡2(1+ jxj2)]
6 CV (x); (7.8)

where C > 0 is a suitable constant dependent on p;K, m, and n. �

Corollary 7.15. Under the hypotheses of Theorem 7.14, for any p> 0 there is a constant Cp> 0
such that

E[jXtjp]6CpeCpt(1+E[jY jp]):

Proof. The Corollary is a consequence of Corollary 7.13, Theorem 7.14 and inequality (7.8). �

The presence of Lyapunov functions not only permits to obtain some better linear bounds on
the moments of the process Xt when the growth of the coefficient is linear, but it also allows us to
study some SDE with coefficient with superlinear growth of the coefficients.

Considerm=n=1 and let �(t;x)= �(x)=¡x2k¡1, for some k2N, k>1, and �(t;x)=�(x)=1,
i.e. the SDE

dXt=¡Xt
2k¡1dt+dBt: (7.9)

Since �; �2C1(R;R), by Lagrange theorem, the SDE (�; �) satisfies local assumption A. In this
case the operator Lt=L is

L(f)(t; x)=¡x2k¡1@xf(t; x)+
1
2
@x
2f(t; x):

Consider

V (x)= jxj2p

for p> 1, then we have

L(V )(x) = ¡2px2k¡1sign(x)jxj2p¡1+ p(2p¡ 2)jxj2p¡2=¡2p jxj2k+2p¡1+ p(2p¡ 2)jxj2p¡2

6 p(2p¡ 2)jxj2p¡26 p(2p¡ 2)V (x)+ p(2p¡ 2):

So jxj2p are Lyapunov function also in the case where �(x)=¡x2k¡1 and �(x)= 1.
We can get better estimate for the expected value of Xt if we consider

V (x)= e(1+x
2)k¡":

for some 0<"<k. In this case, we have

L(V )(x) = ¡(k¡ ")x2k(1+x2)k¡1¡"e(1+x
2)2k¡1¡"+ 1

2

�
k
2
¡ "
�
2

x2(1+x2)2k¡2¡2"e(1+x
2)2k¡1¡"

+1
2

�
k

2
¡ "
��

k

2
¡ 1¡ "

�
x2(1+x2)k/2¡2¡"e(1+x

2)2k¡1¡":

So, for any �2R, we get that

L(V )(x)¡�V (x)6 f¡(k¡ ")x4k¡2¡2"+Ck;"(1+x4k¡2¡4")ge(1+x2)2k¡1¡":
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Since limjxj!+1 f¡(k¡ ")x4k¡2¡2"+Ck;"(1+x4k¡2¡4")ge(1+x2)2k¡1¡"=¡1, there is a constant
A�2R+ such that

f¡(k¡ ")x4k¡2¡2"+Ck;";�(1+x4k¡2¡4")ge(1+x2)2k¡1¡"6Ak;";�:

This means that for any �2R+ there is

L(V )(x)6�V (x)+Ak;";�:

For example if the initial condition Y = y 2R is deterministic Corollary 7.13 and the previous
computation implies that

E[exp((1+Xt
y;2)k¡")]6

�
exp((1+ y2)k¡")+

Ak;";�(1¡ e¡�t)
�

�
;

where Xt
y is the solution to the equation (7.9) with initial condition X0

y= y 2R.

Definition 7.16. Let V :Rm!R+ be a positive C2(Rm;R) function, we say that V is a anti-
Lyapunov function if

1. supx2RmV (x)<+1;

2. There is �> 0 such that

Lt(V )(x)>�V (x):

Theorem 7.17. Suppose that the SDE (�; �) (satisfying local assumption A) admits an anti-
Lyapunov function V then for any Y = y 2Rm (deterministic) such that V (y)> 0 we have

P(Ey<+1)> 0:

Proof. Since V (y) is strictly positive, there is � > 0 such that

V (y)>e¡��
�

sup
x2Rm

V (x)
�
: (7.10)

Define the stopping times TN = inf ft > 0; jXtj> N g as usual. Since there is N0 > 0 such that
BN0 = fjy j < N0g for which y 2 BN0 then TN > 0 almost surely for N > N0. Following similar
computations to the ones done in the proof of Theorem 7.12, we get that

V (y)6 e¡��E[V (X�
TN)]6 e¡��

�
sup
x2Rm

V (x)
�
P(TN >�)+

�
sup
x2Rm

V (x)
�
P(TN 6 �):

If P(TN6�)!0 asN!+1, we get that, for any ">0, for any N>N" big enough P(TN>�)>1¡"
and thus

V (y)6 e¡��
�

sup
x2Rm

V (x)
�
(1¡ ")+

�
sup
x2Rm

V (x)
�
P(TN 6 �)! e¡��

�
sup
x2Rm

V (x)
�
(1¡ "):

For " small enough, the previous inequality contradicts inequality (7.10). This means that P(TN6
�)!C > 0. On the other hand, for what we said in the proof of Theorem 7.12, P(TN 6 �)!
P(Ey6 �) and the proof of the theorem is concluded. �

We now propose an example of SDE with explosion time P(Ey<+1)>0 for some (determin-
istic) initial condition y 2Rm. Let m=n=1 and consider the (additive noise) SDE

dXt=+Xt
3dt+dBt; X0= y 2R;

namely �(x)=x3 and �(x)= 1. Consider the function

V (x)= x2

x2+1
; x2R;
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which is strctly positive for x=0. We now prove that V (x) for the SDE (�; �)= (x3; 1) and any
initial condition y 2R. We have that

Lt(V )=
�
¡ 2x4

(x2+1)2
+ 2x4

x2+1

�
+
�

1
x2+1

¡ 5
(x2+1)2

+ 8x4

(x2+1)3

�
=

=2x
6+2x4¡ 3x2+1
(x2+1)3

:

Consider the polynomial P (z)= 2z3+2z2¡ 3z+1 for z> 0 (here z=x2). We have

P 0(z)= 6z2+4z¡ 3
which has zeros in

z1;2=
¡2� 4+ 18

p

6
;

which implies that P (z) has a minimum in z=x2= ¡2+ 22
p

6
. This implies that, for any x2R,

Lt(V )(x)>
P
�
¡2+ 22

p

6

�
(x2+1)3

=
58¡ 11 22

p

27(x2+1)
> 6

27(x2+1)
> 0:

Since

lim
jxj!+1

Lt(V )(x)= 2

this implies that there is C > 0 such that

Lt(V )(x)>C; x2R:

Finally, since V (x)6 1, we get that there is �> 0 for which

Lt(V )(x)>�V (x):

7.2 Markov property of the solutions to autonomous SDEs

7.2.1 Continuous dependence of solutions on (deterministic) initial con-
dition

If the SDE (�; �) satisfies assumption A, we proved in Section 6.2, that there is a (unique) strong
solution for any Y 2L2(F0). In other words, there is a map

F :R+�L2(F0)�C0(R+;R
n)!R;

such that for any � > 0 the restriction of F j[0;� ]: [0; � ]�L0(F0)�C0(R+;R
n)!R is B([0; � ])


B(L2(F0))
B(C0([0; t];Rn)) measurable (i.e. the map F is progressive), and such that the process

Xt=F (t; Y ;B�[0;t])

is the strong solution to the SDE (�;�) driven by the Brownian motion B� and with initial condition
Y 2L2(F0).

We restrict now to the case where the initial condition Y = y 2Rm is deterministic.

Theorem 7.18. Let (�; �) be a SDE satisfying assumption A, then there is a function

F�:R+�Rm�C0(R+;R
n)!Rm;

such that for any � > 0 the restriction of F j[0;� ]: [0; � ]�L0(F0)�C0(R+;R
n)!R is B([0; � ])


B(L2(F0))
B(C0([0; t];Rn)) measurable (i.e. the map F is progressive), for it is continuous in
the second component Rm, and such that for any n-dimensional Brownian motion B� and for any
y 2Rm the process

Xt
y=F�(t; y; B�[0;t])

is the unique strong solution to the SDE (�; �) driven by B� and with initial condition y 2Rm.
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Remark 7.19. Consider two functions F�:R+ �Rm � C0(R+;R
n)!Rm and F~:R+ �Rm �

C0(R+;R
n)!Rm which are measurable with respect all variables and continuous with respect

the first two variable. Let PB(d) the probability measure on the space C0(R+;R
n) such that

the paths  2C0(R+;R
n) are Brownian motion (with respect to the probability PB), i.e. for each

t1< ���<tn, the random variables (t2)¡ (t1),... , (tn)¡ (tn¡1) are independent normal random
variables with mean 0 and variance t2¡ t1, . . . , tn¡ tn¡1. Suppose that there is a (measurable) set
¡�C0(R+;R

n) such that PB(¡)= 1 and

F�(t; y; )=F~(t; y; );

for any t2R+, y 2Rm and  2¡. Let (
;F ;P) be any probability space and B:R+�
!Rn be
a Brownian motion defined on the probability space (
;F ;P), then we have

F�(t; y; B[0;t](!))=F~(t; y; B[0;t](!))

for every t; y2R+�Rm and almost surely with respect to !2
 (with respect to the probabilityP).

In order to prove the previous theorem, we need the following result.

Theorem 7.20. (Kolmogorov continuity criterion) Let

Xt
y:R+�Rm�
!Rm

be a continuous adapted stochastic process (with respect to t 2R+) taking values in Rm and
depending on the parameter y 2Rm, such that there is a p > 1 and a  >m for which for any
� > 0 there is a constant C� > 0 such that

E

�
sup
t6�

jXt
y¡Xt

y 0jp
�
<C� jy¡ y 0j:

Then, there is a process X~t
y:R+�Rm�
!Rm which is continuous adapted stochastic process

(with respect to t 2R+) taking values in Rm and depending continuously on the parameter
y 2Rm, such that for any y 2Rm and t2R+ we have

Xt
y=X~t

y

almost surely.

Proof. The proof of this theorem can be found in Chapter 2 Theorem 2.9 of [4] or Chapter 1
Theorem 1.8.1 of [3]. �

Proof of Theorem 7.18. For simplicity of notation, we consider the case m= n= 1 (i.e. we
have B�t=Bt

1=Bt a one-dimensional Brownian motion and Xt=Xt
1 is a one-dimensional process).

For this reason, we write �(t; x) := �1(t; x) and �(t; x) := �1
1(t; x). The general case is a simple

generalization.
Fix the probability space


0=C0(R+;R)

with the Borel �-algebra. Let P the probability measure on 
0 such that the process

Bt(!) :=!(t)

is a one-dimensional Brownian motion. Let Ft be the natural filtration of Bt. Let Xt
y be the

(unique up to null sets) strong solution of the SDE (�; �) driven by the Brownian motion Bt and
with initial condition y 2Rm=R. If y; y 02R we write Zt

y;y 0=Xt
y¡Xt

y 0. With this notation we
have, for any p> 4,

djZt
y;y 0jp/2 = 1

2
(p¡ 2)jZt

y;y 0jp/2¡1d(Zt
y;y 0)+ (p¡ 2)(p¡ 4)

4
jZt

y;y 0jp/2¡2(�(t;Xt
y)¡�(t;Xt

y 0))2dt

= (p¡ 2)
2

jZt
y;y 0jp/2¡1(�(t;Xt

y)¡ �(t;Xt
y 0)) dt

+(p¡ 2)(p¡ 4)
4

jZt
y;y 0jp/2¡2(�(t;Xt

y)¡�(t;Xt
y 0))dt

+(p¡ 2)
2

jZt
y;y 0jp/2¡1(�(t;Xt

y)¡�(t;Xt
y 0))dBt:
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We recall that, since jy j; jy 0j 2L1(
)�Lp(
) for every p> 1, by Theorem 7.14 we have that, for
any p> 4 and any y; y 02R, Xt

y; Xt
y 02Lp(
) and so Zy;y 0 is a Lp semimartingale. Thus, we get

E

�
sup
t6`

jZt
y;y 0jp

�
6 4jy¡ y 0jp+4E

"����������supt6`

Z
0

t(p¡ 2)
2

jZs
y;y 0jp/2¡1(�(s;Xt

y)¡ �(s;Xt
y 0))ds

����������
2
#

+4E

"����������supt6`

Z
0

t(p¡ 2)(p¡ 4)
4

jZt
y;y 0jp/2¡2(�(t;Xt

y)¡�(t;Xt
y 0))2

����������
2
#

+4E

"
sup
t6`

��������Z
0

t(p¡ 2)
2

jZs
y;y 0jp/2¡1(�(t;Xs

y)¡�(t;Xs
y 0))dBs

��������2
#

6 4jy¡ y 0jp+4(p¡ 2)
2

K�

Z
0

`

E[jZs
y;y 0jp]ds+(p¡ 2)(p¡ 4)K2

Z
0

`

E[jZs
y;y 0jp]ds

+4E
�Z

0

`
�
(p¡ 2)
2

�
2

jZs
y;y 0jp¡2(�(t;Xs

y)¡�(t;Xs
y 0))2ds

�
6 4jy¡ y 0jp+CK;� ;p

Z
0

`

E[jZs
y;y 0jp]ds6 4jy¡ y 0jp+CK;� ;p

Z
0

`

E

�
sup
s6t

jZs
y;y 0jp

�
dt;

for a suitable constant CK;� ;p > 0 depending on K, � and p. If we denote by f y;y
0
(`) :=

E[supt6` jZt
y;y 0jp], then we get the integral inequality

f y;y
0
(`)6 4jy¡ y 0jp+CK;� ;p

Z
0

`

f y;y
0
(t)dt;

and thus, by Grownall lemma, we obtain that, for any `6 � ,

f y;y
0(`)6 4jy¡ y 0jp eCK;�;pt:

This means that there is a constant C~K;� ;p> 0 such that

E

�
sup
t6�

jXt
y¡Xt

y 0jp
�
=E

�
sup
t6�

jZt
y;y 0jp

�
6C~K;� ;pjy¡ y 0jp:

If we choose p>m=1, we can apply Theorem 7.20, i.e. there is a measurable map

X~t
y:R+�Rm�
0!Rm

which is predictable with respect to t, and continuous with respect to both t2R+ and y2R such
that

Xt
y=X~t

y
;

almost surely. Since X~t
y is predictable with respect to the �-algebra generated by the Brownian

motion Bt and the (deterministic) initial condition y 2R, and X~t
y is almost surely equal to the

strong solution Xt
y, the process X~t

y is also a strong solution to the SDE (�;�) driven by Brownian
motion Bt and initial condition y 2R. Now we define

F�(t; y; !) :=X~t
y(!):

The theorem is proved. �

Theorem 7.21. Suppose that (�; �) satisfies the assumption A and let Xt be the strong solution
to the SDE (�; �) driven by the Brownian motion B� and with initial condition Y 2L2(F0). Then
there is a set 
1�
 of full measure such that, for any t> 0, we have

Xt(!)=F�(t; Y (!); B[0;t](!));

almost surely, where F�:R+�Rm�C0(R+;R
n)!Rm is the map in the thesis of Theorem 7.18.
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Proof. Since F�(�; �; B�[0;t]) is predictable and continuous with respect the first two variables,
the process (t; !) 7!F�(t; Y (!); B�[0;t](!)) is predictable and continuous with respect to the time.
Furthermore, F�(t;Y (!);B�[0;t](!)) is measurable with respect to the �-algebra �(�(Y );FtB) (i.e. the
�-algebra generated by Y and B�[0;t]). If we are able to prove that F�(t; Y (!);B�[0;t](!)) satisfies the
SDE (�; �) by the uniqueness of strong solution the theorem is proved.

By definition of F� we have that

(F�(t; x;B[0;t]))k=xk+
Z
0

t

�k(s; F�(s; x;B[0;s]))ds+
X
j=1

n Z
0

t

�j
k(s; F�(s; x;B[0;s]))dBs

j: (7.11)

Consider the (measurable and adapted) maps

Mk:Rm�R+�C0(R+;R
n)!R;

Sj
k:Rm�R+�C0(R+;R

n)!R;

defined as

Mk(x; t; B[0;t]) := lim
j� j!0

X
t`2�t

�k(t`¡1; F�(t`¡1; x;B[0;t`¡1]))(t`¡ t`¡1);

and

Sj
k(x; t; B[0;t]) := lim

j� j!0

X
t`2�t

�j
k(t`¡1; F�(t`¡1; x;B[0;t`¡1]))(Bt`¡Bt`¡1):

By the definition of Riemann-Stieltjes and Ito integral we have that equation (7.11) implies

(F�(t; x;B[0;t]))k=xk+Mk(x; t; B[0;t])+
X
j=1

n

Sj
k(x; t; B[0;t]): (7.12)

On the other hand, we have�Z
0

t

�k(F�(s; Y ;B[0;s]))ds
�
(!) = lim

j� j!0

X
t`2�t

�k(t`¡1; F�(t`¡1; Y (!); B[0;t`¡1](!)))(t`¡ t`¡1)

= Mk(Y (!); t; B[0;t](!));

and similarly�Z
0

t

�j
k(F�(s; Y ;B[0;s]))dBs

j

�
(!) = lim

j�j!0

X
t`2�t

�j
k(t`¡1; F�(t`¡1; Y (!); B[0;t`¡1](!)))(t`¡ t`¡1)

= Sj
k(Y (!); t; B[0;t]):

Replacing x by Y (!) in equation (7.11) and the previous expression for Mk(Y (!); t; B[0;t]) and
Sj
k(Y (!); t; B[0;t]), we get

(F�(t; Y (!); B[0;t](!)))k

= Y k(!)+Mk(Y (!); t; B[0;t](!))+
X
j=1

n

Sj
k(Y (!); t; B[0;t](!))

= Y k(!)+
�Z

0

t

�k(F�(s; Y ;B[0;s]))ds
�
(!)+

X
j=1

n �Z
0

t

�j
k(F�(s; Y ;B[0;s]))dBs

j

�
(!):

Thus (F�(t; Y (!); B[0;t](!)))k is a strong solution to the SDE (�; �) driven by B� and with initial
condition Y , and by uniqueness of strong solution we have F�(t; Y (!);B[0;t](!))=Xt(!) for almost
every ! 2
. �

7.2.2 Markov property of strong solutions

Definition 7.22. An SDE (�; �) is called autonomous if

�k(t; x)= �k(x); �j
k(t; x)=�j

k(x);
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i.e. the coefficients do not depend explicitly on the time t> 0.

Definition 7.23. Let Xt be a (Rm)-stochastic process and let FtX=�(Xs; s6 t) its natural filtra-
tion. We say that the process X is a Markov process if, for any (bounded) continuous function G:
Rmk!R and any t6 t16 � � �6 tk2R+, we have

E[G(Xt1; : : : ; Xtk)jFt] =E[G(Xt1; : : : ; Xtk)jXt]:

For any t> 0, we consider the map Qt:Cb0(Rm;R)!Cb
0(Rm;R) (where Cb0(Rm;R) is the set

of bounded continuous functions on Rm) given by

Qt(f)(x) :=E[f(F�(t; x;B�[0;t]))]; f 2Cb0(Rm;R); x2Rm;

where F�:R+ �Rm� C0(R+;R
n)!R is the function introduced in Theorem 7.18. Since the

function F� is continuous with respect to the first two variables, if f is continuous and bounded,
by Lebesgue dominated convergence theorem Qt(f) is (bounded) and continuous.

We want to prove the following theorem.

Theorem 7.24. Let (�; �) be an autonomous SDE satisfying assumption A and let Xt the strong
solution to the SDE (�;�) driven by the Brownian motion B� and with initial condition Y 2L2(F0)
then, for any t> s, we have

E[G(Xt)jFs] =Qt¡s(G)(Xs):

Remark 7.25. Hereafter, we introduce the concept of strong solution X t0;Y to the SDE (�; �)
driven by the Brownian motion B�, starting at the time t0>0 with initial condition Y 2 (L0(Ft0))m,
namely we have that Xt0;Y the process is continuous and it satisfies the first part of Definition 6.1
and we have

Xt
t0;Y ;k=Y k+

Z
t0

t

�k(Xs
t0;Y )ds+

X
j=1

n Z
t0

t

�j
k(Xs

t0;Y ;k)dBs
j:

Lemma 7.26. Consider an autonomous SDE (�; �) satisfying assumption A and let t0 > 0,
Y 2 (L0(Ft0))m and B� a n-dimensional Brownian motion. Then we have that

Xt
t0;Y =F�(t¡ t0; Y ; (B[t0;t]¡Bt0))

is the unique strong solution to the SDE (�; �) driven by the Brownian motion B�, starting at the
time t0> 0 with initial condition Y 2 (L0(Ft0))m, where F�:R+�Rm�C0(R+;R

n)!Rm is the
map in the thesis of Theorem 7.18.

Proof. The existence and uniqueness of strong solutions starting at an arbitrary time t0 can be
proved as in Theorem 6.8 and Theorem 6.16.

Consider the stochastic process

B~t¡t0=B�t¡B�t0=(B�t1¡B�t01 ; : : : ; B�t
n¡B�t0n);

defined for t> t0. The process B~t is a Brownian motion independent of Ft0 and, denoting by F~tB
~

the natural filtration of B~t we have that

Ft=�
¡
F~t¡t0B~ ;Ft0

�
:

Let X~t be the strong solution to the SDE (�;�) driven by the Brownian motion B~t and with initial
condition Y 2Ft0, thus we have that X~t is given by the expression

X~tk=Y k+
Z
0

t

�(X~sk)ds+
X
j=1

n Z
0

t

�j
k(X~s)dB~s:
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On the other hand we have thatZ
0

t

�j
k(X~s)dB~s

j = lim
j� j!0

X
t`2�t

�j
k(X~t`¡1)(B~t`

j ¡B~t`¡1
j )

= lim
j� j!0

X
t`2�t

�j
k(X~t`¡1)(Bt`+t0

j ¡Bt`¡1+t0
j )

=
Z
t0

t

�j
k(X~s¡t0)dBs

j:

This means that, if we write X̂t :=X~t¡t0 (defined for t> t0), we get that

X̂t
k = Y k+

Z
t0

t

�(X~s¡t0
k )ds+

X
j=1

n Z
t0

t

�j
k(X~s¡t0)dBs

j

= Y k+
Z
t0

t

�(X̂sk)ds+
X
j=1

n Z
t0

t

�j
k(X̂s)dBs

j ;

and thus X̂t
k=Xt

t0;Y is the strong solution to the SDE (�;�) driven by B�, starting at t0 with initial
condition Y . On the other hand, by Theorem 7.21, we have

Xt
t0;Y (!)= X̂t(!)=X~t¡t0(!)=F�(t¡ t0; Y (!); B~[0;t¡t0])=F�(t¡ t0; Y (!); (B[t0;t]¡Bt0));

for almost every ! 2
. �

Proof of Theorem 7.24. If Xt is the strong solution to the SDE (�; �) driven by the Brownian
motion B�, then for any t> s we have

Xt
k¡Xs

k=
Z
s

t

�k(Xs)ds+
X
j=1

n Z
s

t

�j
k(Xs)dBs

j:

In other words, for any t> s, Xt=Xt
s;Xs where Xt

s;Xs is the strong solution to the SDE (�; �)
starting at s> 0 with initial condition Xs2L2(Fs). On the other hand, by Lemma 7.26, we have

Xt
s;Xs=F�(t¡ s;Xs; B�[s;t]¡B�s):

Thus we obtain

E[G(Xt)jFs] =E[G(Xt
s;Xs)jFs] =E[G(F�(t¡ s;Xs; B�[s;t]¡B�s))jFs]:

Furthermore, since B� is a Brownian motion and it has independent increments, the B~t¡s=B�t¡B�s
is a Brownian motion independent of Fs and thus we have

E[G(F�(t¡ s;Xs; B�[s;t]¡B�s))jFs](!)=
Z
C0(R+;Rn)

G(F�(t¡ s;Xs(!); B~t¡s(�)))PB~t¡s(d � )

=EB~[G(F�(t¡ s;Xs(!); B~t¡s(�)))]

where the previous symbols we mean that !2
 we fix the value of the random variable Xs(!) and
we take the expectation with respect to the independent Brownian motion B~. On the other hand,
by definition of Qt¡s, we have

EB~[G(F�(t¡ s;Xs(!); B~t¡s(�)))]=Qt¡s(G)(Xs): �

Corollary 7.27. We have that for any t1; t2 > 0, then, for any f 2 Cb0(Rm;R), Qt1+t2(f) =
Qt2(Qt1(f)).

Proof. It follows from Theorem 7.24 and the tower property of the expected values. Indeed,

Qt1+t2(f)(x) = E[f(Xt1+t2
x )jF0] =E[E[f(Xt1+t2

x )jFt2]jF0]
= E[Qt1(Xt2

x)jF0] =Qt2(Qt1(f))(X0
x)=Qt2(Qt1(f))(x);

which is the stated property. �
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Remark 7.28. Corollary 7.27 proves that the family of maps Qt is a semigroup. When Xt is a
Markov process, the semigroup Qt is called Markov semigroup associated with the process Xt.

Corollary 7.29. We have that, for any t1; t2> 0

F�(t1+ t2; x;B[0;t1+t2])=F�(t2; F�(t1; x;B[0;t1]); B[t1;t1+t2]¡Bt2): (7.13)

Proof. The statement follows directly from the proof of Theorem 7.24. �

Remark 7.30. Sometimes it is equation (7.13) that is called Markov property of the solution
to the SDE (�; �). More generally (7.13) show that, defining for every s6 t2R+ and ! 2
, the
continuous map �(s;t);!:Rm!Rm, as

�(s;t);!(x) :=F�(t¡ s; x;B[s;t](!)¡Bs(!));

for any ! 2
, the map ��;!(�) is a flow of homeomorphism, namely, for any s6 t6u we have

�(s;u);!(x)=�(t;u);!(�(s;t);!(x)):

Theorem 7.31. Let (�; �) be an autonomous SDE satisfying assumption A and let Xt the strong
solution to the SDE (�;�) driven by the Brownian motion B� and with initial condition Y 2L2(F0)
then Xt is a Markov process.

Proof. We prove the theorem for functions G:Rmk!R of the form

G(Xt1; : : : ; Xtk)=G1(Xt1)� � �Gk(Xtk):

Since the functions of the previous form are dense (with respect to the point wise convergence) in
the set of continuous bounded function, the theorem is proved.

Consider t6 t16 � � �6 tk2R+, then, by Theorem we have

E[G(Xt1; : : : ; Xtk)jFt] = E[G1(Xt1)� � �Gk¡1(Xtk¡1)E[Gk(Xtk)jFtk¡1]jFt]
= E[G1(Xt1)� � �Gk¡1(Xtk¡1)Qtk¡tk¡1(G)(Xtk¡1)jFt]
= E[G1(Xt1)� ��Gk¡2(Xtk¡2)E[Gk¡1(Xtk¡1)Qtk¡tk¡1(G)(Xtk¡1)jFtk¡2]jFt]
= E[G1(Xt1)� � �Gk¡2(Xtk¡2)Qtk¡1¡tk¡1(Gk¡1Qtk¡tk¡1(Gk))(Xtk¡2)jFt]
= E[G1(Xt1)Qt2¡t1(G2Qt3¡t2(� � �Qtk¡tk¡1(Gk)� � �)(Xt1) jFt]
= Qt1¡t(G1Qt2¡t1(G2� � �Qtk¡tk¡1(Gk)� � �))(Xt):

In other words E[G(Xt1; : : : ; Xtk)jFt] is equal to a function of only Xt, i.e.

E[G(Xt1; : : : ; Xtk)jXt] = E[E[G(Xt1; : : : ; Xtk)jFt]jXt]
= E[Qt1¡t(G1Qt2¡t1(G2� � �Qtk¡tk¡1(Gk)� � �))(Xt) jXt]
= Qt1¡t(G1Qt2¡t1(G2� � �Qtk¡tk¡1(Gk)� � �))(Xt):

This proves that Xt is a Markov process. �
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Chapter 8

SDEs and evolution PDEs

8.1 Kolmogorov (backward) equation

We recall the definition of the operator

Lt(f)(t; x) :=
X
k=1

m

�k(t; x)@xkf(t; x)+
1
2

X
k;k 0=1

m
0@X

j=1

n

�j
k(t; x)�jk

0
(t; x)

1A@xkxk0f(t; x):
Hereafter we denote by C1;2(R+�Rm;R) the set of functions u:R+�Rm!R which are differ-
entiable one time with respect to the first variable (i.e. t2R+) and two times differentiable with
respect to the second set of variables (i.e. x2Rm), and all the derivatives of u mentioned before
are continuous. We will use also the notation C1;2([0; � ]�Rm;R) for the set of functions defined
only on the compact set [0; � ] which are differentiable one time with respect to the first variable
and two times differentiable with respect to the second set of variables.

Theorem 8.1. Let (�;�) be a SDE satisfying assumption A, and consider a function u2C1;2([0;
� ]�Rm;R) which is a (classical) solution to the PDE

@tu(t; x)+Ltu(t; x)= 0; u(� ; x)= f(x) (8.1)

(where f(x)2C2(Rm;R)) and such that u grows at most polynomial at infinity, i.e. there is N 2N
and R> 0 such that, for every t2 [0; � ]; x2Rm we have

ju(t; x)j6R(1+ jxjN):
Then we have

E[f(X�
t;x)]=E[u(� ;X�

t;x)]=u(t; x); (8.2)

where Xs
t;x is a the strong solution to the SDE (�; �) starting at time t 2R+ and with initial

condition Xx
t;x=x2Rm.

Proof. The theorem is a simple application of Ito formula. Indeed, by Lemma 7.10, we have

du(s;Xs
t;x) = (@tu(s;Xs

t;x)+Ls(u)(s;Xs
t;x))ds+

X
j=1

n
 X
k=1

m

�j
k(s;Xs

t;x)@xku(s;Xs
t;x)

!
dBs

j

=
X
j=1

n
 X
k=1

m

�j
k(s;Xs

t;x)@xku(s;Xs
t;x)

!
dBs

j ;

where we used that u satisfies equation (8.1). The previous equality proves that the process
u(s;Xs

t;x) (defined for s> t) is a local martingale.
We now prove that u(s; Xs

t;x) is a real martingale. Since the initial condition of the strong
solution Xs

t;x to the SDE (�; �) is deterministic by Theorem 7.14, we have

E[jXs
t;xjp]6CK;p e

�K;p(s¡t)(1+ jxjp);
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for every s> 0 and p> 4 and suitable constant CK;p; �K;p> 0. Thus we have

E[ju(s;Xs
t;x)j2] 6 E[(1+ jXs

t;xj)2N]6 22N(1+E[jXs
t;xj2N])

6 22N(1+CK;2N e
�K;2N(s¡t)(1+ jxj2N))<+1:

This implies that the process u(s; Xs
t;x) is a continuous local martingale bounded in L2, which

means that u(s;Xs
t;x) is aMc

2martingale and so a real martingale. Thus by definition of martingale

E[f(X�
t;x)]=E[u(� ;X�

t;x)]=E[E[u(� ; X�
t;x)jFt]] =E[u(t;Xt

t;x)]=E[u(t; x)]=u(t; x);

which concludes the proof. �

Remark 8.2. Equation (8.1) is usually called the Kolmogorov (backward) equation associated with
the SDE (�; �).

For autonomous SDE, i.e. in the case where �; � do not depend on t and so the operator

Lt :=L=
X
k=1

m

�k(x)@xk+
1
2

X
k;k 0=1

m
0@X

j=1

n

�j
k(x)�jk

0
(x)

1A@xkxk0 (8.3)

do not depend on t too, we can give to Theorem 8.1 the following formulation.

Theorem 8.3. Let (�;�) be an autonomous SDE satisfying assumption A, and consider a function
v 2C1;2([0; � ]�Rm;R) which is a (classical) solution to the PDE

@tv(t; x)=Lv(t; x); v(0; x)= f(x) (8.4)

(where f(x)2C2(Rm;R)) and such that v grows at most polynomial at infinity, i.e. there is N 2N
and R> 0 such that, for every t2 [0; � ]; x2Rm, we have

jv(t; x)j6R(1+ jxjN):
Then we have

E[f(Xt
x)]=E[v(0; Xt

x)]= v(t; x); (8.5)

where Xt
x is the strong solution to the SDE (�; �) starting at time 0 and with initial condition

X0
x=x2Rm.

Remark 8.4. Using the map F�:R+�Rm�C0(R+;R
n)!Rm defined in Theorem 7.18, equa-

tion (8.5) can be written in the following way

v(x; t)=E[f(F�(t; x;B�[0;t]))]=Qt(f)(x):

Proof of Theorem 8.3. Fix � > 0 and consider the function

u(t; x)= v(� ¡ t; x):

Then the function u solves the Kolmogorov backward equation associated with (�; �); indeed

@tu(t; x)=¡@tv(� ¡ t; x)=¡Lv(� ¡ t; x)=¡Lu(t; x):

By Theorem 8.1, this means that, for any 06 t6 � , we have

v(� ¡ t; x)=u(t; x)=E[u(� ;X�
t;x)]=E[v(0; X�

t;x)]=E[f(X�
t;x)]:

On the other hand by Lemma 7.26, we have

v(� ¡ t; x)=E[f(X�
t;x)]=E[f(F�(� ¡ t; x;B�[0;�¡t]))]

which, by Remark 8.4, is equivalent to the thesis. �

We can prove a sort of reverse of Theorem 8.3.

100 SDEs and evolution PDEs



Proposition 8.5. Consider f 2C2(Rm;R) and suppose that (�; �) satisfies assumption A. If
the function u(t; x)=Qt(f)(x) (as a function of (t; x)2R+�Rm) is such that for any t2R+ we
have u(t; �)2C2(Rm;R) and for any x2Rm we have that u(�; x) is differentiable with respect to
time, and the function u(t; x) and its first and second derivatives have at most polynomial growth
at infinity, then we have

@tu=L(u)(t; x):

Proof. By the semigroup property of Qt we have that for any �t> 0

u(t;+�t; x)=Qt+�tf(x)=Q�t(Qtf(x))=Q�t(u(t; x)):

Furthermore, by definition of Q�t, we have

Q�t(u(t; x))=E[u(t;X�tx )]:

Since u2C1;2(R+�Rm;R) we can apply Ito formula to u(t;X�tx ), getting

E[u(t; X�tx )]=u(t; x)+E

�Z
0

�t

L(u)(t;Xs
x)ds

�
+E

24X
k=1

m X
j=1

n Z
0

�t

�j
k(Xsx)@xku(t;Xs

x)dBs
j

35:
Since @xku(t; x) has at most linear growth at infinity then

E

�Z
0

�t

j�jk(Xsx)@xku(t;Xsx)j2ds
�
<+1

and so
R
0

�t
�j
k(Xs

x)@xku(t;Xs
x)dBs

j is a real martingale. This implies that

E[u(t; X�tx )]¡u(t; x)
�t

=E

�
1
�t

Z
0

�t

L(u)(t;Xs
x)ds

�
:

We have that, for any p> 1 and �t6 1,

E[ju(t;X�tx )jp]<Cp;

and

E

��������� 1�t
Z
0

�t

L(u)(t;Xs
x)ds

��������p�6Jensen 1
�t

Z
0

�t

E[jL(u)(t;Xs
x)jp]<Cp;

for some constant Cp > 0 (dependent on p but not on �t). Thus the random variables fu(t;
X�t
x )g�t61 and

� 1

�t

R
0

�tL(u)(t;Xs
x)ds

	
�t are uniformly integrable.

Finally, since Xt
x!x as t! 0 and L(u) is continuous (being u2C1;2(R+�Rm;R)), we have

1
�t

Z
0

�t

L(u)(t;Xs
x)ds!L(u)(t; x); �t! 0;

almost surely. By the uniform integrability of
� 1

�t

R
0

�tL(u)(t;Xs
x)ds

	
�t61, this implies that

lim
�t!0

E

�
1
�t

Z
0

�t

L(u)(t;Xs
x)ds

�
=L(u)(t; x):

Thus we have

@tu(t; x) = lim
�t!0+

(u(t+�t; x)¡u(t; x))
�t

= lim
�t!0+

(Q�tu(t; x)¡u(t; x))
�t

= lim
�t!0+

(Q�tu(t; x)¡u(t; x))
�t

= lim
�t!0+

E[u(t;X�tx )]¡u(t; x)
�t

= lim
�t!0+

E

�
1
�t

Z
0

�t

L(u)(t;Xsx)ds
�
=L(u)(t; x):
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�

8.1.1 Feynman-Kac formula
The probabilistic representations (8.2) and (8.5), of the solutions to equations (8.1) and (8.4)
respectively, can be extended to a more general linear parabolic equations.

Definition 8.6. Consider a continuous function q:Rm!R bounded from below, an autonomous
SDE (�;�) satisfying assumption A (and the related operator L defined in ( 8.3)), a C1;2(R+�Rm;
R) function g:R+�Rm!R, and a C2(Rm;R) function f :Rm!R growing at most polynomially
at infinity. Then a function v 2C1;2(R+�Rm;R) growing at most polynomially at infinity is a
classical solution to the parabolic equation (q;L; g) with initial condition f if

@tv(t; x)=Lv(t; x)¡ q(x)v(t; x)¡ g(t; x); v(0; x)= f(x); (8.6)

for any (t; x)2R+�Rm.

Theorem 8.7. Under the hypotheses and notation of Definition 8.6, if v is a solution to equa-
tion ( 8.6) growing at most polynomially at infinity then we have that

v(t; x)=E

�
f(Xt

x)e¡
R
0
t
q(Xs

x)ds+
Z
0

t

g(s;Xs
x)e¡

R
0
s
q(X`

x)d`ds
�
; (8.7)

where Xt
x is the strong solution to the SDE (�; �) such that X0

x=x2Rm.

Proof. Fix � > 0 and consider the process (defined in the set [0; � ])

Rt= v(� ¡ t;Xt
x)e¡

R
0
t
q(Xs

x)ds+
Z
0

t

g(s;Xs
x)e¡

R
0
s
q(X`)d`ds:

We have that

dRt =
�
¡@tv(� ¡ t;Xt

x)e¡
R
0
t
q(Xs

x)ds¡ q(Xt
x)v(� ¡ t;Xt

x)e¡
R
0
t
q(Xs

x)ds
�
dt

+
�
Lv(t¡ � ;Xt

x)e¡
R
0
t
q(Xs

x)ds+ g(t;Xs
x)e¡

R
0
t
q(Xs)ds

�
dt

+
X
j=1

n
 X
k=1

m

�j
k(Xt

x)@xkv(t¡ � ;Xt
x)

!
dBt

j

=
X
j=1

n
 X
k=1

m

�j
k(Xt

x)@xkv(t¡ � ;Xt
x)

!
dBt

j ;

thus Rt is a local martingale. Using the fact that E[jXt
xjp]<+1 for any p> 1, in a way similar

to what was done in the proof of Theorem 8.1, it is possible to prove that Rt is a real martingale.
Thus, we get

E

�
f(X�

x)e¡
R
0
�
q(Xs

x)ds+
Z
0

�

g(s;Xs
x)e¡

R
0
s
q(X`)d`ds

�
= E

�
v(� ¡ � ;Xt

x)e¡
R
0
�
q(Xs

x)ds+
Z
0

�

g(s;Xs
x)e¡

R
0
s
q(X`)d`ds

�
= E[R�] =E[E[R� jF0]] =E[R0] =E[v(� ;X0

x)]= v(� ; x);

which gives the result. �

8.2 Existence of solution to Kolmogorov PDE: Ornstein-Uhlen-
beck case

Let use consider the Ornstein-Uhlenbeck equation, namely

Xt
x=x+

Z
0

t

�Xs
xds+Bt; (8.8)
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where �2R. In Section 6.1.1.2 the explicit solution to the equation (6.6) is given by the expression

Xt
x= e�tx+

Z
0

t

e�(t¡s)dBs:

Let f 2 C2(R;R) be a function such that f and its first and second derivatives grow at most
polynomially at infinity. Define the function

v(t; x)=E[f(Xt
x)]=E

�
f

�
e�tx+

Z
0

t

e�(t¡s)dBs

��
:

Proposition 8.8. The function v is in C2(R+�R;R) and it satisfies the equation

@tv(t; x)=
1
2
@xx
2 v(t; x)+�x@xv(t; x); v(0; x)= f(x):

Proof. The proof is given for the general case below. �

8.3 Regularity of SDEs with additive noise

Definition 8.9. Let (�;�) be a SDE we say that the coefficients (or the SDE) �;� satisfy assump-
tion B, if (�; �) is an autonomous SDE and, for every k=1; : : : ;m and j=1; : : : ; n, we have that
�k; �j

k2C2(Rm;R) and there is K > 0 such that, for any h; h0=1; : : : ;m, we have

j@xh�k(x)j; j@xh�jk(x)j; j@xhxh0�k(x)j; j@xhxh0�j
k(x)j6K; x2Rm:

Definition 8.10. We say that a SDE (�; �) is an additive noise SDE if �= cost does not depend
on t; x2R+�Rm.

Let Xt
x be a solution to an additive noise SDE, i.e.

Xt
x;k=xk+

Z
0

t

�k(Xsx)ds+
X
j=1

n

�j
kBt

j

(where in the last term we use the fact thatZ
0

t

�j
kdBs

j=�j
kBt

j

being �jk2R).

Theorem 8.11. Let (�; �) be a SDE with additive noise satisfying assumption B, then, for every
t2R+ and ! 2
, the map x 7!Xt

x(!) is C2(Rm;Rm). Furthermore, if we define, for every h; h0;
k=1; : : : ;m, the processes

�h;t
x;k(!)= @xhXt

x(!); �h;h0;t
x;k (!)= @xhxh0Xt

x(!);

then they satisfy the (random) ODEs

d�h;t
x;k(!)
dt

=
X
`=1

m

@x`�
k(Xt

x(!))�h;t
x;`(!)=

X
`=1

m

A`
k(t; x; !)�h;t

x;`(!); (8.9)

d�h;h0;t
x;k (!)
dt

=
X
`=1

m

@x`�
k(Xt

x(!))�h;h0;t
x;` (!)+

X
`;`0=1

m

@x`x`0�
k(Xt

x(!))�h;t
x;`(!)�h0;t

x;`0(!)

=
X
`=1

m

A`
k(t; x; !)�h;h0;t

x;k (!)+
X
`;`0=1

m

B`;`0
k (t; x; !)�h;t

x;`(!)�h0;t
x;`0(!): (8.10)
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Remark 8.12. In order to have a simpler notation, we denote by A(t;x;!) :=(A`k(t;x;!))`;k=1; : : : ;m
the matrix in Mat(m;m) associated with A`k and by

B(t; x; !)[a; b] =

0@ X
`;`0=1

m

B`;`0
k (t; x; !)a`b`

0

1A
the quadratic for associated withB`;`0k (t;x;!). Adopting this notation, we have that equations (8.11)
and equations (8.9) become

d�h;tx

dt
=A(t; x; !) � �h;tx ; (8.11)

d�h;h0;tx

dt
=A(t; x; !) � �h;h0;tx +B(t; x; !)[�h;tx ; �h0;t

x ]: (8.12)

Proof. We provide a complete proof only for �h;tx . For the second derivatives �h;h0;tx the proof is
similar.

Let fekgk=1; : : : ;m�Rm be the standard basis of Rm and consider

�k;�Xt
x= Xt

x+�ek¡Xt
x

�
:

We have that

lim
�!0

�k;�Xt
x(!)= �k;t

x (!)

if the limit exists. We have that the process �k;�Xt
x solves the following SDE

d�k;�Xt
x;h = 1

�
(�h(Xt

x+�ek)¡ �h(Xt
x))dt+ 1

�

X
j=1

n

�j
hdBt

j¡ 1
�

X
j=1

n

�j
hdBt

j

= 1
�
(�h(Xt

x+�ek)¡ �h(Xt
x))dt

=

 X
`=1

m Z
0

1

@x`�
h(�Xt

x+�ek+(1¡ �)Xt
x)(Xt

x+�ek;`¡Xt
x+�ek;`)

�
d�

!
dt

=
X
`=1

m �Z
0

1

@x`�
h(�Xt

x+�ek+(1¡ �)Xt
x)d�

�
�k;�Xt

x;`dt

=
X
`=1

m

A~`
h;�(t; x; !)�`;�Xt

x;`dt;

with the initial condition

�k;�X0
x;h= �k;h:

The solution to the previous (random) ODE can be explicitly computed and it has the following
form

�k;�Xt
x

= �k;�X0
x+
Z
0

t

A~�(s1;x;!) ��k;�X0
xds1+

Z
0

tZ
0

s1

A~�(s1;x;!) �A~�(s2;x;!) ��k;�X0
xds1ds2 (8.13)

+: : :+
Z
0

tZ
0

s1

� � �
Z
0

sN¡1

A~�(s1; x; !) �A~�(s2; x; !)� � �A~�(sN ; x; !)�k;�X0
xds1ds2� � �dsN + : : :

Since, by assumption B,

sup
x2Rm;s2R+

kA~�(s; x; !)kMat(n;n)6C;
and so we have that

sup
x2Rm

t2[0;� ]

Z
0

tZ
0

s1

� � �
Z
0

sN¡1

A~�(s1; x; !) �A~�(s2; x; !)� � �A~�(sN ; x; !)�k;�X0
x ds1ds2� � �dsN

6 �NCN

N !
;

(8.14)
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thus the series (8.13) converges uniformly in t; x2R+�Rm.
Furthermore, for any K �Rm compact set, we have

sup
t2[0;� ];x2K

kA~�(t; x; !)¡A(t; x; !)k

6 m2 sup
t2[0;� ];x2K;`;h=1; : : : ;m

Z
0

1

@x`�
h(rXt

x+�ek(!)+ (1¡ r)Xt
x(!))dr¡

Z
0

1

@x`�
h(Xt

x(!))dr


6 m2 sup
t2[0;� ];r2[0;1];x2K;`;h=1; : : : ;m

j@x`�h(rXt
x+�ek(!)+ (1¡ r)Xt

x(!))¡ @x`�h(Xt
x(!))j:

Since the function

(t; r; x; �) 7! @x`�
h(rXt

x+�ek(!)+ (1¡ r)Xt
x(!))¡ @x`�h(Xt

x(!))

is continuous (being the function (t; y) 7!Xt
y(!) continuous), and thus it is uniformly continuous

when (t; r; x; �) are in the compact set [0; � ]� [0; 1]�K � [0; 1], and since

lim
�!0

(@x`�h(rXt
x+�ek(!)+ (1¡ r)Xt

x(!))¡ @x`�h(Xt
x(!)))=0;

by the uniform continuity we get

lim
�!0

sup
t2[0;� ];x2K

kA~�(t; x; !)¡A(t; x; !)k

6 m2 lim
�!0

sup
t2[0;� ];r2[0;1];

x2K;`;h=1; : : : ;m

j@x`�h(rXt
x+�ek(!)+ (1¡ r)Xt

x(!))¡@x`�h(Xt
x(!))j

= 0:

This implies also that, for any compact set K�Rm, � > 0 and N 2N,

lim
�!0

sup
t2[0;� ];x2K

Z
0

tZ
0

s1

���
Z
0

sN¡1

A~�(s1; x;!) �A~�(s2; x;!)���A~�(sN ; x;!)�k;�X0
xds1ds2���dsN

¡
Z
0

tZ
0

s1

� � �
Z
0

sN¡1

A(s1; x; !) �A(s2; x; !)� � �A(sN ; x; !)�k;�X0
xds1ds2� � �dsN

 = 0:

Using the uniform bound (8.14) we obtain that

lim
�!0

�k;�Xt
x= fk+

Z
0

t

A(s1; x; !) � ekds1+ � � �+

+
Z
0

tZ
0

s1

� � �
Z
0

sN¡1

A(s1; x; !) �A(s2; x; !)� � �A(sN ; x; !)ek ds1ds2� � �dsN + : : :

(8.15)

where

fk=(fk1; : : : ; fkm)2Rm; fk
j= �k

j

(and �k
j is the Kronecker delta). On the other hand, the left hand side of equation (8.15) is equal to

lim
�!0

�k;�Xt
x= �k;t

x

and the right hand side of equation (8.15) is the explicit expression of the solution to the ODE

dz(t)
dt

=A(t; x; !) � z(t); z(0)= fk: (8.16)

Thus, �k;tx exists finite and it is solution to equation (8.16) (which is exactly equation (8.11)). �

Corollary 8.13. Suppose that (�;�) satisfies the hypotheses of Theorem 8.11, then there is C>0
such that, for any t2R+, x2Rm, ! 2
, k; `; `0=1; : : : ;m, we have

j�`;t
x;kj6CeCt; j�`;t

x;kj6CeCt:

Proof. The result is easy consequence of inequality (8.14). �
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8.4 Existence of solutions to Kolmogorov equation: additive
noise case

We recall the definition of the semigroup Qt associate with an (autonomous) SDE (�; �):

Qt(f)(x) :=E[f(Xt
x)]=E[f(F�(t; x;B[0;t]))]:

Theorem 8.14. Consider f 2C2(Rm;R) and suppose that f and its first and second derivatives
have at most polynomial growth at infinity. Suppose that (�; �) is an autonomous additive noise
SDE satisfying assumption B. Then the Kolmogorov equation

@tu=L(u)(t; x); u(0; x)= f(x); (8.17)

admits a unique classical solution u2C1;2(R+�Rm;R) such that u has at most polynomial growth
at infinity and we have

u(t; x)=Qt(f)(x)=E[f(F�(t; x;B[0;t]))]=E[f(Xt
x)]:

Lemma 8.15. Let g:Rk�
!R be a function which, for any !2
, is continuous in x2Rk and
suppose that there is p> 1, for any compact K�Rk, we have

sup
x2K

E[jg(x; �)jp]<CK (8.18)

for some constant CK. Then the function G(x):=E[g(x;!)] is continuous in x2Rk. If furthermore
g(�; !)2C1(Rm;R) and we have�

sup
x2K;`=1; : : : ;k

E[j@x`g(x; �)jp]
�
6CK; (8.19)

the function G(x) is C1(Rk;R) and we have

@x`G(x)=E[@x`g(x; �)]; x2Rk; `=1; : : : ; k:

Proof. Consider x 2Rk and let B1(x)�Rk be the (closed) ball of radius 1 and center x 2Rk.
Then, by condition (8.18), the family of random variables fg(y;!)gy2B1(x) is uniformly integrable.
Furthermore since, for any ! 2
, g(�; !) is continuous we have

lim
y!x;y2B1(x)

g(y; !)= g(x; !): (8.20)

Since the family fg(y; !)gy2B1(x) is uniformly integrable, the limit (8.20) is not only pointwise (in
! 2
) but in L1(
). Thus we have

lim
y!x;y2B1(x)

G(y)= lim
y!x;y2B1(x)

E[g(y; !)]=E

�
lim

y!x;y2B1(x)
g(y; !)

�
=E[g(x; !)]=G(x)

where we can exchange the limit with the expectation since the convergence (8.20) is in L1(
).
Let fe`g`=1; : : : ;k be the standard basis ofRk. By the fundamental theorem of calculus, we have that

g(x+�e`; !)¡ g(x; !)=�

Z
0

1

@x`g(x+�e`; !)d�:

We have that the family of random variables�
g(x+�e`; !)¡ g(x; !)

�

�
0<j�j61

(8.21)

is uniformly integrable. Indeed

E

���������g(x+�e`; !)¡ g(x; !)
�

��������p� = E

���������Z
0

1

@x`g(x+�e`; !)d�
�������� �6 Z

0

1

E[j@x`g(x+�e`; !)jp]d�

6 sup
y2B1(x)

E[j@x`g(x+�e`; !)jp]6CB1(x);
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where B1(x)�Rk is the ball of radius 1 and center x2Rk. Since g(�; !)2C1(Rk;R) we have that

lim
�!0

g(x+�e`; !)¡ g(x; !)
�

=@x`g(x; !); (8.22)

for every !2
. Since the family (8.21) is uniformly integrable we have that the limit (8:22) is not
only pointwise (in ! 2
) but also in L1(
). Thus we get

lim
�!0

G(x+�e`)¡G(x)
�

= lim
�!0

E[g(x+�e`; !)¡ g(x; !)]
�

= E

�
lim
�!0

g(x+�e`; !)¡ g(x; !)
�

�
=E[@x`g(x; !)]; (8.23)

where we can exchange the limit with the expectation because the convergence (8.22) is in L1(
).
This proves the existence of the derivatives @x`G(x). The fact that @x`G(x) is continuous follows
from the first part of the present lemma and the representation formula (8.23). �

Remark 8.16. If g 2C2(Rk;R) and we have, for some p> 1,

sup
x2K

E[j@x`x`0g(x; !)jp]6CK;

then G2C2(Rk;R). Indeed we can apply the Lemma 8.15 to the function @x`G=E[@x`g(x; !)].

Proof. The uniqueness of solution to equation (8.17) has been proved in Theorem 8.3.
Let f 2C2(Rm;R) growing at most polynomially (say of degree L2N) as x!+1, and consider

the function

u(t; x)=E[f(Xt
x)]:

Consider t; s2R+ and t> s, then

u(t; x)¡u(s; x)=E

24Z
s

t

Lf(X�
x)d� +

X
k=1

m X
j=1

n Z
s

t

�j
k(X�

x)@xkf(X�
x)dB�

j

35:
As usual, we can prove that

R
s

t
�j
k(X�

x)@xkf(X�
x)dB�

j are martingale, and so

u(t; x)¡u(s; x)=
Z
s

t

E[Lf(X�
x)]d� =

Z
s

t

G(� ; x)d� :

By Lemma 8.15 (and the polynomial growth of Lf(X�
x)) is continuous the function G(� ; x) is

continuous, and thus u is differentiable with respect to the time with continuous derivatives.
Furthermore, by Corollary 7.15, and the polynomial growth of f , we have

ju(t; x)j6E[jf(Xt
x)j]6KE[(1+ jXt

xjN)]6K (1+CNe
CNt(1+ jxjN))

and also

j@tu(t; x)j= jG(t; x)j6E[jLf(Xt
x)j]6K 0E[(1+ jXt

xjN+1)]6K (1+CN+1e
CN+1t(1+ jxjN+1)):

Furthermore, by Theorem 8.11, for any t2R+ and ! 2
, the map x! f(Xt
x(!)) is C2(Rm;R),

furthermore we have

@x`(f(Xt
x(!)))=

X
k=1

m

@ykf(Xt
x(!))�`;t

x;k

@x`x`0(f(Xt
x(!)))=

X
k;k 0=1

m

@ykyk0f(Xt
x(!))�`;t

x;k�`;t
x;k 0+

X
k=1

m

@ykf(Xt
x(!))�`;`0;t

x;k :

Thus we have that, for any p> 1 and Corollary 8.13,

E[j@x`(f(Xt
x(!)))jp] 6 mp¡1

X
k=1

m

E[j@ykf(Xt
x(!))jpj�`;t

x;kjp]

6 mp2p¡1KpC pepCtE[(1+ jXt
xjNp)]

6 m2p¡1KpCp epCt(1+CpNe
CpNt(1+ jxjpN));
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and similarly

E[j@x`x`0(f(Xt
x(!)))jp] 6 2p¡1m2p¡1

X
k;k 0=1

m

E[j@ykyk0f(Xt
x(!))�`;t

x;k�`;t
x;k 0jp]

+2p¡1mp¡1
X
k=1

m

E[j@ykf(Xt
x(!))�`;`0;t

x;k jp]

6 (2pm2p+1+2pmp)(KpC2pe2pCt+KpCpepCt)(1+CpNeCpNt(1+ jxjpN)):

Thus we can apply Lemma 8.15 and Remark 8.16, obtaining that for any t2R+, u(t; x)2C2(Rm;

R) with at most polynomial growth in the derivatives. This implies that u(t;x)2C1;2(R+�Rm;R).
The thesis, thus, follows from Proposition 8.5. �
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