V4F1 Stochastic Analysis – Problem Sheet 5

Exercise 1 (Pts 2+2+2) (Passage time to a sloping line) Let X be a one–dimensional Brownian motion with $X_0 = 0$ and let $a > 0$, $b \in \mathbb{R}$.

a) Let $T_L = \inf\{t \geq 0 : X_t = a + bt\}$ denote the first passage time to the line $y = a + bt$. Show that
\[\mathbb{P}(T_L \leq t) = \mathbb{E}[e^{-bX_t - b^2t/2}\mathbb{1}_{T_a \leq t}], \quad (1) \]
where $T_a = \inf\{t \geq 0 : X_t = a\}$ is the first passage time to level a.

b) Recall that, by the reflection principle, the law of T_a is absolutely continuous with density
\[f_{T_a}(t) = at^{-3/2}\phi\left(a/\sqrt{t}\right)1_{(0,\infty)}(t), \]
where ϕ is the standard normal density. Deduce that the law of T_L is absolutely continuous with density
\[f_{T_L}(t) = at^{-3/2}\phi\left((a+bt)/\sqrt{t}\right)1_{(0,\infty)}(t). \]
[Hint: in (1) take the conditional expectation w.r.t. F_{T_a}].

c) Show that, for $b > 0$,
\[\mathbb{E}[e^{-bX_t\max_{s\leq t}(X_s)}] \simeq \frac{e^{b^2t/2}}{2b}, \quad \text{and} \quad \mathbb{E}[e^{bX_t\max_{s\leq t}(X_s)}] \simeq be^{b^2t/2}, \quad \text{as} \ t \to \infty. \]

Exercise 2 (Pts 2+2+3) (Brownian Bridge) Let X be a d–dimensional Brownian motion with $X_0 = 0$.

a) Show that, for any $y \in \mathbb{R}^d$, the process
\[X^y_t = X_t - t(X_1 - y) \quad t \in [0, 1] \]
is independent of X_1.

b) Let μ_y denote the law of X^y on $C([0, 1]; \mathbb{R}^d)$. Show that $y \mapsto \mu_y$ is a regular version of the conditional distribution of X given $X_1 = y$.

c) Compute the SDE satisfied by the canonical process Y under the probability measure μ_y on the space $C([0, 1]; \mathbb{R}^d)$. (Hint: use Doob’s h-transform argument from the lectures)

Exercise 3 (Pts 3) Let M be a positive continuous supermartingale such that $\mathbb{E}[M_0] < \infty$. Let $M_\infty = \lim_{t \to \infty} M_t$. Show that if $\mathbb{E}[M_\infty] = \mathbb{E}[M_0]$ then M is a martingale and $\mathbb{E}[M_\infty | F_t] = M_t$. [Hint: prove that $\mathbb{E}[M_\infty | F_t] \leq M_t$ and that $\mathbb{E}[M] = \mathbb{E}[M_0]$ and conclude.]

Exercise 4 (Pts 4) Prove directly that the h-transform gives a transformation of martingale problems from the one with drift b and diffusion σ to another with same diffusion coefficient σ but different drift \tilde{b}.

Names: XXXXXXXXXXX/YYYYYYYYYYYYYY