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ON THE UNIQUENESS IN LAW AND THE PATHWISE
UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS∗
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(Translated by the author)

Abstract. We prove that the uniqueness in law for an SDE

(∗) dXi
t = bit(X) dt+

m∑
j=1

σij
t (X) dBj

t , Xi
0 = xi, i = 1, . . . , n,

implies the uniqueness of the joint distribution of a pair (X,B).

Moreover, we prove that the uniqueness in law for (∗), together with the strong existence, guar-
antees the pathwise uniqueness. This result is somehow “dual” to the theorem of Yamada and
Watanabe.
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1. Introduction. Let C(R+,R
n) be the space of continuous functionsR+→ Rn.

Recall that the coordinate process Y = (Yt)t�0 on this space is defined by

Yt : C(R+,R
n) � y �−→ y(t) ∈ Rn.

The filtration Ht = ∩ε>0σ(Ys; s � t+ε) is called the canonical filtration on C(R+,R
n).

The predictable σ-field on C(R+,R
n) is the σ-field generated by the left-continuous

(Ht)-adapted processes on C(R+,R
n).

In this paper, we will deal with the multidimensional stochastic differential equa-
tions (SDEs) of the form

dXi
t = bit(X) dt +

m∑
j=1

σij
t (X) dBj

t , Xi
0 = xi, i = 1, . . . , n,(1.1)

where n ∈ N, m ∈ N, x ∈ Rn, and b, σ are predictable processes on C(R+,R
n)

taking values in Rn and Rn×m, respectively.

Remark. We fix a starting point x together with b and σ. In our terminology,
SDEs with the same b and σ and with different starting points are different SDEs.
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UNIQUENESS IN LAW AND PATHWISE UNIQUENESS FOR SDEs 407

Definition 1.1. A solution of (1.1) is a pair (X,B) of adapted processes on a
filtered probability space (Ω,F , (Ft)t�0,P) such that

(i) B is an (Ft,P)-BMm(0); i.e., B is an m-dimensional Brownian motion started
at zero and is an (Ft,P)-martingale;

(ii) for any t � 0,

∫ t

0

(
n∑

i=1

|bis(X)| +

n∑
i=1

m∑
j=1

(σij
s (X))2

)
ds < ∞ P-a.s.;

(iii) for any t � 0, i = 1, . . . , n,

Xi
t = xi +

∫ t

0

bis(X) ds +

m∑
j=1

∫ t

0

σij
s (X) dBj

s P-a.s.(1.2)

Remark. In what follows, we will use the vector form of the notation. If b is an
n-dimensional process, then by

∫ t

0
bs ds we will mean the n-dimensional process whose

ith component equals
∫ t

0
bis ds. If M is an m-dimensional local martingale and σ is a

predictable Rn×m-valued process, then by
∫ t

0
σs dMs we will mean the n-dimensional

process whose ith component equals
∑m

j=1

∫ t

0
σij
s dM j

s . With this form of notation,
equality (1.2) can be rewritten as

Xt = x +

∫ t

0

bs(X) ds +

∫ t

0

σs(X) dBs P-a.s.

Definition 1.2. A solution (X,B) is called a strong solution if X is adapted

to (FB

t ), i.e., to the completed natural filtration of B.

Remark. Solutions in the sense of Definition 1.1 are sometimes called weak solu-
tions. Here we simply call them solutions. However, the existence of a solution will
be denoted by the term weak existence in order to stress its difference from the strong
existence, i.e., the existence of a strong solution.

Definition 1.3. There is uniqueness in law for (1.1) if for any solutions (X,B)

and (X̃, B̃) (that may be defined on different filtered probability spaces), one has

Law(Xt; t � 0) = Law(X̃t; t � 0).

Definition 1.4. There is pathwise uniqueness for (1.1) if for any solutions

(X,B) and (X̃, B) (that are defined on the same filtered probability space), one has

P{∀ t � 0, Xt = X̃t} = 1.

Remarks. (i) If there exists no solution of (1.1), then there is both uniqueness in
law and pathwise uniqueness.

(ii) An overview of sufficient conditions for various types of existence and various
types of uniqueness can be found in [7, Chap. 4, section 4], [8, Chap. IX], [10], and [12].

The following two propositions clarify the advantages of the strong solutions and
of the pathwise uniqueness.
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408 A. S. CHERNY

Fig. 1. The obvious implications and the implications given by the theorem of Yamada and
Watanabe.

Proposition 1.1. Let (X,B) be a strong solution of (1.1). Then
(i) there exists a measurable map

Φ:
(
C(R+,R

m),B) −→ (
C(R+,R

n),B)
(here, B denotes the Borel σ-field) such that X(ω) = Φ(B(ω)) for P-a.e. ω;

(ii) if B̃ is an (F̃t, P̃)-BMm(0) and X̃(ω̃) := Φ(B̃(ω̃)), then (X̃, B̃) is a strong

solution of (1.1) on (Ω̃, F̃ , (F̃t), P̃).
For the proof, see, for example, [1].
Proposition 1.2 (Yamada and Watanabe). Suppose that the pathwise unique-

ness holds for (1.1). Then
(i) the uniqueness in law holds for (1.1);
(ii) there exists a measurable map

Φ:
(
C(R+,R

m),B) −→ (
C(R+,R

n),B)
such that, for any solution (X,B) of (1.1), we have X(ω) = Φ(B(ω)) for P-a.e. ω.

Proposition 1.2 is illustrated by Figure 1.
For the proof, see [11] or [8, Chap. IX, Thm. (1.7)].
The situation with the solutions of SDEs may now be described as follows.
It may happen that there exists no solution of (1.1) on any filtered probability

space (see Example 2.1). It may also happen that on some filtered probability spaces
there exists a solution (or even several solutions with the same Brownian motion) while
on some other filtered probability spaces there exists no solution (see Example 2.2).

If there exists a strong solution of (1.1) on some filtered probability space, then
there exists a strong solution on any other filtered probability space with any Brownian
motion on this space (see Proposition 1.1). However, it may happen in this case that
there exist several solutions with the same Brownian motion (see Example 2.3).

If the pathwise uniqueness holds for (1.1) and there exists a solution on some fil-
tered probability space, then on any other filtered probability space with any
Brownian motion there exists exactly one solution, and this solution is strong (see
Proposition 1.2). This is the best possible situation.
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UNIQUENESS IN LAW AND PATHWISE UNIQUENESS FOR SDEs 409

Fig. 2. The implications give by Theorem 3.2.

Thus, the theorem of Yamada and Watanabe shows that the pathwise uniqueness,
together with the existence of a solution, guarantees that the situation is the best
possible.

In this paper, we prove that the situation is the best possible provided that we
have the uniqueness in law and the strong existence. Namely, we show that these two
properties imply the pathwise uniqueness (Theorem 3.2). Theorem 3.2 is illustrated
by Figure 2. The proof of this result is based on a statement that is of interest in itself:
if there is uniqueness in law for (1.1), then the joint distribution Law(Xt, Bt; t � 0)
is the same for all solutions (X,B) (Theorem 3.1).

Remarks. (i) One may consider SDEs of a more general form than (1.1), i.e.,
the SDEs in which a Brownian motion B is replaced by a semimartingale Z. For
such SDEs, the uniqueness in law is sometimes defined as the uniqueness of the joint
distribution of (X,Z) (see [4], [5]). Theorem 3.1 shows that, for SDEs of the form (1.1),
this strengthened version of the uniqueness in law is equivalent to Definition 1.3.

(ii) Engelbert proved in [2] that the uniqueness of the joint distribution Law(Xt,
Bt; t � 0), together with the strong existence, guarantees the pathwise uniqueness.
Moreover, it is proved in [2], under certain additional assumptions, that the uniqueness
in law for (1.1) implies the uniqueness of the joint distribution of (X,B). Theorem 3.1
in the present paper shows that this result is true with no additional assumptions.

The paper is arranged as follows. Section 2 contains several examples of SDEs.
These examples illustrate various possible situations with the existence and the unique-
ness of solutions. Examples 2.2 and 2.3 are well known. The main results of the paper
are given in section 3. Section 4 contains an interpretation of Theorem 3.1 in terms
of the martingale problems. We also present in section 4 a table that shows which
combinations of existence and uniqueness are possible and which are impossible.

2. Examples.
Example 2.1 (no solution). For the SDE

dXt = − 1

2Xt
I(Xt �= 0) dt + dBt, X0 = 0,(2.1)

there exists no solution.

D
ow

nl
oa

de
d 

04
/2

6/
16

 to
 1

31
.2

20
.1

15
.2

41
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



410 A. S. CHERNY

Proof. Suppose that (X,B) is a solution of (2.1). Then

Xt = −
∫ t

0

1

2Xs
I(Xs �= 0) ds + Bt, t � 0.

By Itô’s formula,

X2
t = −

∫ t

0

2Xs
1

2Xs
I(Xs �= 0) ds +

∫ t

0

2Xs dBs +

∫ t

0

1 ds

=

∫ t

0

I(Xs = 0) ds +

∫ t

0

2Xs dBs, t � 0.

The process X is a continuous semimartingale with 〈X〉t = t. Hence, by the occupa-
tion times formula (see [8, Chap. VI, Cor. 1.6]),∫ t

0

I(Xs = 0) ds =

∫
R

I(x = 0)Lx
t (X) dx = 0, t � 0,

where Lx
t (X) denotes the local time spent by the process X at the point x by the

time t. As a result, X2 is a local martingale. Since X2 � 0 and X2
0 = 0, we conclude

that X2 = 0 a.s. This means that (X,B) is not a solution of (2.1).
Example 2.2 (no strong solution and no pathwise uniqueness; Tanaka). For the

SDE

dXt = signXt dBt, X0 = 0,(2.2)

where

signx =

{
1 if x > 0,

−1 if x � 0,

there exists a solution and there is uniqueness in law while there exists no strong
solution and there is no pathwise uniqueness.

Proof. Let W be a Brownian motion on (Ω,F ,P). Set

Xt = Wt, Bt =

∫ t

0

signWs dWs, t � 0,

and take Ft = FB
t . Then (X,B) is a solution of (2.2) on (Ω,F , (Ft),P).

If (X,B) is a solution of (2.2) on a filtered probability space (Ω,F , (Ft),P),
then X is a continuous (Ft,P)-local martingale with 〈X〉t = t. It follows from Lévy’s
characterization theorem that X is a Brownian motion. This implies the uniqueness
in law.

If (X,B) is a solution of (2.2), then

Bt =

∫ t

0

signXs dXs, t � 0.

This implies that FB
t = F |X|

t (see [8, Chap. VI, Cor. 2.2]). Hence, there exists no
strong solution.

If (X,B) is a solution of (2.2), then (−X,B) also is a solution. Thus, there is no
pathwise uniqueness.
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UNIQUENESS IN LAW AND PATHWISE UNIQUENESS FOR SDEs 411

Remark. Let B be a Brownian motion on (Ω,F ,P). Set Ft = FB
t . Then there

exists no solution of (2.2) on (Ω,F , (Ft),P) with the Brownian motion B. Indeed,
if (X,B) is a solution, then X is (Ft)-adapted, and hence, (X,B) is a strong solution.
On the other hand, (2.2) possesses no strong solution.

Example 2.3 (no uniqueness). For the SDE

dXt = I(Xt �= 0) dBt, X0 = 0,(2.3)

there exists a strong solution while there is no uniqueness in law, and there is no
pathwise uniqueness.

Proof. It is sufficient to note that (B,B) and (0, B) are solutions of (2.3) when-
ever B is a Brownian motion on a filtered probability space (Ω,F , (Ft),P).

Remark. Let B be a Brownian motion and ξ be a random variable independent
of B with P{ξ = 1} = P{ξ = −1} = 1

2 . Set

Xt(ω) =

{
Bt(ω) if ξ(ω) = 1,

0 if ξ(ω) = −1

and take Ft = FX
t . Then (X,B) is a solution of (2.3) that is not strong. Indeed, for

each t > 0, ξ is σ(Xt)-measurable while ξ is not FB
t -measurable.

Example 2.4 (no strong solution and no uniqueness). For the SDE

dXt = I(Xt �= 1) signXt dBt, X0 = 0,(2.4)

there exists a solution while there exists no strong solution, there is no uniqueness in
law, and there is no pathwise uniqueness.

Proof. If W is a Brownian motion, then the pair

Xt = Wt, Bt =

∫ t

0

signWs dWs, t � 0,(2.5)

is a solution of (2.4).

Let (X,B) be the solution given by (2.5). Set τ = inf{t � 0: Xt = 1}, X̃t = Xt∧τ .

Then (X̃, B) is another solution. Thus, there is no uniqueness in law and there is no
pathwise uniqueness.

Suppose that (X,B) is a strong solution of (2.4). Set τ = inf{t � 0: Xt = 1},
Xτ

t = Xt∧τ , Bτ
t = Bt∧τ . The random variable τ ′ = inf{t � 0: Xt = 1/2} is

an (FX
t )-stopping time. Since X is (FB

t )-adapted, τ ′ is also an (FB

t )-stopping time.
Hence, there exists an (FB

t )-stopping time τ ′′ such that τ ′′ = τ ′ a.s. (see [6, Chap. I,
Lem. 1.19]). It follows from Galmarino’s test (see [3, section 3.2]) that τ ′′ is also
an (FBτ

t )-stopping time. On the other hand,

Bτ
t =

∫ t

0

signXτ
t dXτ

t , t � 0.

In view of the theory of local times for continuous semimartingales, this equality yields

that FBτ

t ⊆ F |Xτ |
t (see [8, Chap. VI, section 1]). But obviously, τ ′ and τ ′′ are not

stopping times with respect to (F |Xτ |
t ). Hence, there exists no strong solution.
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412 A. S. CHERNY

3. The main results.
Theorem 3.1. Suppose that the uniqueness in law holds for (1.1). Then, for

any solutions (X,B) and (X̃, B̃) (that may be defined on different filtered probability

spaces), one has Law(Xt, Bt; t � 0) = Law(X̃t, B̃t; t � 0).
Theorem 3.2. Suppose that the uniqueness in law holds for (1.1) and there exists

a strong solution. Then the pathwise uniqueness holds for (1.1).
Remark. Consider a one-dimensional SDE of the form (1.1) such that σt(x) �= 0

for any t � 0, x ∈ C(R+,R). In this case, Theorem 3.1 is almost trivial. Indeed, B
is expressed as a measurable functional of X:

Bt =

∫ t

0

1

σs(X)
dMs, t � 0,

where

Mt = Xt −
∫ t

0

bs(X) ds, t � 0.

However, if σ vanishes at some points, this reasoning does not work.
In order to prove Theorems 3.1 and 3.2, we need several auxiliary lemmas.
Lemma 3.1. If B is an (Ft,P)-BMm(0), then, for any 0 � s � t, the random

variable Bt −Bs is independent of Fs.
Proof. By Itô’s formula, the process exp{i(λ,Bt) + ‖λ‖2t/2} is an (Ft,P)-local

martingale for any λ ∈ Rm. Being bounded, it is a martingale. Hence, for any
0 � s � t, A ∈ Fs, λ ∈ Rm, we have

E
[
exp{i(λ,Bt −Bs)} IA

]
= exp

{
−(t− s)

‖λ‖2

2

}
P(A).

This leads to the desired result.
Lemma 3.2. Let t � 0 and f ∈ L2([0, t]). For k ∈ N, set

f (k)(s) =


0 if s ∈

[
0,

t

k

]
,

k

t

∫ it/k

(i−1)t/k

f(r) dr if s ∈
(
it

k
,

(i + 1)t

k

]
, (i = 1, . . . , k − 1).

Then f (k) → f in L2([0, t]) as k → ∞.
Proof. We have

‖f (k)‖2
L2([0,t]) =

k−1∑
i=1

t

k

(
k

t

∫ it/k

(i−1)t/k

f(r) dr

)2

�
k−1∑
i=1

∫ it/k

(i−1)t/k

f2(r) dr

�
∫ t

0

f2(r) dr = ‖f‖2
L2([0,t]).(3.1)

Fix ε > 0. Then there exists ϕ ∈ C([0, t]) such that ‖ϕ− f‖L2([0,t]) < ε. Let ϕ(k) be

constructed by ϕ in the same way as f (k) is constructed by f . Then, in view of (3.1),

‖ϕ(k) − f (k)‖L2([0,t]) � ‖ϕ− f‖L2([0,t]) < ε
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UNIQUENESS IN LAW AND PATHWISE UNIQUENESS FOR SDEs 413

for any k ∈ N. Furthermore, as ϕ is continuous, there exists K ∈ N such that, for
any k � K, ‖ϕ(k) − ϕ‖L2([0,t]) < ε. This leads to the desired result.

We will recall the following fact from the measure theory. Let ξ : Ω → E be a ran-
dom element on (Ω,F ,P) taking values in a Polish space (E,B(E)). Let G ⊆ F . Then
there exists a conditional distribution of ξ with respect to G, i.e., a family (Qω)ω∈Ω

of probability measures on (E,B(E)) such that
(i) for any A ∈ B(E), the map ω �→ Qω(A) is G-measurable;
(ii) for any A ∈ B(E), D ∈ G,

P
(
D ∩ {ξ ∈ A}) =

∫
D

Qω(A)P(dω).

The conditional distribution is unique in the following sense: If (Q̃ω)ω∈Ω is another

family with the stated properties, then Qω = Q̃ω for P-a.e. ω.
Remark. Properties (i), (ii) mean that, for any bounded B(E)-measurable func-

tion h, the random variable η(ω) := EQω
[h] is a version of EP[h(ξ)|G]. Note also that

if A ∈ B(E) is such that P{ξ ∈ A} = 1, then Qω(A) = 1 for P-a.e. ω.
Lemma 3.3. Let (X,B) be a solution of (1.1) on a filtered probability space

(Ω,F , (Ft),P). Let (Qω)ω∈Ω be a conditional distribution of (X,B) with respect
to F0 (we consider (X,B) as a C(R+,R

n+m)-valued random element). Let Y de-
note the process that consists of the first n components of the coordinate process on
C(R+,R

n+m), and let Z denote the process that consists of the last m components.
Let (Ht) be the canonical filtration on C(R+,R

n+m) and H =
∨

t�0Ht. Then, for

P-a.e. ω, the pair (Y,Z) is a solution of (1.1) on (C(R+,R
n+m),H, (Ht),Qω).

Proof. Let us check conditions (i)–(iii) of Definition 1.1.
(i) For any 0 � s � t, D ∈ Hs, λ ∈ Rm, A ∈ F0, we have

EP

[
exp{i(λ,Bt −Bs)} I

(
(X,B) ∈ D

)
IA
]

= exp

{
−(t− s)

‖λ‖2

2

}
EP

[
I
(
(X,B) ∈ D

)
IA
]
.

Hence, for any 0 � s � t, D ∈ Hs, λ ∈ Rm, we have

EQω [exp{i(λ,Zt − Zs)} ID] = exp

{
−(t− s)

‖λ‖2

2

}
Qω(ID)

for P-a.e. ω. Taking a countable collection {sk, tk, Dkl, λkl; k, l ∈ N} such that the
sequence (sk, tk) runs through all pairs of positive rational numbers (sk � tk), the
collection {Dkl; l ∈ N} generates Hsk , and the set {λkl; l ∈ N} is dense in Rm, we
deduce that, for P-a.e. ω, the process Z is an (Ht,Qω)-BMm(0).

(ii) For any t � 0,∫ t

0

(
n∑

i=1

|bis(X)| +

n∑
i=1

m∑
j=1

(σij
s (X))2

)
ds < ∞ P-a.s.

Hence, for any t � 0,∫ t

0

(
n∑

i=1

|bis(Y )| +

n∑
i=1

m∑
j=1

(σij
s (Y ))2

)
ds < ∞ Qω-a.s.
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414 A. S. CHERNY

for P-a.e. ω.

(iii) Fix t � 0. For k ∈ N, define a process

σ(k) : R+ × C(R+,R
n) � (s, y) �−→ σ(k)

s (y) ∈ Rn×m

by

σ(k)
s (y) =


0 if s ∈

[
0,

t

k

]
,

k

t

∫ it/k

(i−1)t/k

σr(y) dr if s ∈
(
it

k
,

(i + 1)t

k

]
, i = 1, . . . , k − 1.

Then, by Lemma 3.2, ∫ t

0

∥∥σ(k)
s (X) − σs(X)

∥∥2
ds

P-a.s.−−−−→
k→∞

0.(3.2)

Consequently, ∫ t

0

σ(k)
s (X) dBs

P−−−−→
k→∞

∫ t

0

σs(X) dBs,

which means that

k∑
i=2

σ
(k)
it/k(X)

(
Bit/k −B(i−1)t/k

) P−−−−→
k→∞

Xt − x−
∫ t

0

bs(X) ds(3.3)

(we use here the vector form of notation). There exists a subsequence (k(l)) such
that, along this subsequence, the convergence in (3.3) holds P-a.s. Therefore,

k(l)∑
i=2

σ
(k(l))
it/k(l)(Y )

(
Zit/k(l) − Z(i−1)t/k(l)

) Qω-a.s.−−−−→
l→∞

Yt − x−
∫ t

0

bs(Y ) ds(3.4)

for P-a.e. ω. On the other hand, in view of (3.2),∫ t

0

∥∥σ(k)
s (Y ) − σs(Y )

∥∥2
ds

Qω-a.s.−−−−→
k→∞

0

for P-a.e. ω, and hence,∫ t

0

σ(k)
s (Y ) dZs

Qω−−−−→
k→∞

∫ t

0

σs(Y ) dZs(3.5)

for P-a.e. ω. Combining (3.4) and (3.5), we get

Yt − x−
∫ t

0

bs(Y ) ds =

∫ t

0

σs(Y ) dZs Qω-a.s.

for P-a.e. ω. This completes the proof.
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Proof of Theorem 3.1. Let (X,B) be a solution of (1.1) on a filtered probability
space (Ω,F , (Ft),P). Let (Wt)t�0 and (W t)t�0 be two independent (F ′

t,P
′)-BMm(0).

Set (
Ω̃, F̃ , (F̃t), P̃

)
=
(
Ω,F , (Ft),P

)× (Ω′,F ′, (F ′
t),P

′).
The processes X, B, W , and W can be defined on Ω̃ in an obvious way. The pair
(X,B) is a solution of (1.1) on (Ω̃, F̃ , (F̃t), P̃), and W , W are independent (F̃t, P̃)-
BMm(0).

For any t � 0, y ∈ C(R+,R
n), the matrix σt(y) corresponds to a linear oper-

ator Rm → Rn. Let ϕt(y) denote the m × m-matrix of the operator of orthogonal
projection onto (kerσt(y))⊥; let ψt(y) denote the m × m-matrix of the operator of
orthogonal projection onto kerσt(y). Then the processes ϕ = ϕt(y) and ψ = ψt(y)
are predictable Rm×m-valued processes on C(R+,R

n).
Set

Ut =

∫ t

0

ϕs(X) dBs +

∫ t

0

ψs(X) dWs, t � 0,(3.6)

Vt =

∫ t

0

ϕs(X) dW s +

∫ t

0

ψs(X) dBs, t � 0.(3.7)

The 2m-dimensional process (U, V ) is a continuous (F̃t, P̃)-local martingale. More-
over, for any i, j = 1, . . . ,m, in view of the symmetry of matrices ϕt(y), ψt(y), we
have

〈U i, U j〉t =

∫ t

0

(
m∑

k=1

ϕik
s (X)ϕjk

s (X) +

m∑
k=1

ψik
s (X)ψjk

s (X)

)
ds

=

∫ t

0

((
ϕs(X) ei , ϕs(X) ej

)
+
(
ψs(X) ei , ψs(X) ej

))
ds

=

∫ t

0

(
ϕs(X) ei + ψs(X) ei , ϕs(X) ej + ψs(X) ej

)
ds =

∫ t

0

(ei , ej) ds = δijt,

where (ei)
m
i=1 is the standard basis in Rm. Similarly,

〈U i, V j〉t =

∫ t

0

(
ϕs(X) ei , ψs(X) ej

)
ds = 0,

〈V i, V j〉t = δijt.

By the multidimensional version of Lévy’s characterization theorem (see [8, Chap. IV,

Thm. 3.6]), we deduce that the process (U, V ) is an (F̃t, P̃)-BM2m(0).
For any t � 0, we have∫ t

0

σs(X) dBs =

∫ t

0

(
σs(X)ϕs(X)

)
dBs =

∫ t

0

σs(X) d

(∫ s

0

ϕr(X) dBr

)
=

∫ t

0

σs(X) d

(∫ s

0

ϕr(X) dUr

)
=

∫ t

0

σs(X) dUs,

where σs(X)ϕs(X) denotes the product of matrices. Consequently, (X,U) is a solu-

tion of (1.1) on (Ω̃, F̃ , (F̃t), P̃).
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Let us now consider the filtration

Gs = F̃s ∨ σ(Vt; t � 0) = F̃s ∨ σ(Vt − Vs; t � s), s � 0.

It follows from Lemma 3.1 that, for any s � 0, the σ-fields F̃s and σ(Ut − Us; t � s)∨
σ(Vt − Vs; t � s) are independent. Hence, for any 0 � s � t, i = 1, . . . ,m, A ∈ F̃s,
D ∈ σ(Vt − Vs; t � s), we have

E
P̃

[
(U i

t − U i
s) ID IA

]
= E

P̃

[
(U i

t − U i
s) ID

]
P̃(A) = E

P̃
[U i

t − U i
s] P̃(D) P̃(A) = 0.

Thus, U is a (Gt, P̃)-BMm(0). Since the stochastic integral
∫ t

0
σs(X) dUs is the

same for both filtrations (F̃t) and (Gt), the pair (X,U) is a solution of (1.1) on

(Ω̃, F̃ , (Gt), P̃).

Let (Q
ω̃

)
ω̃∈Ω̃

be a conditional distribution of (X,U) with respect to G0. By

Lemma 3.3, the pair (Y,Z) is a solution of (1.1) on (C(R+,R
n+m),H, (Ht),Qω̃

) for

P̃-a.e. ω̃. As the uniqueness in law holds for (1.1), the distribution Law(Yt; t � 0 |Q
ω̃

)

(which is the conditional distribution of X with respect to G0) is the same for P̃-a.e. ω̃.
This means that the process X is independent of G0. In particular, X and V are
independent.

For any t � 0, y ∈ C(R+,R
n), the restriction of the operator σt(y) to (kerσt(y))⊥

is a bijection from (kerσt(y))⊥ ⊆ Rm onto Imσt(y) ⊆ Rn. Let us define the operator
χt(y) : Rn → Rm as follows: χt(y) maps Imσt(y) onto (kerσt(y))⊥ as the inverse of
σt(y); χt(y) vanishes on (Imσt(y))⊥. Obviously, χ = χt(y) is a predictable Rm×n-
valued process on C(R+,R

n). We have χt(y)σt(y) = ϕt(y). Therefore,∫ t

0

ϕs(X) dBs =

∫ t

0

(
χs(X)σs(X)

)
dBs =

∫ t

0

χs(X) dMs,

where

Mt =

∫ t

0

σs(X) dBs = Xt − x−
∫ t

0

bs(X) ds.

Keeping (3.7) in mind, we get

Bt =

∫ t

0

ϕs(X) dBs +

∫ t

0

ψs(X) dBs =

∫ t

0

χs(X) dMs +

∫ t

0

ψs(X) dVs.(3.8)

The process M is a measurable functional of X while V is independent of X. Thus,
(3.8) shows that the distribution Law(Xt, Bt; t � 0) is the same for all solutions (X,B).

Proof of Theorem 3.2. Let (X,B) be a strong solution of (1.1) on (Ω,F , (Ft),P).
Then there exists a measurable map θ : C(R+,R

m) → C(R+,R
n) such that X(ω) =

θ(B(ω)) for P-a.e. ω. Let (Qω)ω∈Ω be a conditional distribution of X with respect
to FB

∞. Then Qω = δθ(B(ω)) for P-a.e. ω.

Now, let (X̃, B̃) be a solution of (1.1) on (Ω̃, F̃ , (F̃t), P̃). Let (Q̃
ω̃

)
ω̃∈Ω̃

be a

conditional distribution of X̃ with respect to F B̃
∞. Since Law(X̃, B̃) = Law(X,B),

we deduce that Q̃
ω̃

= δ
θ(B̃(ω̃))

for P̃-a.e. ω̃. Hence, X̃ = θ(B̃(ω̃)) for P̃-a.e. ω̃. This

yields the desired statement.

D
ow

nl
oa

de
d 

04
/2

6/
16

 to
 1

31
.2

20
.1

15
.2

41
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



UNIQUENESS IN LAW AND PATHWISE UNIQUENESS FOR SDEs 417

4. Applications of the obtained results. We will first describe the interpre-
tation of Theorem 3.1 in terms of the martingale problems. Let x ∈ Rn. Let b be a
predictable process on C(R+,R

n) taking values in Rn. Let a be a predictable process
on C(R+,R

n) taking values in the space of symmetric nonnegative n× n-matrices.
Definition 4.1. A solution of the n-dimensional martingale problem (x, b, a) is

a measure Q on C(R+,R
n) such that

(i) Q{Y0 = x} = 1 (here, Y denotes the coordinate process on C(R+,R
n));

(ii) for any t � 0,∫ t

0

(
n∑

i=1

|bis(Y )| +

n∑
i=1

aii(Y )

)
ds < ∞ Q-a.s.;

(iii) for any i = 1, . . . , n, the process

M i
t = Y i

t −
∫ t

0

bis(Y ) ds

is an (Ht,Q)-local martingale ((Ht) denotes the canonical filtration on C(R+,R
n)),

and, for any i, j = 1, . . . , n,

〈M i,M j〉t =

∫ t

0

aijs (Y ) ds.

For more information on martingale problems, see [9].
Let us return to SDE (1.1). Set at(y) = σt(y)σ∗

t (y). If (X,B) is a solution
of (1.1), then Q := Law(Xt; t � 0) is a solution of the martingale problem (x, b, a).
Conversely, if Q is a solution of the martingale problem (x, b, a), then there exists a
solution (X,B) of (1.1) such that Law(Xt; t � 0) = Q. The uniqueness in law for (1.1)
is equivalent to the uniqueness of a solution of the martingale problem (x, b, a).

Now, Theorem 3.1 can be reformulated as follows.
Theorem 4.1. Let (x, b, a) be an n-dimensional martingale problem. Let σ be a

predictable Rn×m-valued process on C(R+,R
n) such that σt(y)σ∗

t (y) = at(y). Then
the uniqueness of a solution of the martingale problem (x, b, a) implies the uniqueness
of a solution of the (n + m)-dimensional martingale problem

((
x
0

)
,

(
b
0

)
,

(
a σ
σ∗ I

))
.

Let us now mention one more application of the above results. For SDE (1.1),
each of the following properties may or may not hold:

existence of a solution; existence of a strong solution;
uniqueness in law; pathwise uniqueness.

Thus, there are 16(= 24) feasible combinations. Some of these combinations are
impossible (for instance, if there is pathwise uniqueness, then there must be uniqueness
in law). Using Examples 2.1–2.4 as well as Proposition 1.2 and Theorem 3.2, one can,
for each of these combinations, either provide an example of the corresponding SDE
or prove that this combination is impossible. It turns out that there are only five
possible combinations (see Table 1).
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418 A. S. CHERNY

Table 1

Combinations of various types of existence and of various types of uniqueness. For example,

the combination “+−+−” on line 11 corresponds to an SDE for which there exists a solution,

there exists no strong solution, there is uniqueness in law, and there is no pathwise uniqueness.

The table shows that such an SDE is provided by Example 2.2.

Weak Strong Uniqueness Pathwise

existence existence in law uniqueness Possible/impossible

− − − − impossible, obviously

− − − + impossible, obviously

− − + − impossible, obviously

− − + + possible, Example 2.1

− + − − impossible, obviously

− + − + impossible, obviously

− + + − impossible, obviously

− + + + impossible, obviously

+ − − − possible, Example 2.4

+ − − + impossible, Figure 1

+ − + − possible, Example 2.2

+ − + + impossible, Figure 1

+ + − − possible, Example 2.3

+ + − + impossible, Figure 1

+ + + − impossible, Figure 2

+ + + + possible, obviously
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